JP2005041784A - Method for purifying sugar phosphate - Google Patents

Method for purifying sugar phosphate Download PDF

Info

Publication number
JP2005041784A
JP2005041784A JP2003200183A JP2003200183A JP2005041784A JP 2005041784 A JP2005041784 A JP 2005041784A JP 2003200183 A JP2003200183 A JP 2003200183A JP 2003200183 A JP2003200183 A JP 2003200183A JP 2005041784 A JP2005041784 A JP 2005041784A
Authority
JP
Japan
Prior art keywords
salt
electrodialysis
sugar
sugar phosphate
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003200183A
Other languages
Japanese (ja)
Other versions
JP4703950B2 (en
Inventor
Hitoshi Sato
仁 佐藤
Yutaka Ikuga
裕 生賀
Naoaki Hayakawa
直明 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003200183A priority Critical patent/JP4703950B2/en
Publication of JP2005041784A publication Critical patent/JP2005041784A/en
Application granted granted Critical
Publication of JP4703950B2 publication Critical patent/JP4703950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which application to liquids after completing reactions of both an enzymic method and a fermentation method can be made and a sugar phosphate such as G-1-P (glucose-1-phosphate) or its salt can be purified at a low cost. <P>SOLUTION: The method for purifying the sugar phosphate or its salt comprises subjecting a mixed aqueous solution containing the sugar phosphate or its salt and sugars to electrodialysis using a monovalent ion-nonselective anion exchange membrane and thereby removing the sugars. Furthermore, the method for purifying the sugar phosphate or its salt comprises subjecting the mixed aqueous solution containing the sugar phosphate or its salt, sugars and phosphoric acid or its salt to the electrodialysis using the monovalent ion-nonselective anion exchange membrane and electrodialysis using a monovalent ion-selective anion exchange membrane and thereby removing the sugars and phosphoric acid or its salt. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、グルコース−1−リン酸(以下「G−1−P」と略称する)等の糖リン酸エステル又はその塩の低コストな精製法に関する。
【0002】
【従来の技術】
G−1−Pは、抗菌剤、抗腫瘍剤、心疾患治療薬等の医薬品や糖合成の基質として有用であり、更に近年では、体内への優れたカルシウム吸収作用に着目して、骨粗鬆症予防の新規食品素材としても精力的に研究が行われている。
【0003】
G−1−Pの製造は、糖類とリン酸を基質として、これにイオン交換樹脂に固定化したマルトデキストリンフォスフォリラーゼ(MDPase)を作用させる固定化酵素法(例えば特許文献1参照)など、主として酵素法によって行われている。また、G−1−Pは発酵法により製造することも可能であり、コリネバクテリウム属細菌を、糖及びリン酸又はその塩を含有する培地中で培養する発酵法によるG−1−Pの製造が提案されている(特許文献2参照)。
【0004】
酵素法による反応終了液は、G−1−P以外に、未反応物である糖類及びリン酸(塩)を含んでいる。そのため、反応終了液を限外濾過後、透析法又は電気透析法によりリン酸又はその塩を除去し(特許文献3及び4参照)、続いてアセトン、エタノール等の水溶性の溶剤を用いた晶析により糖類を除去し、G−1−Pを精製している。しかしながら、G−1−Pの晶析には多量の溶剤が必要であり、高コストとなる。また水溶性の溶剤を再利用するためには共沸蒸留プロセスや浸透気化法(パーベーパレーション)等の特別な装置を用いた工程が必要となり、設備的な負荷が高くなるという問題がある。更には、発酵法による反応終了液には、上記糖類及びリン酸(塩)以外に、タンパク質、ペプチド、色素等が残存しており、これらも除去する必要があるが、溶剤晶析では除去することができない。また、仮に発酵法の反応液を、限外濾過、透析法又は電気透析法、活性炭処理等に付した後、更に溶剤晶析法で精製したとしても、発酵由来の香気成分等の低沸点成分が溶剤に濃縮されてくるため、溶剤を再利用することはできない。
【0005】
【特許文献1】
特開平1−63589号公報
【特許文献2】
特開2002−300899号公報
【特許文献3】
特開昭61−129189号公報
【特許文献4】
特公平6−96585号公報
【0006】
【発明が解決しようとする課題】
そこで、本発明は、酵素法、発酵法の双方の反応終了液に適用でき、しかも低コストで、リン酸又はその塩、糖類等の不純物を除去し、G−1−P等の糖リン酸エステル又はその塩を精製できる方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、発酵法又は酵素法による糖リン酸エステル製造の反応終了液に、1価イオン非選択性陰イオン交換膜を用いた電気透析を施せば、糖リン酸エステルイオンとリン酸のイオンは当該膜を通過するが、糖類、タンパク質等は通過しないため、糖類(及びタンパク質等)を低コストで分離することが可能であること、更に、これに1価イオン選択性陰イオン交換膜を用いた電気透析法による脱リン工程を組み合わせれば、糖類及びリン酸(塩)、更には発酵法による反応終了液に含まれるタンパク質(ペプチド)も除去することができ、低コストでG−1−Pの精製が可能となることを見出した。
【0008】
すなわち本発明は、第一に、糖リン酸エステル又はその塩及び糖類を含有する混合水溶液を、1価イオン非選択性陰イオン交換膜を用いた電気透析に付すことにより、糖類を除去する糖リン酸エステル又はその塩の精製法を提供するものである。
【0009】
更に本発明は、第二に、糖リン酸エステル又はその塩、糖類及びリン酸又はその塩を含有する混合水溶液を、1価イオン非選択性陰イオン交換膜を用いた電気透析、及び1価イオン選択性陰イオン交換膜を用いた電気透析に付すことにより、糖類及びリン酸又はその塩を除去する糖リン酸エステル又はその塩の精製法を提供するものである。
【0010】
【発明の実施の形態】
本発明の第一の精製法において使用する、「糖リン酸エステル又はその塩及び糖類を含有する混合水溶液」としては、発酵法による反応終了液、酵素法による反応終了液のいずれでもよく、更にはこれらを電気透析等に付すことによりリン酸又はその塩を除去したものでもよい。また、本発明の第二の精製法において使用する、「糖リン酸エステル又はその塩、糖類及びリン酸又はその塩を含有する混合水溶液」としては、発酵法による反応終了液、酵素法による反応終了液のいずれでもよい。
【0011】
本発明で精製の対象とする糖リン酸エステル又はその塩としては、ヘキソース、ペントース等の単糖類若しくは二糖類等の多糖類のリン酸エステル、又はそれらのナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられる。より具体的には、G−1−P、グルコース−6−リン酸、マンノース−6−リン酸、ガラクトース−6−リン酸、フルクトース−6−リン酸、グルコース−1,6−二リン酸、フルクトース−1,6−二リン酸、又はそれらのナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられ、本発明は特にG−1−Pの精製に好適である。
【0012】
また、前記混合水溶液に含まれる糖類としては、未反応物としてのヘキソース、ペントース等の単糖類及び二糖類等の多糖類、例えばグルコース、マルトース、マルトトリオース、マルトテトラオース、マルトペンタオース、マンノース、ガラクトース、フルクトース等が挙げられる。更に前記混合水溶液に含まれるリン酸又はその塩としては、オルトリン酸のほか、ピロリン酸等の縮合リン酸、又はそれらのナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられる。
【0013】
本発明では、前記混合水溶液を一段階又は相異なる二段階の電気透析に付すことにより、糖リン酸エステルを精製するものであるが、電気透析に先立ち、限外ろ過等のろ過を施すことが好ましく、また、混合水溶液として発酵法による反応終了液を用いる場合は、発酵菌体分離のため、精密濾過処理を施すことが好ましい。また発酵液の種類によっては、電気透析脱糖工程での糖リン酸エステルの透過性を悪くする夾雑物質が存在する場合がある。そのような発酵液の場合には、上記ろ過に加え、更に、活性炭による処理を施すことが好ましい。
【0014】
糖類除去のための電気透析(脱糖工程)では、1価イオン非選択性陰イオン交換膜を使用する。1価イオン非選択性陰イオン交換膜とは、1価陰イオンの選択性のない陰イオン交換膜をいい、例えばセレミオンAMV(旭硝子社製)、A201(旭化成社製)、ACM(トクヤマ社製)等の市販品を使用することができる。一方、陽イオン交換膜は1価イオン非選択性である必要はないが、1価イオン非選択性であることが好ましい。これらは、電気透析装置において交互に配列され、糖リン酸エステル及び不純物を含む混合水溶液(反応終了液)を多室型透析槽の隔室(脱塩室)に、また隣り合う隔室(濃縮液室)には低濃度の塩(電解質)の水溶液を供給する。
【0015】
脱糖工程における混合水溶液(反応終了液)の濃度、電解質溶液の濃度、電気透析時間、通電電流量、膜面積等は、目的に応じて条件を設定すればよいが、通電電流量は限界電流密度を超えない範囲で操作するのが好ましい。この工程により、1価イオン非選択性陰イオン交換膜を、アニオンである糖リン酸エステルイオンとリン酸イオンだけが透過して隣の隔室へ移るため、糖類、更には発酵法の反応終了液に含まれるタンパク質、ペプチド、色素等を分離することができる。
【0016】
リン酸(塩)除去のための電気透析(脱リン工程)では、1価イオン選択性陰イオン交換膜を使用する。1価イオン選択性陰イオン交換膜とは、1価陰イオンのみを透過させる選択性を付与された陰イオン交換膜をいい、例えばセレミオンASV(旭硝子社製)、A192(旭化成社製)、ACS(トクヤマ社製)等の市販品を使用することができる。一方、陽イオン交換膜は1価イオン選択性である必要はないが、1価イオン選択性であることが好ましい。これらは、電気透析装置において交互に配列され、糖リン酸エステル及び不純物を含む混合水溶液(反応終了液)を多室型透析槽の隔室(脱塩室)に、また隣り合う隔室(濃縮液室)には水又は低濃度の塩(電解質)の水溶液を供給する。
【0017】
1価イオン選択性陰イオン交換膜は、糖リン酸エステルイオンやリン酸多価イオンは通過できず、リン酸1価イオン(HPO )のみが通過する。リン酸は溶液のpHによって荷電状態が異なり、pHを下げると1価イオンになる。従って、リン酸除去の効率の点及び糖リン酸エステルの安定性の点から、混合水溶液のpHは、2〜10、特に4〜7に調整することが好ましい。脱リン工程におけるその他の設定条件は、前記同様、目的に応じて条件を設定すればよく、通電電流量は限界電流密度を超えない範囲で操作するのが好ましい。
【0018】
以上の2種の電気透析を行う順番は、反応終了液が発酵法、酵素法のいずれによるものであるかを問わず、どちらを先に行うこともできるが、発酵法による反応終了液を精製する場合は、先に脱リン工程を行った場合、続く脱糖工程での糖リン酸エステルの透過性が低下する傾向にあるため、まず脱糖工程、次いで脱リン工程の順番で行うのが好ましい。
【0019】
電気透析終了液の溶液は、必要に応じて、蒸発等による濃縮し、水酸化ナトリウム、水酸化カリウム等の添加により中和塩とし、更に噴霧乾燥等することにより、糖リン酸エステルを粉末状で得ることができる。この場合の蒸発濃縮と中和の順番は、高pHでの加熱による着色等を回避するため、蒸発濃縮を先に行うのが好ましい。
【0020】
【実施例】
実施例1
コリネバクテリウム・カルナエ(C. callunae)IFO15359を、酵母エキス0.3%、アミノ酸混合液1.0%、水あめ10%、塩化カルシウム0.01%、硫酸マグネシウム7水和物0.02%、塩化鉄(III)6水和物0.0025%、硫安0.5%、尿素1.0%、リン酸二水素カリウム・リン酸水素二カリウム緩衝液400mM(pH7.0)の条件下で、30℃、5日間培養し、7.1g/LのG−1−P含有発酵液を得た。発酵液を孔径0.25μmの精密濾過膜(旭化成社製PMP−102)にて菌体分離を行った。
得られた精密濾過液を、旭化成社製電気透析装置アシライザーG3を用いた電気透析処理に付した。1価陰イオン非選択透過膜としてA201(旭化成社製)、1価陽イオン非選択透過膜としてK501SB(旭化成社製)を使用したイオン交換膜カートリッジAC−220−400型を使用した。電気透析処理を2時間行ったところ、濃縮液室でのG−1−Pの回収率は85%、リン酸イオンの回収率は98%、糖の除去率は94%(フェノール硫酸法により測定。以下同じ)、タンパク質・ペプチドの除去率は93%(Lowry法により測定。以下同じ)であった。また、得られた濃縮液の色相ΔE(Lab)を色差計にて測定した。ΔE(Lab)は色差計を用いて試料溶液の水に対する明度(L)、色度−黄(a)、色度−青(b)の差を測定し、それらを2乗平均して得られる値であり、値が大きいほど色が濃いことを意味する。精密濾過液の色相がΔE(Lab)=34であったのに対し、濃縮液の色相はΔE(Lab)=3でありほぼ透明であった。
【0021】
実施例2
実施例1にて1価イオン非選択膜を用いた電気透析処理を行った液を、1価イオン選択膜を用いた電気透析処理に付した。1価陰イオン選択透過膜としてA192(旭化成社製)、1価陽イオン選択透過膜としてK192(旭化成社製)を使用したイオン交換膜カートリッジAC−110−400型を使用した。電気透析処理を2時間行ったところ、脱塩室でのG−1−Pの回収率は90%であり、リン酸イオンの除去率は99.9%であった。
その後、水酸化ナトリウムにて中和処理を行った後、噴霧乾燥して、G−1−P含有粉末を得た。得られたG−1−P含有粉末のG−1−P純度は、G−1−P・2Na・4HOとして68%であった。
【0022】
実施例3
コリネバクテリウム・グルタミカム(C. glutamicum)JCM1321を酵母エキス0.5%、アミノ酸混合液1.0%、水あめ10%、塩化カルシウム0.01%、硫酸マグネシウム7水和物0.02%、塩化鉄(III)6水和物0.0025%、硫安0.5%、リン酸
二水素カリウム・リン酸水素二カリウム緩衝液400mM(pH7.0)の条件下で、30℃、5日間培養し、8.0g/LのG−1−P含有発酵液を得た。得られた発酵液を実施例1と同様に精密濾過膜処理により菌体分離を行い、実施例1と同様に1価イオン非選択透過膜にて電気透析処理を2時間行った。濃縮液室でのG−1−Pの回収率は63%、リン酸イオンの回収率は98%、糖の除去率は94%、タンパク質・ペプチドの除去率は88%であった。
【0023】
実施例4
実施例3にて1価イオン非選択膜を用いた電気透析処理を行った液を、実施例2と同様に1価イオン選択膜を用いた電気透析処理に2時間付したところ、脱塩室でのG−1−Pの回収率は92%であり、リン酸イオンの除去率は99.9%であった。
その後、水酸化ナトリウムにて中和処理を行った後、噴霧乾燥して、G−1−P含有粉末を得た。得られたG−1−P含有粉末のG−1−P純度は、G−1−P・2Na・4HOとして62%であった。
【0024】
実施例5
実施例3にて発酵液を精密濾過膜処理により菌体分離を行った後、粉末活性炭2%を添加し、濾過した。その後実施例1と同様に1価イオン非選択透過膜にて電気透析処理を2時間行った。濃縮液室でのG−1−Pの回収率は93%、リン酸イオンの回収率は99%、糖の除去率は94%、タンパク質・ペプチドの除去率は96%であった。
【0025】
実施例6
実施例5にて1価イオン非選択膜を用いた電気透析処理を行った液を、実施例2と同様に1価イオン選択膜を用いた電気透析処理に2時間付したところ、脱塩室でのG−1−Pの回収率は92%であり、リン酸イオンの除去率は99.9%であった。その後、水酸化ナトリウムにて中和処理を行った後、噴霧乾燥して、G−1−P含有粉末を得た。得られたG−1−P含有粉末のG−1−P純度は、G−1−P・2Na・4HOとして74%であった。
【0026】
比較例1
実施例3で得られた精密濾過した液を限外濾過(旭化成社製AIP−1010)により除タンパクを行った。その後、実施例2、4及び6と同様に1価イオン選択透過膜にて電気透析処理を2時間行った。脱塩室でのG−1−Pの回収率は92%であり、リン酸イオンの除去率は99.9%であった。更に逆浸透膜(日東電工社製NTR−7450)にて約10倍に液を濃縮し、活性炭10%を添加・濾過し脱色を行った。逆浸透濃縮液の色相がΔE(Lab)=166であったのに対し、活性炭処理によりΔE(Lab)=2となった。得られた活性炭処理液を水酸化ナトリウムで中和し、エタノールを元液に対して230%添加し、沈殿・ろ別し、減圧乾燥機にて40℃一昼夜乾燥を行った。エタノール晶析でのG−1−P回収率は96%、全工程における糖及びタンパク質・ペプチドの除去率はそれぞれ92%、89%であった。得られたG−1−P含有粉末のG−1−P純度は、G−1−P・2Na・4HOとして64%であった。
【0027】
以上の結果を表1に示した。
【0028】
【表1】

Figure 2005041784
【0029】
以上の結果、1価イオン非選択透過膜と1価イオン選択透過膜を組み合わせることにより効率的にG−1−Pを精製することができた。
【0030】
【発明の効果】
本発明の精製法は、酵素法、発酵法の双方の反応終了液に適用でき、しかも低コストで、リン酸又はその塩、糖類等の不純物を除去し、G−1−P等の糖リン酸エステル又はその塩を精製することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-cost method for purifying a sugar phosphate ester such as glucose-1-phosphate (hereinafter abbreviated as “G-1-P”) or a salt thereof.
[0002]
[Prior art]
G-1-P is useful as an antibacterial agent, antitumor agent, therapeutic agent for heart disease and the like, and as a substrate for sugar synthesis. In recent years, G-1-P has been used to prevent osteoporosis by focusing on excellent calcium absorption action in the body. As a new food material, research is being conducted energetically.
[0003]
The production of G-1-P uses saccharides and phosphoric acid as substrates, and an immobilized enzyme method (for example, see Patent Document 1) in which maltodextrin phosphorylase (MDPase) immobilized on an ion exchange resin is allowed to act. It is mainly performed by enzymatic methods. G-1-P can also be produced by fermentation, and G-1-P produced by fermentation in which a bacterium belonging to the genus Corynebacterium is cultured in a medium containing sugar and phosphoric acid or a salt thereof. Manufacturing has been proposed (see Patent Document 2).
[0004]
The reaction end solution by the enzyme method contains saccharides and phosphoric acid (salt) which are unreacted substances in addition to G-1-P. Therefore, after ultrafiltration of the reaction completion solution, phosphoric acid or a salt thereof is removed by dialysis or electrodialysis (see Patent Documents 3 and 4), followed by crystals using a water-soluble solvent such as acetone or ethanol. Sugars are removed by analysis to purify G-1-P. However, a large amount of solvent is required for crystallization of G-1-P, resulting in high cost. Further, in order to reuse the water-soluble solvent, a process using a special apparatus such as an azeotropic distillation process or an osmotic vaporization method (pervaporation) is required. Furthermore, in addition to the above saccharides and phosphoric acid (salt), proteins, peptides, pigments, and the like remain in the reaction completion solution by the fermentation method, and these also need to be removed, but they are removed by solvent crystallization. I can't. Moreover, even if the reaction solution of the fermentation method is subjected to ultrafiltration, dialysis method or electrodialysis method, activated carbon treatment, etc., and further purified by a solvent crystallization method, low boiling point components such as fermentation-derived aroma components Is concentrated in the solvent, the solvent cannot be reused.
[0005]
[Patent Document 1]
JP-A-1-63589 [Patent Document 2]
JP 2002-300899 A [Patent Document 3]
JP 61-129189 A [Patent Document 4]
Japanese Examined Patent Publication No. 6-96585 [0006]
[Problems to be solved by the invention]
Therefore, the present invention can be applied to reaction completion solutions of both enzymatic methods and fermentation methods, and at low cost, removes impurities such as phosphoric acid or a salt thereof, saccharides, and sugar phosphates such as G-1-P. It aims at providing the method which can refine | purify ester or its salt.
[0007]
[Means for Solving the Problems]
When the present inventors performed electrodialysis using a monovalent ion non-selective anion exchange membrane on a reaction completion solution for sugar phosphate production by a fermentation method or an enzyme method, sugar phosphate ester ions and phosphate Ions pass through the membrane, but saccharides, proteins, etc. do not pass through, so it is possible to separate saccharides (and proteins, etc.) at low cost, and monovalent ion selective anion exchange By combining the dephosphorylation step by electrodialysis using a membrane, saccharides and phosphoric acid (salts), as well as proteins (peptides) contained in the reaction completion solution by the fermentation method can be removed. It was found that -1-P could be purified.
[0008]
That is, the present invention firstly provides a saccharide from which a saccharide is removed by subjecting a mixed aqueous solution containing a sugar phosphate ester or a salt thereof and a saccharide to electrodialysis using a monovalent ion-nonselective anion exchange membrane. A method for purifying a phosphate ester or a salt thereof is provided.
[0009]
Furthermore, the present invention secondly, a mixed aqueous solution containing a sugar phosphate ester or a salt thereof, a saccharide and phosphoric acid or a salt thereof is electrodialyzed using a monovalent ion-nonselective anion exchange membrane, and monovalent The present invention provides a method for purifying a sugar phosphate ester or a salt thereof, which removes sugar and phosphoric acid or a salt thereof by subjecting to electrodialysis using an ion selective anion exchange membrane.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As the “mixed aqueous solution containing a sugar phosphate ester or a salt thereof and a saccharide” used in the first purification method of the present invention, either a reaction completion solution by a fermentation method or a reaction completion solution by an enzyme method may be used. May be obtained by removing phosphoric acid or a salt thereof by subjecting them to electrodialysis or the like. In addition, the “mixed aqueous solution containing a sugar phosphate ester or a salt thereof, a saccharide and phosphoric acid or a salt thereof” used in the second purification method of the present invention includes a reaction completion solution by a fermentation method and a reaction by an enzyme method. Any of the end liquids may be used.
[0011]
Examples of sugar phosphates or salts thereof to be purified in the present invention include phosphate esters of polysaccharides such as monosaccharides or disaccharides such as hexose and pentose, or alkali metal salts such as sodium salts and potassium salts thereof. Is mentioned. More specifically, G-1-P, glucose-6-phosphate, mannose-6-phosphate, galactose-6-phosphate, fructose-6-phosphate, glucose-1,6-diphosphate, Examples thereof include alkali metal salts such as fructose-1,6-diphosphate or sodium salts and potassium salts thereof, and the present invention is particularly suitable for purification of G-1-P.
[0012]
Examples of the saccharide contained in the mixed aqueous solution include saccharides such as hexose and pentose as unreacted substances and polysaccharides such as disaccharides, such as glucose, maltose, maltotriose, maltotetraose, maltopentaose, mannose. , Galactose, fructose and the like. Furthermore, examples of phosphoric acid or a salt thereof contained in the mixed aqueous solution include orthophosphoric acid, condensed phosphoric acid such as pyrophosphoric acid, and alkali metal salts such as sodium salt and potassium salt thereof.
[0013]
In the present invention, the sugar phosphate ester is purified by subjecting the mixed aqueous solution to one-stage or two-stage electrodialysis, but prior to electrodialysis, filtration such as ultrafiltration may be performed. Moreover, when using the reaction completion liquid by a fermentation method as mixed aqueous solution, it is preferable to perform a microfiltration process for fermentation microbial cell separation. Further, depending on the type of the fermentation broth, there may be a contaminant that deteriorates the permeability of the sugar phosphate ester in the electrodialysis desugaring step. In the case of such a fermentation broth, it is preferable to perform a treatment with activated carbon in addition to the above filtration.
[0014]
In electrodialysis (desugaring step) for saccharide removal, a monovalent ion non-selective anion exchange membrane is used. The monovalent ion non-selective anion exchange membrane means an anion exchange membrane having no monovalent anion selectivity. For example, Selemion AMV (Asahi Glass Co., Ltd.), A201 (Asahi Kasei Co., Ltd.), ACM (Tokuyama Corp.) ) Etc. can be used. On the other hand, the cation exchange membrane does not need to be monovalent ion non-selective, but is preferably monovalent ion non-selective. These are alternately arranged in the electrodialyzer, and a mixed aqueous solution (reaction completed solution) containing sugar phosphates and impurities is placed in a compartment (desalting chamber) of a multi-chamber dialysis tank and adjacent compartments (concentration). A low-concentration salt (electrolyte) aqueous solution is supplied to the liquid chamber.
[0015]
The concentration of the mixed aqueous solution (reaction completed solution), the concentration of the electrolyte solution, the electrodialysis time, the energization current amount, the membrane area, etc. in the desugaring step may be set according to the purpose. It is preferable to operate within a range not exceeding the density. This step allows the monovalent ion non-selective anion exchange membrane to pass only through the sugar phosphate ester ions and phosphate ions, which are anions, and move to the adjacent compartment. Proteins, peptides, pigments, etc. contained in the liquid can be separated.
[0016]
In electrodialysis (dephosphorization step) for removing phosphoric acid (salt), a monovalent ion selective anion exchange membrane is used. The monovalent ion-selective anion exchange membrane refers to an anion exchange membrane imparted with a selectivity that allows only monovalent anions to pass through. For example, Selemion ASV (Asahi Glass Co., Ltd.), A192 (Asahi Kasei Co., Ltd.), ACS Commercial products such as (manufactured by Tokuyama Corporation) can be used. On the other hand, the cation exchange membrane need not be monovalent ion-selective, but is preferably monovalent ion-selective. These are alternately arranged in the electrodialyzer, and a mixed aqueous solution (reaction completed solution) containing sugar phosphates and impurities is placed in a compartment (desalting chamber) of a multi-chamber dialysis tank and adjacent compartments (concentration). Water or an aqueous solution of salt (electrolyte) having a low concentration is supplied to the liquid chamber.
[0017]
The monovalent ion-selective anion exchange membrane cannot pass sugar phosphate ester ions or phosphate polyvalent ions, and only phosphate monovalent ions (H 2 PO 4 ) pass through. Phosphoric acid has a different charge state depending on the pH of the solution, and becomes monovalent ions when the pH is lowered. Therefore, the pH of the mixed aqueous solution is preferably adjusted to 2 to 10, particularly 4 to 7, from the viewpoint of the efficiency of removing phosphoric acid and the stability of the sugar phosphate ester. Other setting conditions in the dephosphorization process may be set according to the purpose as described above, and it is preferable to operate the energization current amount in a range not exceeding the limit current density.
[0018]
The order of performing the above two types of electrodialysis can be performed first regardless of whether the reaction end solution is the fermentation method or the enzyme method, but the reaction end solution by the fermentation method is purified. In this case, when the dephosphorization step is performed first, the permeability of the sugar phosphate ester in the subsequent desugaring step tends to decrease. Therefore, the dephosphorization step and then the dephosphorization step are performed first. preferable.
[0019]
The solution of the electrodialysis finish solution is concentrated by evaporation, etc., if necessary, neutralized by adding sodium hydroxide, potassium hydroxide, etc., and further spray-dried, etc. Can be obtained at In this case, the order of evaporation concentration and neutralization is preferably performed first in order to avoid coloring and the like due to heating at high pH.
[0020]
【Example】
Example 1
Corynebacterium carnae IFO15359, yeast extract 0.3%, amino acid mixture 1.0%, starch syrup 10%, calcium chloride 0.01%, magnesium sulfate heptahydrate 0.02%, Under conditions of iron (III) chloride hexahydrate 0.0025%, ammonium sulfate 0.5%, urea 1.0%, potassium dihydrogen phosphate / dipotassium hydrogen phosphate buffer 400 mM (pH 7.0), By culturing at 30 ° C. for 5 days, a fermented liquid containing 7.1 g / L of G-1-P was obtained. The fermentation broth was subjected to cell separation using a microfiltration membrane (PMP-102 manufactured by Asahi Kasei Co., Ltd.) having a pore size of 0.25 μm.
The obtained microfiltrate was subjected to an electrodialysis treatment using an electrodialyzer acylator G3 manufactured by Asahi Kasei Corporation. An ion exchange membrane cartridge AC-220-400 type using A201 (Asahi Kasei Co., Ltd.) as the monovalent anion non-selective permeable membrane and K501SB (Asahi Kasei Co., Ltd.) as the monovalent cation non-selective permeable membrane was used. When electrodialysis was performed for 2 hours, the G-1-P recovery rate in the concentrate chamber was 85%, the phosphate ion recovery rate was 98%, and the sugar removal rate was 94% (measured by the phenol-sulfuric acid method). The same applies hereinafter), and the protein / peptide removal rate was 93% (measured by the Lowry method; the same applies hereinafter). Further, the hue ΔE (Lab) of the obtained concentrated liquid was measured with a color difference meter. ΔE (Lab) is obtained by measuring the lightness (L), chromaticity-yellow (a), and chromaticity-blue (b) difference of the sample solution with respect to water using a color difference meter, and averaging these values. Value, meaning that the larger the value, the darker the color. The hue of the microfiltrate was ΔE (Lab) = 34, whereas the hue of the concentrate was ΔE (Lab) = 3 and was almost transparent.
[0021]
Example 2
The liquid subjected to electrodialysis treatment using a monovalent ion non-selective membrane in Example 1 was subjected to electrodialysis treatment using a monovalent ion selective membrane. An ion exchange membrane cartridge AC-110-400 type using A192 (manufactured by Asahi Kasei) as the monovalent anion selective permeable membrane and K192 (manufactured by Asahi Kasei) as the monovalent cation selective permeable membrane was used. When electrodialysis was performed for 2 hours, the G-1-P recovery rate in the desalting chamber was 90%, and the phosphate ion removal rate was 99.9%.
Then, after neutralizing with sodium hydroxide, it was spray-dried to obtain a G-1-P-containing powder. The G-1-P purity of the obtained G-1-P-containing powder was 68% as G-1-P · 2Na · 4H 2 O.
[0022]
Example 3
Corynebacterium glutamicum ( C. glutamicum ) JCM1321 with yeast extract 0.5%, amino acid mixture 1.0%, starch syrup 10%, calcium chloride 0.01%, magnesium sulfate heptahydrate 0.02%, chloride Cultured at 30 ° C. for 5 days under conditions of iron (III) hexahydrate 0.0025%, ammonium sulfate 0.5%, potassium dihydrogen phosphate / potassium hydrogen phosphate buffer 400 mM (pH 7.0) 8.0 g / L of G-1-P-containing fermentation broth was obtained. The obtained fermentation broth was subjected to cell separation by microfiltration membrane treatment in the same manner as in Example 1, and electrodialysis treatment was carried out for 2 hours using a monovalent ion non-selective permeable membrane in the same manner as in Example 1. The G-1-P recovery rate in the concentrate chamber was 63%, the phosphate ion recovery rate was 98%, the sugar removal rate was 94%, and the protein / peptide removal rate was 88%.
[0023]
Example 4
The liquid that had been subjected to electrodialysis treatment using a monovalent ion non-selective membrane in Example 3 was subjected to electrodialysis treatment using a monovalent ion selective membrane in the same manner as in Example 2 for 2 hours. The recovery rate of G-1-P was 92%, and the phosphate ion removal rate was 99.9%.
Then, after neutralizing with sodium hydroxide, it was spray-dried to obtain a G-1-P-containing powder. The G-1-P purity of the obtained G-1-P-containing powder was 62% as G-1-P · 2Na · 4H 2 O.
[0024]
Example 5
In Example 3, the fermentation broth was subjected to cell separation by microfiltration membrane treatment, and then 2% powdered activated carbon was added and filtered. Thereafter, as in Example 1, electrodialysis treatment was performed for 2 hours using a monovalent ion non-selective permeable membrane. The G-1-P recovery rate in the concentrate chamber was 93%, the phosphate ion recovery rate was 99%, the sugar removal rate was 94%, and the protein / peptide removal rate was 96%.
[0025]
Example 6
When the liquid subjected to electrodialysis treatment using a monovalent ion non-selective membrane in Example 5 was subjected to electrodialysis treatment using a monovalent ion selective membrane in the same manner as in Example 2 for 2 hours, a desalting chamber was obtained. The recovery rate of G-1-P was 92%, and the phosphate ion removal rate was 99.9%. Then, after neutralizing with sodium hydroxide, it was spray-dried to obtain a G-1-P-containing powder. The G-1-P purity of the obtained G-1-P-containing powder was 74% as G-1-P · 2Na · 4H 2 O.
[0026]
Comparative Example 1
The microfiltered liquid obtained in Example 3 was deproteinized by ultrafiltration (AIP-1010 manufactured by Asahi Kasei Corporation). Thereafter, electrodialysis treatment was performed for 2 hours using a monovalent ion selective permeable membrane in the same manner as in Examples 2, 4 and 6. The recovery rate of G-1-P in the desalting chamber was 92%, and the phosphate ion removal rate was 99.9%. Further, the solution was concentrated about 10 times with a reverse osmosis membrane (NTR-7450 manufactured by Nitto Denko Corporation), and 10% activated carbon was added and filtered to perform decolorization. The hue of the reverse osmosis concentrate was ΔE (Lab) = 166, whereas ΔE (Lab) = 2 was obtained by the activated carbon treatment. The obtained activated carbon treatment liquid was neutralized with sodium hydroxide, 230% of ethanol was added to the original liquid, precipitated and filtered, and dried at 40 ° C. overnight in a vacuum dryer. The G-1-P recovery rate in ethanol crystallization was 96%, and the sugar and protein / peptide removal rates in all steps were 92% and 89%, respectively. The G-1-P purity of the obtained G-1-P-containing powder was 64% as G-1-P · 2Na · 4H 2 O.
[0027]
The above results are shown in Table 1.
[0028]
[Table 1]
Figure 2005041784
[0029]
As a result, G-1-P could be efficiently purified by combining a monovalent ion non-selective permeable membrane and a monovalent ion selective permeable membrane.
[0030]
【The invention's effect】
The purification method of the present invention can be applied to reaction completion solutions of both enzymatic methods and fermentation methods, and at low cost, removes impurities such as phosphoric acid or its salts, saccharides, and sugar phosphorus such as G-1-P. Acid esters or their salts can be purified.

Claims (2)

糖リン酸エステル又はその塩及び糖類を含有する混合水溶液を、1価イオン非選択性陰イオン交換膜を用いた電気透析に付すことにより、糖類を除去する糖リン酸エステル又はその塩の精製法。Method for purifying sugar phosphate ester or salt thereof by removing sugar by subjecting mixed aqueous solution containing sugar phosphate ester or salt thereof and sugar to electrodialysis using monovalent ion non-selective anion exchange membrane . 糖リン酸エステル又はその塩、糖類及びリン酸又はその塩を含有する混合水溶液を、1価イオン非選択性陰イオン交換膜を用いた電気透析、及び1価イオン選択性陰イオン交換膜を用いた電気透析に付すことにより、糖類及びリン酸又はその塩を除去する糖リン酸エステル又はその塩の精製法。Electrodialysis using a monovalent ion non-selective anion exchange membrane and a monovalent ion-selective anion exchange membrane for a mixed aqueous solution containing a sugar phosphate ester or a salt thereof, a saccharide and phosphoric acid or a salt thereof A method for purifying a sugar phosphate ester or salt thereof, wherein the sugar phosphate and salt or salt thereof are removed by subjecting to electrodialysis.
JP2003200183A 2003-07-23 2003-07-23 Purification method of sugar phosphate ester Expired - Fee Related JP4703950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200183A JP4703950B2 (en) 2003-07-23 2003-07-23 Purification method of sugar phosphate ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200183A JP4703950B2 (en) 2003-07-23 2003-07-23 Purification method of sugar phosphate ester

Publications (2)

Publication Number Publication Date
JP2005041784A true JP2005041784A (en) 2005-02-17
JP4703950B2 JP4703950B2 (en) 2011-06-15

Family

ID=34260678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200183A Expired - Fee Related JP4703950B2 (en) 2003-07-23 2003-07-23 Purification method of sugar phosphate ester

Country Status (1)

Country Link
JP (1) JP4703950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115302A1 (en) * 2010-03-19 2011-09-22 味の素株式会社 Method for producing phosphoric acid from bone, and method and device for employing phosphoric acid produced from bone in the fermentation of sugar
WO2016038142A1 (en) 2014-09-10 2016-03-17 Pfeifer & Langen GmbH & Co. KG Process for the enzymatic preparation of a product glucoside and of a co-product from an educt glucoside

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116415B1 (en) * 1967-02-02 1976-05-24
JPS62289592A (en) * 1986-02-20 1987-12-16 Kao Corp Purification of sugar phosphate or salt thereof
JPH05208991A (en) * 1992-01-30 1993-08-20 Hayashibara Biochem Lab Inc Production of material having high content of alphaglycosyl-l-ascorbic acid and separation system for producing the material
JPH05271269A (en) * 1992-03-27 1993-10-19 Unitika Ltd Purification of fructose-1,6-diphosphate
JPH0641776A (en) * 1991-03-29 1994-02-15 Taiyo Kagaku Co Ltd Refining method of sialic acid
JPH07155563A (en) * 1993-12-06 1995-06-20 Hitachi Ltd Nacl recovery device by electrodialysis
JPH07213869A (en) * 1994-02-04 1995-08-15 Asahi Glass Co Ltd Production of water having small salt content
JPH08108184A (en) * 1994-10-13 1996-04-30 Hitachi Ltd Water treatment apparatus
JP2002143854A (en) * 2000-11-08 2002-05-21 Matsushita Electric Ind Co Ltd Electrochemical water treating device
JP2002238515A (en) * 2001-02-14 2002-08-27 Asahi Kasei Corp Method for producing mineral drink
JP2002300899A (en) * 2001-02-02 2002-10-15 Kao Corp Method for producing glucose-1-phosphate
JP2003088731A (en) * 2001-09-20 2003-03-25 Asahi Kasei Corp Method and apparatus for eliminating organic acids by electrodialysis

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116415B1 (en) * 1967-02-02 1976-05-24
JPS62289592A (en) * 1986-02-20 1987-12-16 Kao Corp Purification of sugar phosphate or salt thereof
JPH0641776A (en) * 1991-03-29 1994-02-15 Taiyo Kagaku Co Ltd Refining method of sialic acid
JPH05208991A (en) * 1992-01-30 1993-08-20 Hayashibara Biochem Lab Inc Production of material having high content of alphaglycosyl-l-ascorbic acid and separation system for producing the material
JPH05271269A (en) * 1992-03-27 1993-10-19 Unitika Ltd Purification of fructose-1,6-diphosphate
JPH07155563A (en) * 1993-12-06 1995-06-20 Hitachi Ltd Nacl recovery device by electrodialysis
JPH07213869A (en) * 1994-02-04 1995-08-15 Asahi Glass Co Ltd Production of water having small salt content
JPH08108184A (en) * 1994-10-13 1996-04-30 Hitachi Ltd Water treatment apparatus
JP2002143854A (en) * 2000-11-08 2002-05-21 Matsushita Electric Ind Co Ltd Electrochemical water treating device
JP2002300899A (en) * 2001-02-02 2002-10-15 Kao Corp Method for producing glucose-1-phosphate
JP2002238515A (en) * 2001-02-14 2002-08-27 Asahi Kasei Corp Method for producing mineral drink
JP2003088731A (en) * 2001-09-20 2003-03-25 Asahi Kasei Corp Method and apparatus for eliminating organic acids by electrodialysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115302A1 (en) * 2010-03-19 2011-09-22 味の素株式会社 Method for producing phosphoric acid from bone, and method and device for employing phosphoric acid produced from bone in the fermentation of sugar
WO2016038142A1 (en) 2014-09-10 2016-03-17 Pfeifer & Langen GmbH & Co. KG Process for the enzymatic preparation of a product glucoside and of a co-product from an educt glucoside

Also Published As

Publication number Publication date
JP4703950B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
AU2018343981B2 (en) Process for the purification of a neutral human milk oligosaccharide (HMO) from microbial fermentation
EP3645145A1 (en) Purification of oligosaccharides
JP2022550680A (en) Separation of neutral oligosaccharides from fermentation broth
CN104762347A (en) Production method of adenosine triphosphate (ATP)
JP4777588B2 (en) Method for preparing a pharmaceutically acceptable salt of (SS, RS) -S-adenosyl-L-methionine
CN111171097B (en) Separation and purification method for producing adenosine by fermentation
KR100828706B1 (en) A method for purifying 5&#39;-Inosinic acid fermentation broth via crystallization process
JP4703950B2 (en) Purification method of sugar phosphate ester
JP5829819B2 (en) Electrodialysis method
US4787940A (en) Method for purifying sugar phosphates or their salts
JP3025346B2 (en) Method for producing heparin calcium
JP3668262B2 (en) Method for separating and recovering organic germanium compounds
JPH0737474B2 (en) Purification method of high-purity sialic acid
US4575549A (en) Process for the preparation of fructose 1,6 diphosphate acid
EP4165057A1 (en) Improved demineralization of fermentation broths and purification of fine chemicals such as oligosaccharides
JP2899844B2 (en) Purification of sialic acid
JPH03133387A (en) Production of maltooligosaccharide
CN111051518B (en) Process for producing inositol derivative
JPH05308984A (en) Production of l-tagatose
CN112245442B (en) Fructose diphosphate sodium reverse osmosis concentrated solution and preparation method thereof
JPS60137489A (en) Treatment of waste liquid
JP2014189552A (en) Method for producing glycerophosphate salt
US3138539A (en) Preparation of 5&#39;-polyphosphate nucleotides
US5968783A (en) Process for the preparation of sugar nucleotides
JP3481651B2 (en) Separation and purification method of neotrehalose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees