JP2005041707A - Method of regenerating arsenic-containing mineral acid - Google Patents

Method of regenerating arsenic-containing mineral acid Download PDF

Info

Publication number
JP2005041707A
JP2005041707A JP2003200218A JP2003200218A JP2005041707A JP 2005041707 A JP2005041707 A JP 2005041707A JP 2003200218 A JP2003200218 A JP 2003200218A JP 2003200218 A JP2003200218 A JP 2003200218A JP 2005041707 A JP2005041707 A JP 2005041707A
Authority
JP
Japan
Prior art keywords
arsenic
mineral acid
solid
sulfide
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003200218A
Other languages
Japanese (ja)
Other versions
JP4336845B2 (en
Inventor
Akira Cho
亮 張
Chiaki Kosaka
千秋 小坂
Saori Tokumasu
沙織 徳増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Nagao KK
Original Assignee
Maezawa Industries Inc
Nagao KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc, Nagao KK filed Critical Maezawa Industries Inc
Priority to JP2003200218A priority Critical patent/JP4336845B2/en
Publication of JP2005041707A publication Critical patent/JP2005041707A/en
Application granted granted Critical
Publication of JP4336845B2 publication Critical patent/JP4336845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of regenerating an arsenic-containing mineral acid by which arsenic is efficiently removed from the mineral acid containing poor arsenic of ≤1,000 ppm and the mineral acid is regenerated and effectively recycled. <P>SOLUTION: In the method of regenerating the mineral acid by removing arsenic from the mineral acid containing poor arsenic, the regenerated mineral acid is obtained by bringing the arsenic-containing mineral acid into contact with hydrogen sulfide gas in the presence of a solid sulfide and/or sulfur to convert arsenic to solid arsenic sulfide and removing the solid arsenic sulfide by a solid-liquid separation means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ヒ素含有鉱酸の再生方法に関し、詳しくは、1000ppm以下、特に、500ppm以下の希薄濃度のヒ素を含有する鉱酸からヒ素を固形化して除去し、鉱酸を再利用可能な状態に再生する方法に関する。
【0002】
【従来の技術】
数千〜数万ppmのヒ素を含有する鉱酸、例えば硫酸からヒ素を10ppm以下に除去して鉱酸を再生する方法として、ヒ素含有硫酸に水溶性硫化物や硫化水素ガスを添加し、硫酸中のヒ素を硫化ヒ素として不溶化させた後、これを硫酸中から固液分離する方法が一般的に行われている。
【0003】
しかし、ヒ素濃度が1000ppm以下の希薄ヒ素を含有する鉱酸の場合は、硫化ヒ素の結晶生成が極めて遅くなり、鉱酸中のヒ素を一定濃度以下に除去するために数日間という比較的長時間を要し、実用性に難点がある。また、鉱酸中のヒ素を一定濃度以下にまで除去した後も、鉱酸中に残存するヒ素と硫化物とが反応し、沈降しにくい微細な硫化ヒ素が析出し続けるため、鉱酸の再利用に支障をきたすことがある。さらに、硫化剤として、硫化ナトリウムや水硫化ナトリウムを用いると、鉱酸中にナトリウム等の不要なイオンが残存するため、これが鉱酸との塩、例えば硫酸塩を生じて鉱酸の濃度を低下させ、鉱酸の再利用にとっては好ましくないものとなる。
【0004】
このため、希薄なヒ素を含有する鉱酸廃液は、従来は再利用せずに廃液処理して排出しているのが実情である。廃液処理の方法として、例えば、希薄ヒ素含有鉱酸廃液のpHを7以上に調整して硫化ヒ素を形成させた後、鉄塩化合物を加えて凝集沈殿させる方法が知られている(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平11−277075号公報
【0006】
【発明が解決しようとする課題】
しかしながら、希薄ヒ素含有鉱酸廃液のpHを7以上にするためには、多大なアルカリ性物質が必要であり、また、ヒ素を含有した沈殿物の量が鉄塩等の凝集剤の添加によって大きく増加するため、ヒ素含有沈殿物の最終処分コストが大きくなるなどの問題を抱えていた。
【0007】
そこで本発明は、ヒ素濃度が1000ppm以下の希薄ヒ素を含有した鉱酸からヒ素を効率よく除去することができ、鉱酸を再生して有効に再利用することができるヒ素含有鉱酸の再生方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明のヒ素含有鉱酸の再生方法は、第1の方法として、希薄ヒ素を含有する鉱酸からヒ素を除去して鉱酸を再生する方法であって、固形硫化物及び/又は硫黄の存在下で前記ヒ素含有鉱酸を硫化水素ガスと接触させることによりヒ素を固形硫化ヒ素に変換し、次いで固液分離手段により前記固形硫化ヒ素を除去して再生鉱酸を得ることを特徴としている。
【0009】
本発明の処理対象となるヒ素含有鉱酸は、希薄濃度のヒ酸を含有する鉱酸溶液であり、具体的には、ヒ素濃度が1000ppm以下、特に500ppm以下の鉱酸溶液である。前記鉱酸は、硫酸、塩酸、硝酸のいずれか又はこれらの混合物であり、酸濃度は特に限定されない。また、ヒ素以外の不純物を含有している鉱酸であっても、その不純物が硫化ヒ素の形成を阻害するものでなければよい。
【0010】
このようなヒ素含有鉱酸としては、例えば、鉱山排水、精錬工場のプロセス排水、化学工業、電子工業の排水等を挙げることができる。また、水に含まれるヒ素をヒ素吸着材に吸着させることによって水中からヒ素を除去する水処理において、ヒ素を吸着したヒ素吸着材を鉱酸で再生したときに発生するヒ素含有鉱酸廃液も本発明の処理対象となる。この場合、鉱酸廃液中のヒ素を除去することにより、再生した鉱酸をヒ素吸着材の再生用として繰り返し使用できる。
【0011】
処理対象のヒ素含有鉱酸は、そのpHが4以下、特に、pH3以下であることが望ましい。ヒ素含有鉱酸のpHが4を超えている場合は、適当な酸、通常は同種の鉱酸を使用してpHを調整すべきである。
【0012】
このようなヒ素含有鉱酸を再生するにあたり、該ヒ素含有鉱酸を、固形硫化物及び/又は硫黄の存在下で硫化水素ガスと接触させることにより、硫化ヒ素の析出を促進することができるとともに、後段の固液分離も容易となる。前記固形硫化物や硫黄は、固形であれば形状は問わないが、後段の固液分離を考慮すると、平均粒径が0.1mm以上のものが好ましい。固形硫化物や硫黄の添加方法は、粉末状の形でそのまま添加してもよいし、加水してスラリー状で添加してもよい。また、前記固形硫化物としては、硫化ヒ素や硫化銅を用いることが好ましい。固形硫化物や硫黄の添加量は、ヒ素含有鉱酸の処理量に比例し、1L/hrのヒ素含有鉱酸処理量に対して、固形硫化物及び/又は硫黄は、150mg以上、好ましくは300mg以上、特に500mg以上であることが好ましい。
【0013】
硫化剤として用いられる前記硫化水素ガスは、市販の硫化水素ガス、あるいは、水硫化ソーダ又は硫化ソーダの酸分解により発生した硫化水素ガスを使用することができる。硫化水素ガスを用いることにより、硫酸等の鉱酸中には、硫化ヒ素及び硫黄が生成されるが、後段の固液分離装置で除去可能であり、アルカリ金属等の不要なイオンが混入せず、塩が生じたりしないため、鉱酸としての再利用に問題は生じない。硫化水素ガスの注入量は、少なくとも生成される硫化ヒ素に必要な硫黄当量以上であることが必要であるが、硫化ヒ素の生成速度に比べて硫酸等の鉱酸への硫化水素ガスの溶解速度が律速になると考えられるため、通常は、硫化水素ガスを過剰気味に使用することが好ましい。
【0014】
ヒ素含有鉱酸と硫化水素ガスとを接触させる気液接触処理の時間は10分以上、好ましくは15分以上である。両者の接触時間が10分未満の場合は、ヒ素除去率が不十分になることがある。また、両者を3時間を超えて長時間接触させてもヒ素除去率はほとんど向上しないので、接触時間は3時間以下が適当である。硫化水素ガスと接触させる際のヒ素含有鉱酸の温度は、20〜90℃の範囲が適当であり、特に、30〜60℃の範囲が好ましい。温度が高いほど反応速度が速くなり、除去率が向上して短時間で処理を終えることができるが、温度を高くし過ぎると加熱のために多くのエネルギーを必要とするため、コスト的に問題となることがある。
【0015】
固形硫化物及び/又は硫黄の存在下でヒ素含有鉱酸と硫化水素ガスとを接触させるための気液接触装置には、従来から用いられている公知の装置を使用できる。固形硫化物及び/又は硫黄は、気液接触装置内に滞留して固定床あるいは流動床を形成するようにしてもよく、原液に必要量を添加し、完全混合気液接触装置を経て後段の固液分離装置で分離するようにしてもよい。
【0016】
生成した硫化ヒ素の結晶は、気液接触装置に固液分離機能を付加して分離してもよいが、結晶が小さくて沈降性が悪いため、気液接触装置の後段に固液分離装置を設け、この固液分離装置で確実に分離除去することが望ましい。固液分離装置としては、通常用いられている重力沈降やろ過等を含む公知の物理的固液分離装置を利用することができる。
【0017】
また、本発明方法の別の手順(第2の方法)として、前記ヒ素含有鉱酸を硫化水素ガスと接触させる気液接触処理を行った後、固形硫化物及び/又は硫黄と接触させる固液接触処理を行うことによりヒ素を固形硫化ヒ素に変換し、次いで固液分離手段により前記固形硫化ヒ素を除去して再生鉱酸を得ることもできる。
【0018】
この第2の方法では、ヒ素含有鉱酸と硫化水素ガスとの接触によって生成した硫化ヒ素が、次の固液接触処理で固形硫化物や硫黄と接触することにより、これらの表面で結晶化して析出が促進されるとともに、後段での固液分離も容易に行える状態となる。
【0019】
ヒ素含有鉱酸と硫化水素ガスとを接触させる気液接触処理の時間は、10分以上、好ましくは30分以上である。接触時間が10分未満では硫化ヒ素の生成率が不十分になる。また、気液接触処理を終了した液を固形硫化物及び/又は硫黄と接触させる固液接触処理の時間は、10分以上、好ましくは15分以上である。10分未満では、硫化ヒ素の結晶化を十分に行えないときがあり、除去率が低下することになる。
【0020】
ヒ素含有鉱酸と硫化水素ガスとを接触させる気液接触装置は公知のものを使用でき、固形硫化物及び/又は硫黄と液とを接触させる固液接触装置は、固形硫化物及び/又は硫黄が固定床となっていても、流動床となっていてもよく、固液接触装置の流入液に必要量を添加し、完全混合させた状態で後段の固液分離装置により分離するようにしてもよい。
【0021】
なお、この第2の方法は、基本的に前記第1の方法と同様の条件であり、上記気液接触処理及び固液接触処理以外は第1の方法と同じようにすればよい。
【0022】
このようにしてヒ素含有鉱酸中からヒ素を効率よく除去できるが、ヒ素除去処理後の再生鉱酸中に過剰分の硫化水素ガスが溶存していると、再生鉱酸中に残留しているヒ素と反応して硫化ヒ素を生成したり、分解して硫黄を生成することがあるため、再生鉱酸の利用先によっては不都合なことがある。
【0023】
このように、再生鉱酸中の硫化水素ガスの溶存が問題となる場合は、再生鉱酸中から硫化水素ガスを除去する必要がある。再生鉱酸からの硫化水素ガスの除去処理は、曝気処理、加熱処理、酸化処理及び減圧吸引処理のいずれか、あるいは、これらを適当に組み合わせて行うことができる。
【0024】
曝気処理は、空気や窒素等の気体を用いた通常の曝気処理でよく、従来から用いられている種々の散気装置を用いて行うことができる。この曝気処理を行うことにより、再生鉱酸中に溶存している硫化水素ガスは、散気空気等に同伴されて再生鉱酸から除去され、あるいは、空気中の酸素によって酸化されて硫酸となる。この曝気処理の時間や散気量は、再生鉱酸中の硫化水素溶存量や液温に応じて設定すればよい。
【0025】
加熱処理は、前記気液接触処理の温度より高い温度に再生鉱酸を保持し、硫化水素ガスの溶解度を低減することによって再生鉱酸中から硫化水素ガスを放出させるものであり、加熱温度や処理時間は再生鉱酸中の硫化水素ガスの溶存量や液温に応じて設定することができるが、加熱温度は、通常は、50℃以上が好ましい。
【0026】
酸化処理は、酸素や過酸化水素等の酸化剤を再生鉱酸に添加し、再生鉱酸中の硫化水素ガスを酸化剤で酸化して硫酸とすることにより、再生鉱酸中から硫化水素ガスを除去するものであり、酸化剤の使用量は、再生鉱酸中の硫化水素ガスの溶存量に応じて設定すればよい。
【0027】
減圧吸引処理は、真空ポンプ等を使用して再生鉱酸を減圧環境に保持し、硫化水素ガスの溶解度を低減させることによって再生鉱酸中から硫化水素ガスを放出させるものである。このときの圧力や処理時間は、再生鉱酸中の硫化水素ガスの溶存量や液温に応じて設定することができる。
【0028】
【実施例】
実施例1,2及び比較例1
ヒ素(As5+)濃度100mg/Lの2N硫酸200mLに、Asスラリーを5000ppm(実施例1)、CuSスラリーを2000ppm(実施例2)それぞれ添加し、50℃に加温しながら硫化水素(HS)ガスを30分間吹き込んだ。その後、ろ紙で固液分離し、ろ液の硫酸中の残存As濃度を測定した。比較例1として、同じ条件で何も添加せずに実験を行い、残存As濃度を測定した。実験条件と測定結果とを表1にまとめて示す。
【0029】

Figure 2005041707
【0030】
この結果から、硫化ヒ素や硫化銅のような固形硫化物を添加することにより、硫酸中の95%以上のヒ素が除去された。一方、固形硫化物を添加しなかった比較例1では、ヒ素はほとんど除去されなかった。
【0031】
実施例3
ヒ素(As5+)濃度100mg/Lの2N硫酸200mLに、CuSスラリーを表2の条件で添加し、室温で硫化水素(HS)ガスを10分又は30分吹き込んだ。その後、ろ紙で固液分離し、ろ液の硫酸中の残存As濃度を測定した。実験条件と測定結果とを表2にまとめて示す。
【0032】
Figure 2005041707
【0033】
この結果から、1L/hr処理量換算添加量が167mgであれば、50%以上のAsを除去できることがわかる(実験番号1)。また、10分程度の反応時間でも、十分にヒ素を除去することができる。しかし、反応時間が5分間だと(実験番号4)、ヒ素除去率が低下した。一方、As除去率を75%以上にしたい場合は、1L/hr処理量換算添加量を約300mg以上、As除去率を90%以上にしたい場合は、1L/hr処理量換算添加量を約1000mg以上とすればよいことがわかる。また、実施例2と実施例3の実験番号3とを比較すればわかるように、反応温度が室温のときよりも50℃の方がAs除去率が高くなっている。
【0034】
実施例4
ヒ素(As5+)濃度100mg/Lの2N硫酸200mLを50℃に加温しながら、硫化水素(HS)ガスを30分間吹き込んだ後、CuSスラリー1500ppmを添加して10分間攪拌した。次いで、ろ紙で固液分離し、ろ液の硫酸中の残存As濃度を測定した。実験条件と測定結果とを表3にまとめて示す。
【0035】
表3
CuS濃度 1500ppm
1L/hr処理量換算添加量 250mg
ヒ素除去率 61.7%
【0036】
この結果から、硫化水素ガスと接触させた後にCuSを添加しても、50%以上のAsを除去できることがわかる。
【0037】
実施例5及び比較例2
ヒ素(As5+)濃度100mg/Lの2N硫酸200mLにCuSスラリー2000ppmを添加し、50℃に加温しながら硫化水素(HS)ガスを10分間吹き込んだ後、ろ紙で固液分離した。ろ液を空気で10分間曝気処理してから3日間保存した(実施例5)。比較例2として、曝気処理しないろ液を同様にして3日間保存した。3日後、両ろ液を目視観察したところ、実施例5のろ液は無色透明で懸濁物は認められなかった。しかし、比較例2のろ液には懸濁物の発生が観測され、液全体が黄色く変色していた。
【0038】
【発明の効果】
以上説明したように、本発明のヒ素含有鉱酸の再生方法によれば、鉱酸中に溶存しているヒ素を効率よく除去することができる。特にヒ素濃度が1000ppm以下、さらには500ppm以下の希薄ヒ素も簡単な操作で効率よく除去することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating arsenic-containing mineral acid, and more specifically, arsenic is solidified and removed from mineral acid containing arsenic at a dilute concentration of 1000 ppm or less, particularly 500 ppm or less, and the mineral acid can be reused. On how to play.
[0002]
[Prior art]
Mineral acid containing thousands to tens of thousands of ppm of arsenic, for example, as a method of regenerating mineral acid by removing arsenic from sulfuric acid to 10 ppm or less, water-soluble sulfide or hydrogen sulfide gas is added to sulfuric acid containing arsenic, sulfuric acid In general, a method in which arsenic contained therein is insolubilized as arsenic sulfide and then separated from sulfuric acid by solid-liquid separation.
[0003]
However, in the case of a mineral acid containing dilute arsenic with an arsenic concentration of 1000 ppm or less, arsenic sulfide crystal formation becomes extremely slow, and it takes a relatively long time of several days to remove arsenic in the mineral acid below a certain concentration. It is difficult to use. In addition, even after arsenic in the mineral acid is removed to a certain concentration or less, the arsenic remaining in the mineral acid reacts with the sulfide, and fine arsenic sulfide that does not easily settle out continues to precipitate, so that the mineral acid is recycled. May interfere with use. Furthermore, when sodium sulfide or sodium hydrosulfide is used as a sulfiding agent, unnecessary ions such as sodium remain in the mineral acid, which generates a salt with the mineral acid, for example, sulfate, thereby reducing the concentration of the mineral acid. Therefore, it is not preferable for the reuse of the mineral acid.
[0004]
For this reason, the mineral acid waste liquid containing a dilute arsenic is the fact that the waste liquid treatment and discharge | emission were not carried out conventionally, but recycling. As a waste liquid treatment method, for example, a method is known in which the pH of a dilute arsenic-containing mineral acid waste liquid is adjusted to 7 or more to form arsenic sulfide, and then an iron salt compound is added to cause aggregation precipitation (for example, patents). Reference 1).
[0005]
[Patent Document 1]
JP-A-11-277075 [0006]
[Problems to be solved by the invention]
However, in order to increase the pH of the dilute arsenic-containing mineral acid waste solution to 7 or more, a large amount of alkaline substance is required, and the amount of the arsenic-containing precipitate is greatly increased by the addition of a flocculant such as iron salt. As a result, the final disposal cost of the arsenic-containing precipitate is increased.
[0007]
Accordingly, the present invention provides a method for regenerating an arsenic-containing mineral acid that can efficiently remove arsenic from a mineral acid containing dilute arsenic having an arsenic concentration of 1000 ppm or less, and that can regenerate and effectively reuse the mineral acid. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for regenerating an arsenic-containing mineral acid according to the present invention is a method for regenerating a mineral acid by removing arsenic from a mineral acid containing dilute arsenic as a first method. Arsenic is converted to solid arsenic sulfide by contacting the arsenic-containing mineral acid with hydrogen sulfide gas in the presence of product and / or sulfur, and then the solid arsenic sulfide is removed by solid-liquid separation means to obtain regenerated mineral acid. It is characterized by obtaining.
[0009]
The arsenic-containing mineral acid to be treated according to the present invention is a mineral acid solution containing a dilute concentration of arsenic acid. Specifically, the mineral acid solution has an arsenic concentration of 1000 ppm or less, particularly 500 ppm or less. The mineral acid is any one of sulfuric acid, hydrochloric acid, nitric acid, or a mixture thereof, and the acid concentration is not particularly limited. Further, even a mineral acid containing impurities other than arsenic may be used as long as the impurities do not inhibit the formation of arsenic sulfide.
[0010]
Examples of such arsenic-containing mineral acids include mine drainage, smelting factory process wastewater, chemical industry, electronic industry wastewater, and the like. Also, arsenic-containing mineral acid waste liquid generated when arsenic adsorbent adsorbed with arsenic is regenerated with mineral acid in water treatment that removes arsenic from water by adsorbing arsenic contained in water to the arsenic adsorbent. It becomes the processing object of the invention. In this case, by removing arsenic from the mineral acid waste liquid, the regenerated mineral acid can be repeatedly used for regenerating the arsenic adsorbent.
[0011]
It is desirable that the arsenic-containing mineral acid to be treated has a pH of 4 or less, particularly pH 3 or less. If the pH of the arsenic-containing mineral acid exceeds 4, a suitable acid, usually the same type of mineral acid, should be used to adjust the pH.
[0012]
In regenerating such an arsenic-containing mineral acid, the precipitation of arsenic sulfide can be promoted by bringing the arsenic-containing mineral acid into contact with hydrogen sulfide gas in the presence of solid sulfide and / or sulfur. Also, the subsequent solid-liquid separation is facilitated. The shape of the solid sulfide or sulfur is not particularly limited as long as it is solid, but in view of subsequent solid-liquid separation, those having an average particle size of 0.1 mm or more are preferable. The solid sulfide or sulfur may be added as it is in the form of a powder, or may be added in the form of a slurry after adding water. Further, as the solid sulfide, it is preferable to use arsenic sulfide or copper sulfide. The amount of solid sulfide and sulfur added is proportional to the amount of arsenic-containing mineral acid treated, and the amount of solid sulfide and / or sulfur is 150 mg or more, preferably 300 mg, relative to the amount of arsenic-containing mineral acid treated of 1 L / hr. As mentioned above, it is especially preferable that it is 500 mg or more.
[0013]
As the hydrogen sulfide gas used as the sulfiding agent, commercially available hydrogen sulfide gas, or hydrogen sulfide gas generated by acid decomposition of sodium hydrosulfide or sodium sulfide can be used. By using hydrogen sulfide gas, arsenic sulfide and sulfur are produced in mineral acids such as sulfuric acid, but they can be removed by a solid-liquid separator at a later stage, and unnecessary ions such as alkali metals are not mixed. Since no salt is produced, there is no problem in reuse as a mineral acid. The amount of hydrogen sulfide gas injected must be at least as high as the sulfur equivalent required for the produced arsenic sulfide, but the dissolution rate of hydrogen sulfide gas in mineral acids such as sulfuric acid compared to the production rate of arsenic sulfide. In general, it is preferable to use hydrogen sulfide gas in an excess manner.
[0014]
The time for the gas-liquid contact treatment for bringing the arsenic-containing mineral acid into contact with the hydrogen sulfide gas is 10 minutes or longer, preferably 15 minutes or longer. If the contact time between the two is less than 10 minutes, the arsenic removal rate may be insufficient. Further, even if the two are left in contact for more than 3 hours, the arsenic removal rate is hardly improved, so the contact time is suitably 3 hours or less. The temperature of the arsenic-containing mineral acid in contact with the hydrogen sulfide gas is suitably in the range of 20 to 90 ° C, and particularly preferably in the range of 30 to 60 ° C. The higher the temperature, the faster the reaction rate and the higher the removal rate, so that the treatment can be completed in a short time. However, if the temperature is too high, a large amount of energy is required for heating, which is a problem in terms of cost. It may become.
[0015]
As a gas-liquid contact apparatus for contacting the arsenic-containing mineral acid and hydrogen sulfide gas in the presence of solid sulfide and / or sulfur, a conventionally known apparatus can be used. The solid sulfide and / or sulfur may stay in the gas-liquid contact device to form a fixed bed or a fluidized bed, and a necessary amount is added to the stock solution, and then passed through the complete mixed gas-liquid contact device. You may make it isolate | separate with a solid-liquid separator.
[0016]
The produced arsenic sulfide crystals may be separated by adding a solid-liquid separation function to the gas-liquid contact device. However, since the crystals are small and sedimentation is poor, a solid-liquid separation device is placed downstream of the gas-liquid contact device. It is desirable to provide and reliably remove with this solid-liquid separator. As the solid-liquid separation device, known physical solid-liquid separation devices including commonly used gravity sedimentation and filtration can be used.
[0017]
Further, as another procedure (second method) of the method of the present invention, after performing a gas-liquid contact treatment in which the arsenic-containing mineral acid is brought into contact with hydrogen sulfide gas, a solid-liquid to be brought into contact with solid sulfide and / or sulfur. It is also possible to convert the arsenic to solid arsenic sulfide by performing a contact treatment, and then remove the solid arsenic sulfide by solid-liquid separation means to obtain a regenerated mineral acid.
[0018]
In this second method, the arsenic sulfide produced by the contact between the arsenic-containing mineral acid and hydrogen sulfide gas is crystallized on these surfaces by contacting with solid sulfide or sulfur in the subsequent solid-liquid contact treatment. Precipitation is promoted, and solid-liquid separation at a later stage can be easily performed.
[0019]
The time for the gas-liquid contact treatment for bringing the arsenic-containing mineral acid into contact with the hydrogen sulfide gas is 10 minutes or longer, preferably 30 minutes or longer. If the contact time is less than 10 minutes, the generation rate of arsenic sulfide is insufficient. Moreover, the time of the solid-liquid contact process which contacts the liquid which complete | finished the gas-liquid contact process with a solid sulfide and / or sulfur is 10 minutes or more, Preferably it is 15 minutes or more. If it is less than 10 minutes, arsenic sulfide may not be sufficiently crystallized, and the removal rate will decrease.
[0020]
A known gas-liquid contact device for contacting arsenic-containing mineral acid with hydrogen sulfide gas can be used, and a solid-liquid contact device for contacting solid sulfide and / or sulfur with liquid can be used for solid sulfide and / or sulfur. It can be a fixed bed or a fluidized bed, and the required amount is added to the influent of the solid-liquid contact device and separated by a subsequent solid-liquid separation device in a completely mixed state. Also good.
[0021]
The second method has basically the same conditions as the first method, and may be the same as the first method except for the gas-liquid contact treatment and the solid-liquid contact treatment.
[0022]
In this way, arsenic can be efficiently removed from the arsenic-containing mineral acid, but if excessive hydrogen sulfide gas is dissolved in the regenerated mineral acid after the arsenic removal treatment, it remains in the regenerated mineral acid. Since it may react with arsenic to produce arsenic sulfide or decompose to produce sulfur, it may be inconvenient depending on the use of regenerated mineral acid.
[0023]
Thus, when dissolution of hydrogen sulfide gas in the regenerated mineral acid becomes a problem, it is necessary to remove the hydrogen sulfide gas from the regenerated mineral acid. The removal treatment of hydrogen sulfide gas from the regenerated mineral acid can be carried out by any one of aeration treatment, heat treatment, oxidation treatment, and vacuum suction treatment, or an appropriate combination thereof.
[0024]
The aeration process may be a normal aeration process using a gas such as air or nitrogen, and can be performed using various conventionally used aeration devices. By performing this aeration treatment, the hydrogen sulfide gas dissolved in the regenerated mineral acid is removed from the regenerated mineral acid accompanied by air diffused or the like, or oxidized by oxygen in the air to become sulfuric acid. . What is necessary is just to set the time and the amount of aeration of this aeration process according to the amount of hydrogen sulfide dissolved in the regenerated mineral acid and the liquid temperature.
[0025]
The heat treatment is to release the hydrogen sulfide gas from the regenerated mineral acid by holding the regenerated mineral acid at a temperature higher than the temperature of the gas-liquid contact treatment and reducing the solubility of the hydrogen sulfide gas. The treatment time can be set according to the dissolved amount of hydrogen sulfide gas in the regenerated mineral acid and the liquid temperature, but the heating temperature is usually preferably 50 ° C. or higher.
[0026]
Oxidation treatment is performed by adding an oxidizing agent such as oxygen or hydrogen peroxide to the regenerated mineral acid, and oxidizing the hydrogen sulfide gas in the regenerated mineral acid with the oxidant to produce sulfuric acid, thereby producing hydrogen sulfide gas from the regenerated mineral acid. The amount of oxidizing agent used may be set according to the dissolved amount of hydrogen sulfide gas in the regenerated mineral acid.
[0027]
The vacuum suction treatment is to release hydrogen sulfide gas from the regenerated mineral acid by maintaining the regenerated mineral acid in a reduced pressure environment using a vacuum pump or the like and reducing the solubility of the hydrogen sulfide gas. The pressure and treatment time at this time can be set according to the dissolved amount of hydrogen sulfide gas in the regenerated mineral acid and the liquid temperature.
[0028]
【Example】
Examples 1 and 2 and Comparative Example 1
To 200 mL of 2N sulfuric acid having an arsenic (As 5+ ) concentration of 100 mg / L, 5000 ppm (Example 1) of As 2 S 5 slurry and 2000 ppm (Example 2) of CuS slurry were added, and hydrogen sulfide was heated to 50 ° C. (H 2 S) gas was blown in for 30 minutes. Then, it separated into solid and liquid with the filter paper, and the residual As density | concentration in the sulfuric acid of a filtrate was measured. As Comparative Example 1, an experiment was performed without adding anything under the same conditions, and the residual As concentration was measured. Experimental conditions and measurement results are summarized in Table 1.
[0029]
Figure 2005041707
[0030]
From this result, 95% or more of arsenic in sulfuric acid was removed by adding a solid sulfide such as arsenic sulfide or copper sulfide. On the other hand, in Comparative Example 1 in which no solid sulfide was added, arsenic was hardly removed.
[0031]
Example 3
CuS slurry was added to 200 mL of 2N sulfuric acid having an arsenic (As 5+ ) concentration of 100 mg / L under the conditions shown in Table 2, and hydrogen sulfide (H 2 S) gas was blown in at room temperature for 10 minutes or 30 minutes. Then, it separated into solid and liquid with the filter paper, and the residual As density | concentration in the sulfuric acid of a filtrate was measured. Table 2 summarizes the experimental conditions and the measurement results.
[0032]
Figure 2005041707
[0033]
From this result, it can be seen that 50% or more of As can be removed when the 1 L / hr treated amount conversion addition amount is 167 mg (Experiment No. 1). Further, arsenic can be sufficiently removed even with a reaction time of about 10 minutes. However, when the reaction time was 5 minutes (Experiment No. 4), the arsenic removal rate decreased. On the other hand, when the As removal rate is desired to be 75% or more, the 1L / hr treatment amount equivalent addition amount is about 300 mg or more, and when the As removal rate is 90% or more, the 1 L / hr treatment amount equivalent addition amount is about 1000 mg. It turns out that it should just be above. Further, as can be seen by comparing the experiment number 3 of Example 2 and Example 3, the As removal rate is higher at 50 ° C. than when the reaction temperature is room temperature.
[0034]
Example 4
While 200 mL of 2N sulfuric acid having an arsenic (As 5+ ) concentration of 100 mg / L was heated to 50 ° C., hydrogen sulfide (H 2 S) gas was blown for 30 minutes, and then 1500 ppm of CuS slurry was added and stirred for 10 minutes. Subsequently, it separated into solid and liquid with the filter paper, and the residual As density | concentration in the sulfuric acid of a filtrate was measured. The experimental conditions and measurement results are summarized in Table 3.
[0035]
Table 3
CuS concentration 1500ppm
1L / hr treatment amount equivalent addition amount 250mg
Arsenic removal rate 61.7%
[0036]
From this result, it can be seen that 50% or more of As can be removed even if CuS is added after contact with hydrogen sulfide gas.
[0037]
Example 5 and Comparative Example 2
After adding 2000 ppm of CuS slurry to 200 mL of 2N sulfuric acid with an arsenic (As 5+ ) concentration of 100 mg / L, hydrogen sulfide (H 2 S) gas was blown in for 10 minutes while heating to 50 ° C., and solid-liquid separation was performed with filter paper. The filtrate was aerated with air for 10 minutes and then stored for 3 days (Example 5). As Comparative Example 2, the filtrate not subjected to aeration treatment was stored in the same manner for 3 days. Three days later, both filtrates were visually observed. As a result, the filtrate of Example 5 was colorless and transparent, and no suspension was observed. However, in the filtrate of Comparative Example 2, the generation of a suspension was observed, and the entire liquid was discolored yellow.
[0038]
【The invention's effect】
As described above, according to the method for regenerating arsenic-containing mineral acid of the present invention, arsenic dissolved in mineral acid can be efficiently removed. In particular, dilute arsenic having an arsenic concentration of 1000 ppm or less and even 500 ppm or less can be efficiently removed by a simple operation.

Claims (7)

希薄ヒ素を含有する鉱酸からヒ素を除去して鉱酸を再生する方法であって、固形硫化物及び/又は硫黄の存在下で前記ヒ素含有鉱酸を硫化水素ガスと接触させることによりヒ素を固形硫化ヒ素に変換し、次いで固液分離手段により前記固形硫化ヒ素を除去して再生鉱酸を得ることを特徴とするヒ素含有鉱酸の再生方法。A method for regenerating a mineral acid by removing arsenic from a mineral acid containing dilute arsenic, wherein the arsenic is obtained by contacting the arsenic-containing mineral acid with hydrogen sulfide gas in the presence of solid sulfide and / or sulfur. A method for regenerating an arsenic-containing mineral acid, which is converted to solid arsenic sulfide, and then the solid arsenic sulfide is removed by solid-liquid separation means to obtain a regenerated mineral acid. 希薄ヒ素を含有する鉱酸からヒ素を除去して鉱酸を再生する方法であって、前記希薄ヒ素含有鉱酸を硫化水素ガスと接触させた後、固形硫化物及び/又は硫黄と接触させることによりヒ素を固形硫化ヒ素に変換し、次いで固液分離手段により前記固形硫化ヒ素を除去して再生鉱酸を得ることを特徴とするヒ素含有鉱酸の再生方法。A method of regenerating mineral acid by removing arsenic from mineral acid containing dilute arsenic, wherein the dilute arsenic-containing mineral acid is contacted with hydrogen sulfide gas and then contacted with solid sulfide and / or sulfur. A method for regenerating an arsenic-containing mineral acid, wherein arsenic is converted to solid arsenic sulfide by the following, and then the solid arsenic sulfide is removed by solid-liquid separation means to obtain a regenerated mineral acid. 前記再生鉱酸に対して、曝気、加熱、酸化及び減圧吸引のいずれか一種以上の処理を行うことにより、該再生鉱酸中の溶存硫化水素ガスを除去することを特徴とする請求項1又は2記載のヒ素含有鉱酸の再生方法。The dissolved hydrogen sulfide gas in the regenerated mineral acid is removed by performing any one or more of aeration, heating, oxidation, and suction under reduced pressure on the regenerated mineral acid. The method for regenerating arsenic-containing mineral acid according to 2. 前記固形硫化物は、硫化ヒ素及び/又は硫化銅であることを特徴とする請求項1乃至3のいずれか1項記載のヒ素含有鉱酸の再生方法。The method for regenerating an arsenic-containing mineral acid according to any one of claims 1 to 3, wherein the solid sulfide is arsenic sulfide and / or copper sulfide. 前記固形硫化物及び/又は硫黄の添加量は、ヒ素含有鉱酸の処理量1L/hrに対して150mg以上であることを特徴とする請求項1乃至4のいずれか1項記載のヒ素含有鉱酸の再生方法。The arsenic-containing ore according to any one of claims 1 to 4, wherein the solid sulfide and / or sulfur is added in an amount of 150 mg or more with respect to a treatment amount of 1 liter / hr of the arsenic-containing mineral acid. Acid regeneration method. 前記ヒ素を固形硫化ヒ素に変換する処理を、20℃以上で行うことを特徴とする請求項1乃至5のいずれか1項記載のヒ素含有鉱酸の再生方法。The method for regenerating an arsenic-containing mineral acid according to any one of claims 1 to 5, wherein the treatment for converting the arsenic into solid arsenic sulfide is performed at 20 ° C or higher. 前記鉱酸中の希薄ヒ素の濃度が1000ppm以下であることを特徴とする請求項1乃至6のいずれか1項記載のヒ素含有鉱酸の再生方法。The method for regenerating an arsenic-containing mineral acid according to any one of claims 1 to 6, wherein the concentration of dilute arsenic in the mineral acid is 1000 ppm or less.
JP2003200218A 2003-07-23 2003-07-23 Method for regenerating arsenic-containing sulfuric acid Expired - Fee Related JP4336845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200218A JP4336845B2 (en) 2003-07-23 2003-07-23 Method for regenerating arsenic-containing sulfuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200218A JP4336845B2 (en) 2003-07-23 2003-07-23 Method for regenerating arsenic-containing sulfuric acid

Publications (2)

Publication Number Publication Date
JP2005041707A true JP2005041707A (en) 2005-02-17
JP4336845B2 JP4336845B2 (en) 2009-09-30

Family

ID=34260698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200218A Expired - Fee Related JP4336845B2 (en) 2003-07-23 2003-07-23 Method for regenerating arsenic-containing sulfuric acid

Country Status (1)

Country Link
JP (1) JP4336845B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040656A (en) * 2003-07-23 2005-02-17 Maezawa Ind Inc Treatment method for arsenic-containing mineral acid
JP2005224686A (en) * 2004-02-12 2005-08-25 Maezawa Ind Inc Arsenic removal method
CN101857203A (en) * 2010-05-24 2010-10-13 东营方圆有色金属有限公司 Process for comprehensively recycling heavy metal-polluted acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040656A (en) * 2003-07-23 2005-02-17 Maezawa Ind Inc Treatment method for arsenic-containing mineral acid
JP4567303B2 (en) * 2003-07-23 2010-10-20 前澤工業株式会社 Method for treating arsenic-containing sulfuric acid
JP2005224686A (en) * 2004-02-12 2005-08-25 Maezawa Ind Inc Arsenic removal method
JP4567344B2 (en) * 2004-02-12 2010-10-20 前澤工業株式会社 How to remove arsenic
CN101857203A (en) * 2010-05-24 2010-10-13 东营方圆有色金属有限公司 Process for comprehensively recycling heavy metal-polluted acid

Also Published As

Publication number Publication date
JP4336845B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP5118572B2 (en) Sewage treatment method
JP4572812B2 (en) Fluorine-containing water treatment method
USH1852H (en) Waste treatment of metal plating solutions
JP5137232B2 (en) Method for producing porous iron oxide and method for treating water to be treated
JP2008142650A (en) Method for removing selenium from selenate-containing liquid
JP4614093B2 (en) Arsenic wastewater treatment method
JP2005041707A (en) Method of regenerating arsenic-containing mineral acid
JP4567344B2 (en) How to remove arsenic
JP4567303B2 (en) Method for treating arsenic-containing sulfuric acid
JP4231934B2 (en) How to remove selenium in wastewater
US6936177B2 (en) Method for removing metal from wastewater
JP4507267B2 (en) Water treatment method
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
JP3549560B2 (en) Method for recovering valuable metals and calcium fluoride from waste solution of pickling process
JP4350078B2 (en) Treatment method for fluorine-containing wastewater
CN108671881B (en) Wastewater treatment method for removing ammonia nitrogen by inorganic salt combined MAP chemical precipitation adsorption method
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2010069413A (en) Organic waste water treatment method
JP2003117564A (en) Method for treating fluorine-containing waste water
JPS62294491A (en) Treatment of waste water incorporating gallium and arsenic
JP2003053350A (en) Method and device for highly removing cod component in water
JP2000345357A (en) Method for treating aged electroless nickel plating solution
JPH1099874A (en) Reduction of hexavalent selenium
JP4122207B2 (en) Method for removing metal from wastewater
JP3282452B2 (en) How to remove selenium from wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090611

R150 Certificate of patent or registration of utility model

Ref document number: 4336845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees