JP2005041236A - Method for controlling injection molding machine - Google Patents

Method for controlling injection molding machine Download PDF

Info

Publication number
JP2005041236A
JP2005041236A JP2004327294A JP2004327294A JP2005041236A JP 2005041236 A JP2005041236 A JP 2005041236A JP 2004327294 A JP2004327294 A JP 2004327294A JP 2004327294 A JP2004327294 A JP 2004327294A JP 2005041236 A JP2005041236 A JP 2005041236A
Authority
JP
Japan
Prior art keywords
screw
injection molding
molding machine
angle position
correction operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004327294A
Other languages
Japanese (ja)
Other versions
JP4319966B2 (en
Inventor
Takeshi Konno
武司 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2004327294A priority Critical patent/JP4319966B2/en
Publication of JP2005041236A publication Critical patent/JP2005041236A/en
Application granted granted Critical
Publication of JP4319966B2 publication Critical patent/JP4319966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling an injection molding machine by which correction control can be performed so as to maintain the same flight posture of a screw at the time of the start of metering. <P>SOLUTION: In this method, a reference angle position is previously set at the rotating angle position of a screw and the angle correction operation for correcting the rotating angle position of the screw so as to make the former agree with the reference angle position, is performed at an arbitrary shot interval correspondingly with a pressure relief operation before the start of a metering process from the end of a dwelling process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は射出成形機の制御方法に関する。   The present invention relates to a method for controlling an injection molding machine.

図2を参照して、電動射出成形機についてその射出装置を中心に説明する。射出装置は、ボールネジ、ナットによりサーボモータの回転運動を直動運動に変換して溶融樹脂の充填を行う。図2において、射出用のサーボモータ10の回転はボールネジ11に伝えられる。ボールネジ11の回転により前後進するナット12はプレッシャプレート13に固定され、プレッシャプレート13はフレーム(図示せず)に固定された複数のガイドバー14上を移動自在に取り付けられている。プレッシャプレート13の前後進運動は、ロードセル15、ベアリング16、ドライブシャフト17を介してスクリュ20に伝えられる。ドライブシャフト17はまた、スクリュ回転駆動用のサーボモータ19によりタイミングベルト18を介して回転駆動される。   With reference to FIG. 2, an electric injection molding machine will be described focusing on the injection device. The injection device performs filling of the molten resin by converting the rotary motion of the servo motor into a linear motion using a ball screw and a nut. In FIG. 2, the rotation of the injection servo motor 10 is transmitted to the ball screw 11. A nut 12 that moves forward and backward by the rotation of the ball screw 11 is fixed to a pressure plate 13, and the pressure plate 13 is movably attached on a plurality of guide bars 14 fixed to a frame (not shown). The forward / backward movement of the pressure plate 13 is transmitted to the screw 20 via the load cell 15, the bearing 16, and the drive shaft 17. The drive shaft 17 is also rotationally driven via a timing belt 18 by a servo motor 19 for rotationally driving the screw.

スクリュ回転駆動用のサーボモータ19の駆動によって加熱シリンダ21の中をスクリュ20が回転しながら後退することにより、加熱シリンダ21の先端に溶融樹脂が貯えられる。そして、射出用のサーボモータ10の駆動によってスクリュ20を前進させることにより貯えられた溶融樹脂を金型内に充填し、加圧することによって成形が行われる。この時樹脂を押す力がロードセル15により反力として検出され、ロードセルアンプ22より増幅されてコントローラ23に入力される。プレッシャプレート13には、スクリュ20の移動量を検出するための位置検出器24が取り付けられており、この検出信号は増幅器25により増幅されてコントローラ23に入力される。コントローラ23は、オペレータの設定に応じて各々の工程に応じた電流(トルク)指令をサーボアンプ26、27に出力し、サーボアンプ26、27ではサーボモータ10、19の駆動電流を制御してサーボモータ10、19の出力トルクを制御するようになっている。   When the screw 20 is driven to rotate in the heating cylinder 21 by the drive of the servo motor 19 for rotating the screw, the molten resin is stored at the tip of the heating cylinder 21. Then, the molten resin stored by advancing the screw 20 by driving the servomotor 10 for injection is filled in the mold and pressed to perform molding. At this time, the force pushing the resin is detected as a reaction force by the load cell 15, amplified by the load cell amplifier 22, and input to the controller 23. A position detector 24 for detecting the amount of movement of the screw 20 is attached to the pressure plate 13, and this detection signal is amplified by an amplifier 25 and input to the controller 23. The controller 23 outputs a current (torque) command corresponding to each process to the servo amplifiers 26 and 27 according to the setting of the operator, and the servo amplifiers 26 and 27 control the drive current of the servo motors 10 and 19 to control the servo. The output torque of the motors 10 and 19 is controlled.

次に、図3を参照して、スクリュ20について詳細に説明する。図3(a)において、スクリュ20は、供給部20−1、圧縮部20−2、計量部20−3、ヘッド部20−4に分けられる。供給部20−1は、ホッパから供給される樹脂を固体のまま、あるいは一部のみを溶かして前方に送るための部分であり、樹脂はこの間に溶融点近くまで暖められる。このために、供給部20−1においては、通常、図3(b)に示される渦巻き体(通常、フライトと呼ばれている)を形成している棒状体の径がほぼ一定である。   Next, the screw 20 will be described in detail with reference to FIG. In Fig.3 (a), the screw 20 is divided into the supply part 20-1, the compression part 20-2, the measurement part 20-3, and the head part 20-4. The supply unit 20-1 is a part for feeding the resin supplied from the hopper in a solid state or by melting only a part thereof, and the resin is warmed to near the melting point during this period. For this reason, in the supply part 20-1, the diameter of the rod-shaped body which forms the spiral body (usually called a flight) shown by FIG.3 (b) is normally substantially constant.

圧縮部20−2は、供給部20−1から供給されてきた樹脂の粒と粒との間には隙間があり、樹脂が溶融することによってその体積は約半分に減少する。この体積減少分を補うために、樹脂が通過できる空間を減少させる。これは、圧縮部20−2において渦巻き体を形成している棒状体にテーパを設けて渦巻き体の溝を浅くすることにより実現している。このことにより、溶融樹脂を圧縮し、摩擦による発熱効果を高め、樹脂圧力を上げて、空気/樹脂に含まれている水分、揮発分ガスなどをホッパ側に押し戻す働きをする。このことから明らかなように、加熱シリンダ内の樹脂圧力は圧縮部20−2内が最も高くなる。   The compression unit 20-2 has a gap between the particles of the resin supplied from the supply unit 20-1, and the volume of the compression unit 20-2 is reduced to about half when the resin is melted. In order to compensate for this volume reduction, the space through which the resin can pass is reduced. This is realized by providing a taper on the rod-like body forming the spiral body in the compression section 20-2 to make the groove of the spiral body shallow. This compresses the molten resin, increases the heat generation effect due to friction, raises the resin pressure, and pushes back moisture, volatile gas, etc. contained in the air / resin to the hopper side. As is clear from this, the resin pressure in the heating cylinder is highest in the compression section 20-2.

計量部20−3は、渦巻き体の溝の最も浅い部分であり、この間では樹脂は大きな剪断力を加えられ、自己発熱を伴って均質な温度まで上げられる。そして、一定量の樹脂をノズル側へ送り出す作用をする。   The metering unit 20-3 is the shallowest part of the spiral groove, and during this time, the resin is subjected to a large shearing force and raised to a homogeneous temperature with self-heating. Then, a certain amount of resin is sent out to the nozzle side.

なお、計量部20−3からノズル側への溶融樹脂の送り出しは、ヘッド部20−4における逆流防止リング20−5を通して行われる。逆流防止リング20−5は、計量工程においては図中の左寄りの位置にあり、この状態で計量部20−3からノズル側への溶融樹脂の送り出しが可能となる。計量工程が終了すると、逆流防止リング20−5は、圧力差により図中の右寄りの位置に移動する。その結果、ノズル側から計量部20−3側への樹脂の戻りが阻止される。通常、ヘッド部20−4は、その根元側にねじを切って、スクリュ本体の棒状体の先端にねじ込まれて構成されている。このため、ヘッド部20−4の根元側の径は、スクリュ本体の棒状体の径に比べて小さい。   Note that the molten resin is fed from the measuring unit 20-3 to the nozzle side through the backflow prevention ring 20-5 in the head unit 20-4. The backflow prevention ring 20-5 is in a position on the left side in the drawing in the measuring step, and in this state, the molten resin can be sent out from the measuring unit 20-3 to the nozzle side. When the measuring process is completed, the backflow prevention ring 20-5 moves to a position on the right side in the figure due to the pressure difference. As a result, the return of the resin from the nozzle side to the measuring unit 20-3 side is prevented. Normally, the head portion 20-4 is configured by cutting a screw on the base side and screwing it into the tip of a rod-shaped body of the screw body. For this reason, the diameter of the base side of the head part 20-4 is smaller than the diameter of the rod-shaped body of the screw body.

ところで、計量開始時におけるスクリュフライト位置(スクリュ角度)のばらつきが、計量に与える不安定要素となっている。この原因は、主には樹脂を供給するホッパ口でのスクリュフライトの姿勢が各ショット毎に同一でないことにある。圧力制御を行なう現在の計量方式では、樹脂ペレットの噛み込み圧力に変動要因が内在するため、計量中の圧力制御にばらつきが発生するというメカニズムである。   By the way, the variation of the screw flight position (screw angle) at the start of measurement is an unstable factor given to measurement. This is mainly because the posture of the screw flight at the hopper port for supplying the resin is not the same for each shot. The current metering system that performs pressure control has a mechanism in which variation factors occur in the pressure control during metering because a fluctuation factor is inherent in the biting pressure of the resin pellets.

これを図4を参照して説明する。図4において、溶融する前の樹脂ペレットがホッパにある。これがスクリュ20の回転によって加熱シリンダ21の先端側に供給されてゆく機能を計量動作と呼ぶ。この計量動作は、スクリュ20を回転させ、樹脂を前に送り込むことで得られる反力を検出して、これを一定化させるようにスクリュ20の後退速度を制御する。よって、樹脂が前に送りこまれる以外の要因で発生する圧力変動は、その全てが外乱要因となる。   This will be described with reference to FIG. In FIG. 4, the resin pellets before melting are in the hopper. This function that is supplied to the front end side of the heating cylinder 21 by the rotation of the screw 20 is called a metering operation. This metering operation detects the reaction force obtained by rotating the screw 20 and feeding the resin forward, and controls the reverse speed of the screw 20 so as to make it constant. Therefore, all the pressure fluctuations generated by factors other than the resin being fed forward become disturbance factors.

ここで、その外乱要因として大きいものに、ホッパ口21−1での樹脂ペレットとスクリュ20のフライトとの接触がある。樹脂を供給する上でこの接触をなくすことはできないが、ショット間で定常的に外乱が乗るようになれば、その外乱要因を軽減することができる。   Here, the major factor of the disturbance is contact between the resin pellets at the hopper port 21-1 and the flight of the screw 20. Although this contact cannot be eliminated when the resin is supplied, the disturbance factor can be reduced if the disturbance is steadily applied between shots.

ホッパ口21−1を上部から見ると、スクリュ20のフライト状態は図4(b)のようになっている。このとき、スクリュ20の位置は変わらなくても、スクリュ20が回転すれば、フライトの位置は前方あるいは後方に1ピッチ分移動することになる。従来はこの1ピッチ分の移動が外乱要因として残ったままとなっている。   When the hopper port 21-1 is viewed from above, the flight state of the screw 20 is as shown in FIG. At this time, even if the position of the screw 20 does not change, if the screw 20 rotates, the position of the flight moves forward or backward by one pitch. Conventionally, this movement for one pitch remains as a disturbance factor.

そこで、本発明の課題は、計量開始時にスクリュのフライトの姿勢が同一となるような補正制御を実行できる射出成形機の制御方法を提供することにある。   Accordingly, an object of the present invention is to provide a control method for an injection molding machine capable of executing correction control so that the posture of a screw flight becomes the same at the start of weighing.

本発明によれば、スクリュの回転角度位置に基準角度位置をあらかじめ設定し、保圧工程終了から計量工程の開始前における圧抜き動作に対応させて、スクリュの回転角度位置を前記基準角度位置に合うように補正する角度補正動作を任意のショット間隔で実行することを特徴とする射出成形機の制御方法が提供される。   According to the present invention, the reference angle position is set in advance to the rotation angle position of the screw, and the rotation angle position of the screw is set to the reference angle position in accordance with the pressure release operation from the end of the pressure holding process to the start of the weighing process. There is provided a control method for an injection molding machine, wherein an angle correction operation for correction so as to fit is executed at an arbitrary shot interval.

本制御方法においては、前記角度補正動作を、計量工程の直前に行われるスクリュ後退動作の直前あるいは直後に実行することが好ましい。   In this control method, it is preferable that the angle correction operation is executed immediately before or immediately after the screw retraction operation performed immediately before the measuring step.

本制御方法においてはまた、前記角度補正動作を、スクリュの正回転、逆回転のいずれかにおいて行なう。   In this control method, the angle correction operation is performed either in the forward rotation or the reverse rotation of the screw.

本制御方法においては更に、前記角度補正動作を、計量開始時のスクリュのフライト位置が一定化するように1ショット毎に行なうようにしても良い。   In this control method, the angle correction operation may be performed for each shot so that the flight position of the screw at the start of measurement becomes constant.

本発明によれば、計量開始時にスクリュのフライトの姿勢が同一となるような補正制御を実行するようにしたことにより、成形品の品質、特に重量を安定させることができる。   According to the present invention, the quality of the molded product, particularly the weight, can be stabilized by executing the correction control so that the posture of the screw flight becomes the same at the start of measurement.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本形態においては、あらかじめスクリュの回転角度位置に基準角度位置が設定され、保圧工程終了から計量工程の開始前における圧抜き動作に対応させて、スクリュの回転角度位置を基準角度位置に合うように補正する角度補正動作がショット毎に実行される。   In this embodiment, the reference angle position is set in advance to the rotation angle position of the screw, and the rotation angle position of the screw is matched with the reference angle position corresponding to the pressure release operation from the end of the pressure holding process to the start of the weighing process. An angle correction operation is performed for each shot.

このような角度補正動作を実行するためには、基準角度位置と現在のスクリュの角度位置との偏差が必要となる。このために、スクリュ回転用のサーボモータ(図2の19)に設置されているロータリエンコーダの検出信号が用いられる。すなわち、ロータリエンコーダからはスクリュの回転角度に対応した検出信号が得られるので、コントローラ(図2の23)においてスクリュの基準角度位置と現在の角度位置との偏差を求めることができる。   In order to execute such an angle correction operation, a deviation between the reference angular position and the current angular position of the screw is required. For this purpose, a detection signal of a rotary encoder installed in a screw rotation servomotor (19 in FIG. 2) is used. That is, since the detection signal corresponding to the rotation angle of the screw is obtained from the rotary encoder, the controller (23 in FIG. 2) can obtain the deviation between the reference angular position of the screw and the current angular position.

コントローラは、角度補正動作を実行するに際し、上記の偏差を0にすべくスクリュを正あるいは逆のいずれかの方向に回転させる。具体的には、スクリュの回転速度はあらかじめ設定されているので、その回転速度と基準角度位置までの回転角度の偏差から偏差を0にするために必要な回転すべき時間を算出し、その時間だけスクリュを回転させるようにすれば良い。勿論、角度補正動作は、スクリュの正回転、逆回転のどちらかで行われる。すなわち、角度偏差が負、つまりスクリュの後退方向の差であれば正回転(スクリュ前進)による補正が行われ、角度偏差が正、つまりスクリュの前進方向の差であれば逆回転(スクリュ後退)による補正が行われる。   When executing the angle correction operation, the controller rotates the screw in either the forward or reverse direction so that the above-described deviation becomes zero. Specifically, since the rotational speed of the screw is set in advance, the time to be rotated to make the deviation zero is calculated from the rotational speed and the deviation of the rotational angle up to the reference angular position. You just need to rotate the screw. Of course, the angle correction operation is performed by either forward rotation or reverse rotation of the screw. That is, if the angle deviation is negative, that is, if the difference is in the backward direction of the screw, correction by forward rotation (screw advance) is performed, and if the angle deviation is positive, that is, if the difference is in the forward direction of the screw, reverse rotation (screw backward) Correction is performed.

なお、射出成形は、射出・保圧一計量前後退一計量一計量後後退−射出・保圧という動作が繰り返されることで行われる。そして、上記の角度補正動作は、計量前後退の直前あるいは直後、計量後後退の直前あるいは直後のいずれかのタイミングで行われる。計量前後退というのは、保圧工程が終了して圧抜きを行うために実行される動作であり、計量後後退というのは、計量工程が終了してから圧抜きを行うために実行される動作である。ここで、例えば金型に充填される樹脂量が少ない場合(成形品の重量小)、スクリュの移動量は小さい。このような場合に、計量後後退の直前あるいは直後のタイミングで角度補正動作が実行されると、角度補正に伴うスクリュの移動が樹脂密度に影響を及ぼし、ひいては成形品質に悪影響を及ぼすことがあるので、角度補正動作は計量前後退の直前あるいは直後に行われるのが好ましい。   Note that the injection molding is performed by repeating the operations of retreating before injection / holding pressure one metering, retreating after metering and one metering-injection / holding pressure. The above angle correction operation is performed at any timing immediately before or immediately after the pre-measurement backward, or immediately before or after the post-measurement backward. The pre-measurement retreat is an operation that is performed to perform pressure release after the pressure holding process is completed, and the post-measurement retreat is performed to perform pressure release after the measurement process is completed. Is the action. Here, for example, when the amount of resin filled in the mold is small (the weight of the molded product is small), the amount of movement of the screw is small. In such a case, if the angle correction operation is executed at the timing immediately before or after the retraction after weighing, the movement of the screw accompanying the angle correction may affect the resin density, and thus may adversely affect the molding quality. Therefore, the angle correction operation is preferably performed immediately before or immediately after the pre-measurement retreat.

上記のように、あらかじめ設定した基準角度位置を基準として、スクリュの回転角度位置を基準角度位置に合わすように1ショット毎に補正動作を行なうことで、計量開始時のスクリュのフライト位置が一定化する。   As described above, the screw flight position at the start of measurement is made constant by performing a correction operation for each shot so that the rotation angle position of the screw matches the reference angle position with the reference angle position set in advance as a reference. To do.

電動射出成形機においては、計量中のスクリュ後退動作はロードセル(図2の15)で検出される圧力値を監視しながら、コントローラが能動的に後退速度を制御している。このため、圧力の立ちあがり特性にばらつきがあると、図1(a)のように、スクリュの後退開始位置にばらつきが生じてしまう。これに対し、上記の角度補正動作によりスクリュの回転角度位置を基準角度位置に一定化することで、図1(b)に示すように、上記のばらつきが改善される。   In the electric injection molding machine, during the screw retraction operation during metering, the controller actively controls the retraction speed while monitoring the pressure value detected by the load cell (15 in FIG. 2). For this reason, if there is a variation in the rising characteristic of the pressure, as shown in FIG. 1 (a), a variation occurs in the retreat start position of the screw. On the other hand, by fixing the screw rotation angle position to the reference angle position by the angle correction operation, the above-described variation is improved as shown in FIG.

そして、計量開始時のスクリュのフライト位置が一定化することにより、ホッパ口での樹脂の噛み込み状態がショット間で均一化される。これにより、加熱シリンダ先端側の樹脂密度分布が均一化の方向へ改善されるため、成形品の品質が安定する。   And since the flight position of the screw at the start of measurement becomes constant, the state of resin biting at the hopper mouth is made uniform between shots. As a result, the resin density distribution on the front end side of the heating cylinder is improved in a uniform direction, and the quality of the molded product is stabilized.

なお、上記の形態では角度補正動作をショット毎に実行するようにしているが、任意のショット間隔で行うようにしても良い。   In the above embodiment, the angle correction operation is performed for each shot, but may be performed at an arbitrary shot interval.

本発明による角度補正動作を行う場合(b)と行わない場合(a)の違いを説明するための時間−スクリュ位置の特性図である。It is a characteristic figure of the time-screw position for demonstrating the difference between the case where the angle correction operation by this invention is performed (b), and the case where it does not perform (a). 電動射出成形機の構成を射出装置を中心に示した図である。It is the figure which showed the structure of the electric injection molding machine centering on the injection device. 射出成形機のスクリュの一例を説明するための図である。It is a figure for demonstrating an example of the screw of an injection molding machine. 加熱シリンダのホッパ口におけるスクリュ位置と樹脂との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the screw position in the hopper mouth of a heating cylinder, and resin.

符号の説明Explanation of symbols

11 ボールネジ
12 ナット
13 プレッシャプレート
14 ガイドバー
15 ロードセル
16 ベアリング
17 ドライブシャフト
18 タイミングベルト
20 スクリュ
21 加熱シリンダ
24 位置検出器
11 Ball screw 12 Nut 13 Pressure plate 14 Guide bar 15 Load cell 16 Bearing 17 Drive shaft 18 Timing belt 20 Screw 21 Heating cylinder 24 Position detector

Claims (4)

スクリュの回転角度位置に基準角度位置をあらかじめ設定し、
保圧工程終了から計量工程の開始前における圧抜き動作に対応させて、スクリュの回転角度位置を前記基準角度位置に合うように補正する角度補正動作を任意のショット間隔で実行することを特徴とする射出成形機の制御方法。
Set the reference angular position in advance to the rotational angle position of the screw,
Corresponding to the pressure release operation from the end of the pressure holding process to before the start of the weighing process, an angle correction operation for correcting the rotation angle position of the screw to match the reference angle position is executed at an arbitrary shot interval. Control method for injection molding machine.
請求項1に記載の制御方法において、前記角度補正動作を、計量工程の直前に行われるスクリュ後退動作の直前あるいは直後に実行することを特徴とする射出成形機の制御方法。   2. The control method for an injection molding machine according to claim 1, wherein the angle correction operation is executed immediately before or immediately after the screw retraction operation performed immediately before the measuring step. 請求項1又は2に記載の制御方法において、前記角度補正動作は、スクリュの正回転、逆回転のいずれかにおいて行なうことを特徴とする射出成形機の制御方法。   3. The control method according to claim 1, wherein the angle correction operation is performed in either a forward rotation or a reverse rotation of the screw. 請求項1〜3のいずれか1項に記載の制御方法において、前記角度補正動作は、計量開始時のスクリュのフライト位置が一定化するように1ショット毎に行なうことを特徴とする射出成形機の制御方法。

4. The injection molding machine according to claim 1, wherein the angle correction operation is performed for each shot so that the flight position of the screw at the start of measurement is constant. Control method.

JP2004327294A 2004-11-11 2004-11-11 Control method of injection molding machine Expired - Fee Related JP4319966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327294A JP4319966B2 (en) 2004-11-11 2004-11-11 Control method of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327294A JP4319966B2 (en) 2004-11-11 2004-11-11 Control method of injection molding machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000348166A Division JP3661993B2 (en) 2000-11-15 2000-11-15 Control method of injection molding machine

Publications (2)

Publication Number Publication Date
JP2005041236A true JP2005041236A (en) 2005-02-17
JP4319966B2 JP4319966B2 (en) 2009-08-26

Family

ID=34270434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327294A Expired - Fee Related JP4319966B2 (en) 2004-11-11 2004-11-11 Control method of injection molding machine

Country Status (1)

Country Link
JP (1) JP4319966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132685A (en) * 2006-11-29 2008-06-12 Nissei Plastics Ind Co Control method of injection molding machine
JP2008132686A (en) * 2006-11-29 2008-06-12 Nissei Plastics Ind Co Screw angle setting method of injection molding machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132685A (en) * 2006-11-29 2008-06-12 Nissei Plastics Ind Co Control method of injection molding machine
JP2008132686A (en) * 2006-11-29 2008-06-12 Nissei Plastics Ind Co Screw angle setting method of injection molding machine
JP4658908B2 (en) * 2006-11-29 2011-03-23 日精樹脂工業株式会社 Control method of injection molding machine
JP4704321B2 (en) * 2006-11-29 2011-06-15 日精樹脂工業株式会社 Screw angle setting method for injection molding machine

Also Published As

Publication number Publication date
JP4319966B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP3250180B2 (en) Depressurization method in plasticization / metering process of electric injection molding machine
JP3255609B2 (en) Injection speed switching control method for electric injection molding machine
JP2015096298A (en) Controller of injection molding machine
JP2011183704A (en) Injection molding machine and injection molding method
JP3686328B2 (en) Control method of injection molding machine
JP4319966B2 (en) Control method of injection molding machine
JP4087860B2 (en) Control method of injection molding machine
JP3336296B2 (en) Injection device and control method thereof
JP3661993B2 (en) Control method of injection molding machine
JP5410663B2 (en) Injection molding machine
JP3309280B2 (en) Control method of injection molding machine
JP3337205B2 (en) Injection device and control method thereof
EP2700488B1 (en) Injection molding machine
JP2919167B2 (en) Injection control method for electric injection molding machine
JP3336301B2 (en) Injection device and control method thereof
JP3563062B2 (en) Zero adjustment method of load cell of electric injection molding machine
JP2000006207A (en) Starting method of rotation of screw in injection molder
JP2000313044A (en) Injection apparatus and controlling method therefor
JP2009028903A (en) Injection molding machine
JP3321437B2 (en) Injection device and control method thereof
JP3314054B2 (en) Injection device and control method thereof
JPH0567410B2 (en)
JP2006116789A (en) Molding machine, and its resin supply controlling method
JP3535063B2 (en) Injection molding machine
JP3245819B2 (en) Plasticizer for resin molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees