JP2005040475A - Far-infrared sterilizing method and far-infrared sterilizer - Google Patents

Far-infrared sterilizing method and far-infrared sterilizer Download PDF

Info

Publication number
JP2005040475A
JP2005040475A JP2003279622A JP2003279622A JP2005040475A JP 2005040475 A JP2005040475 A JP 2005040475A JP 2003279622 A JP2003279622 A JP 2003279622A JP 2003279622 A JP2003279622 A JP 2003279622A JP 2005040475 A JP2005040475 A JP 2005040475A
Authority
JP
Japan
Prior art keywords
far
infrared
sterilization
specific wavelength
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003279622A
Other languages
Japanese (ja)
Inventor
Takeshi Nishisaka
剛 西坂
Masayoshi Wakita
政嘉 脇田
Akiko Kobayashi
亜紀子 小林
Seiji Sugiyama
征司 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003279622A priority Critical patent/JP2005040475A/en
Publication of JP2005040475A publication Critical patent/JP2005040475A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for more enhancing the safety of food in addition to a conventional sanitation control method for suppressing the growth of bacteria bonded to processed and unprocessed foods of fishes, meats, vegetables and the like exposed to the open air to cause spoilage, food poisoning or the like. <P>SOLUTION: In a method for irradiating food with light having the absorbing wavelength of specific proteins constituting bacteria in a far-infrared region to kill or deactivate bacterial or to suppress the growth of bacteria, a means for selecting either one of a reflecting plate and a transmission plate or combining both of them according to necessity to use the same is provided as a far-infrared irradiation means of a specific wavelength. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,微生物特に細菌の殺菌の方法に関するものである. The present invention relates to a method for sterilizing microorganisms, particularly bacteria.

殺菌とは,滅菌が全ての細菌を死滅させることに対し,単に細菌を殺すことをいう.静菌とは細菌の増殖を阻害あるいは阻止することをいう.殺菌の方法は種々方法があり実用化されている.一般的には対象物を加熱処理することで殺菌処理をする方法が知られている.この場合の課題は対象物の温度上昇が避けがたく,食品等にあってはその鮮度や品質の劣化をもたらす事があった.また,滅菌や殺菌は医療機関での主要な業務の一つであるが,この場合には高圧滅菌,ガス滅菌,プラズマ滅菌,放射性滅菌など特殊な方法が採用されており,一般の食品等に使用するには困難な場合が多い.このため,食品等の殺菌においては加熱処理が採用されていた.加熱処理においては対象物を直接所定の温度まで上昇させ,一定時間保持することが通例である.調理における加熱は,調理本来の目的の他に食品の殺菌という処理も含む. Sterilization simply kills bacteria, whereas sterilization kills all bacteria. Bacteriostasis is the inhibition or prevention of bacterial growth. There are various methods of sterilization and they are put into practical use. In general, a method of sterilizing an object by heat treatment is known. The problem in this case is that the temperature rise of the object is unavoidable, and the freshness and quality of foods may be deteriorated. Sterilization and sterilization are one of the main tasks in medical institutions. In this case, special methods such as high-pressure sterilization, gas sterilization, plasma sterilization, and radioactive sterilization have been adopted. It is often difficult to use. For this reason, heat treatment was adopted for sterilizing foods. In heat treatment, it is customary to raise the object directly to a predetermined temperature and hold it for a certain period of time. Heating in cooking includes processing of food sterilization in addition to the original purpose of cooking.

しかしながら,冷凍食品など連続的な殺菌処理を必要とするような場合には,連続的な殺菌処理が可能な方法が要望されており,一部赤外線加熱による処置も実用化されている.公表されている遠赤外線による食品殺菌法によれば,適応される波長は10-100マイクロメートルとし,特定の波長によるものかあるいは温度によるものかなど殺菌の作用機序については明されていないため,効率的に殺菌処理を行うことができないという欠点があった.「特開平
6−137763号」では遠赤外線放射球から3.6−6.5マイクロメートルの波長を得,殺菌対象物に照射していた.この結果、約24時間後にはシャレーの中のコロニーは「0」になったことが確認されたという.
However, when continuous sterilization is required, such as frozen foods, a method capable of continuous sterilization is required, and some infrared heating treatments have been put into practical use. According to the published far-infrared food sterilization method, the applicable wavelength is 10-100 micrometers, and the action mechanism of sterilization is not clarified, such as whether it is due to a specific wavelength or due to temperature. However, there was a drawback that the sterilization treatment could not be performed efficiently. In "JP-A-6-137763", a wavelength of 3.6-6.5 micrometers was obtained from a far-infrared emitting sphere, and the object to be sterilized was irradiated. As a result, it was confirmed that colonies in the chalet became “0” after about 24 hours.

殺菌効果を遠赤外線によると想定したものであっても,その適用波長は1−30マイクロメートルあるいは1−100マイクロメートルと広範囲であり,従って,発熱帯の温度制御範囲,あるいは発生する遠赤外線の最適波長も規定できないのが現状であった.この点を補うため,食品流通課程における殺菌や細菌の増殖抑制の目的で各種食品添加物が食品,加工品に加える対応も実施されていたが以下のような問題点が存在する.食品添加物の生体に与える有害な作用,また食品添加物の使用制限から食品に付着する細菌の繁殖が促進され,食物の可食期間の短縮などが社会問題になりつつある.現在,食品添加物以外でこれらに対処する為,熱あるいは紫外光による殺菌法や滅菌法が強化されている.しかし熱や紫外光を反復して食品に負荷することは前述したように食品の鮮度や品質の劣化をもたらす課題がある.
特開昭56-164775号 特公平8-15420号 特開平6-137763号 高麗寛紀著「抗菌のすべて」繊維社,1997年 横山・田中編「殺菌・除菌実用便覧」サイエンスフォーラム,1997年
Even if the sterilizing effect is assumed to be based on far infrared rays, the applicable wavelength is as wide as 1-30 micrometers or 1-100 micrometers, and therefore, the temperature control range of the tropical zone or the far infrared rays generated The current situation is that the optimum wavelength cannot be specified. To compensate for this, various food additives have been added to foods and processed products for the purpose of sterilization and bacterial growth suppression in the food distribution process. However, there are the following problems. Due to the harmful effects of food additives on the body and the restrictions on the use of food additives, the growth of bacteria attached to food is promoted, and shortening the edible period of food is becoming a social problem. At present, in order to deal with these other than food additives, sterilization and sterilization methods using heat or ultraviolet light have been strengthened. However, repeatedly applying heat and ultraviolet light to foods has the problem of deteriorating the freshness and quality of foods as described above.
JP 56-164775 A No. 8-15420 JP-A-6-137763 Hironori Koryo "All about Antibacterials" Textile Company, 1997 Yokoyama and Tanaka "Sterilization and disinfection practical manual" Science Forum, 1997

本発明者は,このような従来解明されていなかった効果について,各種実験を行った結果,遠赤外線による殺菌効果が確認され,本発明を完成するに至ったものである. As a result of various experiments on the effects that have not been elucidated in the past, the present inventor has confirmed the bactericidal effect by far infrared rays, and has completed the present invention.

本発明は遠赤外線照射による細菌の殺菌,非活性化,発育抑制技術を明らかにし,装置の実用化をはかるものである.背景技術で詳細に説明したように,食品に食品添加物を混入,付加することなしに,あるいは食品の劣化を招くような熱の負荷や紫外線を照射することなしに,殺菌する方法が求められている.換言すれば本発明は,
第一に,外気に曝される加工および非加工食品の魚類,肉類,野菜類などに付着し,腐敗や食中毒等の原因となる細菌の発育を抑制する従来の衛生管理方法に加えて,食品の安全性をより高める方法を提供する.第二に,包装材等により被覆された食品に対し包装操作前に細菌の殺菌,非活性化,発育抑制を行うこと,あるいは包装操作中に殺菌を免れたあるいは被覆された食品中で再び増殖した細菌の殺菌,非活性化,発育抑制を目的とする新たな方法を提供するものである.

The present invention clarifies the technology of sterilization, deactivation and growth inhibition of bacteria by far-infrared irradiation, and aims to put the device into practical use. As explained in detail in the background art, there is a need for a method of sterilization without adding or adding food additives to food, or without irradiating with heat load or ultraviolet rays that cause food deterioration. ing. In other words, the present invention
First, in addition to traditional hygiene management methods that suppress the growth of bacteria that cause spoilage, food poisoning, etc., which adhere to fish, meat, vegetables, etc., of processed and non-processed foods exposed to the open air. A method to further improve the safety of Secondly, sterilization, deactivation and growth control of foods covered with packaging materials etc. before packaging operations, or growth again in foods that have been sterilized or coated during packaging operations It provides a new method for the purpose of sterilization, deactivation, and growth control of bacteria.

近年,生体の組織や細胞あるいは細菌に対する赤外分光法の進歩が本発明の特質をもたらした.また本発明は従来の殺菌法の問題点を解決するため,特定波長の遠赤外光を照射することにより,少ないエネルギーで細菌に変成を惹起させる点に特徴を有する.従来法においては,作用機序が明確でないため殺菌対象に対し広範囲な遠赤外線照射量や作用量などが必要であり,このために過度の作用が生じるという課題があった. In recent years, advances in infrared spectroscopy on living tissues, cells or bacteria have brought about the characteristics of the present invention. In addition, the present invention is characterized in that the bacteria are transformed with less energy by irradiating far-infrared light of a specific wavelength in order to solve the problems of the conventional sterilization method. In the conventional method, since the mechanism of action is not clear, a wide range of far-infrared irradiation dose and action amount are necessary for the sterilization target, and this has caused a problem that excessive action occurs.

本発明の特徴とその実施についての具体的説明は,要約すれば,殺菌を必要とする食品等の対象物に特定波長域の遠赤外線を照射することにより,即ち,対象物に付着する細菌等の特定構成分子の吸収波長に一致する遠赤外線を照射することにより,少ないエネルギーで細菌に変性効果を惹起せしめ,食品等の対象物に好ましくない温度上昇,変性や傷害作用の少ない殺菌,非活性化,発育抑制法を提供することである. In summary, the features of the present invention and the specific description of its implementation can be summarized by irradiating a far-infrared ray in a specific wavelength range on an object such as food that requires sterilization, that is, bacteria attached to the object. By irradiating far-infrared rays that match the absorption wavelength of the specific constituent molecules of the substance, it induces denaturation effects on bacteria with less energy, and is undesirably high in temperature, sterilization and inactivity, which is undesirable for food and other objects. It is to provide a method for suppressing the growth and growth.

しかしながら,細菌の殺菌,非活性化,発育抑制法については確定的な作用機序が理論的に解析ができていないために,実験的に確認する必要がある.従来の報告では,細菌の殺滅に関連する損傷は,DNA合成阻害,RNAポリメラーゼ阻害,タンパク合成阻害,細胞膜合成阻害に分類できるという.細胞膜に存在するタンパクは,物質の輸送体,細胞内のアクチンフィラメントと細胞外マトリックスをつなぐ連結体,細胞外のシグナルを細胞内に伝える受容体又は細胞外のシグナルに呼応し細胞内酵素生産を触媒する等の機能を有する.遠赤外線を照射された細菌の損傷はRNAポリメラーゼとリボソームにおけるタンパク合成阻害により引き起こされたのではないかと示唆する報告がある.
特開平 6-13776号 Journal of Chemical Engineering of Japan, Vol 28, No 3, 294-299 pages,1995
However, it is necessary to experimentally confirm the sterilization, deactivation, and growth inhibition methods of bacteria because the definite mechanism of action has not been theoretically analyzed. According to previous reports, damage related to bacterial killing can be classified into DNA synthesis inhibition, RNA polymerase inhibition, protein synthesis inhibition, and cell membrane synthesis inhibition. Proteins present in the cell membrane can produce intracellular enzymes in response to transporters of substances, connections that connect intracellular actin filaments and extracellular matrix, receptors that transmit extracellular signals into cells, or extracellular signals. It functions as a catalyst. There are reports suggesting that damage to bacteria irradiated with far-infrared rays may be caused by inhibition of protein synthesis in RNA polymerase and ribosome.
JP-A-6-13776 Journal of Chemical Engineering of Japan, Vol 28, No 3, 294-299 pages, 1995

本発明の作用を仮説的に述べると,特定波長域の遠赤外線照射により細菌の膜表面に存在する種々微細小突起を構成するタンパク,糖鎖などの分子構造を修飾・変性させ,その機能を低減,あるいは破綻させることで細菌の機能を無力化したり,あるいは死滅に導くというものである. The hypothesis of the action of the present invention is to modify and denature molecular structures such as proteins and sugar chains that constitute various microprojections on the bacterial membrane surface by irradiation with far-infrared rays in a specific wavelength range. By reducing or breaking down, the function of bacteria is disabled or it leads to death.

輻射温度とその輻射スペクトルの中心波長はプランクの放射法則として公知であり,輻射体の温度が下がれば,輻射中心波長は長波長側にシフトする.従って,遠赤外線を放射する発熱体温度をどのような温度にするかによって,輻射の中心波長は自動的にきまる.従って,一般の分子構造に基づく振動は赤外域に存在することも公知であるために,本発明者は効果が予想できる波長範囲として3マイクロメートル以上の遠赤外線を選択した. The center temperature of the radiation temperature and its radiation spectrum is known as Planck's radiation law. When the temperature of the radiator decreases, the center wavelength of radiation shifts to the longer wavelength side. Therefore, the center wavelength of radiation is automatically determined depending on the temperature of the heating element that emits far infrared rays. Therefore, since it is known that vibration based on a general molecular structure exists in the infrared region, the present inventor has selected far infrared rays of 3 micrometers or more as a wavelength range in which the effect can be expected.

一方,遠赤外線の水の共鳴波長はそれぞれ2.74,2.66,6.27マイクロメートルと理論的に求められている.しかし実際にはかなり広い幅を有す.また遠赤外線の吸収率は水の層厚と深い関係を持ち,層厚3マイクロメートルまでは3及び6マイクロメートル付近の吸収が大きいが,層厚が増すにつれ吸収が大きくなり1mm
以上になると3マイクロメータより長い遠赤外線は全て吸収され,波長依存性が無くなる.特定波長域の遠赤外線照射により細菌の殺菌,非活性化,発育抑制が強くなれば,(0010項)で記述したような細菌が含有するあるいは細菌の周辺に存在する僅かな水分による吸収とその結果としての発熱作用によることが明らかになる.しかしながら,後述するように10マイクロメートルより長波長の遠赤外線では細菌の死滅割合は低く,別の機構によることを示唆している.
On the other hand, the resonance wavelengths of far-infrared water are theoretically required to be 2.74, 2.66, and 6.27 micrometers, respectively. However, it is actually quite wide. The far-infrared absorptivity has a deep relationship with the water layer thickness. Up to a layer thickness of 3 micrometers, absorption near 3 and 6 micrometers is large, but as the layer thickness increases, the absorption increases to 1 mm.
At this point, all far infrared rays longer than 3 micrometers are absorbed, and the wavelength dependence is lost. If sterilization, deactivation, and growth inhibition of bacteria are enhanced by irradiation with far-infrared rays in a specific wavelength range, absorption by slight moisture contained in or around bacteria as described in (0010) It is clear that this is due to the exothermic action. However, as described later, far-infrared rays with wavelengths longer than 10 micrometers have a low rate of killing bacteria, suggesting a different mechanism.

光の対象物への作用は光のエネルギー量,光強度および作用時間によって規定される.一方,(0011項)において記載したように,発熱体の温度が低くなれば,そのときの輻射中心波長は長波長側にシフトする.そしてそれに応じて全体の発熱量が低下し,作用強さが低減することになる.したがって,肝要な点は特定波長域の光のエネルギー量,強度を必要にして十分な作用効果が確認できる程度に確保する手段であり,単純に中心波長を特定波長域に設定することではない.同時に対象物が過熱されることによる品質低下を防ぐ程度に光のエネルギー量,強度を制御する必要がある.また対象物への照射が不十分なため細菌が遠赤外線に対し耐性を獲得しないように光のエネルギー量,強度を制御する必要がある.
実用遠赤外線,人間と歴史社, 1999年
The action of light on an object is defined by the amount of light energy, light intensity, and action time. On the other hand, as described in (0011), when the temperature of the heating element is lowered, the radiation center wavelength at that time shifts to the longer wavelength side. Accordingly, the overall calorific value is reduced and the strength of action is reduced. Therefore, the important point is a means to ensure that sufficient energy and effect can be confirmed by requiring the energy and intensity of light in a specific wavelength range, and not simply setting the center wavelength to the specific wavelength range. At the same time, it is necessary to control the amount and intensity of light to the extent that quality degradation due to overheating of the object is prevented. In addition, since the irradiation of the target is insufficient, it is necessary to control the amount and intensity of light so that bacteria do not acquire resistance to far infrared rays.
Practical far-infrared rays, Human and History Company, 1999

以上のように請求項1記載の発明による特定波長域の遠赤外線照射により,実施例で述べるように殺菌を必要とする対象物の表面温度を40℃付近に保ちながら細菌のコロニー増殖を抑制あるいは停止させることが可能であった.殺菌対象物を冷却しても,あるいは低温状態の殺菌対象物においても,本発明による殺菌が可能と考えられる.また,食品工場などにおける殺菌工程における消毒薬の添加や加温操作から解放された品質の高い食品の提供が可能となる. As described above, the far-infrared irradiation in the specific wavelength range according to the invention of claim 1 suppresses the bacterial colony growth while maintaining the surface temperature of the object requiring sterilization at around 40 ° C. as described in the examples or It was possible to stop. It is considered that sterilization according to the present invention is possible even when the object to be sterilized is cooled or the object to be sterilized at a low temperature. In addition, it is possible to provide high-quality food that is free from the addition of disinfectants and heating operations in the sterilization process in food factories.

請求項3乃至6の発明によれば遠赤外線の照射方法が選択でき殺菌対象に応じて最適な方法を選択することが可能である.
According to the inventions of claims 3 to 6, it is possible to select the irradiation method of far infrared rays, and it is possible to select the optimum method according to the sterilization target.

かかる適切な照射条件を確保する手段として,発熱手段として,例えば,遠赤外線ヒータ,セラミック発熱体,ランプ光源など通常公知となる熱源と,その発熱体の温度を一定に保持できる発熱温度制御手段を組み合わせ,発熱体の表面温度を一定に保持する.この結果,前記のプランクの放射法則に従い,輻射スペクトルの中心波長が規定される.一定温度に保持された発熱体からの輻射スペクトルは広範囲な波長分布をしているので,特定波長域のみを取り出すためには,発熱体と被照射体部との間に,特定波長域のみを透過する特定波長域透過材を設置するか,あるいは発熱体からの輻射光が一旦特定波長域のみを反射する特定波長域反射板を介して,被照射部に照射される構造が要求される. As means for ensuring such an appropriate irradiation condition, as heat generating means, for example, a generally known heat source such as a far-infrared heater, a ceramic heating element, a lamp light source, and a heating temperature control means capable of keeping the temperature of the heating element constant. Combined, keeps the surface temperature of the heating element constant. As a result, the center wavelength of the radiation spectrum is defined according to the Planck's radiation law. Since the radiation spectrum from the heating element maintained at a constant temperature has a wide wavelength distribution, in order to extract only the specific wavelength range, only the specific wavelength range is provided between the heating element and the irradiated body. There is a requirement for a structure to transmit the specific wavelength band transmitting material, or to irradiate the irradiated part through the specific wavelength band reflector that reflects the specific wavelength band once.

特定波長域,特に遠赤外線を透過できる材料は公知のように非常に限られる.この理由は一般的な材料において材料構成分子の振動による分子振動吸収スペクトルがほぼ遠赤外線領域に限定されることによる.このため,通常使用できるガラス,石英ガラス,プラスチックなどの公知の材料は通常2マイクロメータ以上程度の遠赤外線を透過できない.現在知られている遠赤外線透過材料はZnSe,ZnS,GaAs,Geなど非常に高価な材料に限定される.従って,大掛かりな装置を構築する場合には特定波長域を得る手段に透過材を使用することは適切ではない.また,特定波長域のみを透過させるため上記材料表面に特定な光のみが透過できるように多層膜を形成することが必要であり,さらに高額となる欠点がある. As is well known, materials that can transmit a specific wavelength range, especially far infrared rays, are very limited. The reason for this is that in general materials, the molecular vibration absorption spectrum due to vibration of the constituent molecules is limited to the far-infrared region. For this reason, commonly used materials such as glass, quartz glass, and plastic cannot normally transmit far-infrared rays of about 2 micrometers or more. Currently known far-infrared transmitting materials are limited to very expensive materials such as ZnSe, ZnS, GaAs and Ge. Therefore, when constructing a large-scale device, it is not appropriate to use a transmission material as a means to obtain a specific wavelength range. In addition, in order to transmit only a specific wavelength region, it is necessary to form a multilayer film so that only specific light can be transmitted to the surface of the material, and there is a disadvantage that it is expensive.

特定波長域を形成する他の手段として,特定波長域を反射できる反射板を使用することもある.この場合の利点としては反射用母材に特別な材料を必要としなく,表面での光散乱が生じない程度に研磨したステンレス,アルミニューム,銅,チタン,ガラス等の材料が使用できる.特定波長域で効率よく反射させるには公知のように多層膜を蒸着することで実現できる. As another means of forming a specific wavelength range, a reflector that can reflect the specific wavelength range is sometimes used. The advantage in this case is that no special material is required for the reflective base material, and materials such as stainless steel, aluminum, copper, titanium, and glass that have been polished to the extent that no light scattering occurs on the surface can be used. Efficient reflection in a specific wavelength range can be realized by depositing a multilayer film as is well known.

特定波長域を形成するその他の手段として,発熱温度制御手段における温度設定条件と赤外線透過材料との組み合わせによって実現するものがある.この場合には赤外線透過材料には特別な波長選択をする蒸着を必要としない利点がある.例えば,CaF
結晶板は潮解性もなく,紫外域から遠赤外域まで透明な結晶であるが,この光学結晶の遠赤外域ではおよそ,6マイクロメートルより長波長側から徐々に透過率が低下しはじめ10マイクロメートル近傍では10%
程度まで低下する.この特性を生かして遠赤外線発熱体の温度をその放射スペクトルが7マイクロメートルから10マイクロメートルに中心波長がくるように選択すれば,この光学結晶を透過した遠赤外線は波長中心が7マイクロメートルから8マイクロメートル程度であって,短波長側にプランクの放射スペクトルに対応するテイル部分をもち10マイクロメートル以上はほとんど透過しないような光学的フィルターを構成することができる.
理科年表,光学結晶の透過率,丸善
As another means for forming a specific wavelength range, there is one realized by a combination of temperature setting conditions in the heat generation temperature control means and an infrared transmitting material. In this case, the infrared transmitting material has the advantage of not requiring vapor deposition with special wavelength selection. For example, CaF 2
The crystal plate has no deliquescence and is a transparent crystal from the ultraviolet region to the far-infrared region, but in the far-infrared region of this optical crystal, the transmittance gradually begins to decrease from about 6 micrometers from the longer wavelength side to 10 microns. 10% near the meter
Decrease to the extent. Taking advantage of this characteristic, if the temperature of the far-infrared heating element is selected so that the center wavelength is from 7 micrometers to 10 micrometers, the far-infrared light transmitted through this optical crystal has a wavelength center from 7 micrometers. An optical filter having a tail portion corresponding to the Planck radiation spectrum on the short wavelength side and having almost no transmission beyond 10 micrometers can be constructed.
Science chronology, transmittance of optical crystal, Maruzen

同様な手段としてLiF結晶による方法があるが,この場合には中心波長5-6マイクロメートルが必要な場合に対応する.更にサファイヤの使用により中心波長が3-5マイクロメートルが必要な場合に対応する.従って,特定波長帯域を構成するもっとも容易な手段として特定の結晶光学材と発熱体温度の制御による方法が提示されたことになる. As a similar means, there is a method using LiF 2 crystal, but this case corresponds to the case where a center wavelength of 5-6 micrometers is required. Furthermore, it corresponds to the case where the center wavelength is 3-5 micrometers by using sapphire. Therefore, the simplest means of constructing a specific wavelength band was presented by a specific crystal optical material and a method of controlling the heating element temperature.

なお,遠赤外線の波長域については様々な定義があるが,ここでは財団法人遠赤外線協会の分類に従い3マイクロメートルから1mmの波長範囲を遠赤外線と呼ぶこととした.
Although there are various definitions of the wavelength range of far infrared rays, the wavelength range from 3 micrometers to 1 mm is referred to as far infrared radiation according to the classification of the far infrared association.

図1は,この発明に係る1実施例の殺菌装置の方法および装置を説明するシステム図である.2は被照射体で一個あるいは複数個の遠赤外線放射装置1により一方向あるいは多方向から照射される場合もある.3は遠赤外線放射装置に電力を供給し,発熱温度を制御する手段である.1〜3は実施例2においても同様である. FIG. 1 is a system diagram for explaining a method and apparatus of a sterilizing apparatus according to one embodiment of the present invention. 2 is an object to be irradiated and may be irradiated from one or more directions by one or a plurality of far-infrared radiation devices 1. 3 is a means of supplying power to the far-infrared radiation device and controlling the heat generation temperature. 1-3 are the same in Example 2.

図1 FIG.

図2は遠赤外線放射装置本体1の断面図である.装置の支持体4はアルミニウム,銅,ガラス,合成樹脂部材などにより成形される.内部に多数の冷却管5を有し,支持体の加熱を防止する.7は遠赤外線放射発熱体,8は遠赤外線放射発熱体からの遠赤外線が直接被照射体に至らないように設置された遮蔽器である.この遮蔽器は内部に冷却管を備え,赤外線放射発熱体からの加熱により目的としない遠赤外線放射を防止する.6は支持体5の一部であり遠赤外線放射発熱体からの赤外線を集光および,あるいは特定の波長を反射する蒸着を施された構造を有する.9の表面を冷却するためのファンが5に
取り付けられている. 14は水蒸気発生装置で必要に応じ被照射体表面を湿潤化するために使用される.9は被覆を有するあるいは有しない被照射体で,必要に応じ多方面からの照射を受ける.
10は遠赤外線放射装置本体と被照射体までの距離を変える機構で,この距離を変化させることにより被照射体の照射野や与える遠赤外線のエネルギーを変化させることができる.11および12は遠赤外線放射制御用センサーであり,6および13の表面に装着してある.13は被照射体を載せる台でコンベア式に移動可能な構造と下部からも照射可能な構造を有する.
FIG. 2 is a cross-sectional view of the far-infrared radiation device body 1. The support 4 of the device is formed of aluminum, copper, glass, synthetic resin member or the like. A large number of cooling pipes 5 are provided inside to prevent heating of the support. 7 is a far-infrared radiation heating element, and 8 is a shield installed so that far-infrared radiation from the far-infrared radiation heating element does not reach the irradiated object directly. This shield is equipped with a cooling pipe inside to prevent unwanted far-infrared radiation by heating from an infrared radiation heating element. 6 is a part of the support 5 and has a structure in which infrared rays from a far-infrared radiation heating element are collected and vapor deposition is performed to reflect a specific wavelength. A fan for cooling the surface of 9 is attached to 5. 14 is a steam generator used to wet the surface of the irradiated object as needed. 9 is an irradiated body with or without a coating, and receives irradiation from various directions as necessary.
10 is a mechanism for changing the distance between the main body of the far-infrared radiation device and the object to be irradiated. By changing this distance, the irradiation field of the object to be irradiated and the far-infrared energy to be applied can be changed. 11 and 12 are far-infrared radiation control sensors, which are attached to the surfaces of 6 and 13. No. 13 has a structure that can be moved in a conveyor manner on the stage on which the irradiated object is placed, and a structure that can be irradiated from below.

図2 FIG.

図3は,他の遠赤外線照射状態を示す.図中一点鎖線を境に,図3で示した装置が被照射体に対し概略対象に位置し,遠赤外線を多方向より被照射体に照射する構造を形成する.
Figure 3 shows other far-infrared irradiation conditions. In the figure, the device shown in Fig. 3 is positioned roughly on the object to be irradiated, and forms a structure that irradiates the object with far-infrared rays from multiple directions.

図3 FIG.

次に本発明による殺菌効果の一例を示す.供試細菌は理化学研究所分譲の大腸菌(Escherichia coli,JMC1649)である.一晩培養した大腸菌を
0.85% 食塩水にて希釈した菌液をLBアガープレートに播種し遠赤外線照射を行った.遠赤外線のヒーター温度は730℃に保ち,窓材としてCaF窓材使用群と非使用群を比較した.
照射後,37℃にて18時間培養し,形成されたコロニー数をカウントした.遠赤外線照射中のアガープレートの表面温は40℃であった.両群の形成コロニー数をカウントし,「照射群コロニー数/
非照射群コロニー数」の比を求めた結果を図 4 に示す.図中,実線はCaF窓材使用例を,点線は非使用例を示す.この結果から遠赤外線照射中のアガープレートの表面温が40℃であるにも関わらず照射180
秒後には生存率が「0.1」になり,300 秒後ではほぼ「0 」になった.大腸菌の死滅温は60℃付近であることから,生存率低下の原因は遠赤外線の作用と考えられる.
またCaFの窓材使用によっても大腸菌のコロニーが減少していることから,10 - 12マイクロメートルより短波長の遠赤外線が細菌の殺傷に関与していると考えられる.
Next, an example of the bactericidal effect of the present invention is shown. The test bacterium is Escherichia coli (JMC1649) sold by RIKEN. E. coli cultured overnight
The bacterial solution diluted with 0.85% saline was seeded on LB agar plates and irradiated with far infrared rays. The far-infrared heater temperature was kept at 730 ° C., and CaF 2 window material use group and non-use group were compared as window materials.
After irradiation, the cells were cultured at 37 ° C. for 18 hours, and the number of colonies formed was counted. The surface temperature of the agar plate during the far-infrared irradiation was 40 ° C. Count the number of colonies formed in both groups, and “irradiation group colonies /
Figure 4 shows the ratio of the number of non-irradiated group colonies. In the figure, the solid line shows an example of using CaF 2 window material, and the dotted line shows an example of non-use. From this result, the irradiation 180 is performed even though the surface temperature of the agar plate during the far infrared irradiation is 40 ° C.
The survival rate became “0.1” after 2 seconds, and almost “0” after 300 seconds. Since the killing temperature of E. coli is around 60 ° C, it is thought that the cause of the decrease in the survival rate is the action of far-infrared rays.
Moreover, since colonies of E. coli have decreased due to the use of CaF 2 window material, it is considered that far-infrared rays having a wavelength shorter than 10-12 micrometers are involved in killing bacteria.

図4 FIG.

本発明による他の殺菌の効果を示す例を示す.供試細菌および培養方法は前項(0028項)と同様である.照射中の雰囲気の湿度を図5に示すように相対湿度(RH)を23.5,43.5%に変化させ,生存割合を算出した.CaF
は使用していない.湿度の増加に伴い生存率は低下した.このように適度な湿度,即ち極く薄い水の薄膜を被照射体表面に形成する方法によっても遠赤外線殺菌効果を高めることが明らかとなった.
The example which shows the effect of other sterilization by this invention is shown. The test bacteria and culture method are the same as in the previous section (Section 0028). As shown in FIG. 5, the relative humidity (RH) was changed to 23.5 and 43.5%, and the survival rate was calculated. CaF 2
Is not used. The survival rate decreased with increasing humidity. It was clarified that far-infrared sterilization effect can be enhanced by the method of forming a thin film of moderate humidity on the surface of the irradiated body.

図5
FIG.

表面温度を上昇させることが望ましくない対象物の殺菌や細菌増殖を抑制あるいは停止させることが必要な分野,例えば,食品製造,食品加工,食品流通,食品保存分野等への応用.冷却あるいは低温状態の殺菌対象物における殺菌への応用.また,食品工場などにおける殺菌工程における消毒薬の添加や加温操作が好ましくない,品質の高い食品の提供が必要な分野においての応用.更には殺菌が必要な医療分野における応用も可能である.

Application to fields where it is necessary to suppress or stop bacterial sterilization or bacterial growth where it is not desirable to raise the surface temperature, such as food manufacturing, food processing, food distribution, food preservation. Application to sterilization of objects to be sterilized by cooling or low temperature. In addition, application in fields where it is not necessary to add disinfectants or heat in the sterilization process in food factories, etc., and it is necessary to provide high-quality food. Furthermore, it can be applied in the medical field where sterilization is necessary.

本発明の遠赤外線殺菌装置の概略図Schematic of the far-infrared sterilizer of the present invention 図1に示す遠赤外線放射装置の断面概略図(実施例1)FIG. 1 is a schematic cross-sectional view of the far-infrared radiation device shown in FIG. 1 (Example 1). 図1に示す他の遠赤外線放射装置の断面概略図(実施例2)Schematic cross-sectional view of another far-infrared radiation device shown in FIG. 1 (Example 2) 大腸菌に対する遠赤外線照射成績Far-infrared irradiation results for Escherichia coli 大腸菌に対する遠赤外線照射時における湿度の効果Effect of humidity during far-infrared irradiation on Escherichia coli

符号の説明Explanation of symbols

1 遠赤外線放射装置
2 被照射体
3 制御装置
4 遠赤外線放射機の支持構成物
5 冷却管
6 特定波長域反射蒸着層
7 遠赤外放射ヒーター
8 冷却管を内蔵する遮蔽器
9 被照射体
10 距離可変機構
11 遠赤外線放射制御用センサー
12 遠赤外線放射制御用センサー
13 載物台および被照射体移動装置
14 水蒸気発生装置
1 Far-infrared radiation device 2 Object to be irradiated
3 Control device
4 Supporting components for far-infrared radiators
5 Cooling pipe
6 Reflective vapor deposition layer for specific wavelengths
7 Far infrared radiation heater
8 Shield with built-in cooling pipe
9 Subject
10 Distance variable mechanism
11 Far-infrared radiation control sensor
12 Far infrared radiation control sensor
13 Platform and irradiated object moving device
14 Water vapor generator

Claims (6)

特定波長の遠赤外線を目的物体に照射する事により殺菌を行う方法および装置 Method and apparatus for sterilization by irradiating a target object with far-infrared rays of a specific wavelength 殺菌を行う方法において,物体に照射する遠赤外線の特定波長が3-10マイクロメートルの範囲であることを特長とする方法および装置 In the method of sterilization, the specific wavelength of far infrared rays applied to an object is in the range of 3-10 micrometers, and the method and apparatus 特定波長の遠赤外線が発熱手段,発熱温度制御手段,特定波長域反射板,物体照射設定手段で構成されることを特徴とする前記第一項乃至第二項に記載された方法および装置 The method and apparatus according to the first or second aspect, wherein the far infrared ray of a specific wavelength is constituted by a heat generation means, a heat generation temperature control means, a specific wavelength range reflector, and an object irradiation setting means. 特定波長の遠赤外線が発熱手段,発熱温度制御手段,特定波長域透過板,物体照射設定手段で構成されることを特徴とする前記項第一項乃至第二項に記載された方法および装置 The method and apparatus as described in the above paragraphs 1 to 2, characterized in that far infrared rays of a specific wavelength are composed of heat generating means, heat generation temperature control means, specific wavelength range transmission plate, and object irradiation setting means. 発熱温度制御手段における設定温度条件と遠赤外線透過材料を組み合わせることによって,特定波長域の遠赤外線を放射させることを特徴とする前記請求項1乃至4に記載された方法および装置 5. The method and apparatus according to claim 1, wherein far infrared rays in a specific wavelength range are emitted by combining a set temperature condition in the heat generation temperature control means and a far infrared ray transmitting material. 水蒸気を発生する装置を備えている前記請求項 l 乃至請求項5 に記戴された方法および装置
6. A method and apparatus as claimed in claim 1, comprising a device for generating water vapor.
JP2003279622A 2003-07-25 2003-07-25 Far-infrared sterilizing method and far-infrared sterilizer Pending JP2005040475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279622A JP2005040475A (en) 2003-07-25 2003-07-25 Far-infrared sterilizing method and far-infrared sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279622A JP2005040475A (en) 2003-07-25 2003-07-25 Far-infrared sterilizing method and far-infrared sterilizer

Publications (1)

Publication Number Publication Date
JP2005040475A true JP2005040475A (en) 2005-02-17

Family

ID=34265676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279622A Pending JP2005040475A (en) 2003-07-25 2003-07-25 Far-infrared sterilizing method and far-infrared sterilizer

Country Status (1)

Country Link
JP (1) JP2005040475A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425292C (en) * 2005-08-26 2008-10-15 海尔集团公司 Optical wave generation device for disinfection cabinet
JP2011172828A (en) * 2010-02-25 2011-09-08 Shibuya Kogyo Co Ltd Sterilizer
JP2020065760A (en) * 2018-10-25 2020-04-30 藤栄電気株式会社 Dental sterilizer
US10687391B2 (en) 2004-12-03 2020-06-16 Pressco Ip Llc Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing
US10857722B2 (en) 2004-12-03 2020-12-08 Pressco Ip Llc Method and system for laser-based, wavelength specific infrared irradiation treatment
US11072094B2 (en) 2004-12-03 2021-07-27 Pressco Ip Llc Method and system for wavelength specific thermal irradiation and treatment
WO2022161783A1 (en) * 2021-01-26 2022-08-04 Signify Holding B.V. System and method for disruption of macromolecules using mid- and far-infrared

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10687391B2 (en) 2004-12-03 2020-06-16 Pressco Ip Llc Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing
US10857722B2 (en) 2004-12-03 2020-12-08 Pressco Ip Llc Method and system for laser-based, wavelength specific infrared irradiation treatment
US11072094B2 (en) 2004-12-03 2021-07-27 Pressco Ip Llc Method and system for wavelength specific thermal irradiation and treatment
CN100425292C (en) * 2005-08-26 2008-10-15 海尔集团公司 Optical wave generation device for disinfection cabinet
JP2011172828A (en) * 2010-02-25 2011-09-08 Shibuya Kogyo Co Ltd Sterilizer
JP2020065760A (en) * 2018-10-25 2020-04-30 藤栄電気株式会社 Dental sterilizer
WO2022161783A1 (en) * 2021-01-26 2022-08-04 Signify Holding B.V. System and method for disruption of macromolecules using mid- and far-infrared

Similar Documents

Publication Publication Date Title
Mandal et al. Applications of pulsed light decontamination technology in food processing: An overview
Abida et al. Pulsed light technology: a novel method for food preservation.
Gomez-Lopez et al. Pulsed light for food decontamination: a review
AU621892B2 (en) Methods and apparatus for preservation of foodstuffs
Heinrich et al. Pulsed light treatment of different food types with a special focus on meat: a critical review
Oms-Oliu et al. Pulsed light treatments for food preservation. A review
Elmnasser et al. Pulsed-light system as a novel food decontamination technology: a review
Muñoz et al. Effects on Escherichia coli inactivation and quality attributes in apple juice treated by combinations of pulsed light and thermosonication
Koutchma UV light for processing foods
Dhar et al. Pasteurization of fruit juices by pulsed light treatment: A review on the microbial safety, enzymatic stability, and kinetic approach to process design
Keklik et al. Microbial decontamination of food by ultraviolet (UV) and pulsed UV light
Wu et al. Organic light emitting diode improves diabetic cutaneous wound healing in rats
JP2017532029A5 (en)
EP0290443A1 (en) Methods and apparatus for aseptic packaging of foodstuffs.
Cacace et al. High-intensity pulsed light technology
Liu et al. Photodynamic inactivation and its application in food preservation
JP2005040475A (en) Far-infrared sterilizing method and far-infrared sterilizer
Wang et al. Novel drying techniques for controlling microbial contamination in fresh food: A review
Cassar et al. Microbial decontamination of food by light-based technologies: Ultraviolet (UV) light, pulsed UV light (PUV), and UV light-emitting diodes (UV-LED)
JP2000107262A (en) Sterilization method by photoirradiation
Krishnamurthy et al. 11 UV Pasteurization
Ortega-Rivas et al. Pulsed light technology
Unni et al. 10 ChaptEr Use of pulsed Light in Food processing
Chintagari et al. Resistance of various shiga-toxin producing Escherichia coli (STEC) strains and serogroups to infra-red and pulsed UV radiation and effect of nalidixic acid adaptation
Bhalerao et al. Pulsed Light Technology Applied in Food Processing