JP2005039808A - Dll circuit - Google Patents

Dll circuit Download PDF

Info

Publication number
JP2005039808A
JP2005039808A JP2004194985A JP2004194985A JP2005039808A JP 2005039808 A JP2005039808 A JP 2005039808A JP 2004194985 A JP2004194985 A JP 2004194985A JP 2004194985 A JP2004194985 A JP 2004194985A JP 2005039808 A JP2005039808 A JP 2005039808A
Authority
JP
Japan
Prior art keywords
signal
circuit
initialization
phase
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004194985A
Other languages
Japanese (ja)
Inventor
Tachio Yuasa
太刀男 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cellcross Corp
Original Assignee
Cellcross Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellcross Corp filed Critical Cellcross Corp
Priority to JP2004194985A priority Critical patent/JP2005039808A/en
Publication of JP2005039808A publication Critical patent/JP2005039808A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a delay circuit does not necessarily be normally actuated in starting operation. <P>SOLUTION: The DLL circuit comprises a delay circuit 5 which outputs an output signal obtained by incurring time delay in an input signal corresponding to a control signal, an initialization circuit 6 which outputs an initialization input signal and an initialization output signal as initial values predetermined by an initialization signal, and passes through the input and output signals and output them when they are turned into a predetermined state after the initialization signal is canceled, a phase comparator circuit 7 which outputs a phase delay signal and a phase advance signal as the initial values predetermined by the initialization signal by the initial value of the delay circuit or the incorporated initialization circuit, and outputs the relationship of the input and output signals as the phase delay signal and the phase advance signal after the initialization signal is canceled, a charge pump circuit 8 and a low-pass filter circuit 9 for outputting a control signal as an initial value predetermined by the initialization signal and outputting the control signal according to the phase delay signal and the phase advance signal after the initialization signal is canceled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、遅延回路に関し、とくにDLL回路に関する。   The present invention relates to a delay circuit, and more particularly to a DLL circuit.

DLL(Delay Locked Loop:遅延同期ループ)回路はディジタル電子回路一般で広く用いられる。DLL回路とは入力信号に対して予め設計された位相差としての時間遅れが発生させられた出力信号を出力し、また内部信号として制御信号が出力される。DLL回路は入力信号に対して任意の位相差のディジタル信号を出力したり、遅延回路内から入力信号と出力信号の間の任意の位相の内部信号を取り出したり、制御信号を別の遅延回路に印加することによりレプリカ(複製)方式と呼ばれる別の入出力信号を制御したり、別の動作仕様をもつ遅延回路を実現することが出来る。   DLL (Delay Locked Loop) circuits are widely used in general digital electronic circuits. The DLL circuit outputs an output signal in which a time delay as a phase difference designed in advance with respect to an input signal is generated, and a control signal is output as an internal signal. The DLL circuit outputs a digital signal having an arbitrary phase difference with respect to the input signal, extracts an internal signal having an arbitrary phase between the input signal and the output signal from the delay circuit, and transfers the control signal to another delay circuit. By applying this, it is possible to control another input / output signal called a replica (replication) method, or to realize a delay circuit having different operation specifications.

こうした動作を行うため、DLL回路はディジタル信号処理回路に広く用いられる。実現方法としては小面積、低消費電力等の特徴があるLSI(Large Scale IC)回路で製造されることが多い。   In order to perform such operations, DLL circuits are widely used in digital signal processing circuits. As a realization method, it is often manufactured by an LSI (Large Scale IC) circuit having features such as a small area and low power consumption.

従来のDLL回路の構成例を図1に示す。外部から入力信号が印加され、印加された前記入力信号へ制御信号に応じて時間遅れを発生させた出力信号を出力する遅延回路1と、前記入力信号と前記出力信号の位相関係を遅相信号及び進相信号として出力させる位相比較回路2と、前記遅相信号及び前記進相信号に従い前記制御信号を出力させるチャージポンプ回路3及びLPF(Low Pass Filter)回路4と、で構成されている。   A configuration example of a conventional DLL circuit is shown in FIG. A delay circuit 1 for applying an input signal from the outside and outputting an output signal in which a time delay is generated according to a control signal to the applied input signal; and a phase relationship between the input signal and the output signal And a phase comparison circuit 2 for outputting as a phase advance signal, a charge pump circuit 3 for outputting the control signal in accordance with the phase delay signal and the phase advance signal, and an LPF (Low Pass Filter) circuit 4.

次に、図5を参照しながらDLL回路の正常な動作例を説明する。DLL回路の入力信号として、一般的には繰り返しディジタル周期波形、例えばディジタル回路で多用されるクロック信号が遅延回路へ印加される。図5の入力信号が初期には正常な方形波ではないのは、例えばLSI回路に搭載するクロック発生回路として多用されるリング発振回路が、LSI回路への電源が投入された直後の起動途中の状態を現している。印加された入力信号は遅延回路を通過する際に時間遅れを発生させて、それを出力信号として遅延回路より出力する。遅延回路の時間遅れはDLL回路の内部信号である制御信号によって制御される。   Next, an example of normal operation of the DLL circuit will be described with reference to FIG. As an input signal to the DLL circuit, generally, a repetitive digital periodic waveform, for example, a clock signal frequently used in the digital circuit is applied to the delay circuit. The reason why the input signal in FIG. 5 is not a normal square wave in the initial stage is that, for example, a ring oscillation circuit frequently used as a clock generation circuit mounted on an LSI circuit is in the middle of starting immediately after the power to the LSI circuit is turned on. The state is shown. The applied input signal generates a time delay when passing through the delay circuit, and outputs it as an output signal from the delay circuit. The time delay of the delay circuit is controlled by a control signal that is an internal signal of the DLL circuit.

位相比較回路は遅延回路の入力信号及び出力信号が印加される。印加された入力信号及び出力信号の位相を比較し、入力信号よりも出力信号が相対的に遅れていれば遅相信号を進相信号よりも長い時間出力する。反対に、入力信号よりも出力信号が相対的に進んでいれば進相信号を遅相信号よりも長い時間出力する。何れの場合においても、遅相信号の長さと進相信号の長さの差は入力信号と出力信号の位相差と一致する。よって、もし入力信号と出力信号の位相が完全に一致している場合には遅相信号と進相信号の長さの差は零となる。   The phase comparison circuit receives the input signal and output signal of the delay circuit. The phases of the applied input signal and output signal are compared, and if the output signal is relatively delayed from the input signal, the delayed signal is output for a longer time than the advanced signal. On the other hand, if the output signal is relatively advanced than the input signal, the advanced phase signal is output for a longer time than the delayed phase signal. In any case, the difference between the length of the delayed signal and the length of the advanced signal coincides with the phase difference between the input signal and the output signal. Therefore, if the phase of the input signal and the output signal completely match, the difference in length between the delayed signal and the advanced signal is zero.

チャージポンプ回路は位相比較回路の遅相信号及び進相信号が印加される。遅相信号の長さよりも進相信号の長さが長い場合はその長さの差の間だけ制御信号が低下させられる。反対に、遅相信号の長さよりも進相信号の長さが短い場合にはその長さの差だけ制御信号が上昇させられる。制御信号が低下した場合には遅延回路で発生される時間遅れはより大きくなる。反対に、制御信号が上昇した場合には遅延回路で発生される時間遅れはより小さくなる。以上の負帰還制御が繰り返され、入力信号と出力信号の位相差が零になるように自動的に動作する。   The charge pump circuit is applied with the late phase signal and the advanced phase signal of the phase comparison circuit. When the length of the phase advance signal is longer than the length of the slow phase signal, the control signal is lowered only during the difference in length. Conversely, when the length of the phase advance signal is shorter than the length of the slow phase signal, the control signal is raised by the difference in length. When the control signal decreases, the time delay generated by the delay circuit becomes larger. On the contrary, when the control signal rises, the time delay generated by the delay circuit becomes smaller. The above negative feedback control is repeated, and the operation is automatically performed so that the phase difference between the input signal and the output signal becomes zero.

図1の更に詳細な構成例を図2から図4に示す。図2は遅延回路の詳細な構成例である。Pch型MOSFET11、12、…、1nがそれぞれNch型MOSFET21、22、…、2nと組み合わさりインバーター回路を構成している。入力信号はまずPch型MOSFET11とNch型MOSFET21で構成される第一段目のインバーター回路に印加され、それが第二段目と続き、第n段目まで従属接続されている。第n段目の出力が遅延回路の出力信号となる。本構成例においては位相比較回路の動作例に依存して、nは偶数でなければならない。Nch型MOSFETのソース側にはそれぞれ別のNch型MOSFET31、32、…、3nが接続され、それらのゲートは共通に接続され制御信号が印加されている。制御信号が上昇すればNch型MOSFET31、32、…、3n何れもドレイン電流が増加するため、各インバーター回路の動作電流も増加し遅延時間は短くなる。反対に、制御信号が低下すればNch型MOSFET31、32、…、3n何れもドレイン電流が減少するため、各インバーター回路の動作電流も減少し遅延時間は長くなる。   A more detailed configuration example of FIG. 1 is shown in FIGS. FIG. 2 is a detailed configuration example of the delay circuit. Pn type MOSFETs 11, 12,..., 1n are combined with Nch type MOSFETs 21, 22,. The input signal is first applied to the first stage inverter circuit composed of the Pch type MOSFET 11 and the Nch type MOSFET 21, which continues from the second stage and is cascade-connected to the nth stage. The output of the nth stage becomes the output signal of the delay circuit. In this configuration example, n must be an even number depending on the operation example of the phase comparison circuit. Separate Nch MOSFETs 31, 32,..., 3n are connected to the source side of the Nch MOSFET, and their gates are connected in common and a control signal is applied. If the control signal rises, the drain current increases in any of the Nch-type MOSFETs 31, 32,..., 3n, so that the operating current of each inverter circuit also increases and the delay time becomes short. On the other hand, if the control signal is lowered, the drain currents of all the Nch MOSFETs 31, 32,..., 3n are reduced, so that the operating current of each inverter circuit is also reduced and the delay time is lengthened.

図3は位相比較回路の詳細な構成例である。基準信号より比較信号の位相が遅れている場合は、その位相角に応じて遅相信号の方が進相信号より長い時間分出力される。基準信号より比較信号の位相が進んでいる場合は、その逆の動作を行う。図2の例の場合、入力信号は基準信号へ、出力信号は比較信号へそれぞれ接続される。この回路はPLL(Phase Locked Loop)回路やDLL回路で従来より多用されている回路である。   FIG. 3 is a detailed configuration example of the phase comparison circuit. When the phase of the comparison signal is delayed from the reference signal, the delayed signal is output for a longer time than the advanced signal in accordance with the phase angle. If the phase of the comparison signal is ahead of the reference signal, the reverse operation is performed. In the example of FIG. 2, the input signal is connected to the reference signal, and the output signal is connected to the comparison signal. This circuit is a circuit that has been widely used in the past in PLL (Phase Locked Loop) circuits and DLL circuits.

図4はチャージポンプ回路とLPF回路の詳細な構成例である。抵抗62とNch型MOSFET63により、(電源電圧=VDD−Nch型MOSFETの閾値電圧)/抵抗値となる擬似的定電流回路を構成している。そして、Nch型MOSFET63が入力側、64及び69が出力側となるカレントミラー回路を構成している。Nch型MOSFET64により発生された定電流出力はPch型MOSFET65が入力側、66が出力側となるカレントミラー回路に入力される。これらの回路の定数値を適切設計すればNch型MOSFET69、Pch型MOSFET66それぞれから出力される定電流値は同じとなる。それぞれをNch型MOSFET68、Pch型MOSFET67をスイッチ手段として用いてそれぞれを進相信号、遅相信号がH値となった場合にチャージポンプ回路から出力される。   FIG. 4 is a detailed configuration example of the charge pump circuit and the LPF circuit. The resistor 62 and the Nch type MOSFET 63 constitute a pseudo constant current circuit of (power supply voltage = VDD−threshold voltage of the Nch type MOSFET) / resistance value. The Nch-type MOSFET 63 forms an input side, and 64 and 69 form an output side. The constant current output generated by the Nch type MOSFET 64 is input to a current mirror circuit in which the Pch type MOSFET 65 is the input side and 66 is the output side. If the constant values of these circuits are appropriately designed, the constant current values output from the Nch type MOSFET 69 and the Pch type MOSFET 66 are the same. Using the Nch-type MOSFET 68 and the Pch-type MOSFET 67 as the switch means, respectively, when the leading phase signal and the retarding phase signal become the H value, they are outputted from the charge pump circuit.

チャージポンプ回路からの電流出力は図5に示す通りパルス状であるため、これを抵抗71、容量72から構成される簡単なLPF回路を通過させることにより直流の制御信号として出力し、これが遅延回路へ印加される。
kyoon Jeong et al., "Design of PLL-Based Clock Genaration Ciruits", IEEE J. Solid-State Circ., vol. SC-22, pp. 255-261, April 1987 . Young el al., "A PLL Clock Generator with 5 to 110 MHz of Lock Range for Microprocessors", IEEE J. Solid-State Circ., vol. SC-27, pp. 1599-1607, Nov. 1992. F. Bitting, "A 30-128 MHz Frequency Synthesizer Standard Cell", Proc. CICC, pp. 24.1.1 - 24.1.6, May 1992. Mijuskovic, "Cell-Based Fully Integrated CMOS Frequency Synthesizers", IEEE J. Solid-State Circ., vol. SC-29, pp. 271-279, March 1994 Novof et al., "Fully Integrated CMOS Phase-Locked Loop with 15 to 240 MHz Locking Range and +/- 50ps Jitter", ISSCC Dig. Tech. Papers, pp. 112-113, Feb. 1995
Since the current output from the charge pump circuit is pulsed as shown in FIG. 5, it passes through a simple LPF circuit composed of a resistor 71 and a capacitor 72 and is output as a DC control signal, which is a delay circuit. Applied to
kyoon Jeong et al., "Design of PLL-Based Clock Genaration Ciruits", IEEE J. Solid-State Circ., vol. SC-22, pp. 255-261, April 1987 Young el al., "A PLL Clock Generator with 5 to 110 MHz of Lock Range for Microprocessors", IEEE J. Solid-State Circ., Vol. SC-27, pp. 1599-1607, Nov. 1992. F. Bitting, "A 30-128 MHz Frequency Synthesizer Standard Cell", Proc. CICC, pp. 24.1.1-24.1.6, May 1992. Mijuskovic, "Cell-Based Fully Integrated CMOS Frequency Synthesizers", IEEE J. Solid-State Circ., Vol. SC-29, pp. 271-279, March 1994 Novof et al., "Fully Integrated CMOS Phase-Locked Loop with 15 to 240 MHz Locking Range and +/- 50ps Jitter", ISSCC Dig. Tech. Papers, pp. 112-113, Feb. 1995

従来のDLL回路には回路が動作する初期状態が必ずしも一意に特定されないため、制御信号が発散して遅延回路が正常な動作を行わない状態になる問題があった。この動作状態を図6を参照しながら説明する。   In the conventional DLL circuit, since the initial state in which the circuit operates is not necessarily uniquely specified, there is a problem that the control circuit diverges and the delay circuit does not operate normally. This operation state will be described with reference to FIG.

従来の遅延回路には入力信号が例えば、回路系全体に電源が投入された直後の不定かつ不安定な起動状態のままに印加される。すると、出力信号も場合によってはこれに準じた不定かつ不安定なものとなる可能性がある。つまり、これら不定かつ不安定な信号が従来の位相比較回路へ印加される。さらに、従来の位相比較回路は回路の初期起動状態が必ずしも一意に特定せず、遅相信号及び進相信号も不定かつ不安定になる可能性があった。本来は遅延回路の入力信号が小さいものであっても必ず時間遅れを発生して出力信号となるはずのものが、位相比較回路の不定かつ不安定な状態が原因となりそれを誤って検出して、回路の起動状態からあたかも入力信号より出力信号が位相が進んでいる場合と同等の処理結果、即ち進相信号の方が遅相信号より長い時間分出力される可能性があった。   An input signal is applied to a conventional delay circuit, for example, in an indefinite and unstable starting state immediately after power is applied to the entire circuit system. Then, in some cases, the output signal may become indefinite and unstable according to this. That is, these indefinite and unstable signals are applied to the conventional phase comparison circuit. Further, in the conventional phase comparison circuit, the initial startup state of the circuit is not necessarily specified uniquely, and the delayed phase signal and the advanced phase signal may be unstable and unstable. Originally, even if the input signal of the delay circuit is small, it must always generate a time delay and become an output signal, but it may be detected by mistake due to an indefinite and unstable state of the phase comparison circuit. There is a possibility that the processing result equivalent to the case where the phase of the output signal is advanced from the input signal from the start state of the circuit, that is, the phase advance signal is output for a longer time than the phase delay signal.

これではDLL回路全体の帰還制御が本来の動作原理である負帰還ではなくて正帰還として構成されることになる。よって、DLL回路全体は正常な状態に収束することなく、制御信号が上昇し過ぎる、或いは降下し過ぎることになり、回路全体は正常な動作を行わない。図6はこうした状態への変化を表している。   In this case, the feedback control of the entire DLL circuit is configured as a positive feedback instead of a negative feedback which is the original operation principle. Therefore, the entire DLL circuit does not converge to a normal state, and the control signal rises or falls too much, and the entire circuit does not perform a normal operation. FIG. 6 shows the change to such a state.

またさらに正常な動作を行わない状態になる原因がある。遅延回路と位相比較回路が以上の誤った状態とならず、本来望ましい値になった場合であっても、制御信号の初期値も原理的に必ずしも一意に特定されない。すると、本来は入力信号から出力信号が丁度1周期だけ遅れている状態としてDLL回路全体を設計した場合でも、制御信号の初期値によっては入力信号から出力信号が丁度2周期だけ、或いは丁度3周期だけ遅れている状態としてDLL回路全体の帰還制御が開始される可能性がある。この場合、帰還制御が本来の負帰還の状態となっても、例えば遅延回路が丁度1周期だけ位相を遅らせる特性であると想定して、途中に1/4周期毎にずれた箇所から出力端子を取り出したとしても、実際には2/4周期毎にずれて、或いは3/4周期毎にずれた出力が現れて、やはり正常な動作を行っていないことになる。   Furthermore, there is a cause of a state where normal operation is not performed. Even in the case where the delay circuit and the phase comparison circuit are not in the above-described erroneous state and become originally desirable values, the initial value of the control signal is not necessarily uniquely specified in principle. Then, even when the entire DLL circuit is designed with the output signal delayed by exactly one cycle from the input signal, the output signal from the input signal is just two cycles or just three cycles depending on the initial value of the control signal. There is a possibility that the feedback control of the entire DLL circuit is started as a state that is delayed by as much as possible. In this case, even when the feedback control is in the original negative feedback state, for example, assuming that the delay circuit has a characteristic of delaying the phase by exactly one cycle, the output terminal is shifted from a position shifted every ¼ cycle in the middle. Even if the signal is taken out, the output actually deviates every 2/4 period or deviates every 3/4 period, and the normal operation is not performed.

そこで本発明は、このような従来の問題を解決することを目的とする。   Therefore, the present invention aims to solve such a conventional problem.

上記課題を解決するためには、本発明のある態様は、DLL回路である。このDLL回路は、入力信号へ時間遅れを発生させた出力信号を、負帰還制御に応じて出力する遅延回路と、入力信号と前記出力信号の位相を比較し、その位相差を出力する位相比較回路と、位相差をなくすよう、負帰還制御を行う回路と、遅延回路、位相比較回路、および負帰還制御を行う回路の少なくともいずれかに、その回路の初期状態の設定を行う初期化回路と、を備える。   In order to solve the above problems, an aspect of the present invention is a DLL circuit. This DLL circuit compares the phase of the input signal and the output signal, and outputs the phase difference of the delay circuit that outputs the output signal with a time delay to the input signal according to negative feedback control. An initialization circuit for setting an initial state of the circuit in at least one of a circuit, a circuit that performs negative feedback control so as to eliminate a phase difference, a delay circuit, a phase comparison circuit, and a circuit that performs negative feedback control; .

初期化回路は、入力信号の位相が出力信号の位相より相対的に進んでいる状態に、位相比較回路の出力を設定するとよい。また、遅延回路の遅延時間を実質的に最小に設定してもよい。   The initialization circuit may set the output of the phase comparison circuit in a state where the phase of the input signal is relatively advanced from the phase of the output signal. Further, the delay time of the delay circuit may be set to a substantially minimum.

位相比較回路に出力信号を入力信号より先に入力されるよう制御する回路をさらに備ええもよい。   There may be further provided a circuit for controlling the output signal to be input to the phase comparison circuit before the input signal.

本発明の別の態様もDLL回路である。このDLL回路は、入力信号が初期化信号の解除後に印加され、印加された前記入力信号へ制御信号に応じて時間遅れを発生させた出力信号を出力する遅延回路と、初期化入力信号及び初期化出力信号が前記初期化信号により予め定められた初期値として出力され、前記初期化信号の解除後に前記入力信号と前記出力信号が予め定められ状態になったときにそれぞれを通過出力させる初期化回路と、前記遅延回路の初期値若しくは内包された初期化回路により遅相信号と進相信号が前記初期化信号により予め定められた初期値として出力され、前記初期化信号の解除後に前記入力信号と前記出力信号の位相関係を前記遅相信号及び前記進相信号として出力させる位相比較回路と、前記制御信号が前記初期化信号により予め定められた初期値として出力され、前記初期化信号の解除後に前記遅相信号及び前記進相信号に従い前記制御信号を出力させるチャージポンプ回路及びローパスフィルター回路と、を備える。   Another embodiment of the present invention is also a DLL circuit. The DLL circuit includes a delay circuit that is applied after an input signal is released after an initialization signal is released, and that outputs an output signal in which a time delay is generated in accordance with a control signal. An initialization output signal is output as a predetermined initial value by the initialization signal, and when the input signal and the output signal are in a predetermined state after the initialization signal is released, initialization is performed to pass through each of them. Circuit and an initial value of the delay circuit or a built-in initialization circuit outputs a delayed signal and a advanced signal as an initial value predetermined by the initialization signal, and the input signal after the initialization signal is released And a phase comparison circuit that outputs the phase relationship between the output signal as the delayed phase signal and the advanced phase signal, and the control signal has an initial value determined in advance by the initialization signal Output Te, and a charge pump circuit and a low-pass filter to output the control signal in accordance with the slow signal after cancellation of the initialization signal and the phase advance signal.

このDLL回路において、動作初期化を行う回路は遅延回路を最小遅延時間とするように制御信号を設定し、位相比較回路が遅相信号より進相信号の長さをより長く出力する状態から動作を開始するように初期化入力信号及び初期化出力信号を制御しかつ位相比較回路の初期状態を設定する。   In this DLL circuit, the circuit that initializes the operation sets the control signal so that the delay circuit has the minimum delay time, and the phase comparison circuit operates from the state in which the length of the advanced phase signal is output longer than the delayed phase signal. The initialization input signal and the initialization output signal are controlled so as to start and the initial state of the phase comparison circuit is set.

初期化信号は初期値がH値であり、初期化状態解除後にL値に変化し、初期化入力信号及び初期化出力信号の初期値は何れもL値であり、遅相信号及び進相信号の初期値は何れもL値であり、制御信号の初期値がH値であってもよい。   The initial value of the initialization signal is the H value, and changes to the L value after the initialization state is canceled. The initial values of the initialization input signal and the initialization output signal are both L values, and the lag signal and the advance signal The initial value may be an L value, and the initial value of the control signal may be an H value.

遅延回路は印加された入力信号に対して制御信号に応じた時間遅れを生じさせた出力信号を出力してもよい。   The delay circuit may output an output signal in which a time delay corresponding to the control signal is generated with respect to the applied input signal.

遅延回路は制御信号が上昇するほど入力信号と出力信号の時間遅れが小さくなってもよい。   The delay circuit may reduce the time delay between the input signal and the output signal as the control signal increases.

初期化回路は入力信号がL値であり、かつ出力信号がH値と初めてなった時に入力信号をそのまま初期化入力信号として、出力信号をそのまま初期化出力信号としてそれぞれ伝達してもよい。   The initialization circuit may transmit the input signal as it is as the initialization input signal and the output signal as it is as the initialization output signal when the input signal has the L value and the output signal becomes the H value for the first time.

位相比較回路は初期化入力信号より初期化出力信号の位相の進みが大きいほど遅相信号より進相信号の長さが長くなってもよい。   In the phase comparison circuit, the phase advance signal may be longer than the phase delay signal as the phase advance of the initialization output signal is greater than that of the initialization input signal.

チャージポンプ回路及びローパスフィルター回路は進相信号より遅相信号の長さが長い時間に比例して制御信号が上昇してもよい。   In the charge pump circuit and the low-pass filter circuit, the control signal may rise in proportion to the time in which the length of the delayed phase signal is longer than that of the advanced phase signal.

本発明によれば、異常な動作を回避することができるDLL回路を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the DLL circuit which can avoid abnormal operation | movement can be provided.

図7から図14に本発明の具体的実施例を示す。図7は本発明の動作初期化DLL回路の構成例を示す図である。図8から図14には図7で示した各構成部分の更に詳細な実施例を示している。   7 to 14 show specific embodiments of the present invention. FIG. 7 is a diagram showing a configuration example of the operation initialization DLL circuit of the present invention. 8 to 14 show more detailed embodiments of the components shown in FIG.

本発明のDLL回路においては初期化信号、例えば、パワーオンリセットと呼ばれる信号の入力を必要とする。初期化信号とは入力信号を発生させる例えばクロック発生回路を含めて回路系全体に電源が投入された直後の不定かつ不安定な起動状態が終了した後の安定な初期状態を他の回路等に伝達する信号のことである。具体的には回路系全体への電源投入後、一定時間経過後、あるいは一定状態になったことを検出して回路全体が安定な状態になったことを示す信号を出力する。本実施例においてはこの初期化信号が当初はH値であり、回路全体が安定な状態になり初期化を解除する時になればL値へと変化する論理であるとする。   The DLL circuit of the present invention requires input of an initialization signal, for example, a signal called a power-on reset. An initialization signal is a signal that generates an input signal.For example, a stable initial state after an unstable and unstable start-up state immediately after the entire circuit system including the clock generation circuit is turned on is terminated to other circuits. It is a signal to be transmitted. Specifically, after the power supply to the entire circuit system is turned on, a signal indicating that the entire circuit has become stable is output by detecting that a certain time has elapsed or that the circuit has reached a certain state. In this embodiment, it is assumed that the initialization signal initially has an H value, and the logic changes to an L value when the entire circuit becomes stable and the initialization is released.

図8に本発明のDLL回路の初期化機能付き遅延回路の詳細な構成例を示す。遅延回路は従来のDLL回路で用いられるもので構わず、特に制限はなく回路の動作仕様や設計の自由度を妨げない。初期化信号の論理を反転してAND回路を通過した入力信号が印加される。これにより、遅延回路には十分安定した入力信号が印加されるとともに、初期化回路へ印加される入力信号及び出力信号はいずれもL値に特定されることになる。   FIG. 8 shows a detailed configuration example of the delay circuit with an initialization function of the DLL circuit of the present invention. The delay circuit may be used in a conventional DLL circuit, and is not particularly limited, and does not hinder circuit operation specifications and design freedom. The logic of the initialization signal is inverted and the input signal that has passed through the AND circuit is applied. As a result, a sufficiently stable input signal is applied to the delay circuit, and both the input signal and the output signal applied to the initialization circuit are specified to the L value.

図9に本発明のDLL回路の初期化回路の詳細な構成例を示す。回路の動作開始後は初期化信号がH値であるため、R−Sフリップフロップ91の出力QはL値となり、初期化入力信号及び初期化出力信号ともにL値となる。さらに、AND回路94とインバーター回路95から構成される論理回路により、出力信号がH値でありかつ入力信号がL値となった時点になり初めて出力QがH値となり、入力信号及び出力信号何れもがそのまま初期化回路を通過してそれぞれ初期入力信号、初期出力信号となる。初期化信号が一旦L値になった後にはもう値の変化はないため、R−Sフリップフロップ91の出力Qは永続的にH値が保たれたままとなる。   FIG. 9 shows a detailed configuration example of the initialization circuit of the DLL circuit of the present invention. Since the initialization signal has an H value after the operation of the circuit starts, the output Q of the RS flip-flop 91 has an L value, and both the initialization input signal and the initialization output signal have an L value. Further, the logic circuit composed of the AND circuit 94 and the inverter circuit 95 causes the output Q to become the H value only when the output signal becomes the H value and the input signal becomes the L value. As it passes through the initialization circuit, it becomes an initial input signal and an initial output signal, respectively. Since the value no longer changes once the initialization signal has become the L value, the output Q of the RS flip-flop 91 remains permanently at the H value.

図10に本発明のDLL回路の位相比較回路の詳細な構成例を示す。初期化入力信号が基準信号へ、初期化出力信号が比較信号へそれぞれ接続される。本発明の構成となる位相比較回路は図10の例に限らず、基準信号及び比較信号の初期値がLであることと初期化信号により、遅相信号及び進相信号の初期値が何れもL値となるものであれば良い。ここでは図10に示す位相比較回路における具体的な初期化機能の実施例を示す。図10の回路図は図3に示す回路図と構成は同じあり、初期化の状態を示す“H”若しくは“L”の値の記入のみを追加したものである。論理回路の動作により、基準信号及び比較信号が共にL値であれば、節点n3及びn8が何れもL値となり、回路全体が図10に示される初期値に収束する。   FIG. 10 shows a detailed configuration example of the phase comparison circuit of the DLL circuit of the present invention. The initialization input signal is connected to the reference signal, and the initialization output signal is connected to the comparison signal. The phase comparison circuit according to the present invention is not limited to the example of FIG. 10, and the initial values of the reference signal and the comparison signal are both L and the initial value of the delayed signal and the advanced signal is determined by the initialization signal. Any material having an L value may be used. Here, an example of a specific initialization function in the phase comparison circuit shown in FIG. 10 is shown. The circuit diagram of FIG. 10 has the same configuration as the circuit diagram shown in FIG. 3, and only an entry of a value “H” or “L” indicating an initialization state is added. If both the reference signal and the comparison signal have an L value due to the operation of the logic circuit, the nodes n3 and n8 both have the L value, and the entire circuit converges to the initial value shown in FIG.

節点n3を出力とするNAND回路43、節点n8を出力とするNAND回路48何れにもおいて、初期化信号がH値の間にその出力がL値となり、初期化信号がL値となれば一般的な2入力NAND回路となるような回路の具体的な実施例を図11に示す。一般的な2入力NAND回路を構成するPch型MOSFET103、104、Nch型MOSFET105、106に対し、初期値を設定するためのPch型MOSFET101及びNch型MOSFET102が追加されている。この構成により前述の動作を成す。   In both the NAND circuit 43 that outputs the node n3 and the NAND circuit 48 that outputs the node n8, if the initialization signal is at the L value while the initialization signal is at the H value, the initialization signal is at the L value. FIG. 11 shows a specific example of a circuit that becomes a general two-input NAND circuit. A Pch type MOSFET 101 and an Nch type MOSFET 102 for setting initial values are added to the Pch type MOSFETs 103 and 104 and the Nch type MOSFETs 105 and 106 constituting a general two-input NAND circuit. With this configuration, the above-described operation is performed.

以上の初期化機能により、位相比較回路が遅相信号より進相信号の長さをより長く出力する状態から動作を開始するように初期化入力信号及び初期化出力信号を制御しかつ位相比較回路の初期状態が設定されたことになる。   By the above initialization function, the phase comparison circuit controls the initialization input signal and the initialization output signal so as to start operation from a state in which the phase comparison circuit outputs the phase advance signal longer than the phase delay signal, and the phase comparison circuit. The initial state of is set.

図12に本発明の動作初期化機能付きチャージポンプ回路及びLPF回路の詳細な実施例を示す。本実施例では従来のチャージポンプ回路及びLPF回路にLPF回路にインバーター111、Pch型MOSFET123を追加することで初期化機能を実施している。初期化信号が初めH値であるため、Pch型MOSFET123のゲート入力がL値となり、ドレイン・ソース間がオンとなる。これにより、制御信号の値がH値となる。初期化信号がL値になればPch型MOSFET123のゲート入力がH値となり、動作に関係なくなる。   FIG. 12 shows a detailed embodiment of the charge pump circuit with operation initialization function and the LPF circuit of the present invention. In this embodiment, the initialization function is implemented by adding an inverter 111 and a Pch type MOSFET 123 to the LPF circuit in addition to the conventional charge pump circuit and LPF circuit. Since the initialization signal is initially at the H value, the gate input of the Pch-type MOSFET 123 becomes the L value and the drain-source is turned on. Thereby, the value of the control signal becomes the H value. When the initialization signal becomes the L value, the gate input of the Pch type MOSFET 123 becomes the H value, which is irrelevant to the operation.

初期化時の制御信号の値がH値となる時、初期化機能の除いた遅延回路、即ち図2を参照すると、Nch型MOSFET31、32、…、3nのゲート入力がH値(=VDD)となるため、Nch型MOSFET31、32、…、3nのドレイン電流は最大であり、各インバーター回路の動作電流も最大であり遅延時間は最小となる。つまり、遅延回路を最小遅延時間とするように制御信号が設定されたことになる。   When the value of the control signal at the time of initialization becomes the H value, referring to FIG. 2, the delay circuit excluding the initialization function, that is, the gate inputs of the Nch MOSFETs 31, 32,. Therefore, the drain currents of the Nch-type MOSFETs 31, 32,..., 3n are maximum, the operating current of each inverter circuit is also maximum, and the delay time is minimum. That is, the control signal is set so that the delay circuit has the minimum delay time.

図13に本発明のDLL回路の初期化機能付き遅延回路5及び初期化回路6を合わせたさらに好適な別の詳細な構成例を示す。初期化信号の初期値が当初はH値であるから、入力信号が印加されると節点m2、m3、m4は何れもL値、m5はH値となる。すると、節点m6もL値となり、さらに節点m7もL値となる。これにより、節点m8及びm9もL値となり、よって、初期化機能付き位相比較回路7への入力は何れも条件を満たす。   FIG. 13 shows another preferred detailed configuration example in which the delay circuit 5 with the initialization function and the initialization circuit 6 of the DLL circuit of the present invention are combined. Since the initial value of the initialization signal is initially an H value, when the input signal is applied, all of the nodes m2, m3, and m4 have an L value and m5 has an H value. Then, the node m6 also has an L value, and the node m7 also has an L value. As a result, the nodes m8 and m9 also become L values, and therefore the input to the phase comparison circuit 7 with the initialization function satisfies both conditions.

次に、初期化信号は初期化を解除するL値へと変化するから、節点m2がH値となり、入力信号が遅延回路1へ入力される。一方、節点m5がL値となり、遅延回路5からの出力信号により節点m4が初めてH値を取る瞬間があり、これにより節点m6がH値となる。これにより、節点m9へ出力信号が現れる。節点m6がH値となった後に初めて入力信号がL値→H値と立ち上がる瞬間に初めて節点m7がH値となるから、それにより節点m8に入力信号が現れる。   Next, since the initialization signal changes to the L value for canceling the initialization, the node m2 becomes the H value, and the input signal is input to the delay circuit 1. On the other hand, there is a moment when the node m5 becomes the L value and the node m4 takes the H value for the first time by the output signal from the delay circuit 5, so that the node m6 becomes the H value. As a result, an output signal appears at the node m9. The node m7 becomes the H value only at the moment when the input signal rises from the L value to the H value after the node m6 becomes the H value, so that the input signal appears at the node m8.

以上の順に回路が動作するため、初期化機能付き位相比較回路7への入力は必ず出力信号、入力信号の順に行われることになり、これら2種類の信号に対する初期化機能付き位相比較回路7の動作条件を満たすことになる。図13の回路を用いることにより、動作初期化時、動作開始時の何れの段階においても、回路の動作順序が保証されるので、DLL回路全体の動作も保証される。   Since the circuit operates in the above order, the input to the phase comparison circuit 7 with the initialization function is always performed in the order of the output signal and the input signal. The phase comparison circuit 7 with the initialization function for these two types of signals is used. The operating condition will be satisfied. By using the circuit of FIG. 13, the operation sequence of the circuit is guaranteed at any stage of the operation initialization and the operation start, so that the operation of the entire DLL circuit is also guaranteed.

図14は本発明のDLL回路のチャージポンプ回路3のさらに好適な構成例である。この回路は図12に示す初期化機能付きチャージポンプ回路8びLPF9において、チャージポンプ回路部分のみをそのまま入れ替えて用いることが出来る。DLL回路を構成するチャージポンプ回路においては、入力信号である進相信号及び遅相信号の時間関係はそのまま出力信号である電流の積分値関係と一致する、すなわち両者は線形比例関係となる必要がある。ところが、図12に示す回路は進相信号のオン/オフ切り替えにNch型MOSFET119を、遅相信号のオン/オフ切り替えにPch型MOSFET118をそれぞれ用いているため、この理想関係が成立しない場合がある。これは、Nch型MOSFETとPch型MOSFETのオン/オフ切り替えによる入力電圧と出力電流の特性を恒常的に一致させることが不可能なためである。   FIG. 14 shows a more preferred configuration example of the charge pump circuit 3 of the DLL circuit of the present invention. This circuit can be used by replacing only the charge pump circuit portion as it is in the charge pump circuit 8 and LPF 9 with the initialization function shown in FIG. In the charge pump circuit that constitutes the DLL circuit, the time relationship between the phase advance signal and the phase delay signal that are the input signals is the same as the integral value relationship of the current that is the output signal, that is, both must be linearly proportional. is there. However, since the circuit shown in FIG. 12 uses the Nch type MOSFET 119 for on / off switching of the phase advance signal and the Pch type MOSFET 118 for on / off switching of the slow phase signal, this ideal relationship may not be established. . This is because it is impossible to consistently match the characteristics of the input voltage and the output current due to the on / off switching of the Nch MOSFET and the Pch MOSFET.

図14の回路は進相信号、遅相信号どちらのオン/オフ切り替えにも等価な回路を用いている。さらに、進相信号オン時の出力電流、遅相信号オン時の出力電流のどちらを決定する回路にも等価なNch型MOSFETによるカレントミラー回路出力段が用いられており、この特性も恒常的に一致させることが出来る。   The circuit of FIG. 14 uses an equivalent circuit for on / off switching of both the advanced phase signal and the delayed phase signal. Furthermore, an equivalent current mirror circuit output stage using an Nch-type MOSFET is used for the circuit that determines both the output current when the leading phase signal is on and the output current when the lagging phase signal is on. Can be matched.

なお、図14の回路では進相信号、遅相信号のオン/オフ制御何れもNch型MOSFET150、151とPch型MOSFET156、157をおのおのを並列にしたアナログスイッチ回路を用いているが、この制御はNch型MOSFETによるカレントミラー回路の中で行われているため、Nch型MOSFET150及び151のみで構成しても良い。   In the circuit of FIG. 14, an analog switch circuit in which Nch type MOSFETs 150 and 151 and Pch type MOSFETs 156 and 157 are arranged in parallel is used for both on / off control of the phase advance signal and the phase delay signal. Since this is performed in a current mirror circuit using Nch type MOSFETs, only Nch type MOSFETs 150 and 151 may be used.

以上で開示した実施例は具体的な技術を開示するための詳細な例に過ぎず、本発明の範囲はこの実施の範囲に制限されない。例えば、実施例における各初期化値や初期化信号のH値とL値を全て反転させ、DLL回路を構成する全てのPch型MOSFETとNch型MOSFETを電源(VDD及びVSS)に対して対称に反転させた回路も同様の動作を成す。遅延回路、初期化回路、位相比較回路、チャージポンプ回路及びLPF回路の具体的な構成も本実施例の限りではなく、同等の機能を持つ他の回路も本発明の手段が適用可能であるため、本発明の範囲に含まれる。   The embodiment disclosed above is merely a detailed example for disclosing a specific technique, and the scope of the present invention is not limited to this embodiment. For example, all initialization values and initialization signal H values and L values in the embodiment are inverted, and all Pch MOSFETs and Nch MOSFETs constituting the DLL circuit are symmetrical with respect to the power supply (VDD and VSS). The inverted circuit performs the same operation. The specific configurations of the delay circuit, the initialization circuit, the phase comparison circuit, the charge pump circuit, and the LPF circuit are not limited to this embodiment, and the means of the present invention can be applied to other circuits having equivalent functions. And within the scope of the present invention.

従来のDLL回路の構成例を示す図である。It is a figure which shows the structural example of the conventional DLL circuit. 図1に示すDLL回路を構成する遅延回路の詳細な構成例を示す図である。FIG. 2 is a diagram illustrating a detailed configuration example of a delay circuit included in the DLL circuit illustrated in FIG. 1. 図1に示すDLL回路を構成する位相比較回路の詳細な構成例を示す図である。FIG. 2 is a diagram illustrating a detailed configuration example of a phase comparison circuit configuring the DLL circuit illustrated in FIG. 1. 図1に示すDLL回路を構成するチャージポンプ回路及びLPFの詳細な構成例を示す図である。FIG. 2 is a diagram illustrating a detailed configuration example of a charge pump circuit and an LPF configuring the DLL circuit illustrated in FIG. 1. 図1に示すDLL回路の正常な動作例を示す図である。FIG. 2 is a diagram illustrating a normal operation example of the DLL circuit illustrated in FIG. 1. 図1に示すDLL回路の正常ではない動作例を示す図である。FIG. 2 is a diagram illustrating an example of an abnormal operation of the DLL circuit illustrated in FIG. 1. 本発明のDLL回路の構成例を示す図である。It is a figure which shows the structural example of the DLL circuit of this invention. 図7に示す本発明のDLL回路を構成する初期化機能付き遅延回路の詳細な構成例を示す図である。It is a figure which shows the detailed structural example of the delay circuit with an initialization function which comprises the DLL circuit of this invention shown in FIG. 図7に示す本発明のDLL回路を構成する初期化回路の詳細な構成例を示す図である。It is a figure which shows the detailed structural example of the initialization circuit which comprises the DLL circuit of this invention shown in FIG. 図7に示す本発明のDLL回路を構成する初期化機能付き位相比較回路の詳細な構成例を示す図である。It is a figure which shows the detailed structural example of the phase comparison circuit with an initialization function which comprises the DLL circuit of this invention shown in FIG. 図7に示す本発明のDLL回路を構成する初期化機能付き位相比較回路のさらに詳細な構成例を示す図である。It is a figure which shows the further detailed structural example of the phase comparison circuit with an initialization function which comprises the DLL circuit of this invention shown in FIG. 図7に示す本発明のDLL回路を構成する初期化機能付きチャージポンプ回路及びLPFの詳細な構成例を示す図である。It is a figure which shows the detailed structural example of the charge pump circuit with an initialization function and LPF which comprise the DLL circuit of this invention shown in FIG. 図7に示す本発明のDLL回路を構成する初期化機能付き遅延回路及び初期化回路を合わせた別の詳細な構成例を示す図である。It is a figure which shows another detailed structural example which combined the delay circuit with an initialization function and the initialization circuit which comprise the DLL circuit of this invention shown in FIG. 図7に示す本発明のDLL回路を構成するチャージポンプ回路の別の構成例を示す図である。FIG. 8 is a diagram showing another configuration example of the charge pump circuit constituting the DLL circuit of the present invention shown in FIG. 7.

符号の説明Explanation of symbols

1 遅延回路
2 位相比較回路
3 チャージポンプ回路
4 LPF回路
5 初期化機能付き遅延回路
6 初期化回路
7 初期化機能付き位相比較回路
8 初期化機能付きチャージポンプ回路
9 初期化機能付きLPF回路
11、12、…、1n、65、66、67、101、103、104、116、117、118、123、152、153、154、155、156、157 Pch型MOSFET
21、22、…、2n、31、32、…、3n、63、64、68、69、102、105、106、114、115、119、11A、144、145、146、147、148、149、150、151 Nch型MOSFET
41、42、50、51、54、55、61、82、95、111、112、130、158、159 インバーター回路
43、44、…、48、49、52、53 NAND回路
62、71、113、121、141、142、143 抵抗
72、122 容量
81、92、93、94、131、132、133 AND回路
91、136 RSフリップフロップ回路
134、135 Dフリップフロップ回路
DESCRIPTION OF SYMBOLS 1 Delay circuit 2 Phase comparison circuit 3 Charge pump circuit 4 LPF circuit 5 Delay circuit with initialization function 6 Initialization circuit 7 Phase comparison circuit with initialization function 8 Charge pump circuit with initialization function 9 LPF circuit with initialization function 11, 12, ..., 1n, 65, 66, 67, 101, 103, 104, 116, 117, 118, 123, 152, 153, 154, 155, 156, 157 Pch type MOSFET
21, 22, ... 2n, 31, 32, ... 3n, 63, 64, 68, 69, 102, 105, 106, 114, 115, 119, 11A, 144, 145, 146, 147, 148, 149, 150, 151 Nch type MOSFET
41, 42, 50, 51, 54, 55, 61, 82, 95, 111, 112, 130, 158, 159 Inverter circuit 43, 44, ..., 48, 49, 52, 53 NAND circuit 62, 71, 113, 121, 141, 142, 143 Resistance 72, 122 Capacity 81, 92, 93, 94, 131, 132, 133 AND circuit 91, 136 RS flip-flop circuit 134, 135 D flip-flop circuit

Claims (11)

入力信号へ時間遅れを発生させた出力信号を、負帰還制御に応じて出力する遅延回路と、
前記入力信号と前記出力信号の位相を比較し、その位相差を出力する位相比較回路と、
前記位相差をなくすよう、前記負帰還制御を行う回路と、
前記遅延回路、前記位相比較回路、および前記負帰還制御を行う回路の少なくともいずれかに、その回路の初期状態の設定を行う初期化回路と、
を備えることを特徴とするDLL回路。
A delay circuit that outputs an output signal that causes a time delay to the input signal according to negative feedback control; and
A phase comparison circuit that compares the phase of the input signal and the output signal and outputs the phase difference;
A circuit for performing the negative feedback control so as to eliminate the phase difference;
An initialization circuit that sets an initial state of the circuit in at least one of the delay circuit, the phase comparison circuit, and the circuit that performs the negative feedback control;
A DLL circuit comprising:
前記初期化回路は、前記入力信号の位相が前記出力信号の位相より相対的に進んでいる状態に、前記位相比較回路の出力を設定することを特徴とする請求項1に記載のDLL回路。   The DLL circuit according to claim 1, wherein the initialization circuit sets the output of the phase comparison circuit in a state where the phase of the input signal is relatively advanced from the phase of the output signal. 前記初期化回路は、前記遅延回路の遅延時間を実質的に最小に設定することを特徴とする請求項1または2に記載の特徴とするDLL回路。   The DLL circuit according to claim 1, wherein the initialization circuit sets a delay time of the delay circuit to a substantially minimum. 前記位相比較回路に前記出力信号を前記入力信号より先に入力されるよう制御する回路をさらに備えることを特徴とする請求項1から3のいずれかに記載のDLL回路。   4. The DLL circuit according to claim 1, further comprising a circuit that controls the phase comparison circuit to input the output signal before the input signal. 入力信号が初期化信号の解除後に印加され、印加された前記入力信号へ制御信号に応じて時間遅れを発生させた出力信号を出力する遅延回路と、
初期化入力信号及び初期化出力信号が前記初期化信号により予め定められた初期値として出力され、前記初期化信号の解除後に前記入力信号と前記出力信号が予め定められ状態になったときにそれぞれを通過出力させる初期化回路と、
前記遅延回路の初期値若しくは内包された初期化回路により遅相信号と進相信号が前記初期化信号により予め定められた初期値として出力され、前記初期化信号の解除後に前記入力信号と前記出力信号の位相関係を前記遅相信号及び前記進相信号として出力させる位相比較回路と、
前記制御信号が前記初期化信号により予め定められた初期値として出力され、前記初期化信号の解除後に前記遅相信号及び前記進相信号に従い前記制御信号を出力させるチャージポンプ回路及びローパスフィルター回路と、
を備えることを特徴とするDLL回路。
A delay circuit that is applied after the initialization signal is released and outputs an output signal in which a time delay is generated according to the control signal to the applied input signal;
An initialization input signal and an initialization output signal are output as initial values predetermined by the initialization signal, and when the input signal and the output signal are in a predetermined state after the initialization signal is released, respectively. An initialization circuit that passes through and outputs,
An initial value of the delay circuit or an initializing circuit included therein outputs a delayed signal and a leading signal as an initial value predetermined by the initializing signal, and the input signal and the output after the initialization signal is released A phase comparison circuit for outputting a phase relationship of signals as the delayed phase signal and the advanced phase signal;
A charge pump circuit and a low-pass filter circuit, wherein the control signal is output as an initial value predetermined by the initialization signal, and outputs the control signal in accordance with the delayed signal and the advanced signal after the initialization signal is released; ,
A DLL circuit comprising:
前記初期化信号は初期値がH値であり、初期化状態解除後にL値に変化し、前記初期化入力信号及び初期化出力信号の初期値は何れもL値であり、前記遅相信号及び進相信号の初期値は何れもL値であり、前記制御信号の初期値がH値であることを特徴とする請求項5に記載のDLL回路。   The initialization signal has an H value as an initial value, and changes to an L value after cancellation of the initialization state. The initial values of the initialization input signal and the initialization output signal are both L values, and the delay signal and 6. The DLL circuit according to claim 5, wherein an initial value of the phase advance signal is an L value, and an initial value of the control signal is an H value. 前記遅延回路は印加された前記入力信号に対して前記制御信号に応じた時間遅れを生じさせた前記出力信号を出力することを特徴とする請求項5に記載のDLL回路。   6. The DLL circuit according to claim 5, wherein the delay circuit outputs the output signal in which a time delay corresponding to the control signal is generated with respect to the applied input signal. 前記遅延回路は前記制御信号が上昇するほど前記入力信号と前記出力信号の時間遅れが小さくなることを特徴とする請求項5に記載のDLL回路。   6. The DLL circuit according to claim 5, wherein the delay circuit reduces a time delay between the input signal and the output signal as the control signal increases. 前記初期化回路は前記入力信号がL値であり、かつ前記出力信号がH値と初めてなった時に前記入力信号をそのまま前記初期化入力信号として、前記出力信号をそのまま前記初期化出力信号としてそれぞれ伝達することを特徴とする請求項5に記載のDLL回路。   When the input signal has an L value and the output signal becomes the H value for the first time, the initialization circuit uses the input signal as it is as the initialization input signal and the output signal as it is as the initialization output signal. The DLL circuit according to claim 5, wherein the DLL circuit transmits the DLL circuit. 前記位相比較回路は前記初期化入力信号より前記初期化出力信号の位相の進みが大きいほど前記遅相信号より前記進相信号の長さが長くなることを特徴する請求項5に記載のDLL回路。   6. The DLL circuit according to claim 5, wherein the phase comparison circuit has a length of the phase advance signal that is longer than the phase delay signal as the phase advance of the initialization output signal is greater than that of the initialization input signal. . 前記チャージポンプ回路及びローパスフィルター回路は前記進相信号より前記遅相信号の長さが長い時間に比例して前記制御信号が上昇することを特徴とする請求項5に記載のDLL回路。
6. The DLL circuit according to claim 5, wherein in the charge pump circuit and the low-pass filter circuit, the control signal rises in proportion to a time in which the length of the delayed phase signal is longer than that of the advanced phase signal.
JP2004194985A 2003-06-30 2004-06-30 Dll circuit Pending JP2005039808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194985A JP2005039808A (en) 2003-06-30 2004-06-30 Dll circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003189117 2003-06-30
JP2004194985A JP2005039808A (en) 2003-06-30 2004-06-30 Dll circuit

Publications (1)

Publication Number Publication Date
JP2005039808A true JP2005039808A (en) 2005-02-10

Family

ID=34220548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194985A Pending JP2005039808A (en) 2003-06-30 2004-06-30 Dll circuit

Country Status (1)

Country Link
JP (1) JP2005039808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324703A (en) * 2006-05-30 2007-12-13 Elpida Memory Inc Semiconductor integrated circuit device
JP2012074803A (en) * 2010-09-28 2012-04-12 Ricoh Co Ltd Load driving device, image reading device, and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324703A (en) * 2006-05-30 2007-12-13 Elpida Memory Inc Semiconductor integrated circuit device
US7764099B2 (en) 2006-05-30 2010-07-27 Elpida Memory, Inc. Semiconductor integrated circuit device
JP4534162B2 (en) * 2006-05-30 2010-09-01 エルピーダメモリ株式会社 Semiconductor integrated circuit device
JP2012074803A (en) * 2010-09-28 2012-04-12 Ricoh Co Ltd Load driving device, image reading device, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4322193B2 (en) Delay locked loop circuit
US7646224B2 (en) Means to detect a missing pulse and reduce the associated PLL phase bump
US7759990B2 (en) Clock switching circuit
JP4043024B2 (en) Delay locked loop
US8120396B2 (en) Delay locked loop circuit
US6366150B1 (en) Digital delay line
JP4623678B2 (en) PLL circuit
JPH07106961A (en) Digital circuit device
JPH07202690A (en) Clock signal generation circuit
TWI469524B (en) Method and apparatus for generating an output clock with low clock jitter
US6624706B2 (en) Automatic bias adjustment circuit for use in PLL circuit
US8022738B2 (en) Apparatus and method for detecting the loss of an input clock signal for a phase-locked loop
WO2005086353A1 (en) Lock detecting circuit, lock detecting method
EP1724924B1 (en) Digital power-on reset controller
WO2005093952A1 (en) Switched capacitor filter and feedback system
TWI302058B (en) Power management for low-jitter phase-locked loop in portable application
US7816958B2 (en) Means to reduce the PLL phase bump caused by a missing clock pulse
JP2008113434A (en) Phase locked loop without charge pump and integrated circuit having the same
US7279943B2 (en) Circuit arrangement receiving different supply voltages
JP2005039808A (en) Dll circuit
JP4597681B2 (en) Low lock time delay lock loop using time cycle suppressor
JP2011166232A (en) Phase detection circuit and pll circuit
JP2008109452A (en) Pll circuit
TW202137710A (en) Oscillation circuit and a self-start-up control circuit adaptable thereto
JP2006510297A (en) Coarse delay tuning circuit with edge suppressor in delay locked loop