JP2005039534A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2005039534A
JP2005039534A JP2003274619A JP2003274619A JP2005039534A JP 2005039534 A JP2005039534 A JP 2005039534A JP 2003274619 A JP2003274619 A JP 2003274619A JP 2003274619 A JP2003274619 A JP 2003274619A JP 2005039534 A JP2005039534 A JP 2005039534A
Authority
JP
Japan
Prior art keywords
camera shake
correction amount
shake correction
calculated
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003274619A
Other languages
Japanese (ja)
Other versions
JP4389509B2 (en
JP2005039534A5 (en
Inventor
Hirobumi Nomura
博文 野村
Yasuhiro Kumaki
甚洋 熊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003274619A priority Critical patent/JP4389509B2/en
Publication of JP2005039534A publication Critical patent/JP2005039534A/en
Publication of JP2005039534A5 publication Critical patent/JP2005039534A5/ja
Application granted granted Critical
Publication of JP4389509B2 publication Critical patent/JP4389509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus for deciding an optimum image size in response to a vibration amount due to a camera-shake and a focal distance of a lens and capable of correcting the camera-shake of an image signal on the basis of the decided image size. <P>SOLUTION: The imaging apparatus is provided with: a means for detecting a maximum value of a camera-shake correction amount among camera-shake correction amounts calculated by a camera-shake correction amount calculation means; a means for calculating an effective image size to extract an image signal within a prescribed range subjected to camera-shake correction; a means for calculating an excess size in the camera-shake range; a means for calculating a coefficient value to adjust the camera-shake correction amount calculated by the camera-shake correction amount calculation means in response to the excessive size calculated by the excess size calculation means; a means for calculating correction vector data to correct an image signal photographed by the imaging section on the basis of the coefficient value calculated by the adjustment coefficient value calculation means and the camera-shake correction amount calculated by the camera-shake correction amount calculation means; and an image signal correction means for correcting the photographed image signal on the basis of the correction vector data calculated by the correction vector calculation means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、撮像装置に関するものである。詳しくは、手振れによる振動量やレンズの焦点距離に応じて決定した画像サイズに基づいて画像信号の手振れを補正する撮像装置に関するものである。   The present invention relates to an imaging apparatus. More specifically, the present invention relates to an imaging apparatus that corrects camera shake of an image signal based on an image size determined according to a vibration amount due to camera shake and a focal length of a lens.

従来技術において、デジタルスチルカメラやビデオカメラなど、画像を撮影、記録することができる撮像装置では、装置が小型化すると共に、撮影倍率も高倍率化し、撮影者の手振れによる振動によって撮影する画像がブレたり、記録した画像が劣化(滲んだり、ずれたり)する問題が顕著になってきている。   In the prior art, in an imaging apparatus that can capture and record an image, such as a digital still camera or a video camera, the apparatus is downsized and the imaging magnification is also increased. Problems such as blurring and deterioration (bleeding or shifting) of recorded images have become prominent.

このような問題を防ぐため、手振れによる画像劣化を防止する技術が種々考案されており、例えば、手振れによる振動を検出する手振れセンサから出力される手振れ検出信号をサンプルホールド回路でサンプルホールドし、手振れ補正信号手段によりサンプルホールドした手振れ信号のレベルに応じて撮像手段からの撮像出力信号の位置補正を行うことによって、1フィールドの画面の補正中に手振れ検出信号のレベルをホールドし、再生画面の画面ブレを防止する撮像装置が考案されている(例えば、特許文献1)。
特開平3−22766号公報(第3−5頁、図1)
In order to prevent such problems, various techniques for preventing image degradation due to camera shake have been devised. For example, a camera shake detection signal output from a camera shake sensor that detects vibration caused by camera shake is sampled and held by a sample hold circuit, and the camera shake is detected. By correcting the position of the imaging output signal from the imaging means in accordance with the level of the camera shake signal sampled and held by the correction signal means, the level of the camera shake detection signal is held during correction of the screen of one field, and the screen of the reproduction screen is displayed. An imaging device that prevents blurring has been devised (for example, Patent Document 1).
JP-A-3-22766 (page 3-5, FIG. 1)

しかしながら、従来の装置では、手振れ補正する画像信号の画像サイズ(以下、実効画像領域のサイズ)が固定されており、撮影時の手振れ量が一定であっても、ズームレンズの広角(WIDE)側(焦点距離が短い)と手振れ補正量は小さくてよく、ズームレンズの望遠(TELE)側(焦点距離が長い)と手振れ補正量は大きくなる、というように、ズームレンズの焦点距離によって手振れ補正量は変わるため、特に、ズームレンズの望遠(TELE)側において、装置に対して大きな手振れ振動が加えられると、手振れ補正可能な範囲(以下、手振れ補正範囲)における余剰部が不足し、手振れ補正範囲の端部でリミット動作が働くため、見苦しい画像となってしまうという問題がある。   However, in the conventional apparatus, the image size (hereinafter referred to as the effective image area size) of the image signal to be corrected for camera shake is fixed, and the wide angle (WIDE) side of the zoom lens even if the camera shake amount during shooting is constant. The camera shake correction amount may be small when the focal length is short (the focal length is short), and the camera shake correction amount is large when the telephoto (TELE) side of the zoom lens (the focal length is long) and the camera shake correction amount is large. In particular, on the telephoto (TELE) side of the zoom lens, when a large camera shake vibration is applied to the apparatus, the surplus portion in the range in which the camera shake can be corrected (hereinafter referred to as the camera shake correction range) is insufficient, and the camera shake correction range. Since the limit operation works at the end of the image, there is a problem that the image becomes unsightly.

また、通常、手振れ補正量が小さい場合、手振れ補正範囲における余剰部は十分に存在しており、このような状態においては、実効画像領域のサイズを拡大して解像度変換することで、空間領域での高域成分を引き出すことが可能となり、解像度の劣化を最小限に抑えることができるが、実効画像領域のサイズが固定されているため解像度を十分に引き出すことができないという問題もある。   Also, normally, when the amount of camera shake correction is small, there is a sufficient surplus portion in the camera shake correction range.In such a state, the resolution is converted by enlarging the size of the effective image area, and in the spatial domain. It is possible to extract the high-frequency component of the image and minimize the degradation of the resolution. However, since the size of the effective image area is fixed, there is a problem that the resolution cannot be sufficiently extracted.

従って、手振れによる振動量やレンズの焦点距離に応じた最適な画像サイズを決定し、決定した画像サイズに基づいて画像信号の手振れを補正できるようにすることに解決しなければならない課題を有する。   Therefore, there is a problem to be solved by determining an optimal image size according to the vibration amount due to camera shake and the focal length of the lens, and correcting the camera shake of the image signal based on the determined image size.

前記課題を解決するため、本発明に係る撮像装置は次のような構成にすることである。   In order to solve the above-described problems, an imaging apparatus according to the present invention is configured as follows.

(1)撮像部の手振れによる振動量を手振れ信号として検出する手振れ検出手段を備えた撮像装置であって、前記手振れ検出手段で検出した手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出手段と、前記手振れ補正量算出手段で算出される手振れ補正量の中から、手振れ補正量の最大値を検出する最大補正量検出手段と、前記最大補正量検出手段で検出した手振れ補正量の最大値と前記撮像部の撮像素子によって撮像可能な画像サイズである有効画像サイズに基づき、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する画像サイズ算出手段と、前記手振れ補正量算出手段で算出した手振れ補正量及び前記有効画像サイズ及び前記画像サイズ算出手段で算出した実効画像サイズに基づき、手振れ補正する範囲における余剰サイズを算出する余剰サイズ算出手段と、前記余剰サイズ算出手段で算出した余剰サイズに応じて前記手振れ補正量算出手段で算出した手振れ補正量を調整するための係数値を算出する調整係数算出手段と、前記調整係数値算出手段で算出した係数値と前記手振れ補正量算出手段で算出した手振れ補正量に基づき、前記撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する補正ベクトル算出手段と、前記補正ベクトル算出手段で算出した補正ベクトル・データに基づいて前記撮像部で撮影した画像信号を補正する画像信号補正手段と、を具備していることを特徴とする撮像装置。
(2)撮像部の手振れによる振動量を手振れ信号として検出する手振れ検出手段を備えた撮像装置であって、前記手振れ検出手段で検出した手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出手段と、前記手振れ補正量算出手段で算出される手振れ補正量の中から、手振れ補正量の最大値を検出する最大補正量検出手段と、前記最大補正量検出手段で検出した手振れ補正量の最大値と前記撮像部の撮像素子によって撮像可能な画像サイズである有効画像サイズに基づき、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する画像サイズ算出手段と、前記手振れ補正量算出手段で算出した手振れ補正量及び前記有効画像サイズ及び前記画像サイズ算出手段で算出した実効画像サイズに基づき、手振れ補正する範囲における余剰サイズを算出する余剰サイズ算出手段と、前記余剰サイズ算出手段で算出した余剰サイズに応じて前記手振れ補正量算出手段で算出した手振れ補正量を調整するための係数値を算出する調整係数算出手段と、前記調整係数値算出手段で算出した係数値と前記手振れ補正量算出手段で算出した手振れ補正量に基づき、前記撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する補正ベクトル算出手段と、前記補正ベクトル算出手段で算出した補正ベクトル・データに基づいて前記撮像部で撮影した画像信号を補正する画像信号補正手段と、前記画像サイズ算出手段で算出した実効画像サイズと前記画像信号を記録媒体や記録装置に記録するときの記録画像サイズに基づき、前記画像信号補正手段で補正した画像信号の解像度を変換するための変換係数を算出する変換係数算出手段と、前記変換係数算出手段で算出した変換係数に基づいて、前記画像信号補正手段で補正した画像信号の解像度を変換して出力する画像出力手段と、を具備していることを特徴とする撮像装置。
(1) An image pickup apparatus including a shake detection unit that detects a vibration amount due to a shake of the imaging unit as a shake signal, and the shake correction for correcting the image signal based on the shake signal detected by the shake detection unit A shake correction amount calculating means for calculating the amount, a maximum correction amount detecting means for detecting a maximum value of the shake correction amount among the shake correction amounts calculated by the shake correction amount calculating means, and the maximum correction amount detecting means. An image for calculating an effective image size for extracting an image signal in a predetermined range subjected to camera shake correction based on the maximum value of the camera shake correction amount detected in step S3 and an effective image size that is an image size that can be captured by the image sensor of the imaging unit A size calculation unit, a camera shake correction amount calculated by the camera shake correction amount calculation unit, an effective image size, and an effective image calculated by the image size calculation unit. Based on the size, a surplus size calculating unit that calculates a surplus size in a range to be corrected for camera shake, and a camera shake correction amount calculated by the camera shake correction amount calculating unit according to the surplus size calculated by the surplus size calculating unit An adjustment coefficient calculating means for calculating a coefficient value; and for correcting an image signal captured by the imaging unit based on the coefficient value calculated by the adjustment coefficient value calculating means and the camera shake correction amount calculated by the camera shake correction amount calculating means. Correction vector calculation means for calculating the correction vector data, and image signal correction means for correcting the image signal captured by the imaging unit based on the correction vector data calculated by the correction vector calculation means. An imaging apparatus characterized by comprising:
(2) An image pickup apparatus including a shake detection unit that detects a vibration amount due to a shake of the imaging unit as a shake signal, and the shake correction for correcting the image signal based on the shake signal detected by the shake detection unit A shake correction amount calculating means for calculating the amount, a maximum correction amount detecting means for detecting a maximum value of the shake correction amount among the shake correction amounts calculated by the shake correction amount calculating means, and the maximum correction amount detecting means. An image for calculating an effective image size for extracting an image signal in a predetermined range subjected to camera shake correction based on the maximum value of the camera shake correction amount detected in step S3 and an effective image size that is an image size that can be captured by the image sensor of the imaging unit. A size calculation unit, a camera shake correction amount calculated by the camera shake correction amount calculation unit, an effective image size, and an effective image calculated by the image size calculation unit. Based on the size, a surplus size calculating unit that calculates a surplus size in a range to be corrected for camera shake, and a camera shake correction amount calculated by the camera shake correction amount calculating unit according to the surplus size calculated by the surplus size calculating unit An adjustment coefficient calculating means for calculating a coefficient value; and for correcting an image signal captured by the imaging unit based on the coefficient value calculated by the adjustment coefficient value calculating means and the camera shake correction amount calculated by the camera shake correction amount calculating means. Correction vector calculation means for calculating the correction vector data, image signal correction means for correcting the image signal captured by the imaging unit based on the correction vector data calculated by the correction vector calculation means, and the image size calculation Based on the effective image size calculated by the means and the recorded image size when the image signal is recorded on a recording medium or recording device. A correction coefficient calculating means for calculating a conversion coefficient for converting the resolution of the image signal corrected by the image signal correcting means, and a correction by the image signal correcting means based on the conversion coefficient calculated by the conversion coefficient calculating means. And an image output means for converting the resolution of the image signal and outputting the converted image signal.

(3)撮像部の手振れによる振動量を手振れ信号として検出する手振れ検出手段を備えた撮像装置であって、前記手振れ検出手段で検出した手振れ信号に基づいて前記画像信号の手振れを補正するための手振れ補正量を算出する手振れ補正量算出手段と、前記撮像部が有している撮像レンズの焦点距離情報を検出する焦点距離検出部と、前記焦点距離検出部で検出した撮像レンズの焦点距離情報と前記撮像部の撮像素子によって撮像可能な画像サイズである有効画像サイズに基づき、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する画像サイズ算出手段と、前記手振れ補正量算出手段で算出した手振れ補正量及び前記有効画像サイズ及び前記画像サイズ算出手段で算出した実効画像サイズに基づき、手振れ補正する範囲における余剰サイズを算出する余剰サイズ算出手段と、前記余剰サイズ算出手段で算出した余剰サイズに応じて前記手振れ補正量算出手段で算出した手振れ補正量を調整するための係数値を算出する調整係数算出手段と、前記調整係数値算出手段で算出した係数値と前記手振れ補正量算出手段で算出した手振れ補正量に基づき、前記撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する補正ベクトル算出手段と、前記補正ベクトル算出手段で算出した補正ベクトル・データに基づいて前記撮像部で撮影した画像信号を補正する画像信号補正手段と、を具備していることを特徴とする撮像装置。
(4)撮像部の手振れによる振動量を手振れ信号として検出する手振れ検出手段を備えた撮像装置であって、前記手振れ検出手段で検出した手振れ信号に基づいて前記画像信号の手振れを補正するための手振れ補正量を算出する手振れ補正量算出手段と、前記撮像部が有している撮像レンズの焦点距離情報を検出する焦点距離検出部と、前記焦点距離検出部で検出した撮像レンズの焦点距離情報と前記撮像部の撮像素子によって撮像可能な画像サイズである有効画像サイズに基づき、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する画像サイズ算出手段と、前記手振れ補正量算出手段で算出した手振れ補正量及び前記有効画像サイズ及び前記画像サイズ算出手段で算出した実効画像サイズに基づき、手振れ補正する範囲における余剰サイズを算出する余剰サイズ算出手段と、前記余剰サイズ算出手段で算出した余剰サイズに応じて前記手振れ補正量算出手段で算出した手振れ補正量を調整するための係数値を算出する調整係数算出手段と、前記調整係数値算出手段で算出した係数値と前記手振れ補正量算出手段で算出した手振れ補正量に基づき、前記撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する補正ベクトル算出手段と、前記補正ベクトル算出手段で算出した補正ベクトル・データに基づいて前記撮像部で撮影した画像信号を補正する画像信号補正手段と、前記画像サイズ算出手段で算出した実効画像サイズと前記画像信号を記録媒体や記録装置に記録するときの記録画像サイズに基づき、前記画像信号補正手段で補正した画像信号の解像度を変換するための変換係数を算出する変換係数算出手段と、前記変換係数算出手段で算出した変換係数に基づいて、前記画像信号補正手段で補正した画像信号の解像度を変換して出力する画像出力手段と、を具備していることを特徴とする撮像装置。
(3) An imaging apparatus including a camera shake detection unit that detects a vibration amount due to camera shake of the imaging unit as a camera shake signal, for correcting the camera shake of the image signal based on the camera shake signal detected by the camera shake detection unit. Camera shake correction amount calculation means for calculating a camera shake correction amount, a focal length detection unit for detecting focal length information of an imaging lens included in the imaging unit, and focal length information of the imaging lens detected by the focal length detection unit And an image size calculation means for calculating an effective image size for extracting an image signal in a predetermined range subjected to camera shake correction based on an effective image size that is an image size that can be captured by the image sensor of the imaging unit, and the camera shake correction amount Based on the image stabilization amount calculated by the calculation unit, the effective image size, and the effective image size calculated by the image size calculation unit A surplus size calculating means for calculating a surplus size in a range, and an adjustment for calculating a coefficient value for adjusting the hand shake correction amount calculated by the hand shake correction amount calculating means according to the surplus size calculated by the surplus size calculating means Correction vector data for correcting the image signal photographed by the imaging unit based on the coefficient value calculated by the coefficient calculation unit, the coefficient value calculated by the adjustment coefficient value calculation unit, and the camera shake correction amount calculated by the camera shake correction amount calculation unit Correction vector calculation means for calculating, and image signal correction means for correcting an image signal captured by the imaging unit based on the correction vector data calculated by the correction vector calculation means. Imaging device.
(4) An imaging apparatus including a camera shake detection unit that detects a vibration amount due to camera shake of the imaging unit as a camera shake signal, for correcting the camera shake of the image signal based on the camera shake signal detected by the camera shake detection unit. Camera shake correction amount calculation means for calculating a camera shake correction amount, a focal length detection unit for detecting focal length information of an imaging lens included in the imaging unit, and focal length information of the imaging lens detected by the focal length detection unit And an image size calculation means for calculating an effective image size for extracting an image signal in a predetermined range subjected to camera shake correction based on an effective image size that is an image size that can be captured by the image sensor of the imaging unit, and the camera shake correction amount Based on the image stabilization amount calculated by the calculation unit, the effective image size, and the effective image size calculated by the image size calculation unit A surplus size calculating means for calculating a surplus size in a range, and an adjustment for calculating a coefficient value for adjusting the hand shake correction amount calculated by the hand shake correction amount calculating means according to the surplus size calculated by the surplus size calculating means Correction vector data for correcting the image signal photographed by the imaging unit based on the coefficient value calculated by the coefficient calculation unit, the coefficient value calculated by the adjustment coefficient value calculation unit, and the camera shake correction amount calculated by the camera shake correction amount calculation unit A correction vector calculating means for calculating, an image signal correcting means for correcting an image signal captured by the imaging unit based on the correction vector data calculated by the correction vector calculating means, and an effective image calculated by the image size calculating means. Based on the size and the recorded image size when the image signal is recorded on a recording medium or a recording device, the image signal correcting means compensates the image signal. Conversion coefficient calculating means for calculating a conversion coefficient for converting the resolution of the image signal, and converting the resolution of the image signal corrected by the image signal correcting means based on the conversion coefficient calculated by the conversion coefficient calculating means. And an image output means for outputting the image.

このような構成の撮像装置において、手振れ検出手段で検出した手振れ信号に基づいて算出した手振れ補正量の中から手振れ補正量の最大値を検出し、この手振れ補正量の最大値と撮像部の撮像素子において撮像可能な画像サイズである有効画像サイズに基づいて、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する。   In the imaging apparatus having such a configuration, the maximum value of the camera shake correction amount is detected from the camera shake correction amount calculated based on the camera shake signal detected by the camera shake detection unit, and the maximum value of the camera shake correction amount and the imaging of the imaging unit are detected. Based on an effective image size that is an image size that can be captured by the element, an effective image size for extracting an image signal in a predetermined range subjected to camera shake correction is calculated.

若しくは、焦点距離検出部によって検出した撮像レンズの焦点距離情報と撮像部の撮像素子において撮像可能な画像サイズである有効画像サイズに基づいて、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する。   Alternatively, based on the focal length information of the imaging lens detected by the focal length detection unit and the effective image size that is an image size that can be captured by the imaging device of the imaging unit, an effective for extracting an image signal in a predetermined range corrected for camera shake Calculate the image size.

そして、手振れ検出手段で検出した手振れ信号に基づいて算出した手振れ補正量と有効画像サイズと算出した実効画像サイズに基づいて、手振れ補正する範囲における余剰サイズを算出し、この余剰サイズに応じて手振れ補正量を調整するための係数値を算出し、更に、この係数値と手振れ補正量算出手段で算出した手振れ補正量に基づいて、撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する。   Then, based on the camera shake correction amount calculated based on the camera shake signal detected by the camera shake detection unit, the effective image size, and the calculated effective image size, the surplus size in the range to be corrected is calculated, and the camera shake is corrected according to the surplus size. Correction vector data for calculating a coefficient value for adjusting the correction amount, and further correcting an image signal captured by the imaging unit based on the coefficient value and the camera shake correction amount calculated by the camera shake correction amount calculation means Is calculated.

このようにして算出された補正ベクトル・データに基づいて撮像部で撮影した画像信号を補正処理するので、手振れ振動や撮像レンズの焦点距離に応じた最適な画像サイズによって手振れ補正することが可能となる。   Since the image signal captured by the imaging unit is corrected based on the correction vector data calculated in this way, it is possible to perform camera shake correction with an optimal image size according to camera shake vibration or the focal length of the imaging lens. Become.

また、上述した実効画像サイズと画像信号を記録媒体や記録装置に記録するときの記録画像サイズに基づき、画像信号補正手段で補正した画像信号の解像度を変換するための変換係数を算出し、この変換係数に基づいて補正した画像信号の解像度を変換して出力するので、撮影時の解像度を最大限に生かした画像信号が記録可能となる。   Further, a conversion coefficient for converting the resolution of the image signal corrected by the image signal correction unit is calculated based on the effective image size and the recording image size when the image signal is recorded on the recording medium or the recording apparatus. Since the resolution of the image signal corrected based on the conversion coefficient is converted and output, the image signal that makes the best use of the resolution at the time of shooting can be recorded.

撮影者の手振れによる振動量のうち、手振れの補正量が最大となる値(以下、最大手振れ補正量)の手振れ補正量を検出し、検出した最大手振れ補正量に基づいて実効画像サイズを算出するので、撮影者の手振れに応じた最適な画像サイズによって手振れ補正された画像信号を得ることができるという優れた効果を奏する。   Among the vibration amounts due to the camera shake of the photographer, a camera shake correction amount of a value that maximizes the camera shake correction amount (hereinafter referred to as the maximum camera shake correction amount) is detected, and an effective image size is calculated based on the detected maximum camera shake correction amount. Therefore, it is possible to obtain an excellent effect that it is possible to obtain an image signal in which camera shake correction is performed with an optimum image size corresponding to the camera shake of the photographer.

また、撮像レンズの焦点距離データを検出し、検出した焦点距離データに基づいて実効画像サイズを算出することにより、撮影者の手振れ振動及び撮像レンズの焦点距離に応じた最適な画像サイズによって手振れ補正された画像信号を得ることができるという優れた効果を奏する。   In addition, by detecting the focal length data of the imaging lens and calculating the effective image size based on the detected focal length data, the camera shake is corrected by the optimum image size corresponding to the camera shake of the photographer and the focal length of the imaging lens. It is possible to obtain an excellent effect that a processed image signal can be obtained.

また、上述した実効画像サイズを用いて算出した補正ベクトル・データによって画像信号の手振れ補正をするので、補正可能な範囲の端部におけるリミット動作を軽減させた手振れ補正を実現することができるため、撮影時の解像度を十分に引き出した画像信号を得ることができるというメリットがある。   In addition, since the shake correction of the image signal is performed by the correction vector data calculated using the effective image size described above, it is possible to realize the shake correction that reduces the limit operation at the end of the correctable range. There is an advantage that it is possible to obtain an image signal that sufficiently draws out the resolution at the time of shooting.

次に、本発明の撮像装置による実施の形態について図面を参照して説明する。但し、図面は専ら解説のためのものであって、本発明の技術的範囲を限定するものではない。   Next, an embodiment of the imaging apparatus of the present invention will be described with reference to the drawings. However, the drawings are only for explanation, and do not limit the technical scope of the present invention.

まず、本発明の撮像装置における第1の実施例について説明する。   First, a first embodiment of the imaging apparatus according to the present invention will be described.

図1は、第1の実施例の撮像装置において主要となる構成を簡略化して示したブロック図であり、撮像部110、補正回路120、解像度変換部130、記録部140、手振れ検出部150、HPF(High Pass Filter)160、制御部170などから構成される。   FIG. 1 is a block diagram schematically showing the main components of the imaging apparatus of the first embodiment. The imaging unit 110, the correction circuit 120, the resolution conversion unit 130, the recording unit 140, the camera shake detection unit 150, An HPF (High Pass Filter) 160, a control unit 170, and the like are included.

撮像部110は、レンズ及びCCD(Charge Coupled Device)などの撮像素子、信号処理回路などを備えており、レンズを介して入力される被写体からの光を撮像素子で画像信号に変換し、信号処理回路でこの画像信号に所定の信号処理を施して補正回路120に送出する。   The imaging unit 110 includes an imaging element such as a lens and a CCD (Charge Coupled Device), a signal processing circuit, and the like, converts light from a subject input via the lens into an image signal by the imaging element, and performs signal processing. The circuit performs predetermined signal processing on the image signal and sends it to the correction circuit 120.

補正回路120は、制御部170で指定された補正ベクトル・データに基づいて撮像部110から送られてくる画像信号を補正し、所定領域(実効画像領域)の画像信号を抽出して解像度変換部130に送出する。   The correction circuit 120 corrects the image signal sent from the imaging unit 110 based on the correction vector data specified by the control unit 170, extracts an image signal in a predetermined area (effective image area), and extracts a resolution conversion unit. To 130.

解像度変換部130は、制御部170に従い、補正回路120から送られてくる画像信号の画像サイズ(実効画像領域の大きさ)に応じた解像度変換係数に従って画像信号の解像度を変換し、記録部140に送出する。   The resolution conversion unit 130 converts the resolution of the image signal according to the resolution conversion coefficient corresponding to the image size (effective image area size) of the image signal sent from the correction circuit 120 according to the control unit 170, and the recording unit 140. To send.

記録部140に記録できる画像サイズは、記録方式や記録媒体によって決まっており、補正回路120から送られてくる画像信号をそのまま記録部140に転送(記録)できないため、解像度変換部130によって解像度を変換することにより記録可能な画像サイズに変換するものである。   The image size that can be recorded in the recording unit 140 is determined by the recording method and recording medium, and the image signal sent from the correction circuit 120 cannot be transferred (recorded) to the recording unit 140 as it is. The image is converted into a recordable image size by conversion.

ここで、実効画像領域の縦方向の長さをah、横方向の長さをawとし、記録部140に記録する画像サイズにおける縦方向の変換係数mh、横方向の変換係数mwの変換係数とすると、解像度変換部130で変換して出力する画像サイズにおける縦方向の長さをch、横方向の長さをcwは、次に示す[式1]で表すことができる。   Here, the vertical length of the effective image area is ah, the horizontal length is aw, the vertical conversion coefficient mh for the image size recorded in the recording unit 140, and the conversion coefficient of the horizontal conversion coefficient mw. Then, the vertical length ch and the horizontal length cw in the image size converted and output by the resolution converter 130 can be expressed by the following [Equation 1].

[式1]
解像度変換後の縦方向の長さ : ch = mh×ah
解像度変換後の横方向の長さ : cw = mw×aw
[Formula 1]
Length in the vertical direction after resolution conversion: ch = mh × ah
Horizontal length after resolution conversion: cw = mw x aw

記録部140は、制御部170の制御に従い、解像度変換部130から出力された画像信号を記録する。例えば、ハードディスク装置や記録媒体(メモリカード、磁気テープ、光ディスクなど)に画像信号を記録する。   The recording unit 140 records the image signal output from the resolution conversion unit 130 under the control of the control unit 170. For example, an image signal is recorded on a hard disk device or a recording medium (memory card, magnetic tape, optical disk, etc.).

手振れ検出部150は、撮像部110の手振れによる振動量を検出し、検出した振動量を手振れ信号としてマイコン160に送る。なお、手振れ信号の検出には、ジャイロセンサや画像認識技術などを利用して行う。   The camera shake detection unit 150 detects the vibration amount due to the camera shake of the imaging unit 110, and sends the detected vibration amount to the microcomputer 160 as a camera shake signal. The camera shake signal is detected using a gyro sensor or an image recognition technique.

HPF(High Pass Filter)160は、手振れ検出部150から出力される信号のうち、パンチルトなどのDC(直流)に近い低周波成分と手振れ信号とを区別するため、この低周波成分を抑圧するためのフィルタである。   The HPF (High Pass Filter) 160 distinguishes between low-frequency components close to DC (direct current) such as pan / tilt and hand-shake signals among signals output from the hand-shake detector 150, and suppresses the low-frequency components. It is a filter.

制御部170は、HPF160を介して送られてくる手振れ検出回路150からの手振れ信号に基づいて手振れ補正量を算出し、所定時間内において算出した手振れ補正量の中から最大手振れ補正量を検出する。また、実効画像領域(実効画像サイズ)、余剰長(余剰領域)、積分係数値、補正ベクトル・データなどの算出も行い、算出したこれらのデータに基づいて補正回路120、解像度変換部130、記録部140などの制御を行う。   The control unit 170 calculates a camera shake correction amount based on a camera shake signal sent from the camera shake detection circuit 150 sent via the HPF 160, and detects the maximum camera shake correction amount from the camera shake correction amounts calculated within a predetermined time. . Also, the effective image area (effective image size), surplus length (surplus area), integration coefficient value, correction vector / data, etc. are calculated, and based on these calculated data, the correction circuit 120, the resolution conversion unit 130, the recording The unit 140 and the like are controlled.

次に、制御部170の動作・処理について、下記(1−1)〜(1−6)の順に従って、詳細に説明する。
(1−1)制御部の内部構成
(1−2)最大手振れ補正量の検出方法
(1−3)実効画像領域(実効画像サイズ)の算出方法
(1−4)余剰長(余剰領域)の算出方法
(1−5)積分係数値の算出方法
(1−6)補正ベクトル・データの算出方法
Next, the operation and processing of the control unit 170 will be described in detail according to the following order (1-1) to (1-6).
(1-1) Internal configuration of control unit (1-2) Method for detecting maximum camera shake correction amount (1-3) Method for calculating effective image area (effective image size) (1-4) Surplus length (surplus area) Calculation method (1-5) Integration coefficient value calculation method (1-6) Correction vector data calculation method

(1−1)制御部の内部構成
図2は、制御部170の内部構成を簡略化して示したブロック図であり、積分器171、遅延器172、余剰長算出部173、積分係数算出部174、乗算器175などを備えた構成になっている。
(1-1) Internal Configuration of Control Unit FIG. 2 is a block diagram showing the internal configuration of the control unit 170 in a simplified manner. The integrator 171, the delay unit 172, the surplus length calculation unit 173, and the integration coefficient calculation unit 174 are illustrated. , A multiplier 175 and the like.

積分器171は、HPF160を介して送られてくる手振れ検出部150からの手振れ信号に基づいて算出された手振れ補正量と、乗算器155から出力される信号(補正ベクトル・データ)とを積分処理して出力する。   The integrator 171 integrates the camera shake correction amount calculated based on the camera shake signal from the camera shake detection unit 150 sent via the HPF 160 and the signal (correction vector data) output from the multiplier 155. And output.

遅延器172は、積分器171から出力される信号(補正ベクトル・データ)を所定時間遅延させ、余剰長算出部173及び乗算器175に出力する。   The delay unit 172 delays the signal (correction vector data) output from the integrator 171 by a predetermined time, and outputs the delayed signal to the surplus length calculation unit 173 and the multiplier 175.

余剰長算出部173は、遅延器172から出力される信号(補正ベクトル・データ)に基づいて撮像面上で手振れ補正に使用することができる余剰長を算出し、算出した余剰サイズ・データを積分係数算出部174に送出する。   The surplus length calculation unit 173 calculates a surplus length that can be used for camera shake correction on the imaging surface based on a signal (correction vector data) output from the delay unit 172, and integrates the calculated surplus size data. The result is sent to the coefficient calculation unit 174.

積分係数算出部174は、余剰長算出部173からの余剰長に基づいて積分係数を算出し、算出した積分係数値を乗算器175に送出する。   The integration coefficient calculation unit 174 calculates an integration coefficient based on the surplus length from the surplus length calculation unit 173, and sends the calculated integration coefficient value to the multiplier 175.

乗算器175は、積分係数算出部174からの積分係数値と、遅延器172から出力される信号(補正ベクトル・データ)とを乗算処理し、積分器171に送出する。   The multiplier 175 multiplies the integration coefficient value from the integration coefficient calculation unit 174 and the signal (correction vector / data) output from the delay unit 172 and sends the result to the integrator 171.

(1−2)最大手振れ補正量の検出方法
次に、制御部170による最大手振れ補正量の検出方法について説明する。
(1-2) Detection Method of Maximum Camera Shake Correction Amount Next, a detection method of the maximum camera shake correction by the control unit 170 will be described.

図3は、手振れ検出部150で検出した手振れ信号に基づいて算出される手振れ補正量の時間的変化を略示的に示したグラフ。   FIG. 3 is a graph schematically showing a temporal change in a camera shake correction amount calculated based on a camera shake signal detected by the camera shake detection unit 150.

制御部170は、図3のグラフにおいて、手振れ補正の基準位置を0、時刻tにおける手振れ補正量をS(t)とし、S(t)の絶対値を比較する。そして、時刻0〜Tの間に最大の手振れ補正量となる時刻をtmaxとすると、最大手振れ補正量Smaxは次に示す[式2]で表すことができる。   In the graph of FIG. 3, the control unit 170 compares the absolute value of S (t) with 0 as the reference position for camera shake correction and S (t) as the camera shake correction amount at time t. When the maximum camera shake correction amount between times 0 and T is tmax, the maximum camera shake correction amount Smax can be expressed by the following [Equation 2].

[式2]
最大手振れ補正量 : Smax=max{|S(t)|}
[Formula 2]
Maximum camera shake correction amount: Smax = max {| S (t) |}

また、時刻tにおける横方向の手振れ補正量をSx(t)、縦方向の手振れ補正量をSy(t)とすると、時刻0〜Tの間における各方向の最大手振れ補正量Sxmax、Symaxは、次に示す[式3]で表すことができる。   Further, assuming that the horizontal camera shake correction amount at time t is Sx (t) and the vertical camera shake correction amount is Sy (t), the maximum camera shake correction amounts Sxmax and Symax in each direction between time 0 and time T are: It can be represented by the following [Formula 3].

[式3]
横方向の最大手振れ補正量 : Sxmax=max{|Sx(t)|}
縦方向の最大手振れ補正量 : Symax=max{|Sy(t)|}
[Formula 3]
Maximum lateral camera shake correction amount: Sxmax = max {| Sx (t) |}
Maximum vertical camera shake correction amount: Symax = max {| Sy (t) |}

次に、この最大手振れ補正量Smaxの検出フローを図4のフローチャートに基づいて説明する。   Next, a detection flow of the maximum camera shake correction amount Smax will be described based on the flowchart of FIG.

制御部170は、最大手振れ補正量の検出を開始すると、まず、最大手振れ補正量Smaxの検出するための所定の設定時間Tをカウントするカウンタtを0クリアする(ST110)。   When the control unit 170 starts detecting the maximum camera shake correction amount, first, the control unit 170 clears the counter t for counting a predetermined set time T for detecting the maximum camera shake correction amount Smax to 0 (ST110).

次に、最大手振れ補正量Smaxの値を0クリア(ST120)。   Next, the value of the maximum camera shake correction amount Smax is cleared to 0 (ST120).

そして、手振れ検出部150で検出した手振れ信号に基づいて算出される手振れ補正量|S(t)|と最大手振れ補正量Smaxを比較する(ST130)。   Then, the camera shake correction amount | S (t) | calculated based on the camera shake signal detected by the camera shake detection unit 150 is compared with the maximum camera shake correction amount Smax (ST130).

手振れ補正量の絶対値|S(t)|が最大手振れ補正量Smaxより大きい(|S(t)|>Smax)とき、|S(t)|の値をSmaxに設定し、カウンタtの値を1つ増加させる(ST130→ST140、ST150)。   When the absolute value | S (t) | of the camera shake correction amount is larger than the maximum camera shake correction amount Smax (| S (t) |> Smax), the value of | S (t) | is set to Smax, and the value of the counter t Is increased by one (ST130 → ST140, ST150).

一方、手振れ補正量の絶対値|S(t)|が最大手振れ補正量Smax以下(|S(t)|≦Smax)である場合、Smaxの設定は変更せず、カウンタtの値を1つ増加させる(ST130→ST150)。   On the other hand, when the absolute value | S (t) | of the camera shake correction amount is equal to or less than the maximum camera shake correction amount Smax (| S (t) | ≦ Smax), the setting of Smax is not changed and the value of the counter t is set to one. Increase (ST130 → ST150).

そして、カウンタtの値と設定時間Tと比較する(ST150)。   Then, the value of the counter t is compared with the set time T (ST150).

カウンタtが設定時間T未満(t<T)である間は、上述した処理を繰り返し、手振れ検出部150で検出した手振れ信号に基づいて算出される手振れ補正量|S(t)|と最大手振れ補正量Smaxとの比較し、最大の手振れ補正量となる値|S(t)|の検出処理を繰り返す(ST160→ST130→・・・→ST160)。   While the counter t is less than the set time T (t <T), the above-described processing is repeated, and the camera shake correction amount | S (t) | calculated based on the camera shake signal detected by the camera shake detection unit 150 and the maximum camera shake. Compared with the correction amount Smax, the detection process of the value | S (t) | which becomes the maximum camera shake correction amount is repeated (ST160 → ST130 →... → ST160).

カウンタtが設定時間T以上になると、最大手振れ補正量の検出処理を終了する(ST160→エンド)。   When the counter t is equal to or longer than the set time T, the detection processing of the maximum camera shake correction amount is finished (ST160 → END).

このように、所定時間内において、算出された手振れ補正量のうち、最大となったときの絶対値Smaxを検出し、検出した最大手振れ補正量Smaxに基づいて、実効画像領域、余剰領域、積分係数値などの算出が行われる。   In this way, the absolute value Smax at the time of maximal out of the calculated camera shake correction amounts within a predetermined time is detected, and based on the detected maximum camera shake correction amount Smax, the effective image region, the surplus region, the integral Calculation of coefficient values and the like is performed.

(1−3)実効画像領域(実効画像サイズ)の算出方法
次に、制御部170による実効画像領域(実効画像サイズ)の算出方法について説明する。
(1-3) Method for Calculating Effective Image Area (Effective Image Size) Next, a method for calculating the effective image area (effective image size) by the control unit 170 will be described.

図5は、撮像部110の撮像素子により撮像可能な範囲を示す有効画像領域(有効画像サイズ)と、補正回路120で抽出する画像サイズを示す実効画像領域(実効画像サイズ)の関係を略示的に示した図である。細線で示されている部分が有効画像領域であり、太線で示した実効画像領域を包含している。   FIG. 5 schematically shows a relationship between an effective image area (effective image size) indicating a range that can be imaged by the image sensor of the imaging unit 110 and an effective image area (effective image size) indicating an image size extracted by the correction circuit 120. FIG. A portion indicated by a thin line is an effective image area, and includes an effective image area indicated by a thick line.

ここで、有効画像領域の縦方向の長さをbh、横方向の長さをbwとし、実効画像領域の縦方向の長さah、横方向の長さをawとする。そして、例えば、手振れ補正を行わない状態では、実効画像領域は有効画像領域の中央に配置されるものとし、このときの横方向の最大手振れ補正量をSxmax、縦方向の最大手振れ補正量をSymaxとすると、実効画像領域の縦方向の長さah、横方向の長さをawは、次に示す[式4]に基づいて算出される。   Here, the length of the effective image area in the vertical direction is bh, the length in the horizontal direction is bw, the length of the effective image area in the vertical direction ah, and the length in the horizontal direction is aw. For example, in a state in which no camera shake correction is performed, the effective image area is arranged at the center of the effective image area. At this time, the maximum horizontal camera shake correction amount is Sxmax, and the maximum vertical camera shake correction amount is Symax. Then, the length ah in the vertical direction and the length aw in the horizontal direction of the effective image area are calculated based on [Expression 4] shown below.

[式4]
実効画像領域の縦方向の長さ : ah = bh − 2×Symax
実効画像領域の横方向の長さ : aw = bw − 2×Sxmax
但し、bh≧ah、bw≧aw
[Formula 4]
Length of effective image area in vertical direction: ah = bh-2 × Symax
The horizontal length of the effective image area: aw = bw−2 × Sxmax
However, bh ≧ ah, bw ≧ aw

このように、上述の(1−2)で説明した方法によって算出された縦方向及び横方向の最大手振れ補正量Symax、Sxmaxに基づき、実効画像領域の縦方向及び横方向の長さを算出することで、撮影者の手振れ状態に応じて最適な手振れ補正を行うことができる実効画像領域(実効画像サイズ)が決定される。   In this way, the vertical and horizontal lengths of the effective image area are calculated based on the vertical and horizontal maximum camera shake correction amounts Symax and Sxmax calculated by the method described in (1-2) above. As a result, an effective image area (effective image size) in which the optimum camera shake correction can be performed according to the camera shake state of the photographer is determined.

(1−4)余剰長(余剰領域)の算出方法
続いて、制御部170による余剰長(余剰領域)の算出方法について説明する。
(1-4) Surplus Length (Surplus Area) Calculation Method Next, a surplus length (surplus area) calculation method performed by the control unit 170 will be described.

図6は、撮像部110の撮像素子により撮像可能な範囲を示す有効画像領域(有効画像サイズ)と、補正回路120で抽出する画像サイズを示す実効画像領域(実効画像サイズ)と、余剰長(余剰領域)との関係を略示的に示した図である。   6 illustrates an effective image area (effective image size) indicating a range that can be imaged by the image sensor of the imaging unit 110, an effective image area (effective image size) indicating an image size extracted by the correction circuit 120, and a surplus length ( It is the figure which showed schematically the relationship with the surplus area | region.

図5と同様に、細線で示されている部分が有効画像領域であり、太線で示した実効画像領域を包含している。また、有効画像領域の縦方向の長さをbh、横方向の長さをbwとし、実効画像領域の縦方向の長さah、横方向の長さをawとする。   As in FIG. 5, a portion indicated by a thin line is an effective image area, and includes an effective image area indicated by a thick line. In addition, the length of the effective image area in the vertical direction is bh, the length in the horizontal direction is bw, the length of the effective image area in the vertical direction ah, and the length in the horizontal direction is aw.

ここで、有効画像領域内において、図2の遅延器172より出力される信号、即ち、現時刻tの直前時刻(t−1)の信号の補正ベクトルデータ(図6の矢印)の座標を(vx−1,vy−1)とした場合、手振れ補正することができる領域は、有効画像領域(細線)から実効画像領域(太線)を除いた領域となり、この領域が余剰領域となる。 Here, in the effective image area, the coordinates of the correction vector data (arrow in FIG. 6) of the signal output from the delay unit 172 of FIG. In the case of vx −1 , vy −1 ), the region where camera shake correction can be performed is a region obtained by removing the effective image region (thick line) from the effective image region (thin line), and this region becomes a surplus region.

このとき、有効画像領域の最上端と実効画像領域の最上端と間の長さをdh1、有効画像領域の最下端と実効画像領域の最下端と間の長さをdh2、有効画像領域の最左端と実効画像領域の最左端と間の長さをdw1、有効画像領域の最右端と実効画像領域の最右端と間の長さをdw2とすると、図2の余剰長算出部173により、次に示す[式5]に基づいてdh1、dh2、dw1、dw2が算出される。   At this time, the length between the top end of the effective image area and the top end of the effective image area is dh1, the length between the bottom end of the effective image area and the bottom end of the effective image area is dh2, and the length of the effective image area is the bottom end. If the length between the left end and the left end of the effective image area is dw1, and the length between the right end of the effective image area and the right end of the effective image area is dw2, the surplus length calculation unit 173 in FIG. Dh1, dh2, dw1, and dw2 are calculated based on [Expression 5] shown in FIG.

[式5]
縦方向上部の長さ: dh1 ={(bh−ah)/2}− vy−1
縦方向下部の長さ: dh2 ={(bh−ah)/2}+ vy−1
横方向左部の長さ: dw1 ={(bw−aw)/2}− vx−1
横方向右部の長さ: dw2 ={(bw−aw)/2}+ vx−1
[Formula 5]
Upper length in the vertical direction: dh1 = {(bh-ah) / 2} -by -1
Lower length in the vertical direction: dh2 = {(bh-ah) / 2} + vy -1
Length of horizontal left part: dw1 = {(bw-aw) / 2} -vx -1
Length of right side in horizontal direction: dw2 = {(bw-aw) / 2} + vx −1

ここで、図2の余剰長算出部173は、それぞれ縦方向のdh1とdh2、横方向のdw1とdw2と比較し、長さの短い方を縦方向の余剰長dh、横方向の余剰長dwとして選択する。縦方向の余剰長dh、横方向の余剰長dwは、次に示す[式6]で表すことができる。   Here, the surplus length calculation unit 173 in FIG. 2 compares the vertical lengths dh1 and dh2 and the horizontal length dw1 and dw2, respectively, and determines the shorter length of the surplus length dh and the horizontal surplus length dw. Select as. The extra length dh in the vertical direction and the extra length dw in the horizontal direction can be expressed by the following [Equation 6].

[式6]
縦方向の余剰長: dh ={(bh−ah)/2}− |vy−1
横方向の余剰長: dw ={(bw−aw)/2}− |vx−1
[Formula 6]
Surplus length in the vertical direction: dh = {(bh-ah) / 2}-| vy -1 |
Surplus length in the horizontal direction: dw = {(bw−aw) / 2} − | vx −1 |

余剰長算出部173は、算出した余剰長dh、dwを積分係数算出部175に出力する。   The surplus length calculation unit 173 outputs the calculated surplus lengths dh and dw to the integration coefficient calculation unit 175.

(1−5)積分係数値の算出方法
続いて、制御部170による積分係数値の算出方法について説明する。
(1-5) Method for Calculating Integral Coefficient Value Subsequently, a method for calculating the integral coefficient value by the control unit 170 will be described.

余剰長に対して積分係数値は単調増加する関係にあり、この関係を満たす関数をfとし、縦方向の積分係数値をky、横方向の積分係数値をkxとすると、次に示す[式7]で表すことができる。   The integration coefficient value monotonously increases with respect to the surplus length. If f is a function that satisfies this relationship, ky is the integration coefficient value in the vertical direction, and kx is the integration coefficient value in the horizontal direction, 7].

[式7]
縦方向の積分係数値: ky =f(dh)
横方向の積分係数値: kx =f(dw)
[Formula 7]
Integration coefficient value in the vertical direction: ky = f (dh)
Horizontal integration coefficient value: kx = f (dw)

積分係数算出部175は、例えば、図7の余剰長と積分係数値との関係を示した表のように、余剰長が大きい(手振れ補正可能な領域が多い)場合は、手振れ補正の効果(手振れ補正量)を上げるために積分係数値を大きくし、逆に、余剰長が小さいが短い(手振れ補正可能な領域が少ない)場合は、手振れ補正の効果(手振れ補正量)を下げるために積分係数値を小さくするような値を算出する。   For example, as shown in the table showing the relationship between the excess length and the integration coefficient value in FIG. In order to increase (shake correction amount), the integration coefficient value is increased. Conversely, if the surplus length is small but short (there is a small area where camera shake correction is possible), integration is performed to reduce the effect of camera shake correction (shake correction amount). A value that reduces the coefficient value is calculated.

これにより、余剰長が短い状態で撮影しているときは、手振れ補正範囲の端部(以下、補正端)に当たって補正される可能性があるため、補正の効果(手振れ補正量)を下げることで補正端に当たることを軽減させることができる。   As a result, when shooting in a state where the surplus length is short, there is a possibility that the image will be corrected by hitting the end of the camera shake correction range (hereinafter referred to as the correction end). Therefore, by reducing the correction effect (camera shake correction amount), It is possible to reduce hitting the correction end.

積分係数算出部175は、算出した積分係数値ky、kxを乗算器174に送出する。   The integral coefficient calculation unit 175 sends the calculated integral coefficient values ky and kx to the multiplier 174.

(1−6)補正ベクトル・データの算出方法
続いて、制御部170による補正ベクトル・データの算出方法について説明する。
(1-6) Correction Vector Data Calculation Method Next, a correction vector data calculation method performed by the control unit 170 will be described.

補正ベクトル・データは、積分係数算出部175から送られてくる積分係数値ky、kxを乗算器175及び加算器171によって処理することにより算出される。   The correction vector data is calculated by processing the integration coefficient values ky and kx sent from the integration coefficient calculation unit 175 by the multiplier 175 and the adder 171.

まず、乗算器175は、図2の遅延器172より出力される信号、即ち、現時刻tの直前時刻(t−1)の信号の補正ベクトル・データ(vx−1,vy−1)と、積分係数算出部175で算出された積分係数値ky、kxとを乗算処理して加算器171に送出する。 First, the multiplier 175 includes correction vector data (vx −1 , vy −1 ) of a signal output from the delay unit 172 of FIG. 2, that is, a signal immediately before the current time t (t−1), and The integration coefficient values ky and kx calculated by the integration coefficient calculation unit 175 are multiplied and sent to the adder 171.

そして、加算器171は、乗算器175からの出力信号、即ち、現時刻tの直前時刻(t−1)の信号の補正ベクトル・データと、現時刻tに手振れ検出部150で検出した手振れ信号のベクトル・データとを積分処理する。   The adder 171 outputs the output signal from the multiplier 175, that is, the correction vector data of the signal immediately before the current time t (t-1), and the camera shake signal detected by the camera shake detection unit 150 at the current time t. Is integrated with the vector data.

ここで、手振れ検出部150で検出した手振れ信号のベクトル・データを(mvx,mvy)とすると、乗算器175及び加算器171によって算出される縦方向の補正ベクトル・データvy、横方向の補正ベクトル・データvxは、次に示す[式8]で表すことができる。 Here, assuming that the vector data of the camera shake signal detected by the camera shake detection unit 150 is (mvx, mvy), the correction vector data vy 0 in the vertical direction calculated by the multiplier 175 and the adder 171 and the correction in the horizontal direction. The vector data vx 0 can be expressed by the following [Equation 8].

[式8]
縦方向の補正ベクトル・データ: vy = mvy + (ky×vy−1
横方向の補正ベクトル・データ: vx = mvx + (kx×vx−1
[Formula 8]
Correction vector data in the vertical direction: vy 0 = mvy + (ky × vy −1 )
Horizontal correction vector data: vx 0 = mvx + (kx × vx −1 )

そして、制御部170で算出された補正ベクトル・データ(vx,vy)は、補正回路120に送出され、補正回路120がこの補正ベクトル・データに基づいて画像信号の補正処理を行う。 Then, the correction vector data (vx 0 , vy 0 ) calculated by the control unit 170 is sent to the correction circuit 120, and the correction circuit 120 corrects the image signal based on the correction vector data.

次に、第1の実施例の撮像装置における動作フローについて図8を参照しながら説明する。   Next, an operation flow in the imaging apparatus of the first embodiment will be described with reference to FIG.

まず、撮影を開始すると、手振れ検出部150は、手振れによる振動を手振れ信号としてHPF160に送り、HPF160は、手振れ検出部150からの手振れ信号の低周波成分を抑圧して制御部170に送る。   First, when shooting is started, the camera shake detection unit 150 sends vibration due to camera shake as a camera shake signal to the HPF 160, and the HPF 160 suppresses the low frequency component of the camera shake signal from the camera shake detection unit 150 and sends it to the control unit 170.

制御部170では、図4の最大手振れ補正量検出フローに従い、手振れ検出部150で検出した手振れ信号に基づいて算出する手振れ補正量S(t)を算出し、最大手振れ補正量Sxmax、Symaxを検出する(ST210)。   The control unit 170 calculates the camera shake correction amount S (t) calculated based on the camera shake signal detected by the camera shake detection unit 150 according to the maximum camera shake correction amount detection flow of FIG. 4 and detects the maximum camera shake correction amounts Sxmax and Symax. (ST210).

次に、制御部170は、撮像部110の有効画像領域(有効画像サイズ)と、検出した最大手振れ補正量に基づいて、実効画像領域(実効画像サイズ)の縦方向の長さah、横方向の長さawを算出する(ST220)。   Next, based on the effective image area (effective image size) of the imaging unit 110 and the detected maximum camera shake correction amount, the control unit 170 determines the effective image area (effective image size) in the vertical length ah and the horizontal direction. Is calculated (ST220).

次に、制御部170は、余剰長算出部173によって、有効画像領域(有効画像サイズ)と、算出した実効画像領域(実効画像サイズ)に基づき、余剰長領域の縦方向の余剰長dh、横方向の余剰長dwを算出する(ST230)。   Next, based on the effective image region (effective image size) and the calculated effective image region (effective image size), the control unit 170 uses the surplus length calculation unit 173 to calculate the surplus length region dh, A surplus length dw in the direction is calculated (ST230).

次に、制御部170は、積分係数算出部175により、算出した余剰長領域における縦方向の余剰長dh、横方向の余剰長dwに基づいて縦方向及び横方向の積分係数値ky、kxを算出する(ST240)。   Next, the control unit 170 uses the integration coefficient calculation unit 175 to calculate the vertical and horizontal integration coefficient values ky and kx based on the calculated surplus length dh in the surplus length region and the surplus length dw in the horizontal direction. Calculate (ST240).

次に、制御部170は、積分係数算出部175で算出した積分係数値ky、kxと、遅延器172から出力される現時刻tの直前時刻(t−1)の補正ベクトル・データvy−1、vx−1を乗算器175で乗算処理する(ST250)。 Next, the control unit 170 calculates the integration coefficient values ky and kx calculated by the integration coefficient calculation unit 175 and the correction vector data vy −1 of the time (t−1) immediately before the current time t output from the delay unit 172. , Vx −1 is multiplied by the multiplier 175 (ST250).

次に、制御部170は、現時刻tに手振れ検出部150で検出した手振れ信号のベクトル・データ(mvx,mvy)と、乗算器175で乗算処理して出力されたデータ、即ち、現時刻tの直前時刻(t−1)の補正ベクトル・データ(ky×vy−1)、(kx×vx−1)を積分処理して補正ベクトル・データ(vx,vy)を算出する(ST260)。 Next, the control unit 170 multiplies the vector data (mvx, mvy) of the camera shake signal detected by the camera shake detection unit 150 at the current time t and the data output by the multiplier 175, that is, the current time t. Correction vector data (vx 0 , vy 0 ) is calculated by integrating the correction vector data (ky × vy −1 ) and (kx × vx −1 ) at the time immediately before (t−1) (ST260). .

そして、制御部170は、算出した補正ベクトル・データを補正回路120に送出し、補正回路120では、制御部170で指定された補正ベクトル・データに基づいて撮像部110から送られてくる画像信号を補正し、所定領域(実効画像領域)の画像信号を抽出して解像度変換部130に送出する(ST270)。   Then, the control unit 170 sends the calculated correction vector data to the correction circuit 120, and the correction circuit 120 receives the image signal sent from the imaging unit 110 based on the correction vector data specified by the control unit 170. Is corrected, and an image signal of a predetermined area (effective image area) is extracted and sent to the resolution conversion unit 130 (ST270).

解像度変換部130は、制御部170で指定された解像度変換係数に従って補正回路120から送られてくる画像信号の解像度を変換して記録部140に送出する(ST280)。   The resolution conversion unit 130 converts the resolution of the image signal sent from the correction circuit 120 according to the resolution conversion coefficient designated by the control unit 170, and sends it to the recording unit 140 (ST280).

記録部140は、制御部170の制御に従い、解像度変換部130から出力された画像信号を、例えば、ハードディスク装置や記録媒体(メモリカード、磁気テープ、光ディスクなど)に記録する(ST290)。   The recording unit 140 records the image signal output from the resolution conversion unit 130 on, for example, a hard disk device or a recording medium (memory card, magnetic tape, optical disk, etc.) under the control of the control unit 170 (ST290).

なお、画像信号の補正処理を行うたびに上述したステップST210〜ST260までの動作を繰り返し実行する。   Note that each time the image signal correction processing is performed, the operations from the above-described steps ST210 to ST260 are repeatedly executed.

また、最大手振れ補正量が変化すると、撮影中の実効画像領域が変化する、即ち、記録される画像サイズも変化することになるので、ステップST210の最大手振れ補正量の検出は、撮影開始時のみ行うようにして、実効画像領域の大きさが設定された後は、最大手振れ補正量に応じた大きさの変更を行わないようにすることも可能である。   If the maximum camera shake correction amount changes, the effective image area during shooting changes, that is, the recorded image size also changes. Therefore, the detection of the maximum camera shake correction amount in step ST210 is performed only at the start of shooting. As described above, after the size of the effective image area is set, it is possible not to change the size according to the maximum amount of camera shake correction.

次に、本発明の撮像装置における第2の実施例について説明する。   Next, a second embodiment of the image pickup apparatus of the present invention will be described.

図9は、第2の実施例の撮像装置において主要となる構成を簡略化して示したブロック図であり、撮像部110、補正回路120、解像度変換部130、記録部140、手振れ検出部150、HPF(High Pass Filter)160、制御部170、焦点距離検出部180などから構成される。   FIG. 9 is a block diagram schematically illustrating the main components of the image pickup apparatus according to the second embodiment. The image pickup unit 110, the correction circuit 120, the resolution conversion unit 130, the recording unit 140, the camera shake detection unit 150, An HPF (High Pass Filter) 160, a control unit 170, a focal length detection unit 180, and the like are included.

なお、第1の実施例の撮像装置(図1参照)と同等の機能を備えているものには、同じ図番号を付与している。   In addition, the same figure number is given to what has a function equivalent to the imaging device (refer FIG. 1) of 1st Example.

撮像部110は、レンズ及びCCD(Charge Coupled Device)などの撮像素子、信号処理回路などを備えており、レンズを介して入力される被写体からの光を撮像素子で画像信号に変換し、信号処理回路でこの画像信号に所定の信号処理を施して補正回路120に送出する。また、焦点距離検出部180に対してレンズの焦点距離データを送出する   The imaging unit 110 includes an imaging element such as a lens and a CCD (Charge Coupled Device), a signal processing circuit, and the like, converts light from a subject input via the lens into an image signal by the imaging element, and performs signal processing. The circuit performs predetermined signal processing on the image signal and sends it to the correction circuit 120. Also, the focal length data of the lens is sent to the focal length detector 180.

補正回路120は、制御部170で指定された補正ベクトル・データに基づいて撮像部110から送られてくる画像信号を補正し、所定領域(実効画像領域)の画像信号を抽出して解像度変換部130に送出する。   The correction circuit 120 corrects the image signal sent from the imaging unit 110 based on the correction vector data specified by the control unit 170, extracts an image signal in a predetermined area (effective image area), and extracts a resolution conversion unit. To 130.

解像度変換部130は、制御部170で指定された解像度変換係数に従って補正回路120から送られてくる画像信号の解像度を変換し、記録部140に送出する。   The resolution conversion unit 130 converts the resolution of the image signal sent from the correction circuit 120 in accordance with the resolution conversion coefficient designated by the control unit 170 and sends it to the recording unit 140.

解像度変換部130は、制御部170に従い、補正回路120から送られてくる画像信号の画像サイズ(実効画像領域の大きさ)に応じた解像度変換係数に従って画像信号の解像度を変換し、記録部140に送出する。   The resolution conversion unit 130 converts the resolution of the image signal according to the resolution conversion coefficient corresponding to the image size (effective image area size) of the image signal sent from the correction circuit 120 according to the control unit 170, and the recording unit 140. To send.

記録部140に記録できる画像サイズは、記録方式や記録媒体によって決まっており、補正回路120から送られてくる画像信号をそのまま記録部140に転送(記録)できないため、解像度変換部130によって解像度を変換することにより記録可能な画像サイズに変換するものである。   The image size that can be recorded in the recording unit 140 is determined by the recording method and recording medium, and the image signal sent from the correction circuit 120 cannot be transferred (recorded) to the recording unit 140 as it is. The image is converted into a recordable image size by conversion.

ここで、実効画像領域の縦方向の長さをah、横方向の長さをawとし、記録部140に記録する画像サイズにおける縦方向の変換係数mh、横方向の変換係数mwの変換係数とすると、解像度変換部130で変換して出力する画像サイズにおける縦方向の長さをch、横方向の長さをcwは、上述の第1の実施例と同様に[式1]で表すことができる。   Here, the vertical length of the effective image area is ah, the horizontal length is aw, the vertical conversion coefficient mh for the image size recorded in the recording unit 140, and the conversion coefficient of the horizontal conversion coefficient mw. Then, the vertical length ch and the horizontal length cw in the image size converted and output by the resolution conversion unit 130 are expressed by [Expression 1] as in the first embodiment. it can.

[式1]
解像度変換後の縦方向の長さ : ch = mh×ah
解像度変換後の横方向の長さ : cw = mw×aw
[Formula 1]
Length in the vertical direction after resolution conversion: ch = mh × ah
Horizontal length after resolution conversion: cw = mw x aw

記録部140は、制御部170の制御に従い、解像度変換部130から出力された画像信号を記録する。例えば、ハードディスク装置や記録媒体(メモリカード、磁気テープ、光ディスクなど)に画像信号を記録する。   The recording unit 140 records the image signal output from the resolution conversion unit 130 under the control of the control unit 170. For example, an image signal is recorded on a hard disk device or a recording medium (memory card, magnetic tape, optical disk, etc.).

手振れ検出部150は、撮像部110の手振れによる振動量を検出し、検出した振動量を手振れ信号としてマイコン160に送る。なお、手振れ信号の検出には、ジャイロセンサや画像認識技術などを利用して行う。   The camera shake detection unit 150 detects the vibration amount due to the camera shake of the imaging unit 110, and sends the detected vibration amount to the microcomputer 160 as a camera shake signal. The camera shake signal is detected using a gyro sensor or an image recognition technique.

HPF(High Pass Filter)160は、手振れ検出部150から出力される信号のうち、パンチルトなどのDC(直流)に近い低周波成分と手振れ信号とを区別するため、この低周波成分を抑圧するためのフィルタである。   The HPF (High Pass Filter) 160 distinguishes between low-frequency components close to DC (direct current) such as pan / tilt and hand-shake signals among signals output from the hand-shake detector 150, and suppresses the low-frequency components. It is a filter.

制御部170は、HPF160を介して送られてくる手振れ検出回路150の手振れ信号に基づき、手振れ補正量を算出したり、この手振れ補正量と焦点距離検出部180から送られてくるレンズの焦点距離データに基づいて実効画像領域(実効画像サイズ)を算出する。   The control unit 170 calculates a camera shake correction amount based on the camera shake signal of the camera shake detection circuit 150 sent via the HPF 160, and the focal length of the lens sent from the camera shake correction amount and the focal length detection unit 180. An effective image area (effective image size) is calculated based on the data.

また、余剰長(余剰領域)、積分係数値、補正ベクトル・データの算出なども行い、算出したこれらのデータに基づいて補正回路120、解像度変換部130、記録部140などの制御を行う。   Also, the surplus length (surplus area), the integral coefficient value, the correction vector data are calculated, and the correction circuit 120, the resolution conversion unit 130, the recording unit 140, and the like are controlled based on the calculated data.

焦点距離検出部180は、撮像部110におけるレンズの焦点距離データを検出して制御部170に送出する。   The focal length detection unit 180 detects the focal length data of the lens in the imaging unit 110 and sends it to the control unit 170.

次に、制御部170の動作・処理について、下記(2−1)〜(2−6)の順に従って、詳細に説明する。
(2−1)制御部の内部構成
(2−2)実効画像領域(実効画像サイズ)の算出方法
(2−3)余剰長(余剰領域)の算出方法
(2−4)積分係数値の算出方法
(2−5)補正ベクトル・データの算出方法
Next, the operation and processing of the control unit 170 will be described in detail in the order of the following (2-1) to (2-6).
(2-1) Internal configuration of control unit (2-2) Effective image area (effective image size) calculation method (2-3) Surplus length (excess area) calculation method (2-4) Integration coefficient value calculation Method (2-5) Correction vector data calculation method

(2−1)制御部の内部構成
制御部170は、積分器171、遅延器172、余剰長算出部173、積分係数算出部174、乗算器175などから構成され、第1の実施例の(1−1)で説明した図2と同じ構成であり、各部171〜175の機能についても同様であるため、その説明を省略する。
(2-1) Internal Configuration of Control Unit The control unit 170 includes an integrator 171, a delay unit 172, a surplus length calculation unit 173, an integral coefficient calculation unit 174, a multiplier 175, and the like in the first embodiment ( Since it is the same structure as FIG. 2 demonstrated by 1-1), and it is the same also about the function of each part 171-175, the description is abbreviate | omitted.

(2−2)実効画像領域(実効画像サイズ)の算出方法
次に、実効画像領域(実効画像サイズ)の算出方法について説明する。
(2-2) Effective Image Area (Effective Image Size) Calculation Method Next, an effective image area (effective image size) calculation method will be described.

撮影中に撮像部110の手振れ振動が一定、即ち、手振れ検出部150の手振れ信号が一定であっても、撮像部110のレンズの焦点距離が変化すると手振れ補正量も変化するものであり、レンズの焦点距離が短い場合に手振れ補正量は小さくてよく、レンズの焦点距離が長い場合に手振れ補正量は大きくなる。   Even if the camera shake vibration of the imaging unit 110 is constant during shooting, that is, the camera shake signal of the camera shake detection unit 150 is constant, the camera shake correction amount also changes when the focal length of the lens of the imaging unit 110 changes. The camera shake correction amount may be small when the focal length of the lens is short, and the camera shake correction amount is large when the focal length of the lens is long.

つまり、レンズの焦点距離が短い場合の手振れ補正する領域はあまり必要ないので、実効画像領域のサイズを大きく(縦、横の長さを長く)して、解像度の劣化を軽減させ、レンズの焦点距離が長い場合は手振れ補正する領域が必要となるため、実効画像領域のサイズを小さく(縦、横の長さを短く)することができる。   In other words, there is no need for an area for camera shake correction when the focal length of the lens is short. Therefore, the effective image area size is increased (longitudinal and lateral lengths are increased) to reduce resolution degradation and the focal point of the lens. When the distance is long, an area for correcting camera shake is necessary, so that the size of the effective image area can be reduced (length and width are shortened).

そこで、焦点距離検出部180によって撮像部110におけるレンズの焦点距離データを検出し、制御部170は、手振れ検出部150で検出した手振れ信号に基づいて算出される手振れ補正量S(t)と、焦点距離検出部180から送られてくるレンズの焦点距離データに基づいて、実効画像領域の大きさ、即ち、実効画像領域の縦方向の長さah、実効画像領域の横方向の長さawを算出することにより、レンズの焦点距離及び撮影者の手振れ状態に応じて最適な手振れ補正を行うことができる実効画像領域(実効画像サイズ)が決定される。   Therefore, the focal length detection unit 180 detects the focal length data of the lens in the imaging unit 110, and the control unit 170 calculates the camera shake correction amount S (t) calculated based on the camera shake signal detected by the camera shake detection unit 150, Based on the focal length data of the lens sent from the focal length detection unit 180, the size of the effective image area, that is, the vertical length ah of the effective image area and the horizontal length aw of the effective image area are determined. By calculating, an effective image area (effective image size) in which the optimum camera shake correction can be performed according to the focal length of the lens and the camera shake state of the photographer is determined.

(2−3)余剰長(余剰領域)の算出方法
続いて、制御部170による余剰長(余剰領域)の算出方法について説明する。上述した第1の実施例の(1−4)における説明と同様、図6に示す有効画像領域内において、図2の遅延器172より出力される信号、即ち、現時刻tの直前時刻(t−1)の信号の補正ベクトルデータ(図6の矢印)の座標を(vx−1,vy−1)とした場合、手振れ補正することができる領域は、有効画像領域(細線)から実効画像領域(太線)を除いた領域となり、この領域が余剰領域となる。
(2-3) Surplus Length (Surplus Area) Calculation Method Next, a surplus length (surplus area) calculation method performed by the control unit 170 will be described. Similar to the description in (1-4) of the first embodiment described above, within the effective image area shown in FIG. 6, the signal output from the delay unit 172 in FIG. 2, that is, the time immediately before the current time t (t -1) When the coordinates of the correction vector data (arrows in FIG. 6) of the signal are (vx −1 , vy −1 ), the region where camera shake correction can be performed is from the effective image region (thin line) to the effective image region. This is an area excluding (thick line), and this area becomes a surplus area.

このとき、有効画像領域の最上端と実効画像領域の最上端と間の長さをdh1、有効画像領域の最下端と実効画像領域の最下端と間の長さをdh2、有効画像領域の最左端と実効画像領域の最左端と間の長さをdw1、有効画像領域の最右端と実効画像領域の最右端と間の長さをdw2とすると、余剰長算出部173は、第1の実施例で説明した[式5]に基づいてdh1、dh2、dw1、dw2を算出する。   At this time, the length between the top end of the effective image area and the top end of the effective image area is dh1, the length between the bottom end of the effective image area and the bottom end of the effective image area is dh2, and the length of the effective image area is the bottom end. If the length between the left end and the left end of the effective image area is dw1, and the length between the right end of the effective image area and the right end of the effective image area is dw2, the surplus length calculation unit 173 performs the first implementation. Based on [Expression 5] described in the example, dh1, dh2, dw1, and dw2 are calculated.

[式5]
縦方向上部の長さ: dh1 ={(bh−ah)/2}− vy−1
縦方向下部の長さ: dh2 ={(bh−ah)/2}+ vy−1
横方向左部の長さ: dw1 ={(bw−aw)/2}− vx−1
横方向右部の長さ: dw2 ={(bw−aw)/2}+ vx−1
[Formula 5]
Upper length in the vertical direction: dh1 = {(bh-ah) / 2} -by -1
Lower length in the vertical direction: dh2 = {(bh-ah) / 2} + vy -1
Length of horizontal left part: dw1 = {(bw-aw) / 2} -vx -1
Length of right side in horizontal direction: dw2 = {(bw-aw) / 2} + vx −1

ここで、余剰長算出部173は、それぞれ縦方向のdh1とdh2、横方向のdw1とdw2と比較し、長さの短い方を縦方向の余剰長dh、横方向の余剰長dwとして選択する。縦方向の余剰長dh、横方向の余剰長dwは、第1の実施例で説明した[式6]で表すことができる。   Here, the surplus length calculation unit 173 compares the lengths dh1 and dh2 in the vertical direction and dw1 and dw2 in the horizontal direction, and selects the shorter one as the surplus length dh in the vertical direction and the surplus length dw in the horizontal direction. . The extra length dh in the vertical direction and the extra length dw in the horizontal direction can be expressed by [Expression 6] described in the first embodiment.

[式6]
縦方向の余剰長: dh ={(bh−ah)/2}− |vy−1
横方向の余剰長: dw ={(bw−aw)/2}− |vx−1
[Formula 6]
Surplus length in the vertical direction: dh = {(bh-ah) / 2}-| vy -1 |
Surplus length in the horizontal direction: dw = {(bw−aw) / 2} − | vx −1 |

余剰長算出部173は、算出した余剰長dh、dwを積分係数算出部175に出力する。   The surplus length calculation unit 173 outputs the calculated surplus lengths dh and dw to the integration coefficient calculation unit 175.

(2−4)積分係数値の算出方法
続いて、制御部170による積分係数値の算出方法について説明する。積分係数値の算出方法は、第1の実施例の(1−5)における説明と同様であり、余剰長に対して積分係数値は単調増加する関係にあり、この関係を満たす関数をfとし、縦方向の積分係数値をky、横方向の積分係数値をkxとすると、第1の実施例で説明した[式7]で表すことができる。
(2-4) Calculation Method of Integration Coefficient Value Subsequently, a calculation method of the integration coefficient value by the control unit 170 will be described. The calculation method of the integral coefficient value is the same as that described in (1-5) of the first embodiment. The integral coefficient value monotonously increases with respect to the surplus length, and a function satisfying this relationship is defined as f. Assuming that the vertical direction integral coefficient value is ky and the horizontal direction integral coefficient value is kx, it can be expressed by [Expression 7] described in the first embodiment.

[式7]
縦方向の積分係数値: ky =f(dh)
横方向の積分係数値: kx =f(dw)
[Formula 7]
Integration coefficient value in the vertical direction: ky = f (dh)
Horizontal integration coefficient value: kx = f (dw)

積分係数算出部175は、例えば、図7の余剰長と積分係数値との関係を示した表のように、余剰長が大きい(手振れ補正可能な領域が多い)場合は、補正の効果(手振れ補正量)を上げるために積分係数値を大きくし、逆に、余剰長が小さいが短い(手振れ補正可能な領域が少ない)場合は、補正の効果(手振れ補正量)を下げるために積分係数値を小さくするような値を算出する。   For example, as shown in the table showing the relationship between the surplus length and the integral coefficient value in FIG. 7, the integral coefficient calculating unit 175 performs the correction effect (camera shake) when the surplus length is large (there are many areas where camera shake correction is possible). To increase the correction amount), increase the integral coefficient value. Conversely, if the surplus length is small but short (the area where camera shake correction is possible is small), the integral coefficient value is used to reduce the correction effect (shake correction amount). A value that reduces the value is calculated.

これにより、余剰長が短い状態で撮影しているときは、手振れ補正範囲の端部(以下、補正端)に当たって補正される可能性があるため、補正の効果(手振れ補正量)を下げることで補正端に当たることを軽減させることができる。   As a result, when shooting in a state where the surplus length is short, there is a possibility that the image will be corrected by hitting the end of the camera shake correction range (hereinafter referred to as the correction end). Therefore, by reducing the correction effect (camera shake correction amount), It is possible to reduce hitting the correction end.

積分係数算出部175は、算出した積分係数値ky、kxを乗算器174に送出する。   The integral coefficient calculation unit 175 sends the calculated integral coefficient values ky and kx to the multiplier 174.

(2−5)補正ベクトル・データの算出方法
続いて、制御部170による補正ベクトル・データの算出方法について説明する。補正ベクトル・データは、第1の実施例の(1−5)における説明と同様、積分係数算出部175から送られてくる積分係数値ky、kxを乗算器175及び加算器171によって処理することにより算出される。
(2-5) Correction Vector Data Calculation Method Next, a correction vector data calculation method performed by the control unit 170 will be described. The correction vector data is obtained by processing the integration coefficient values ky and kx sent from the integration coefficient calculation unit 175 by the multiplier 175 and the adder 171 in the same manner as described in (1-5) of the first embodiment. Is calculated by

まず、乗算器175は、図2の遅延器172より出力される信号、即ち、現時刻tの直前時刻(t−1)の信号の補正ベクトル・データ(vx−1,vy−1)と、積分係数算出部175で算出された積分係数値ky、kxとを乗算処理して加算器171に送出する。 First, the multiplier 175 includes correction vector data (vx −1 , vy −1 ) of a signal output from the delay unit 172 of FIG. 2, that is, a signal immediately before the current time t (t−1), and The integration coefficient values ky and kx calculated by the integration coefficient calculation unit 175 are multiplied and sent to the adder 171.

そして、加算器171は、乗算器175からの出力信号、即ち、現時刻tの直前時刻(t−1)の信号の補正ベクトル・データと、現時刻tに手振れ検出部150で検出した手振れ信号のベクトル・データとを積分処理する。   The adder 171 outputs the output signal from the multiplier 175, that is, the correction vector data of the signal immediately before the current time t (t-1), and the camera shake signal detected by the camera shake detection unit 150 at the current time t. Is integrated with the vector data.

ここで、手振れ検出部150で検出した手振れ信号のベクトル・データを(mvx,mvy)とすると、乗算器175及び加算器171によって算出される縦方向の補正ベクトル・データvy、横方向の補正ベクトル・データvxは、第1の実施例で説明した[式8]で表すことができる。 Here, assuming that the vector data of the camera shake signal detected by the camera shake detection unit 150 is (mvx, mvy), the correction vector data vy 0 in the vertical direction calculated by the multiplier 175 and the adder 171 and the correction in the horizontal direction. The vector data vx 0 can be expressed by [Equation 8] described in the first embodiment.

[式8]
縦方向の補正ベクトル・データ: vy = mvy + (ky×vy−1
横方向の補正ベクトル・データ: vx = mvx + (kx×vx−1
[Formula 8]
Correction vector data in the vertical direction: vy 0 = mvy + (ky × vy −1 )
Horizontal correction vector data: vx 0 = mvx + (kx × vx −1 )

そして、制御部170で算出された補正ベクトル・データ(vx,vy)は、補正回路120に送出され、補正回路120がこの補正ベクトル・データに基づいて画像信号の補正処理を行う。 Then, the correction vector data (vx 0 , vy 0 ) calculated by the control unit 170 is sent to the correction circuit 120, and the correction circuit 120 corrects the image signal based on the correction vector data.

続いて、第2の実施例の撮像装置における動作フローについて図10を参照しながら説明する。   Subsequently, an operation flow in the imaging apparatus of the second embodiment will be described with reference to FIG.

まず、撮影を開始すると、手振れ検出部150は、手振れによる振動を手振れ信号としてHPF160に送り、HPF160は、手振れ検出部150からの手振れ信号の低周波成分を抑圧して制御部170に送る。   First, when shooting is started, the camera shake detection unit 150 sends vibration due to camera shake as a camera shake signal to the HPF 160, and the HPF 160 suppresses the low frequency component of the camera shake signal from the camera shake detection unit 150 and sends it to the control unit 170.

制御部170では、手振れ検出部150で検出した手振れ信号に基づいて算出する手振れ補正量S(t)を算出する(ST310)。   Control section 170 calculates a camera shake correction amount S (t) calculated based on the camera shake signal detected by camera shake detection section 150 (ST310).

一方、焦点距離検出部180は、図11の制御フローに従い、撮像部110におけるレンズの焦点距離データを検出して制御部に送出し、制御部170は、算出した手振れ補正量と、焦点距離検出部180から送られてくるレンズの焦点距離データに基づいて、実効画像領域(実効画像サイズ)の縦方向の長さah、横方向の長さawを算出する(ST410、ST420)。   On the other hand, the focal length detection unit 180 detects the focal length data of the lens in the imaging unit 110 and sends it to the control unit according to the control flow of FIG. 11, and the control unit 170 detects the calculated camera shake correction amount and the focal length detection. Based on the focal length data of the lens sent from the unit 180, the longitudinal length ah and the lateral length aw of the effective image area (effective image size) are calculated (ST410, ST420).

次に、制御部170は、余剰長算出部173によって、有効画像領域(有効画像サイズ)と、算出した実効画像領域(実効画像サイズ)に基づき、余剰長領域の縦方向の余剰長dh、横方向の余剰長dwを算出する(ST320)。   Next, based on the effective image region (effective image size) and the calculated effective image region (effective image size), the control unit 170 uses the surplus length calculation unit 173 to calculate the surplus length region dh, A surplus length dw in the direction is calculated (ST320).

次に、制御部170は、積分係数算出部175により、算出した余剰長領域における縦方向の余剰長dh、横方向の余剰長dwに基づいて縦方向及び横方向の積分係数値ky、kxを算出する(ST330)。   Next, the control unit 170 uses the integration coefficient calculation unit 175 to calculate the vertical and horizontal integration coefficient values ky and kx based on the calculated surplus length dh in the surplus length region and the surplus length dw in the horizontal direction. Calculate (ST330).

次に、制御部170は、積分係数算出部175で算出した積分係数値ky、kxと、遅延器172から出力される現時刻tの直前時刻(t−1)の補正ベクトル・データvy−1、vx−1を乗算器175で乗算処理する(ST340)。 Next, the control unit 170 calculates the integration coefficient values ky and kx calculated by the integration coefficient calculation unit 175 and the correction vector data vy −1 of the time (t−1) immediately before the current time t output from the delay unit 172. , Vx −1 is multiplied by the multiplier 175 (ST340).

次に、制御部170は、現時刻tに手振れ検出部150で検出した手振れ信号のベクトル・データ(mvx,mvy)と、乗算器175で乗算処理して出力されたデータ、即ち、現時刻tの直前時刻(t−1)の補正ベクトル・データ(ky×vy−1)、(kx×vx−1)を積分処理して補正ベクトル・データ(vx,vy)を算出する(ST350)。 Next, the control unit 170 multiplies the vector data (mvx, mvy) of the camera shake signal detected by the camera shake detection unit 150 at the current time t and the data output by the multiplier 175, that is, the current time t. Correction vector data (vx 0 , vy 0 ) is calculated by integrating the correction vector data (ky × vy −1 ) and (kx × vx −1 ) at the time immediately before (t−1) (ST350). .

そして、制御部170は、算出した補正ベクトル・データを補正回路120に送出し、補正回路120では、制御部170で指定された補正ベクトル・データに基づいて撮像部110から送られてくる画像信号を補正し、所定領域(実効画像領域)の画像信号を抽出して解像度変換部130に送出する(ST360)。   Then, the control unit 170 sends the calculated correction vector data to the correction circuit 120, and the correction circuit 120 receives the image signal sent from the imaging unit 110 based on the correction vector data specified by the control unit 170. Is corrected, and an image signal of a predetermined area (effective image area) is extracted and sent to the resolution converter 130 (ST360).

解像度変換部130は、制御部170で指定された解像度変換係数に従って補正回路120から送られてくる画像信号の解像度を変換して記録部140に送出する(ST370)。   The resolution conversion unit 130 converts the resolution of the image signal sent from the correction circuit 120 according to the resolution conversion coefficient designated by the control unit 170 and sends it to the recording unit 140 (ST370).

記録部140は、制御部170の制御に従い、解像度変換部130から出力された画像信号を、例えば、ハードディスク装置や記録媒体(メモリカード、磁気テープ、光ディスクなど)に記録する(ST380)。   Recording section 140 records the image signal output from resolution conversion section 130, for example, on a hard disk device or a recording medium (memory card, magnetic tape, optical disk, etc.) under the control of control section 170 (ST380).

なお、上述したステップST310〜ST350までの動作は、画像信号の補正処理を行うたびに繰り返し実行されるものである。   The operations from step ST310 to ST350 described above are repeatedly executed every time the image signal correction process is performed.

また、手振れ補正量が変化すると、撮影中の実効画像領域が変化する、即ち、記録される画像サイズも変化することになるので、ステップST310の手振れ補正量の検出は、撮影開始時のみ行うようにして、実効画像領域の大きさが設定された後は、レンズの焦点距離や手振れ補正量に応じた大きさの変更を行わないようにすることも可能である。   Also, if the camera shake correction amount changes, the effective image area being shot changes, that is, the recorded image size also changes. Therefore, the camera shake correction amount in step ST310 is detected only at the start of shooting. Thus, after the size of the effective image area is set, it is possible not to change the size according to the focal length of the lens and the amount of camera shake correction.

第1の実施例の撮像装置において主要となる構成を簡略化して示したブロック図示した図である。FIG. 2 is a block diagram schematically illustrating a main configuration of the imaging apparatus according to the first embodiment. 本発明に係る撮像装置における制御部の構成を簡略化して示したブロック図示した図である。It is the figure which showed the block diagram which simplified and showed the structure of the control part in the imaging device which concerns on this invention. 本発明に係る撮像装置において、手振れ信号に基づいて算出される手振れ補正量の時間的変化を略示的に示したグラフである。6 is a graph schematically showing a temporal change in a camera shake correction amount calculated based on a camera shake signal in the imaging apparatus according to the present invention. 図1に示した撮像装置によって最大手振れ補正量の検出フローを説明するためのフローチャートである。4 is a flowchart for explaining a detection flow of a maximum camera shake correction amount by the imaging apparatus shown in FIG. 1. 撮像部の撮像素子により撮像可能な範囲を示す有効画像領域(有効画像サイズ)と補正回路で抽出する画像サイズを示す実効画像領域(実効画像サイズ)との関係を略示的に示した説明図である。Explanatory drawing which showed schematically the relationship between the effective image area (effective image size) which shows the range which can be imaged with the image pick-up element of an imaging part, and the effective image area (effective image size) which shows the image size extracted by a correction circuit It is. 撮像部の撮像素子により撮像可能な範囲を示す有効画像領域(有効画像サイズ)と補正回路で抽出する画像サイズを示す実効画像領域(実効画像サイズ)と余剰長(余剰領域)との関係を略示的に示した説明図である。The relationship between the effective image area (effective image size) indicating the range that can be imaged by the image sensor of the imaging unit, the effective image area (effective image size) indicating the image size extracted by the correction circuit, and the surplus length (excess area) is substantially omitted. It is explanatory drawing shown illustratively. 余剰長と積分係数値との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between a surplus length and an integral coefficient value. 図1に示した撮像装置の動作を説明するためのフローチャートである。3 is a flowchart for explaining an operation of the imaging apparatus illustrated in FIG. 1. 第2の実施例の撮像装置において主要となる構成を簡略化して示したブロック図示した図である。It is the figure which showed the block diagram which simplified and showed the main components in the imaging device of a 2nd Example. 図9に示した撮像装置の動作を説明するためのフローチャートである。10 is a flowchart for explaining an operation of the imaging apparatus illustrated in FIG. 9. 図9に示した撮像装置における焦点距離検出部の動作を説明するためのフローチャートである。10 is a flowchart for explaining an operation of a focal length detection unit in the imaging apparatus shown in FIG. 9.

符号の説明Explanation of symbols

110;撮像部
120;補正回路
130;解像度変換部
140;記録部
150;手振れ検出部
160;HPF(High Pass Filter)
170;制御部
171;積分器
172;遅延器
173;余剰長算出部
174;積分係数算出部
175;乗算器
180;焦点距離検出部
110; Imaging unit 120; Correction circuit 130; Resolution conversion unit 140; Recording unit 150; Camera shake detection unit 160; HPF (High Pass Filter)
170; control unit 171; integrator 172; delay unit 173; surplus length calculation unit 174; integral coefficient calculation unit 175; multiplier 180; focal length detection unit

Claims (4)

撮像部の手振れによる振動量を手振れ信号として検出する手振れ検出手段を備えた撮像装置であって、
前記手振れ検出手段で検出した手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出手段と、
前記手振れ補正量算出手段で算出される手振れ補正量の中から、手振れ補正量の最大値を検出する最大補正量検出手段と、
前記最大補正量検出手段で検出した手振れ補正量の最大値と前記撮像部の撮像素子によって撮像可能な画像サイズである有効画像サイズに基づき、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する画像サイズ算出手段と、
前記手振れ補正量算出手段で算出した手振れ補正量及び前記有効画像サイズ及び前記画像サイズ算出手段で算出した実効画像サイズに基づき、手振れ補正する範囲における余剰サイズを算出する余剰サイズ算出手段と、
前記余剰サイズ算出手段で算出した余剰サイズに応じて前記手振れ補正量算出手段で算出した手振れ補正量を調整するための係数値を算出する調整係数算出手段と、
前記調整係数値算出手段で算出した係数値と前記手振れ補正量算出手段で算出した手振れ補正量に基づき、前記撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する補正ベクトル算出手段と、
前記補正ベクトル算出手段で算出した補正ベクトル・データに基づいて前記撮像部で撮影した画像信号を補正する画像信号補正手段と、
を具備していることを特徴とする撮像装置。
An imaging apparatus including a camera shake detection unit that detects a vibration amount due to camera shake of an imaging unit as a camera shake signal,
A camera shake correction amount calculating unit that calculates a camera shake correction amount for correcting the image signal based on a camera shake signal detected by the camera shake detecting unit;
A maximum correction amount detecting means for detecting a maximum value of the camera shake correction amount among the camera shake correction amounts calculated by the camera shake correction amount calculating means;
Based on the maximum value of the camera shake correction amount detected by the maximum correction amount detecting means and the effective image size that is an image size that can be captured by the image sensor of the imaging unit, an effective for extracting an image signal in a predetermined range subjected to camera shake correction Image size calculating means for calculating the image size;
Based on the camera shake correction amount calculated by the camera shake correction amount calculation unit, the effective image size, and the effective image size calculated by the image size calculation unit, an extra size calculation unit that calculates an extra size in a range to be subjected to camera shake correction;
An adjustment coefficient calculating means for calculating a coefficient value for adjusting the camera shake correction amount calculated by the camera shake correction amount calculating means according to the surplus size calculated by the surplus size calculating means;
Correction vector calculation for calculating correction vector data for correcting an image signal captured by the imaging unit based on the coefficient value calculated by the adjustment coefficient value calculation unit and the camera shake correction amount calculated by the camera shake correction amount calculation unit Means,
Image signal correction means for correcting an image signal captured by the imaging unit based on correction vector data calculated by the correction vector calculation means;
An image pickup apparatus comprising:
撮像部の手振れによる振動量を手振れ信号として検出する手振れ検出手段を備えた撮像装置であって、
前記手振れ検出手段で検出した手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出手段と、
前記手振れ補正量算出手段で算出される手振れ補正量の中から、手振れ補正量の最大値を検出する最大補正量検出手段と、
前記最大補正量検出手段で検出した手振れ補正量の最大値と前記撮像部の撮像素子によって撮像可能な画像サイズである有効画像サイズに基づき、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する画像サイズ算出手段と、
前記手振れ補正量算出手段で算出した手振れ補正量及び前記有効画像サイズ及び前記画像サイズ算出手段で算出した実効画像サイズに基づき、手振れ補正する範囲における余剰サイズを算出する余剰サイズ算出手段と、
前記余剰サイズ算出手段で算出した余剰サイズに応じて前記手振れ補正量算出手段で算出した手振れ補正量を調整するための係数値を算出する調整係数算出手段と、
前記調整係数値算出手段で算出した係数値と前記手振れ補正量算出手段で算出した手振れ補正量に基づき、前記撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する補正ベクトル算出手段と、
前記補正ベクトル算出手段で算出した補正ベクトル・データに基づいて前記撮像部で撮影した画像信号を補正する画像信号補正手段と、
前記画像サイズ算出手段で算出した実効画像サイズと前記画像信号を記録媒体や記録装置に記録するときの記録画像サイズに基づき、前記画像信号補正手段で補正した画像信号の解像度を変換するための変換係数を算出する変換係数算出手段と、
前記変換係数算出手段で算出した変換係数に基づいて、前記画像信号補正手段で補正した画像信号の解像度を変換して出力する画像出力手段と、
を具備していることを特徴とする撮像装置。
An imaging apparatus including a camera shake detection unit that detects a vibration amount due to camera shake of an imaging unit as a camera shake signal,
A camera shake correction amount calculating unit that calculates a camera shake correction amount for correcting the image signal based on a camera shake signal detected by the camera shake detecting unit;
A maximum correction amount detecting means for detecting a maximum value of the camera shake correction amount among the camera shake correction amounts calculated by the camera shake correction amount calculating means;
Based on the maximum value of the camera shake correction amount detected by the maximum correction amount detecting means and the effective image size that is an image size that can be captured by the image sensor of the imaging unit, an effective for extracting an image signal in a predetermined range subjected to camera shake correction Image size calculating means for calculating the image size;
Based on the camera shake correction amount calculated by the camera shake correction amount calculation unit, the effective image size, and the effective image size calculated by the image size calculation unit, an extra size calculation unit that calculates an extra size in a range to be subjected to camera shake correction;
An adjustment coefficient calculating means for calculating a coefficient value for adjusting the camera shake correction amount calculated by the camera shake correction amount calculating means according to the surplus size calculated by the surplus size calculating means;
Correction vector calculation for calculating correction vector data for correcting an image signal captured by the imaging unit based on the coefficient value calculated by the adjustment coefficient value calculation unit and the camera shake correction amount calculated by the camera shake correction amount calculation unit Means,
Image signal correction means for correcting an image signal captured by the imaging unit based on correction vector data calculated by the correction vector calculation means;
Conversion for converting the resolution of the image signal corrected by the image signal correcting unit based on the effective image size calculated by the image size calculating unit and the recorded image size when the image signal is recorded on a recording medium or a recording apparatus. Conversion coefficient calculation means for calculating a coefficient;
An image output means for converting and outputting the resolution of the image signal corrected by the image signal correction means based on the conversion coefficient calculated by the conversion coefficient calculation means;
An image pickup apparatus comprising:
撮像部の手振れによる振動量を手振れ信号として検出する手振れ検出手段を備えた撮像装置であって、
前記手振れ検出手段で検出した手振れ信号に基づいて前記画像信号の手振れを補正するための手振れ補正量を算出する手振れ補正量算出手段と、
前記撮像部が有している撮像レンズの焦点距離情報を検出する焦点距離検出部と、
前記焦点距離検出部で検出した撮像レンズの焦点距離情報と前記撮像部の撮像素子によって撮像可能な画像サイズである有効画像サイズに基づき、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する画像サイズ算出手段と、
前記手振れ補正量算出手段で算出した手振れ補正量及び前記有効画像サイズ及び前記画像サイズ算出手段で算出した実効画像サイズに基づき、手振れ補正する範囲における余剰サイズを算出する余剰サイズ算出手段と、
前記余剰サイズ算出手段で算出した余剰サイズに応じて前記手振れ補正量算出手段で算出した手振れ補正量を調整するための係数値を算出する調整係数算出手段と、
前記調整係数値算出手段で算出した係数値と前記手振れ補正量算出手段で算出した手振れ補正量に基づき、前記撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する補正ベクトル算出手段と、
前記補正ベクトル算出手段で算出した補正ベクトル・データに基づいて前記撮像部で撮影した画像信号を補正する画像信号補正手段と、
を具備していることを特徴とする撮像装置。
An imaging apparatus including a camera shake detection unit that detects a vibration amount due to camera shake of an imaging unit as a camera shake signal,
A camera shake correction amount calculating unit that calculates a camera shake correction amount for correcting the camera shake of the image signal based on the camera shake signal detected by the camera shake detecting unit;
A focal length detection unit for detecting focal length information of an imaging lens included in the imaging unit;
An effective image for extracting an image signal in a predetermined range subjected to camera shake correction based on focal length information of the imaging lens detected by the focal length detection unit and an effective image size that is an image size that can be captured by the imaging device of the imaging unit. Image size calculating means for calculating the size;
Based on the camera shake correction amount calculated by the camera shake correction amount calculation unit, the effective image size, and the effective image size calculated by the image size calculation unit, an extra size calculation unit that calculates an extra size in a range to be subjected to camera shake correction;
An adjustment coefficient calculating means for calculating a coefficient value for adjusting the camera shake correction amount calculated by the camera shake correction amount calculating means according to the surplus size calculated by the surplus size calculating means;
Correction vector calculation for calculating correction vector data for correcting an image signal captured by the imaging unit based on the coefficient value calculated by the adjustment coefficient value calculation unit and the camera shake correction amount calculated by the camera shake correction amount calculation unit Means,
Image signal correction means for correcting an image signal captured by the imaging unit based on correction vector data calculated by the correction vector calculation means;
An image pickup apparatus comprising:
撮像部の手振れによる振動量を手振れ信号として検出する手振れ検出手段を備えた撮像装置であって、
前記手振れ検出手段で検出した手振れ信号に基づいて前記画像信号の手振れを補正するための手振れ補正量を算出する手振れ補正量算出手段と、
前記撮像部が有している撮像レンズの焦点距離情報を検出する焦点距離検出部と、
前記焦点距離検出部で検出した撮像レンズの焦点距離情報と前記撮像部の撮像素子によって撮像可能な画像サイズである有効画像サイズに基づき、手振れ補正した所定範囲の画像信号を抽出するための実効画像サイズを算出する画像サイズ算出手段と、
前記手振れ補正量算出手段で算出した手振れ補正量及び前記有効画像サイズ及び前記画像サイズ算出手段で算出した実効画像サイズに基づき、手振れ補正する範囲における余剰サイズを算出する余剰サイズ算出手段と、
前記余剰サイズ算出手段で算出した余剰サイズに応じて前記手振れ補正量算出手段で算出した手振れ補正量を調整するための係数値を算出する調整係数算出手段と、
前記調整係数値算出手段で算出した係数値と前記手振れ補正量算出手段で算出した手振れ補正量に基づき、前記撮像部で撮影した画像信号を補正するための補正ベクトル・データを算出する補正ベクトル算出手段と、
前記補正ベクトル算出手段で算出した補正ベクトル・データに基づいて前記撮像部で撮影した画像信号を補正する画像信号補正手段と、
前記画像サイズ算出手段で算出した実効画像サイズと前記画像信号を記録媒体や記録装置に記録するときの記録画像サイズに基づき、前記画像信号補正手段で補正した画像信号の解像度を変換するための変換係数を算出する変換係数算出手段と、
前記変換係数算出手段で算出した変換係数に基づいて、前記画像信号補正手段で補正した画像信号の解像度を変換して出力する画像出力手段と、
を具備していることを特徴とする撮像装置。
An imaging apparatus including a camera shake detection unit that detects a vibration amount due to camera shake of an imaging unit as a camera shake signal,
A camera shake correction amount calculating unit that calculates a camera shake correction amount for correcting the camera shake of the image signal based on the camera shake signal detected by the camera shake detecting unit;
A focal length detection unit for detecting focal length information of an imaging lens included in the imaging unit;
An effective image for extracting an image signal in a predetermined range subjected to camera shake correction based on focal length information of the imaging lens detected by the focal length detection unit and an effective image size that is an image size that can be captured by the imaging device of the imaging unit. Image size calculating means for calculating the size;
Based on the camera shake correction amount calculated by the camera shake correction amount calculation unit, the effective image size, and the effective image size calculated by the image size calculation unit, an extra size calculation unit that calculates an extra size in a range to be subjected to camera shake correction;
An adjustment coefficient calculating means for calculating a coefficient value for adjusting the camera shake correction amount calculated by the camera shake correction amount calculating means according to the surplus size calculated by the surplus size calculating means;
Correction vector calculation for calculating correction vector data for correcting an image signal captured by the imaging unit based on the coefficient value calculated by the adjustment coefficient value calculation unit and the camera shake correction amount calculated by the camera shake correction amount calculation unit Means,
Image signal correction means for correcting an image signal captured by the imaging unit based on correction vector data calculated by the correction vector calculation means;
Conversion for converting the resolution of the image signal corrected by the image signal correcting unit based on the effective image size calculated by the image size calculating unit and the recorded image size when the image signal is recorded on a recording medium or a recording apparatus. Conversion coefficient calculation means for calculating a coefficient;
An image output means for converting and outputting the resolution of the image signal corrected by the image signal correction means based on the conversion coefficient calculated by the conversion coefficient calculation means;
An image pickup apparatus comprising:
JP2003274619A 2003-07-15 2003-07-15 Imaging apparatus and imaging method Expired - Fee Related JP4389509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274619A JP4389509B2 (en) 2003-07-15 2003-07-15 Imaging apparatus and imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274619A JP4389509B2 (en) 2003-07-15 2003-07-15 Imaging apparatus and imaging method

Publications (3)

Publication Number Publication Date
JP2005039534A true JP2005039534A (en) 2005-02-10
JP2005039534A5 JP2005039534A5 (en) 2006-08-24
JP4389509B2 JP4389509B2 (en) 2009-12-24

Family

ID=34211528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274619A Expired - Fee Related JP4389509B2 (en) 2003-07-15 2003-07-15 Imaging apparatus and imaging method

Country Status (1)

Country Link
JP (1) JP4389509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300581A (en) * 2006-05-08 2007-11-15 Casio Comput Co Ltd Moving image photographing apparatus and moving image photographing program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300581A (en) * 2006-05-08 2007-11-15 Casio Comput Co Ltd Moving image photographing apparatus and moving image photographing program

Also Published As

Publication number Publication date
JP4389509B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
KR101371775B1 (en) Method and apparatus for image stabilization on camera
US7660478B2 (en) Method of determining PSF using multiple instances of nominally scene
TWI386040B (en) Image pickup apparatus equipped with function of detecting image shaking
KR101847392B1 (en) Image processing apparatus and method for controlling the same
US20080112644A1 (en) Imaging device
US20140022403A1 (en) Method of Notifying Users Regarding Motion Artifacts Based on Image Analysis
US20090046161A1 (en) Method and Apparatus for Initiating Subsequent Exposures Based On Determination Of Motion Blurring Artifacts
KR101521441B1 (en) Image pickup apparatus, control method for image pickup apparatus, and storage medium
JP5013954B2 (en) Imaging device
JP4636887B2 (en) Optical equipment
JP6674264B2 (en) Image blur detection apparatus and method, and imaging apparatus
KR100793284B1 (en) Apparatus for digital image stabilizing, method using the same and computer readable medium stored thereon computer executable instruction for performing the method
JP2000341577A (en) Device and method for correcting camera shake
JP6494587B2 (en) Image processing apparatus, image processing apparatus control method, imaging apparatus, and program
JP2009111596A (en) Imaging apparatus
JP2008209577A (en) Camera
JP2008277896A (en) Imaging device and imaging method
JP6932531B2 (en) Image blur correction device, image pickup device, control method of image pickup device
JP2000147371A (en) Automatic focus detector
US7545408B2 (en) Image pickup apparatus and image pickup method
JP4389509B2 (en) Imaging apparatus and imaging method
JP2004328606A (en) Imaging device
JP5179859B2 (en) Imaging apparatus and imaging method
JP2011135537A (en) Imaging apparatus and control method of the same
JP4853096B2 (en) Camera shake correction apparatus, photographing apparatus, and camera shake correction method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees