JP2005037730A - Optical oscillation device - Google Patents

Optical oscillation device Download PDF

Info

Publication number
JP2005037730A
JP2005037730A JP2003275188A JP2003275188A JP2005037730A JP 2005037730 A JP2005037730 A JP 2005037730A JP 2003275188 A JP2003275188 A JP 2003275188A JP 2003275188 A JP2003275188 A JP 2003275188A JP 2005037730 A JP2005037730 A JP 2005037730A
Authority
JP
Japan
Prior art keywords
optical
lens
groove
oscillation device
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003275188A
Other languages
Japanese (ja)
Inventor
Yuichi Togano
祐一 戸叶
Tomohiro Yonezawa
友浩 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003275188A priority Critical patent/JP2005037730A/en
Publication of JP2005037730A publication Critical patent/JP2005037730A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical oscillation device using low-cost members, in which the number of alignment processes is reduced. <P>SOLUTION: The optical oscillation device has; an optical semiconductor element 1; a first lens 2 for collimating an oscillated laser light; a non-reciprocal optical element 3 on which the laser light transmitted through the first lens 2 is incident; a second lens 4 for concentrating the laser light transmitted through the non-reciprocal optical element 3 to an optical fiber 5; and a tilting table 11 in which a groove for guiding fixing positions of the first lens 2 and the second lens 4 is formed. In the optical oscillation device, the groove extents to the direction of the optical axis 6 of the laser light, and is inclined with respect to the direction of the optical axis 6, in a plane containing the optical axis 6 and the groove. A groove forming surface 15 is inclined in the extending direction of the groove, with respect to the facing bottom surface 16. The bottom surface 16 of the table is formed parallel to the optical axis. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主に高速・大容量の光通信システムに用いられる光発振装置に係り、特にメトロ・アクセス網の光源として好適な光発振装置に関する。   The present invention relates to an optical oscillation device mainly used in a high-speed and large-capacity optical communication system, and more particularly to an optical oscillation device suitable as a light source for a metro access network.

高速・大容量の光通信に用いられる光発振装置は、例えば、図2のような光学的構成を有する。すなわち、レーザ発振素子である光半導体素子1、レーザ光を平行化(コリメート)する第1レンズ2、光アイソレータ等の非相反光素子3、光ファイバへ集光するための第2レンズ4を光軸6に沿って配置して構成される。このようなレーザ発振装置は、LD(レーザダイオード)、LDモジュール、半導体レーザモジュール、あるいは単に光発振装置などと呼ばれる。   An optical oscillation device used for high-speed and large-capacity optical communication has, for example, an optical configuration as shown in FIG. That is, the optical semiconductor element 1 that is a laser oscillation element, the first lens 2 that collimates the laser light, the nonreciprocal light element 3 such as an optical isolator, and the second lens 4 that is focused on the optical fiber. It is arranged along the axis 6. Such a laser oscillation device is called an LD (laser diode), an LD module, a semiconductor laser module, or simply an optical oscillation device.

LD内の第1レンズ2により光束7を平行化するのは、光アイソレータ等の非相反光素子3に効率よくレーザ光を透過させるためであり、光アイソレータ等の非相反光素子3は、戻り光を遮断することで、発振する光半導体素子1の信号の安定性を確保する。   The reason why the light beam 7 is collimated by the first lens 2 in the LD is to efficiently transmit the laser beam to the nonreciprocal light element 3 such as an optical isolator. The nonreciprocal light element 3 such as the optical isolator By blocking the light, the stability of the signal of the oscillating optical semiconductor element 1 is ensured.

光ファイバ5のコアに集光させるための集光角は光ファイバのコア径や屈折率に左右され、また光半導体素子1で発振されたレーザ光の拡がり角は発光スポットの大きさによるので、前記第1レンズ2、第2レンズ4はその集光距離が異なるものを用いなければならない。これは通常の球状レンズであれば直径が異なるものを使用しなければならないことを意味する。   Since the condensing angle for condensing on the core of the optical fiber 5 depends on the core diameter and refractive index of the optical fiber, and the spread angle of the laser light oscillated in the optical semiconductor element 1 depends on the size of the light emission spot. The first lens 2 and the second lens 4 must have different condensing distances. This means that a normal spherical lens having a different diameter must be used.

従来は、図3に模式的に示すように、このレンズの大きさの差を考慮して、各部品の高さを、ベース材10の上の台座8、9等で調節していた。しかしこの方法を用いると、台座8、9の高さの差を考慮した光学系の光路調芯を行わなければならず、調芯が困難であるばかりでなく、生産性を低下させていた。   Conventionally, as schematically shown in FIG. 3, the height of each component is adjusted by the bases 8 and 9 on the base material 10 in consideration of the difference in the size of the lens. However, when this method is used, optical path alignment of the optical system in consideration of the difference in height between the pedestals 8 and 9 has to be performed, which not only makes alignment difficult, but also reduces productivity.

また、特許文献1では、同一の基板上に2つの球レンズを配設した光モジュールの例が開示されている。ただし、この技術においては、SiやInP等の半導体材料を基板として異方性エッチングを行うときに得られる精度を前提としており、機械加工によって、その精度を得ることは容易でない。また、異方性エッチングを用いた生産方法はその生産数量が一定以上でないと、費用の低減が容易でない。   Patent Document 1 discloses an example of an optical module in which two spherical lenses are arranged on the same substrate. However, this technique is based on the accuracy obtained when anisotropic etching is performed using a semiconductor material such as Si or InP as a substrate, and it is not easy to obtain the accuracy by machining. In addition, in the production method using anisotropic etching, it is not easy to reduce costs unless the production quantity is more than a certain value.

また、光学系の同軸上にそれぞれの部品を揃えるため、円筒状のレンズを用いて第1レンズと第2レンズの形状を少なくとも外径を揃えて配置する方法が一般的に用いられる。しかし、このレンズは大変高価なため、光学部品全体の生産費用を増大させていた。また、このような円筒状レンズは特性において、作製上の限界があり、レーザ発振装置の特性が制限されていた。   Further, in order to align the respective parts on the same axis of the optical system, a method is generally used in which a cylindrical lens is used and the shapes of the first lens and the second lens are arranged with at least the outer diameters aligned. However, this lens is very expensive, which increases the production cost of the entire optical component. In addition, such a cylindrical lens has a limitation in manufacturing characteristics, and the characteristics of the laser oscillation device are limited.

特開2002−341189号公報JP 2002-341189 A

このような従来の問題点を受け、低価格の球状レンズを用い、かつ調芯の容易な光学部品の支持構造を用いた光発振装置を実現できるとよい。   In light of these conventional problems, it is desirable to realize an optical oscillation device that uses a low-cost spherical lens and that uses a support structure for an optical component that can be easily aligned.

すなわち、本発明の課題は、低コストの部材を用い、かつ調芯工数を低減できる光発振装置を提供することである。   That is, an object of the present invention is to provide an optical oscillation device that uses a low-cost member and can reduce the number of alignment steps.

本発明の光発振装置は、レーザ発振素子と、発振されたレーザ光を平行化する第1レンズと、該第1レンズを通過したレーザ光が入射される非相反光素子と、該非相反光素子を通過したレーザ光を光ファイバに集光するための第2レンズと、前記第1レンズおよび第2レンズの固定位置を導く溝が形成された台座とを備える光発振装置であって、前記第1および第2のレンズは球状のレンズであり、前記溝は、前記レーザ光の光軸方向に延伸するとともに、前記光軸と溝を含む平面内で、前記光軸方向から傾斜したことを特徴とする。   The optical oscillation device of the present invention includes a laser oscillation element, a first lens that collimates the oscillated laser light, a nonreciprocal light element that receives laser light that has passed through the first lens, and the nonreciprocal light element. An optical oscillation device comprising: a second lens for condensing the laser light that has passed through the optical fiber; and a pedestal formed with a groove that guides a fixed position of the first lens and the second lens. The first and second lenses are spherical lenses, and the groove extends in the optical axis direction of the laser light and is inclined from the optical axis direction in a plane including the optical axis and the groove. And

前記台座の溝が形成された面は、対向する底面に対して、溝の延伸方向に傾斜するとよい。   The surface on which the groove of the pedestal is formed may be inclined in the extending direction of the groove with respect to the opposing bottom surface.

前記底面は、前記光軸と平行に形成されるとよい。   The bottom surface may be formed in parallel with the optical axis.

前記溝の断面形状はV字形であるとよい。   The cross-sectional shape of the groove is preferably V-shaped.

そして、前記溝の断面形状は矩形であってもよい。   And the cross-sectional shape of the said groove | channel may be a rectangle.

本発明の光発振装置は、低コストの部材と、調芯が容易な光学系支持構造を用いているので、本発明によれば、低価格で生産性の高い光発振装置を提供することが出来る。   Since the optical oscillation device of the present invention uses a low-cost member and an optical system support structure that can be easily aligned, according to the present invention, it is possible to provide a low-cost and high-productivity optical oscillation device. I can do it.

図面に基づいて、本発明を実施するための最良の形態を説明する。図1は本発明の光発振装置を示す模式図である。本発明においては、レーザ発振素子である光半導体素子1から出力されたレーザ光を平行化させる第1レンズ2、および非相反光素子3を透過したレーザ光を光ファイバ5に集光させる第2レンズ4に、球状レンズを用いる。この球状レンズに入射されるレーザ光の光軸6をレンズ中心に一致させることにより最大効率が得られることから、前記第1レンズ2と第2レンズ4は同じ大きさのものを用いない限り、固定位置の高さは異なる。   The best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a light oscillation device of the present invention. In the present invention, the first lens 2 that collimates the laser light output from the optical semiconductor element 1 that is a laser oscillation element, and the second that condenses the laser light transmitted through the nonreciprocal light element 3 onto the optical fiber 5. A spherical lens is used as the lens 4. Since the maximum efficiency can be obtained by matching the optical axis 6 of the laser beam incident on the spherical lens with the center of the lens, the first lens 2 and the second lens 4 must be of the same size. The height of the fixed position is different.

そこで、本発明では、光半導体素子1から発振されたレーザ光の光軸6の方向に延伸する溝を上面の溝形成面15に設けた傾斜台座11を用い、この傾斜台座11の底面16と光軸6を平行にし、かつその溝に前記第1レンズ2、前記第2レンズ4を配置したときのレンズ中心からの光軸6のずれを補償した傾斜を前記溝に持たせている。このことにより、異なった大きさの球状レンズを用いても光軸が傾斜することなく、第1レンズ2および第2レンズ4の中心に光軸を揃えることができるようになる。また、傾斜台座11の上面の第1レンズ2および第2レンズ4の間に非相反光素子3を配置し、また傾斜台座11の溝の延長線上の光半導体素子固定面17に光半導体素子1を配置する。   Therefore, in the present invention, an inclined pedestal 11 in which a groove extending in the direction of the optical axis 6 of the laser beam oscillated from the optical semiconductor element 1 is provided on the upper groove forming surface 15 is used. The groove is provided with an inclination that compensates for the deviation of the optical axis 6 from the center of the lens when the optical axis 6 is parallel and the first lens 2 and the second lens 4 are disposed in the groove. As a result, even when spherical lenses having different sizes are used, the optical axes can be aligned with the centers of the first lens 2 and the second lens 4 without tilting the optical axes. Further, the nonreciprocal light element 3 is disposed between the first lens 2 and the second lens 4 on the upper surface of the inclined pedestal 11, and the optical semiconductor element 1 is disposed on the optical semiconductor element fixing surface 17 on the extension line of the groove of the inclined pedestal 11. Place.

この傾斜台座11について、さらに説明する。まず、傾斜台座11の底面16を水平にして、この面を基準面とする。次に、光軸6が基準面から所定の高さになるように、光半導体素子1の発光部の高さを定める。次に、第1レンズ2と第2レンズ4の直径およびレンズ間距離に基づいて、溝に対する光軸からの傾斜角度を定める。さらに、2つのレンズの光軸の高さと、光半導体素子1の発光部の高さと、光半導体素子1から第1レンズ2までの距離に基づいて、溝の断面形状および溝の端から光半導体素子1までの距離を定める。また、非相反光素子3の光学面のほぼ中心に光軸6が一致するように、傾斜台座11の上面に固定面を設ける。このようにして、光半導体素子1、第1レンズ2、非相反光素子3、第2レンズ4を、傾斜台座11を用いて一体化する。なお、光ファイバ5の調芯については、公知の技術による調芯機構を用いる。   The inclined pedestal 11 will be further described. First, the bottom surface 16 of the inclined pedestal 11 is leveled and this surface is used as a reference surface. Next, the height of the light emitting part of the optical semiconductor element 1 is determined so that the optical axis 6 has a predetermined height from the reference plane. Next, an inclination angle from the optical axis with respect to the groove is determined based on the diameters of the first lens 2 and the second lens 4 and the distance between the lenses. Further, based on the height of the optical axis of the two lenses, the height of the light emitting portion of the optical semiconductor element 1, and the distance from the optical semiconductor element 1 to the first lens 2, the cross-sectional shape of the groove and the end of the groove from the optical semiconductor The distance to element 1 is determined. Further, a fixed surface is provided on the upper surface of the inclined pedestal 11 so that the optical axis 6 coincides with the approximate center of the optical surface of the nonreciprocal light element 3. In this way, the optical semiconductor element 1, the first lens 2, the nonreciprocal light element 3, and the second lens 4 are integrated using the inclined pedestal 11. In addition, about the alignment of the optical fiber 5, the alignment mechanism by a well-known technique is used.

次に、本発明の実施例1を挙げて、さらに具体的に説明する。本実施例1の光発振装置の構成は図1のとおりである。光学部材のベースとなる傾斜台座11にはSi基板ウェハを用いた。まずSi基板の片面の一部に5.03degの角度を付けて研磨(粒度#6000)を行い、ダイシングによって矩形溝を深さ0.5mmで形成する。この時発生するチッピングを取り除くため、切断後はさらに表面を研磨(#6000)する。溝の幅は0.03mm(±0.005mm)となるように切断を行う。   Next, the first embodiment of the present invention will be described in more detail. The configuration of the optical oscillation device of the first embodiment is as shown in FIG. A Si substrate wafer was used for the inclined pedestal 11 serving as the base of the optical member. First, a part of one side of the Si substrate is polished at an angle of 5.03 deg (grain size # 6000), and a rectangular groove is formed with a depth of 0.5 mm by dicing. In order to remove the chipping generated at this time, the surface is further polished (# 6000) after cutting. Cutting is performed so that the width of the groove is 0.03 mm (± 0.005 mm).

この後、設計上の非相反素子位置に、溝と直行する方向に非相反素子固定用の切り込みを幅0.85mm、深さ1mmで作製する。このようにして傾斜台座11を作製する。前記作製された溝の傾斜角度は第1レンズ2、第2レンズ4の大きさの差と理想的な位置の関係から理論計算して求めたものである。   After that, a notch for fixing the nonreciprocal element is produced at a design nonreciprocal element position in a direction perpendicular to the groove with a width of 0.85 mm and a depth of 1 mm. In this way, the inclined pedestal 11 is produced. The inclination angle of the manufactured groove is obtained by theoretical calculation from the relationship between the size difference between the first lens 2 and the second lens 4 and the ideal position.

使用するレンズについて、第1レンズ2にHOYA(株)製のTaF3R0.3(NA=0.35)、第2レンズ4にHOYA(株)製のTaF3R1.0(NA=0.1)を使用し、各部品は無反射コートを施したものを使用する。   Regarding the lens to be used, TaF3R0.3 (NA = 0.35) manufactured by HOYA Co., Ltd. is used for the first lens 2, and TaF3R1.0 (NA = 0.1) manufactured by HOYA Co., Ltd. is used for the second lens 4. However, each part should have a non-reflective coating.

非相反光素子には、偏光子としてのHOYA(株)製のキューポ(登録商標)により、NECトーキン(株)製のGdBiIGガーネット厚膜を挟んで構成したものを用いる。この時、使用するガーネット厚膜には通常ラッチング型と呼ばれる、角形のヒステリシス特性を有する着磁素材を用いることで、マグネットが不要になり、小型化に大いに寄与できる。   As the non-reciprocal light element, an element configured by sandwiching a GdBiIG garnet thick film manufactured by NEC Tokin Co., Ltd. with Cupo (registered trademark) manufactured by HOYA Co., Ltd. as a polarizer is used. At this time, a magnetized material having a square hysteresis characteristic, which is usually called a latching type, is used for the garnet thick film to be used, which eliminates the need for a magnet and can greatly contribute to miniaturization.

光半導体素子1と非相反光素子3を傾斜台座11に固定した後、第1レンズ2と第2レンズ4を配置し、溝に沿って調芯(アライメント)作業を行う。固定はUV硬化型接着剤を用いて、レーザ光をモニタしながら最適位置で瞬間接着する。   After the optical semiconductor element 1 and the nonreciprocal light element 3 are fixed to the inclined pedestal 11, the first lens 2 and the second lens 4 are arranged, and alignment work is performed along the groove. For fixing, a UV curable adhesive is used and instant bonding is performed at an optimum position while monitoring the laser beam.

このようにして作製された光発振装置は、各部品のARコート反射、非相反光素子の挿入損失、およびアライメントエラーを除いて0.27dBと従来の円筒状レンズ品に遜色のない特性が得られる。   The optical oscillation device thus fabricated has a characteristic comparable to that of a conventional cylindrical lens product of 0.27 dB except for AR coating reflection of each component, insertion loss of nonreciprocal light elements, and alignment error. It is done.

本発明の実施例2の光発振装置を図1に基づいて説明する。ベースとなる傾斜台座11にはSi基板を用いた。まずSi基板の片面の一部に5.03degの角度を付けて研磨(#6000)を行い、ダイシングによってV溝を深さ0.4mmで形成する。V溝を作るためのダイシング用ブレードは、断面がV字形になるように研削加工したレジンボンディングブレードを用いる。このV字形状の寸法は、使用するレンズの大きさによって左右される。また、この時発生するチッピングを取り除くため、切断後はさらに表面を研磨(#6000)する。溝の幅は0.03mm(±0.005mm)となるように切断を行う。この後、設計上の非相反素子位置に、溝と直交する方向に非相反光素子固定用の切り込みを幅0.85mm、深さ1mmで作製する。このようにして傾斜台座11を作製する。前記作製された溝の傾斜角度は第1レンズ2、第2レンズ4の大きさの差と理想的な位置の関係から理論計算して求めたものである。   A light oscillation device according to a second embodiment of the present invention will be described with reference to FIG. A Si substrate was used for the inclined pedestal 11 serving as a base. First, a part of one side of the Si substrate is polished at an angle of 5.03 deg (# 6000), and a V groove is formed with a depth of 0.4 mm by dicing. As a dicing blade for forming the V-groove, a resin bonding blade ground so as to have a V-shaped cross section is used. The V-shaped dimension depends on the size of the lens used. Further, in order to remove the chipping generated at this time, the surface is further polished (# 6000) after cutting. Cutting is performed so that the width of the groove is 0.03 mm (± 0.005 mm). Thereafter, a notch for fixing the nonreciprocal light element is formed at a design nonreciprocal element position in a direction orthogonal to the groove with a width of 0.85 mm and a depth of 1 mm. In this way, the inclined pedestal 11 is produced. The inclination angle of the manufactured groove is obtained by theoretical calculation from the relationship between the size difference between the first lens 2 and the second lens 4 and the ideal position.

使用するレンズについて、第1レンズ2にHOYA(株)製のTaF3R0.3(NA=0.35)、第2レンズ4にHOYA(株)製のTaF3R1.0(NA=0.1)を使用し、各部品は無反射コートを施したものを使用する。   Regarding the lens to be used, TaF3R0.3 (NA = 0.35) manufactured by HOYA Co., Ltd. is used for the first lens 2, and TaF3R1.0 (NA = 0.1) manufactured by HOYA Co., Ltd. is used for the second lens 4. However, each part should have a non-reflective coating.

非相反光素子3には、偏光子としてのHOYA(株)製のキューポ(登録商標)により、NECトーキン(株)製のGdBiIGガーネット厚膜を挟んで構成したものを用いる。この時、使用するガーネット厚膜には通常ラッチング型と呼ばれる、角形のヒステリシス特性を有する着磁素材を用いることで、マグネットが不要になり、小型化に大いに寄与できる。   The non-reciprocal light element 3 is formed by sandwiching a GdBiIG garnet thick film manufactured by NEC TOKIN Co., Ltd. with a cupo (registered trademark) manufactured by HOYA Co., Ltd. as a polarizer. At this time, a magnetized material having a square hysteresis characteristic, which is usually called a latching type, is used for the garnet thick film to be used, which eliminates the need for a magnet and can greatly contribute to miniaturization.

光半導体素子1と非相反光素子3を傾斜台座11に固定した後、第1レンズ2と第2レンズ4を配置し、溝に沿って調芯(アライメント)作業を行う。固定はUV硬化型接着剤を用いて、レーザ光をモニタしながら最適位置で瞬間接着する。このようにして作製された光発振装置は、各部品のARコート反射、非相反光素子の挿入損失、アライメントエラーを除いて0.27dBと従来の円筒状レンズ品に遜色のない特性が得られる。   After the optical semiconductor element 1 and the nonreciprocal light element 3 are fixed to the inclined pedestal 11, the first lens 2 and the second lens 4 are arranged, and alignment work is performed along the groove. For fixing, a UV curable adhesive is used and instant bonding is performed at an optimum position while monitoring the laser beam. The optical oscillation device manufactured in this way has a characteristic comparable to that of a conventional cylindrical lens product of 0.27 dB except for AR coating reflection of each component, insertion loss of nonreciprocal light element, and alignment error. .

なお、上記実施例においては、上面に溝が形成された傾斜台座を用いたが、平行平板の台座の上面に溝を形成し、この台座をくさび形の板などの上に載せ、傾けて使用してもよい。   In the above embodiment, an inclined pedestal with a groove formed on the upper surface is used, but a groove is formed on the upper surface of a parallel plate pedestal, and this pedestal is placed on a wedge-shaped plate and used in an inclined manner. May be.

以上の結果から、本発明の光発振装置は、特性的に問題がなく、簡易な光学系で、容易な調芯により作製できる。従って、本発明によれば、低価格で生産性の良い光発振装置を提供することができる。   From the above results, the optical oscillation device of the present invention has no problem in characteristics and can be manufactured by simple alignment with a simple optical system. Therefore, according to the present invention, it is possible to provide an optical oscillation device that is inexpensive and has high productivity.

本発明の光発振装置を示す模式図。The schematic diagram which shows the optical oscillation apparatus of this invention. 光発振装置の光学的構成図。The optical block diagram of an optical oscillation apparatus. 従来の光発振装置を示す模式図。The schematic diagram which shows the conventional optical oscillation apparatus.

符号の説明Explanation of symbols

1 光半導体素子
2 第1レンズ
3 非相反光素子
4 第2レンズ
5 光ファイバ
6 光軸
7 光束
8,9 台座
10 ベース材
11 傾斜台座
15 溝形成面
16 底面
17 光半導体素子固定面
1 optical semiconductor element 2 first lens
3 Non-reciprocal light element 4 Second lens
5 Optical fiber 6 Optical axis 7 Luminous flux 8, 9 Base 10 Base material 11 Inclined base 15 Groove forming surface 16 Bottom surface 17 Optical semiconductor element fixing surface

Claims (5)

レーザ発振素子と、発振されたレーザ光を平行化する第1レンズと、該第1レンズを通過したレーザ光が入射される非相反光素子と、該非相反光素子を通過したレーザ光を光ファイバに集光するための第2レンズと、前記第1レンズおよび第2レンズの固定位置を導く溝が形成された台座とを備える光発振装置において、前記第1および第2のレンズは球状のレンズであり、前記溝は、前記レーザ光の光軸方向に延伸するとともに、前記光軸と溝を含む平面内で、前記光軸方向から傾斜したことを特徴とする光発振装置。   A laser oscillation element; a first lens that collimates the oscillated laser light; a nonreciprocal light element that receives the laser light that has passed through the first lens; and a laser beam that has passed through the nonreciprocal light element as an optical fiber. A light oscillation device comprising: a second lens for condensing light; and a pedestal on which a groove for guiding the fixed position of the first lens and the second lens is formed. The first and second lenses are spherical lenses. The groove extends in the optical axis direction of the laser beam and is inclined from the optical axis direction in a plane including the optical axis and the groove. 前記台座の溝が形成された面は、対向する底面に対して、前記溝の延伸方向に傾斜したことを特徴とする請求項1に記載の光発振装置。   2. The optical oscillation device according to claim 1, wherein a surface of the pedestal on which the groove is formed is inclined with respect to an opposing bottom surface in an extending direction of the groove. 前記底面は、前記光軸と平行に形成されたことを特徴とする請求項1または2に記載の光発振装置。   The optical oscillation device according to claim 1, wherein the bottom surface is formed in parallel with the optical axis. 前記溝の断面形状はV字形であることを特徴とする請求項1から3のいずれかに記載の光発振装置。   4. The optical oscillation device according to claim 1, wherein a cross-sectional shape of the groove is V-shaped. 前記溝の断面形状は矩形であることを特徴とする請求項1から3のいずれかに記載の光発振装置。   4. The optical oscillation device according to claim 1, wherein the groove has a rectangular cross-sectional shape.
JP2003275188A 2003-07-16 2003-07-16 Optical oscillation device Pending JP2005037730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275188A JP2005037730A (en) 2003-07-16 2003-07-16 Optical oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275188A JP2005037730A (en) 2003-07-16 2003-07-16 Optical oscillation device

Publications (1)

Publication Number Publication Date
JP2005037730A true JP2005037730A (en) 2005-02-10

Family

ID=34211914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275188A Pending JP2005037730A (en) 2003-07-16 2003-07-16 Optical oscillation device

Country Status (1)

Country Link
JP (1) JP2005037730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102476A (en) * 2018-12-20 2020-07-02 三菱電機株式会社 Spherical lens support structure, spherical lens height adjusting method using the same, and optical communication module manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102476A (en) * 2018-12-20 2020-07-02 三菱電機株式会社 Spherical lens support structure, spherical lens height adjusting method using the same, and optical communication module manufacturing method
JP7202874B2 (en) 2018-12-20 2023-01-12 三菱電機株式会社 Ball lens height adjustment method and optical communication module manufacturing method

Similar Documents

Publication Publication Date Title
US7444046B2 (en) Diode laser array coupling optic and system
US6527455B2 (en) Multilayer optical fiber coupler
US7137745B2 (en) Subassembly and optical module
US6128134A (en) Integrated beam shaper and use thereof
JP4008064B2 (en) Optical isolator and manufacturing method thereof
EP0826995B1 (en) An optoelectronic module having its components mounted on a single mounting member
JP2006106746A (en) Opto-electronics module having high coupling efficiency
US5859942A (en) Optical coupling device
JPH10282364A (en) Assembly of optical device
JP4361024B2 (en) Optical circuit
US5757830A (en) Compact micro-optical edge-emitting semiconductor laser assembly
JPH10274733A (en) Device which accurately arranges micro optical components on supporting body
EP0826992B1 (en) Mounting a planar optical component on a mounting member
US6157502A (en) Optical bench circularizer having alignment indentations and associated methods
US5771323A (en) Micro-photonics module
JP2005037730A (en) Optical oscillation device
JPS6360413A (en) Coupling method for light emitting element and optical fiber and optical waveguide type coupling device
JPH11160569A (en) Optical coupling circuit
Nakagawa et al. Lens-coupled laser diode module integrated on silicon platform
JP2002202439A (en) Optical waveguide body, optical waveguide device having it and optical module
JPH11194237A (en) Optical waveguide and its manufacture, and coupling structure between optical waveguide and photodetector
JP2002055264A (en) Method for matching inclined waveguide with optical part mounted on base and related optical device
JPH05241048A (en) Coupling device for optical parts
US7639436B2 (en) Optical module having the light incident surface of a lens inclined on a substrate and a method of manufacturing the same
JPH09325243A (en) Optical hybrid integrated circuit device