JP2005037206A - Remote sensing apparatus and frequency analysis method of the same - Google Patents

Remote sensing apparatus and frequency analysis method of the same Download PDF

Info

Publication number
JP2005037206A
JP2005037206A JP2003199104A JP2003199104A JP2005037206A JP 2005037206 A JP2005037206 A JP 2005037206A JP 2003199104 A JP2003199104 A JP 2003199104A JP 2003199104 A JP2003199104 A JP 2003199104A JP 2005037206 A JP2005037206 A JP 2005037206A
Authority
JP
Japan
Prior art keywords
frequency
carrier frequency
pattern plate
rotation
remote sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003199104A
Other languages
Japanese (ja)
Other versions
JP3846725B2 (en
Inventor
Takao Naganami
隆夫 長南
Minoru Toshida
実 土志田
Akiko Harasaki
亜紀子 原崎
Noboru Narumi
昇 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Toshiba Corp
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Toshiba Corp
Priority to JP2003199104A priority Critical patent/JP3846725B2/en
Publication of JP2005037206A publication Critical patent/JP2005037206A/en
Application granted granted Critical
Publication of JP3846725B2 publication Critical patent/JP3846725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heighten accuracy in frequency resolution without lengthening sampling times. <P>SOLUTION: Laser reflection light chopped by an optical pattern plate from an object to be measured is received. Its reception signal is converted into a signal in a frequency region to analyze a frequency component at prescribed sampling times. As an analytical technique, carrier frequency candidate values are determined through the use of the relational expression f<SB>rc</SB>=f<SB>rs</SB>×n<SB>d</SB>(wherein, the rotational frequency of the optical pattern plate is f<SB>rs</SB>; the carrier frequency generated by the chopping of light by rotation is f<SB>rc</SB>; and the number of divisions (a pair of integral values) of patterns of transmission/non transmission formed in the optical pattern plate 11 is n<SB>d</SB>) (S12). Each candidate value is evaluated to select the most provable carrier frequency, and the relational expression f<SB>rs</SB>=f<SB>rc</SB>/n<SB>d</SB>is used to determine the rotational frequency (S14). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転する光学パターン板に像を結像する機能を有する測定対象にレーザ光を照射し、その反射光から測定対象のパターン板の回転周波数やパターン特性を分析するリモートセンシング装置とその周波数分析方法に関する。
【0002】
【従来の技術】
従来のレーザ・レーダに代表されるリモートセンシング装置にあっては、測定対象に対してレーザ光を照射し、測定対象からのレーザ反射光を受信し、その反射光を分析することによって測定対象の特徴情報を抽出している。この測定対象が、回転中心から放射状に透過/不透過のパターンを形成した光学パターン板を有しており、その光学パターン板を所定の速度で回転させながら像を結像させている場合は、レーザ反射光の受信信号の周波数成分を分析することで、光学パターン板の回転周波数と光チョッピングによって生じるキャリア周波数を抽出することが可能である。
【0003】
ところで、従来の装置構成では、レーザ反射光の受信信号を周波数変換し、所要の精度に対応した周波数分解能を有するFFT(高速フーリエ変換)を行っている。但し、要求される周波数分解能の精度が高くなるに従って、その分、サンプリング時間を長くとる必要がある。また、キャリア周波数を求める方法としては、単純に最大値を求めるといった簡易的な手法がとられており、変調がかかった反射光を受信する場合には、受信信号に容易には分離できない側波成分が現れてしまう。
【0004】
尚、本発明の先行関連技術として、光学システムからのレーザ反射光がシーカによって変調されており、その信号には光学パターン板の回転周波数やパターン特性などが含まれることを述べた文献がある。
【0005】
【非特許文献1】
”INFRARED COUNTERMEASURE & COUNTER−COUNTERMEASURE” Presented by Acknowledged Infrared Systems and Modeling Expert: Mr. Joel S. Davis, SAN DIEGO, CA OCTOBER 11−13, 2000, LAS VEGAS, NV OCTOBER 16−18, 2000, ORLANDO, FL OCTOBER 25−27,2000, WASHINGTON DC OCT 30 − NOV 1, 2000。
【0006】
【発明が解決しようとする課題】
以上述べたように、従来の光学パターン回転板を用いたレーザ送受信によるリモートセンシング装置では、周波数分解能の精度を高めるためにはサンプリング時間を長くとる必要があり、変調がかかった反射光を受信した場合には、受信信号にキャリア周波数から分離が困難な側波成分が現れてしまうといった問題が生じている。
【0007】
本発明は上記の問題を解決するためになされたもので、サンプリング時間を長くしなくても周波数分解能の精度を高めることができ、さらに変調がかかった反射光受信出力からキャリア周波数と側波成分とを容易に分離することのできるリモートセンシング装置とその周波数分析方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために本発明に係るリモートセンシング装置は、レーザ送信光を測定対象に向けて送出し、そのレーザ反射光を光受信器によって受信する光学系装置と、前記光受信器によって得られた受信信号を周波数領域の信号に変換する周波数変換器と、前記周波数変換器によって得られた周波数領域の信号の周波数成分を分析する周波数分析器とを具備する。
【0009】
前記周波数分析器の周波数分析方法としては、前記光学パターン板の回転周波数をfrs 、回転で光がチョッピングされることによって生じるキャリア周波数をfrc 、前記光学パターン板の分割数(1ペアの整数値)をn とするときの第1の関係式frc =frs ×n を用いて、前記周波数領域の信号中のキャリア周波数候補値を求め、各候補値を評価して最も可能性が高いキャリア周波数を選定し、第2の関係式frs = frc /n を用いて前記回転周波数を求めることを特徴とする。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0011】
図1は、本発明が適用されるリモートセンシング装置の概略構成を示す図である。図1において、11は測定対象において回転中心から放射状に透過/不透過のパターンを形成した光学パターン板である。レーザ12から放射されるレーザ送信光は測定対象である光学パターン板11によってチョッピングされつつ反射され、そのレーザ反射光はパルス列となって光受信器13によって受信される。ここで得られた受信信号は、周波数変換器14に入力され、所定の精度を有するFFTによって時間領域の信号から周波数領域の信号に変換される。このようにして得られた周波数領域の信号は周波数分析器15により周波数分析が行われる。その分析結果は、表示装置16に適宜表示される。
【0012】
上記構成において、まず本発明の概要について説明する。
【0013】
測定対象である光学パターン板透過光の周波数には、光学パターン板11の回転周波数frs と、回転で光がチョッピングされることによって生じるキャリア周波数frc がある。この2種類の周波数は、光学パターン板11の構造上の特徴から、以下の関係式が成立する。
【0014】
rc =frs ×n
ここで、n は、光学パターン板11に形成される透過/不透過のパターンの分割数(1ペアの整数値)である。
【0015】
本発明は、上記の関係を利用することにより、同じサンプリング時間にて、FFTによって得られる周波数分解能のn 倍の周波数精度で周波数分析を行う手法を提案するものである。すなわち、同じ周波数精度を得る場合には、従来のFFTによる方法に比べて1/n サンプリング時間で周波数分析を行うことができる。
【0016】
また、光学パターン板11の回転周波数とキャリア周波数との関係から、その関係を満たさない周波数を不要な周波数成分と見なして除去することにより、分析精度の向上が期待できる。さらに、変調がかかった反射光には、キャリア周波数に対して回転周波数成分の側波成分が現れるが、この関係を用いれば、キャリア周波数と側波成分とを容易に分離することができる。
【0017】
(第1の実施形態)
図2は、本発明を適用した場合の周波数分析器15の処理手順を示すフローチャートである。図2において、まず、光学パターン板11の回転周波数の概略値を演算し(ステップS11)、その回転周波数概略値からキャリア周波数の可能性のある候補を選択し、その候補値を演算する(ステップS12)。続いて、ステップS12で得られたキャリア周波数候補値を基に、周波数分析器15によって周波数領域信号から不要な周波数成分を除去し(ステップS13)、キャリア周波数候補から評価関数を用いてキャリア周波数を選定すると共に、その値から回転周波数を演算し(ステップS14)、これによって得られたキャリア周波数及び回転周波数の結果を表示装置16へ送出する。
【0018】
上記処理手順における具体的な動作内容を説明する。
【0019】
図3はレーザ反射光の時間変化をモデル化して示すもので、光学パターン板11が、図3(a)に示すように、半円領域と残りが均等に分割形成された複数の光学パターンにより形成されている場合、レーザ反射光には、図3(b)に示すように、光学パターン板11の回転周波数成分とキャリア周波数成分が重畳されている。光学パターン板11からのレーザ反射光は、周波数変換器14によって周波数領域の信号に変換される。
【0020】
図4に図3の反射光時間変化モデルのFFT結果を示す。光学パターン板11の用途及び製造上の制約で回転周波数frsと光学パターン板分割数n は、ある範囲に限定される。そこで、ステップS11にて回転周波数領域の最大値を光学パターン板11の回転周波数概略値frs’とする。この周波数は、周波数変換固有の周波数精度となっている。
【0021】
次に、ステップS12にてfrc =frs ×n の関係とn の候補値nが有限の整数値をとることを用いて、光学パターン板11のキャリア周波数の候補値frc’(n) を演算する。この演算はfrs’×nの近傍の周波数変換された値の最大値を求めるなどによって行う。
【0022】
さらに、ステップS13にて、図5に示すようにfrs’×n±Δf(=frc’(n) ±Δf,frc’(n+1) ±Δf,frc’(n+2) ±Δf,…)の範囲で周波数範囲を制限することによって、通常の周波数変換では除去できない不要周波数成分を除去する。
【0023】
最後に、ステップS14において、候補値frc’(n) を後述の第2の実施形態で述べる評価関数を用いて評価し、もっともキャリア周波数である可能性が高いものをfrc として選定する。また、このときのnの値が光学パターン板11の分割数n であるから、光学パターン板11の回転周波数frs
rs = frc /n
から求められる。
【0024】
ここで求められた光学パターン板11の回転周波数は、周波数変換で求められたキャリア周波数をn で割っている。このため、周波数精度も周波数変換を行った際の1/n に向上している。別の見方をすると、所要の周波数精度を得ようとする場合、周波数変換(例えばFFT)だけで周波数を求める場合の1/n のサンプリング時間で計測することができる。
【0025】
(第2の実施形態)
第1の実施形態の中で、キャリア周波数候補値frc’(n) からキャリア周波数を選定する手段について説明する。
【0026】
光学パターン板11からの反射光は、光学パターン板11の用途によっては、スリットパターンによって変調された反射光が帰ってくる場合もあり得る。反射光がAM変調の場合とFM変調の場合のFFT結果のシミュレーション例をそれぞれ図6及び図7に示す。
【0027】
図6において、(a)はAM変調された反射光、(b)〜(d)はそれぞれAM変調率m (=V /V )が0.1,0.5,1.0の場合の周波数分布を示している。また、図7において、(a)はFM変調された反射光、(b)〜(d)はそれぞれFM変調指数m (=f /f )が0.1,1.0,2.0の場合の周波数分布を示している。
【0028】
図6、図7からわかるように、変調率や変調指数が大きい場合は側波成分が大きくなり、キャリア成分と側波成分の分離が困難になる場合もあり得る。そこで、キャリア周波数に対して側波成分は、常に左右対称の形をとっている特徴を利用し、左右対称度が最も大きくなる周波数をキャリア周波数として選択する。左右対称度の評価するためのキャリア周波数分布の一例を図8に示す。この場合は、

Figure 2005037206
と定義したときのE が最も小さくなるf を左右対称度がよいと判定する。
【0029】
(第3の実施形態)
第1の実施形態では、図2のステップS11〜S14で示される処理手順にて光学パターンのキャリア周波数と回転周波数を求めたが、図7に示したFM変調の反射光のように、回転周波数成分が小さく回転周波数の概略値の演算が困難な場合には、以下のような処理手順が有効である。
【0030】
図9はその処理の流れを示すフローチャートである。まず、光学パターン板11のキャリア周波数を演算し(ステップS21)、このキャリア周波数から回転周波数の可能性のある候補値を演算する(ステップS22)。続いて、ステップS22で得られた回転周波数候補値を基に回転周波数を選択し(ステップS23)、得られたキャリア周波数、回転周波数の結果を表示装置16に出力する(ステップS24)。
【0031】
次に、図10を参照して上記処理手順を具体的に説明する。
【0032】
前述のように、反射光がFM変調を受けていると、回転周波数成分が得られない場合がある。この場合は、図10に示すように、側波周波数とキャリア周波数の差が回転周波数となることを利用する。ステップS21にてキャリア周波数領域の最大値を光学パターン板11のキャリア周波数frcとする。この周波数は、周波数変換固有の周波数精度となっている。
【0033】
次に、ステップS22にて、frc =frs ×n の関係とn の候補値nが有限の整数値をとることを用いて、回転周波数の候補値frs’(n)をfrs’(n)=frc/nで求める。ステップS23にて、この候補値frs’(n)をもとに、frc’−frs’(n)の周波数の振幅の最も大きいnを分割数n として選定する。
【0034】
光学パターン板11の回転周波数frs
rs =frc /n
から求められる。ここで求められた光学パターン板の回転周波数は、周波数変換で求められたキャリア周波数frcをn で割っているため、周波数精度も周波数変換を行った際の1/n に向上している。
【0035】
【発明の効果】
以上のように本発明によれば、サンプリング時間を長くしなくても周波数分解能の精度を高めることができ、さらに変調がかかった反射光受信出力からキャリア周波数と側波成分とを容易に分離することのできるリモートセンシング装置とその周波数分析方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るリモートセンシング装置の実施形態の概略構成を示すブロック図。
【図2】第1の実施形態として、図1の周波数分析器の処理手順を示すフローチャート。
【図3】第1の実施形態において、レーザ反射光の時間変化をモデル化して示す光学パターンと周波数分布図。
【図4】図3の反射光時間変化モデルのFFT結果を示す周波数分布図。
【図5】第1の実施形態において、不要周波数を除去する処理を説明するための周波数分布図。
【図6】第2の実施形態を説明するために、AM変調における変調率に対するFFTシミュレーション例を示す図。
【図7】第2の実施形態を説明するために、FM変調における変調指数に対するFFTシミュレーション例を示す図。
【図8】第2の実施形態を説明するために、左右対称度の評価関数の一例を説明するための周波数分布図。
【図9】本発明の第3の実施形態として、図1の周波数分析器の処理手順を示すフローチャート。
【図10】第3の実施形態の処理手順を具体的に説明するためにレーザ反射光のFFT結果を示す周波数分布図。
【符号の説明】
11…光学パターン板、12…レーザ、13…光受信器、14…周波数変換器、15…周波数分析器、16…表示装置。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a remote sensing device for irradiating a measurement target having a function of forming an image on a rotating optical pattern plate with laser light, and analyzing the rotational frequency and pattern characteristics of the pattern plate to be measured from the reflected light, and The present invention relates to a frequency analysis method.
[0002]
[Prior art]
In a remote sensing device represented by a conventional laser / radar, a laser beam is irradiated onto a measurement target, a laser reflected light from the measurement target is received, and the reflected light is analyzed to analyze the measurement target. Feature information is extracted. When this measuring object has an optical pattern plate in which a transmission / non-transmission pattern is formed radially from the rotation center, and an image is formed while rotating the optical pattern plate at a predetermined speed, By analyzing the frequency component of the received signal of the laser reflected light, it is possible to extract the rotation frequency of the optical pattern plate and the carrier frequency generated by optical chopping.
[0003]
By the way, in the conventional apparatus configuration, the received signal of the laser reflected light is frequency-converted, and FFT (Fast Fourier Transform) having a frequency resolution corresponding to the required accuracy is performed. However, as the accuracy of the required frequency resolution increases, it is necessary to increase the sampling time accordingly. As a method for obtaining the carrier frequency, a simple method such as simply obtaining the maximum value is employed. When receiving reflected light that has been modulated, side waves that cannot be easily separated into received signals are used. Ingredients appear.
[0004]
As a prior art of the present invention, there is a document that states that laser reflected light from an optical system is modulated by a seeker, and that the signal includes the rotation frequency and pattern characteristics of the optical pattern plate.
[0005]
[Non-Patent Document 1]
"INFRARED COUNTERMEAURE &COUNTER-COUNTERMEAURE" Presented by Acknowledged Infrared Systems and Modeling Expert: Mr. Joel S. Davis, SAN DIEGO, CA OCTOBER 11-13, 2000, LAS VEGAS, NV OCTOBER 16-18, 2000, ORLANDO, FL OCTOBER 25-27, 2000, WASHINGTON DC OCT 30-NOV 1,2000.
[0006]
[Problems to be solved by the invention]
As described above, in the remote sensing device by laser transmission / reception using the conventional optical pattern rotating plate, it is necessary to take a long sampling time in order to improve the accuracy of the frequency resolution, and the modulated reflected light is received. In such a case, there is a problem that a side wave component that is difficult to separate from the carrier frequency appears in the received signal.
[0007]
The present invention has been made to solve the above problem, and can improve the accuracy of the frequency resolution without increasing the sampling time, and further, the carrier frequency and the side wave component from the modulated reflected light reception output. It is an object of the present invention to provide a remote sensing device and a frequency analysis method thereof that can be easily separated from each other.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a remote sensing device according to the present invention transmits a laser transmission light toward a measurement object and receives the reflected laser beam by an optical receiver, and the optical receiver. A frequency converter that converts the obtained received signal into a frequency domain signal, and a frequency analyzer that analyzes a frequency component of the frequency domain signal obtained by the frequency converter.
[0009]
As frequency analysis method of the frequency analyzer, the f rs rotation frequency of the optical pattern plate, the carrier frequency caused by the light is chopped f rc in rotation, integer number of divisions (one pair of the optical pattern plate numerical) using a first relational expression f rc = f rs × n d when the n d, obtains the carrier frequency candidate values in the signal in the frequency domain, most likely evaluates each candidate value is selected high carrier frequency, and obtains the rotational frequency using a second relational expression f rs = f rc / n d .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a diagram showing a schematic configuration of a remote sensing device to which the present invention is applied. In FIG. 1, reference numeral 11 denotes an optical pattern plate in which a transmission / non-transmission pattern is formed radially from the center of rotation on the measurement object. The laser transmission light emitted from the laser 12 is reflected while being chopped by the optical pattern plate 11 to be measured, and the laser reflected light is received by the optical receiver 13 as a pulse train. The received signal obtained here is input to the frequency converter 14 and converted from a time-domain signal to a frequency-domain signal by an FFT having a predetermined accuracy. The frequency domain signal thus obtained is subjected to frequency analysis by the frequency analyzer 15. The analysis result is appropriately displayed on the display device 16.
[0012]
In the above configuration, the outline of the present invention will be described first.
[0013]
The frequency of the optical pattern plate transmission light to be measured includes the rotation frequency frs of the optical pattern plate 11 and the carrier frequency frc generated by light being chopped by rotation. From the structural characteristics of the optical pattern plate 11, the following relational expressions are established for these two types of frequencies.
[0014]
f rc = f rs × n d
Here, nd is the number of transmission / non-transmission pattern divisions formed on the optical pattern plate 11 (one pair of integer values).
[0015]
The present invention proposes a technique for performing frequency analysis with frequency accuracy of nd times the frequency resolution obtained by FFT at the same sampling time by using the above relationship. That is, when the same frequency accuracy is obtained, frequency analysis can be performed in 1 / nd sampling time as compared with the conventional FFT method.
[0016]
Further, from the relationship between the rotation frequency of the optical pattern plate 11 and the carrier frequency, the frequency that does not satisfy the relationship is regarded as an unnecessary frequency component and removed, so that improvement in analysis accuracy can be expected. Further, in the modulated reflected light, the side frequency component of the rotation frequency component appears with respect to the carrier frequency. By using this relationship, the carrier frequency and the side wave component can be easily separated.
[0017]
(First embodiment)
FIG. 2 is a flowchart showing a processing procedure of the frequency analyzer 15 when the present invention is applied. In FIG. 2, first, an approximate value of the rotation frequency of the optical pattern plate 11 is calculated (step S11), a candidate with a possible carrier frequency is selected from the approximate rotation frequency value, and the candidate value is calculated (step). S12). Subsequently, based on the carrier frequency candidate value obtained in step S12, unnecessary frequency components are removed from the frequency domain signal by the frequency analyzer 15 (step S13), and the carrier frequency is calculated from the carrier frequency candidate using the evaluation function. At the same time, the rotation frequency is calculated from the value (step S14), and the carrier frequency and rotation frequency results obtained thereby are sent to the display device 16.
[0018]
Specific operation contents in the above processing procedure will be described.
[0019]
FIG. 3 shows the time variation of the laser reflected light as a model. As shown in FIG. 3A, the optical pattern plate 11 is formed by a plurality of optical patterns in which the semicircular region and the remainder are divided and formed equally. If formed, the rotation frequency component and the carrier frequency component of the optical pattern plate 11 are superimposed on the laser reflected light as shown in FIG. The laser reflected light from the optical pattern plate 11 is converted into a frequency domain signal by the frequency converter 14.
[0020]
FIG. 4 shows the FFT result of the reflected light time change model of FIG. The rotational frequency frs and the number of divisions n d of the optical pattern plate are limited to a certain range due to the application and manufacturing restrictions of the optical pattern plate 11. Accordingly, in step S11, the maximum value in the rotation frequency region is set as the approximate rotation frequency value f rs ′ of the optical pattern plate 11. This frequency has frequency accuracy unique to frequency conversion.
[0021]
Next, using the f rc = f rs × n candidate values n relationship with n d of d takes an integer value of the finite step S12, the candidate value f rc of the carrier frequency of the optical pattern plate 11 '( n) is calculated. This calculation is performed by obtaining the maximum value of the frequency converted values in the vicinity of f rs ' × n.
[0022]
Further, in step S13, as shown in FIG. 5, f rs ′ × n ± Δf (= f rc ′ (n) ± Δf, f rc ′ (n + 1) ± Δf, f rc ′ (n + 2) ± Δf,. ), The unnecessary frequency components that cannot be removed by normal frequency conversion are removed.
[0023]
Finally, in step S14, the candidate value f rc ′ (n) is evaluated using an evaluation function described in the second embodiment described later, and the one having the highest possibility of being the carrier frequency is selected as f rc . Further, since the value of n at this time is the division number nd of the optical pattern plate 11, the rotation frequency f rs of the optical pattern plate 11 is f rs = f rc / n d.
It is requested from.
[0024]
Here the rotational frequency of the optical pattern plate 11 obtained is divided by the carrier frequency obtained by frequency conversion by n d. Therefore, it is improved to 1 / n d when frequency accuracy also performed frequency conversion. From another viewpoint, in order to obtain the required frequency accuracy, it can be measured by the sampling time of 1 / n d of the case of obtaining the frequency by a frequency converter (for example, FFT).
[0025]
(Second Embodiment)
A means for selecting a carrier frequency from the carrier frequency candidate value f rc ′ (n) in the first embodiment will be described.
[0026]
The reflected light from the optical pattern plate 11 may return reflected light modulated by the slit pattern depending on the use of the optical pattern plate 11. FIGS. 6 and 7 show simulation examples of FFT results when the reflected light is AM modulated and FM modulated, respectively.
[0027]
In FIG. 6, (a) is AM-modulated reflected light, and (b) to (d) are AM modulation rates m a (= V s / V c ) of 0.1, 0.5, and 1.0, respectively. The frequency distribution in the case is shown. 7, (a) is FM-modulated reflected light, and (b) to (d) are FM modulation indices m f (= f s / f d ) of 0.1, 1.0, 2,. The frequency distribution in the case of 0 is shown.
[0028]
As can be seen from FIG. 6 and FIG. 7, when the modulation rate and modulation index are large, the side wave component becomes large, and it may be difficult to separate the carrier component and the side wave component. Therefore, the side wave component with respect to the carrier frequency is always used in a bilaterally symmetric form, and the frequency with the highest left-right symmetry is selected as the carrier frequency. An example of the carrier frequency distribution for evaluating the left-right symmetry is shown in FIG. in this case,
Figure 2005037206
It is determined that f n having the smallest E n when defined as having good left-right symmetry.
[0029]
(Third embodiment)
In the first embodiment, the carrier frequency and the rotation frequency of the optical pattern are obtained by the processing procedure shown in steps S11 to S14 of FIG. 2, but the rotation frequency is similar to the reflected light of the FM modulation shown in FIG. When the components are small and it is difficult to calculate the approximate value of the rotation frequency, the following processing procedure is effective.
[0030]
FIG. 9 is a flowchart showing the processing flow. First, the carrier frequency of the optical pattern plate 11 is calculated (step S21), and a candidate value that may be a rotation frequency is calculated from the carrier frequency (step S22). Subsequently, a rotation frequency is selected based on the rotation frequency candidate value obtained in step S22 (step S23), and the obtained carrier frequency and rotation frequency results are output to the display device 16 (step S24).
[0031]
Next, the processing procedure will be specifically described with reference to FIG.
[0032]
As described above, when the reflected light is subjected to FM modulation, a rotation frequency component may not be obtained. In this case, as shown in FIG. 10, the fact that the difference between the side frequency and the carrier frequency becomes the rotation frequency is used. In step S21, the maximum value in the carrier frequency region is set as the carrier frequency frc of the optical pattern plate 11. This frequency has frequency accuracy unique to frequency conversion.
[0033]
Next, in step S22, f rc = f rs × n candidate values n relationship with n d of d is used to take an integer value of a finite, the candidate value f rs of the rotation frequency 'a (n) f rs ′ (n) = f rc / n In step S23, 'on the basis of the (n), f rc' the candidate value f rs selects the largest n of the amplitude of the frequency of -f rs' (n) as the number of divisions n d.
[0034]
The rotation frequency f rs of the optical pattern plate 11 is f rs = f rc / n d
It is requested from. Rotation frequency here the obtained optical pattern plate, because it divides the carrier frequency f rc obtained by frequency conversion by the n d, improved to 1 / n d at the time of performing frequency accuracy frequency transform Yes.
[0035]
【The invention's effect】
As described above, according to the present invention, the accuracy of frequency resolution can be increased without increasing the sampling time, and the carrier frequency and the side wave component can be easily separated from the modulated reflected light reception output. It is possible to provide a remote sensing device capable of performing the same and a frequency analysis method thereof.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a remote sensing device according to the present invention.
FIG. 2 is a flowchart showing a processing procedure of the frequency analyzer shown in FIG. 1 as the first embodiment.
FIGS. 3A and 3B are an optical pattern and a frequency distribution diagram showing a time change of laser reflected light as a model in the first embodiment. FIGS.
4 is a frequency distribution diagram showing an FFT result of the reflected light time change model of FIG. 3;
FIG. 5 is a frequency distribution diagram for explaining processing for removing unnecessary frequencies in the first embodiment;
FIG. 6 is a diagram illustrating an FFT simulation example with respect to a modulation rate in AM modulation in order to explain the second embodiment.
FIG. 7 is a diagram illustrating an FFT simulation example with respect to a modulation index in FM modulation in order to explain the second embodiment.
FIG. 8 is a frequency distribution diagram for explaining an example of a left-right symmetry evaluation function for explaining the second embodiment;
FIG. 9 is a flowchart showing a processing procedure of the frequency analyzer of FIG. 1 as a third embodiment of the present invention.
FIG. 10 is a frequency distribution diagram showing FFT results of laser reflected light in order to specifically explain the processing procedure of the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Optical pattern board, 12 ... Laser, 13 ... Optical receiver, 14 ... Frequency converter, 15 ... Frequency analyzer, 16 ... Display apparatus.

Claims (10)

回転中心から放射状に透過/不透過のパターンを形成した光学パターン板により光がチョッピングされる測定対象に向けてレーザを送出し、そのレーザ反射光を光受信器によって受信する光学系装置と、前記光受信器によって得られた受信信号を周波数領域の信号に変換する周波数変換器と、前記周波数変換器によって得られた周波数領域の信号を周波数分析する周波数分析器とを具備し、
前記周波数分析器は、前記光学パターン板の回転周波数をfrs 、回転で光がチョッピングされることによって生じるキャリア周波数をfrc 、前記光学パターン板に形成されるパターン板の分割数(1ペアの整数値)をn とするときの第1の関係式frc =frs ×n を用いて、前記周波数領域の信号中のキャリア周波数候補値を求め、各候補値を評価して最も可能性が高いキャリア周波数を選定し、第2の関係式frs = frc /n を用いて前記回転周波数を求めることを特徴とするリモートセンシング装置。
An optical system device that emits a laser beam toward a measurement target in which light is chopped by an optical pattern plate in which a transmission / non-transmission pattern is formed radially from the rotation center, and receives the reflected laser beam by an optical receiver; A frequency converter that converts a received signal obtained by an optical receiver into a frequency domain signal; and a frequency analyzer that performs frequency analysis of the frequency domain signal obtained by the frequency converter,
Said frequency analyzer, the optical pattern plate rotation frequency f rs of the carrier frequency caused by the light is chopped by rotating f rc, the division number of the pattern plate that is formed on the optical pattern plate (1 pairs Using the first relational expression f rc = f rs × n d where n d is an integer value), the carrier frequency candidate value in the signal in the frequency domain is obtained, and each candidate value is evaluated to be the most possible sex selects a high carrier frequency, the remote sensing device, characterized in that obtaining the rotation frequency using a second relational expression f rs = f rc / n d .
前記周波数分析器は、前記周波数領域の信号について、前記光学パターン板の回転周波数領域の最大値を回転周波数の概略値として求め、この概略値から前記キャリア周波数候補値を求めることを特徴とする請求項1記載のリモートセンシング装置。The frequency analyzer calculates a maximum value of a rotation frequency region of the optical pattern plate as an approximate value of a rotation frequency for the signal in the frequency region, and calculates the carrier frequency candidate value from the approximate value. Item 6. The remote sensing device according to Item 1. 前記周波数分析器は、前記キャリア周波数候補値から周波数範囲を制限して不要周波数成分を除去した後に前記キャリア周波数を選定することを特徴とする請求項1記載のリモートセンシング装置。The remote sensing apparatus according to claim 1, wherein the frequency analyzer selects the carrier frequency after removing an unnecessary frequency component by limiting a frequency range from the carrier frequency candidate value. 前記周波数分析器は、前記キャリア周波数候補値のうち、左右対称度を評価して、当該左右対称度が最も大きくなる周波数をキャリア周波数として選定することを特徴とする請求項1記載のリモートセンシング装置。2. The remote sensing device according to claim 1, wherein the frequency analyzer evaluates a left-right symmetry among the carrier frequency candidate values and selects a frequency having the highest left-right symmetry as a carrier frequency. . 前記周波数分析器は、キャリア周波数とその側波周波数との差を回転周波数と見なして処理を行うことを特徴とする請求項1記載のリモートセンシング装置。The remote sensing apparatus according to claim 1, wherein the frequency analyzer performs processing by regarding a difference between a carrier frequency and a side frequency thereof as a rotation frequency. 回転中心から放射状に透過/不透過のパターンを形成した光学パターン板により光がチョッピングされる測定対象に向けてレーザを送出し、そのレーザ反射光を光受信器によって受信する光学系装置と、前記光受信器によって得られた受信信号を周波数領域の信号に変換する周波数変換器と、前記周波数変換器によって得られた周波数領域の信号を周波数分析するリモートセンシング装置の周波数分析方法であって、
前記光学パターン板の回転周波数をfrs 、回転で光がチョッピングされることによって生じるキャリア周波数をfrc 、前記光学パターン板に形成されるパターン板の分割数(1ペアの整数値)をn とするときの第1の関係式frc =frs ×n を用いて、前記周波数領域の信号中のキャリア周波数候補値を求める候補値演算ステップと、
前記キャリア周波数候補値をそれぞれ評価して最も可能性が高いキャリア周波数を選定するキャリア周波数選定ステップと、
前記選定キャリア周波数に基づいて第2の関係式frs = frc /n を用いて前記回転周波数を求める回転周波数演算ステップとを具備することを特徴とするリモートセンシング装置の周波数分析方法。
An optical system device that emits a laser beam toward a measurement target in which light is chopped by an optical pattern plate in which a transmission / non-transmission pattern is formed radially from the rotation center, and receives the reflected laser beam by an optical receiver; A frequency converter for converting a reception signal obtained by an optical receiver into a frequency domain signal, and a frequency analysis method for a remote sensing device for frequency analysis of the frequency domain signal obtained by the frequency converter,
The rotation frequency of the optical pattern plate is f rs , the carrier frequency generated when light is chopped by rotation is f rc , and the number of divisions (one pair of integer values) of the pattern plate formed on the optical pattern plate is n d a first by using a relational expression f rc = f rs × n d , the candidate value calculation step of determining a carrier frequency candidate values in the signal in the frequency domain when a,
A carrier frequency selection step of selecting the most likely carrier frequency by evaluating each of the carrier frequency candidate values;
Frequency analysis method of the remote sensing apparatus characterized by comprising a rotation frequency calculation step of obtaining the rotation frequency using a second relational expression f rs = f rc / n d on the basis of the selected carrier frequency.
さらに、前記周波数領域の信号について、前記光学パターン板の回転周波数領域の最大値を回転周波数の概略値として求める概略値演算ステップを備え、前記候補値演算ステップは、前記概略値から前記キャリア周波数候補値を求めることを特徴とする請求項6記載のリモートセンシング装置の周波数分析方法。Furthermore, it comprises an approximate value calculation step for obtaining a maximum value in the rotation frequency region of the optical pattern plate as an approximate value of the rotation frequency for the signal in the frequency region, and the candidate value calculation step comprises calculating the carrier frequency candidate from the approximate value. 7. The frequency analysis method for a remote sensing device according to claim 6, wherein a value is obtained. さらに、前記キャリア周波数候補値から周波数範囲を制限して不要周波数成分を除去する不要成分除去ステップを備えることを特徴とする請求項6記載のリモートセンシング装置の周波数分析方法。7. The frequency analysis method for a remote sensing device according to claim 6, further comprising an unnecessary component removing step of removing an unnecessary frequency component by limiting a frequency range from the carrier frequency candidate value. 前記キャリア周波数選定ステップは、前記キャリア周波数候補値のうち、左右対称度を評価して、当該左右対称度が最も大きくなる周波数をキャリア周波数として選定することを特徴とする請求項6記載のリモートセンシング装置の周波数分析方法。7. The remote sensing according to claim 6, wherein the carrier frequency selecting step evaluates a left-right symmetry among the carrier frequency candidate values and selects a frequency having the largest left-right symmetry as a carrier frequency. Frequency analysis method for the device. さらに、キャリア周波数とその側波周波数との差を回転周波数と見なして処理を行うことを特徴とする請求項6記載のリモートセンシング装置の周波数分析方法。7. The frequency analysis method for a remote sensing device according to claim 6, wherein the processing is performed by regarding the difference between the carrier frequency and the side frequency as a rotational frequency.
JP2003199104A 2003-07-18 2003-07-18 Remote sensing device and frequency analysis method of remote sensing device Expired - Lifetime JP3846725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199104A JP3846725B2 (en) 2003-07-18 2003-07-18 Remote sensing device and frequency analysis method of remote sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199104A JP3846725B2 (en) 2003-07-18 2003-07-18 Remote sensing device and frequency analysis method of remote sensing device

Publications (2)

Publication Number Publication Date
JP2005037206A true JP2005037206A (en) 2005-02-10
JP3846725B2 JP3846725B2 (en) 2006-11-15

Family

ID=34208660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199104A Expired - Lifetime JP3846725B2 (en) 2003-07-18 2003-07-18 Remote sensing device and frequency analysis method of remote sensing device

Country Status (1)

Country Link
JP (1) JP3846725B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028219A1 (en) * 2004-09-09 2006-03-16 Kabushiki Kaisha Toshiba Remote sensing apparatus
JP2006201373A (en) * 2005-01-19 2006-08-03 Toshiba Corp Laser pulse transmitter-receiver and method for controlling this laser pulse transmitter-receiver
JP2012098214A (en) * 2010-11-04 2012-05-24 Toshiba Corp Remote sensing device and frequency analysis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028219A1 (en) * 2004-09-09 2006-03-16 Kabushiki Kaisha Toshiba Remote sensing apparatus
JP2006078343A (en) * 2004-09-09 2006-03-23 Toshiba Corp Remote sensing device
US7161733B2 (en) 2004-09-09 2007-01-09 Kabushiki Kaisha Toshiba Remote sensing apparatus and a frequency analysis method of the remote sensing apparatus
JP4580720B2 (en) * 2004-09-09 2010-11-17 株式会社東芝 Remote sensing device
JP2006201373A (en) * 2005-01-19 2006-08-03 Toshiba Corp Laser pulse transmitter-receiver and method for controlling this laser pulse transmitter-receiver
JP2012098214A (en) * 2010-11-04 2012-05-24 Toshiba Corp Remote sensing device and frequency analysis method

Also Published As

Publication number Publication date
JP3846725B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
WO2006028219A1 (en) Remote sensing apparatus
JP6416391B2 (en) Method for determining the position of an object using FMCW radar
CN109964143A (en) For handling the method and associated laser radar system of the signal as caused by coherent laser radar
JP5197023B2 (en) Laser radar equipment
CN106415313B (en) The laser range finder of multiple target capability
JP2008516213A (en) Electro-optic distance measurement method by determining non-ideal chirp shape
JP2022501571A (en) Methods and devices for identifying target behavior, as well as radar systems
JP2002065674A (en) Ultrasonic diagnostic device for measuring blood flow rate and its use
US11073498B2 (en) Detection system, detection device, and detection method
US20190383907A1 (en) Acceleration-based fast soi processing
US20230168381A1 (en) Radar Detection Method and Related Apparatus
US20230140139A1 (en) Radar Detection Method and Related Apparatus
JP2022182660A (en) Laser radar device
US20130268173A1 (en) Object detecting device, object detecting method, object detecting program, and motion control system
JP3846725B2 (en) Remote sensing device and frequency analysis method of remote sensing device
US20220381877A1 (en) Method for removing random noise of radar collection signal in biometric signal measurement radar, and apparatus for same
US11666237B2 (en) Measurement apparatus and measurement method
JP3871875B2 (en) Target classification method and apparatus
JP4188262B2 (en) Radar test method and apparatus
JP2005009950A (en) Radar device
JP2970950B2 (en) Inter-vehicle distance measuring device having threshold value determining means
JP6922429B2 (en) Noise suppression device, measurement system, noise suppression method and program
KR101328703B1 (en) Apparatus and method for MEASURING DISTANCE USING FMCW TECHNIC
JP3503826B2 (en) Fractal dimension calculator
WO2023063093A1 (en) Radar device and interference countermeasure detection method for radar device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Ref document number: 3846725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term