JP2005036988A - Refrigerator-freezer - Google Patents

Refrigerator-freezer Download PDF

Info

Publication number
JP2005036988A
JP2005036988A JP2003196878A JP2003196878A JP2005036988A JP 2005036988 A JP2005036988 A JP 2005036988A JP 2003196878 A JP2003196878 A JP 2003196878A JP 2003196878 A JP2003196878 A JP 2003196878A JP 2005036988 A JP2005036988 A JP 2005036988A
Authority
JP
Japan
Prior art keywords
air
refrigerator
cold air
freezer
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003196878A
Other languages
Japanese (ja)
Inventor
Susumu Fukuda
奨 福田
Satoru Hirakuni
悟 平國
Yasuaki Kato
康明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003196878A priority Critical patent/JP2005036988A/en
Publication of JP2005036988A publication Critical patent/JP2005036988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts

Abstract

<P>PROBLEM TO BE SOLVED: To reduce power consumption by reducing the temperature distribution generated in a freezing chamber of a refrigerator-freezer. <P>SOLUTION: In a refrigerator-freezer, a fan and a cooler are disposed on upper and lower parts of an air course grill, respectively. Return cold air of a refrigerating chamber flows in from both sides of the cooler, and return cold air of the refrigerating chamber flows into a center of the cooler. A right-to-left air course branch point is provided in the air course grill to distribute cold air blown out of the fan to right and left cold air outlets on a back side of the refrigerating chamber, and the right-to-left air course branch point or the fan is disposed in the air course grill so that return cold air of the refrigerating chamber flowing into the center of the cooler is uniformly distributed to the right and left cold air outlets in the back side of the refrigerating chamber, solving problems that (1) the temperature distribution is generated in the right-to-left direction in the refrigerating chamber attributable to the temperature difference of the cold air because difference is generated in the temperature of the cold air blown out of the right and left cold air outlets installed in the refrigerating chamber, and (2) the temperature distribution generated in the refrigerating chamber forms losses in energy, and the power consumption is degraded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍冷蔵庫に係わり、詳しくは冷凍冷蔵庫の冷凍室の温度分布が均一で、消費電力を低減した冷凍冷蔵庫に関するものである。
【0002】
【従来の技術】
従来の冷凍冷蔵庫では、冷凍冷蔵庫の内箱後部に、冷凍室、冷蔵室、製氷室、野菜室等の各冷却室に冷気を分配するための風路グリルを配置し、風路グリル内上部に送風ファンを、その下方に冷却器をそれぞれ配置し、送風ファンにて冷気を各冷却室に供給し、各冷却室を循環した冷気は冷却器下部に配置された戻り冷気流入口から再び冷却器に戻る。
【0003】
各冷却室からの戻り冷気はそれぞれ温度が異なるため、冷却器下部には温度の異なる戻り冷気が流入することになる。冷気は冷却器、送風ファン通過後も、冷気は温度分布を生じたままで、風路グリル内の左右風路分岐点において冷凍室の左右に設置された冷気吹出し口に分配される。
【0004】
このため、冷凍室の冷気吹出し口から吹出される冷気の温度は左右で均一にならず、これが冷凍室内の左右で異なる温度分布発生の要因となっている。
【0005】
【特許文献1】
特開平10−019444号公報(第2〜7頁、図1)
【特許文献2】
特開平11−183011号公報(第2〜4頁、図2)
【特許文献3】
特開2001−133118号公報(第3頁、図1)
【特許文献4】
特開2002−107032号公報(第2頁、図2)
【0006】
【発明が解決しようとする課題】
従来の冷凍冷蔵庫において、冷却器に流入する戻り冷気の温度が、冷却器位置によって均一でないと、冷気が冷却器を通過後も温度分布は解消されず、冷却器中心線付近の冷気温度が左右位置の冷気温度に比べて高いままである。温度分布が存在する冷気が送風ファンに吸込まれるが、冷気が送風ファンを通過する時間は僅かであり、送風ファンの各位置から吸込まれた冷気は、冷気が送風ファンを通過する時間に送風ファンが回転した僅かな距離だけ送風ファン回転方向に移動して吹出されるため、送風ファン通過後も冷気は十分に攪拌されず、温度分布が生じたままである。比較的温度の高い冷気が左右どちらかの吹出し口に偏って分配されると、冷凍室内に配置された吹出し口の左右で吹出冷気温度に差が生じる。これが冷凍室内に左右で異なる温度分布を生じる要因となっている。
【0007】
この発明は上記のような問題点を解決するためになされたもので、冷凍冷蔵庫の冷凍室に生じている温度分布を低減し、消費電力量を低減することを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る冷凍冷蔵庫は、風路グリルの上部に送風ファン、下部に冷却器を配置し、冷却器の両側から冷凍室の戻り冷気が流入すると共に冷却器の中央部に冷蔵室の戻り冷気が流入し、送風ファンから吹き出された冷気を、左右の冷凍室背面冷気吹出し口へ分配するための左右風路分岐点を風路グリルに備えた冷凍冷蔵庫において、冷却器の中心に流入する冷蔵室の戻り冷気が、左右の冷凍室背面冷気吹出し口へ均等に分配されるように、左右風路分岐点又は送風ファンを風路グリルに配置することを特徴とする。
【0009】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1〜7は実施の形態1を示す図で、図1は冷凍冷蔵庫の風路グリル内部における冷凍室冷気吹出し口に通じる風路を冷蔵庫背面から見た図、図2は冷凍冷蔵庫の構成を示す縦断面図、図3は風路グリルの背面図、図4は本発明と比較のための従来の冷凍冷蔵庫の風路グリルの側面図、図5は同じく本発明と比較のための従来の冷凍冷蔵庫の風路グリルの背面図、図6は風路グリルの背面図、図7は風路グリルの背面図である。
【0010】
図1は冷凍冷蔵庫の風路グリル内部における冷凍室冷気吹出し口に通じる風路を冷蔵庫背面から見た図で、図において、風路グリル内部風路9の上部に軸流ファンである送風ファン8が配置される。冷蔵室冷気戻り口15は風路グリルの中央に位置する。送風ファン8を通過した冷気は、左右風路分岐点19により分岐し、冷凍室右側吹出し風路17aと冷凍室左側吹出し風路17bに分かれ、それぞれ冷凍室背面右側冷気吹出し口10a、冷凍室背面左側冷気吹出し口10bから冷凍室に吹き出される。なお、図1における吹出し位置などの左右は冷蔵庫正面に対する位置で統一してある。
【0011】
図2において、冷却器1は、野菜室5及び冷凍室4の背面に形成された風路グリル3に配置される。冷凍サイクルを構成する圧縮機2は、冷凍冷蔵庫の背面底部に配置される。冷凍冷蔵庫は、下から冷凍室4、野菜室5、製氷室6、冷蔵室7に区画されている。
【0012】
冷凍室4への冷気は、冷凍室背面冷気吹出し口10及び冷凍室天面吹出し口11から取り入れられ、冷凍室冷気戻り口12から風路グリル3に戻る。冷凍室4は、冷凍室上部ケース13、冷凍室下部ケース14で構成される。
【0013】
冷凍冷蔵庫の内箱16の後部に冷凍室4、冷蔵室7等の各室に冷気を分配するための風路グリル3を配置し、風路グリル3内上部に送風ファン8を、その下方に冷却器1をそれぞれ配置し、送風ファン8にて冷却器1で生成された冷気を風路グリル3内の風路を通って冷凍室4及び冷蔵室7等の各室に供給するが、左右の冷凍室背面冷気吹出し口10へ冷気を分配するために、風路グリル3内には左右風路分岐点19を備え、各室を循環した冷気は冷却器1下部に配置された戻り冷気流入口から再び冷却器1に戻る冷気循環系において、左右風路分岐点19を冷凍室左側吹出し風路側に配置したものである。なお、正面、背面の定義は、図2に示したとおりである。
【0014】
図3は風路グリル3の背面を示したものである。従来の冷凍冷蔵庫においては、図3のように冷却器1の両側から、冷凍室の戻り冷気が流入し、冷却器1の中心に比較的温度の高い冷蔵室の戻り冷気が流入するようにしている。このため冷却器通過前冷気は中心部分で2〜3℃程度高くなっている。冷気は冷却器1を通過後もあまり攪拌されていないため、冷却器通過後冷気も中心部分の温度が左右端部の温度に比べ1℃程度高い。
【0015】
図4は従来の冷凍冷蔵庫の風路グリル3の側面を、図5は従来の冷凍冷蔵庫の風路グリル3内の背面を示したものである。なお、図5における左右は冷蔵庫正面に対する位置で統一してあり、送風ファン回転方向も図では反時計回りであるが冷蔵庫正面から見た場合(時計回り)で統一する。
【0016】
温度分布が存在する冷気が送風ファン8に吸込まれて冷凍室吹出し口に送り出されるが、図4のように送風ファン8の厚さが薄いため、冷気が送風ファン8を通過する時間は僅かであり、送風ファン8の各位置から吸込まれた冷気は、図5のように冷気が送風ファン8を通過する時間に送風ファン8が回転した僅かな距離だけ送風ファン回転方向に移動して吹出されるため、送風ファン8通過後も冷気は十分に攪拌されず、やはり温度分布が生じたままである。
【0017】
図5の風路グリル内の冷凍室吹出し口に通じる風路においては、冷気を左右風路分岐点19において左右の冷凍室背面冷気吹出し口10に分配するが、送風ファン8の回転方向が冷蔵庫正面から見て時計回りであるため、この左右風路分岐点19が送風ファン8中心位置の延長線付近に存在すると、比較的温度の高い冷気が冷凍室左側冷気吹出し風路17bに偏って分配され、冷凍室背面左側冷気吹出し口10bから吹きだされる冷気が冷凍室背面右側冷気吹出し口10aよりも高くなり、冷凍室内の左側の温度が右側に比べて高くなってしまっていた。
【0018】
図6は本発明に係る冷凍冷蔵庫の風路グリル3内を背面から見たものである。図6のように、左右風路分岐点19を冷凍室左側吹出し風路17b側に配置することによって、点線で示した温度の高い冷気は左右に分配されるようになり、冷凍室吹出し冷気の左右温度差を低減することができる。
【0019】
別の表現をすれば、冷気は送風ファン8を通過する時間に送風ファン8が回転した距離だけ送風ファン8回転方向に移動して吹き出されるが、その移動した方向に、左右風路分岐点19を送風ファン8中心位置の延長線よりも移動して設けるものである。
【0020】
なお、左右風路分岐点19の位置は左右温度差が等しくなるように決定するものとする。
【0021】
尚、本実施の形態では、送風ファン8の回転方向を時計回りの場合で規定したが、これに限るものではなく、送風ファン8の回転方向が反時計回りの場合、左右風路分岐点19を冷凍室右側吹出し風路17a側に配置するものとする。
【0022】
また、図7のように温度の高い冷気と温度の低い冷気が送風ファン8から吹出される位置それぞれに対応し、独立して冷気吹出し風路、左右風路分岐点19を設けることによって、冷凍室吹出し冷気の左右温度差を低減することができる。
【0023】
実施の形態2.
図8、9は実施の形態2を示す図で、図8は冷凍冷蔵庫の風路グリルを背面から見た図、図9は冷凍冷蔵庫の風路グリル内部における冷凍室冷気吹出し口に通じる風路を冷蔵庫背面から見た図である。
この実施の形態2における冷凍冷蔵庫の構成は図2と同様でありその説明は省略する。
【0024】
図8のように、送風ファン8の位置を冷却器1中心位置に対して冷凍室右側吹出し風路側に配置したものである。
【0025】
冷気は送風ファン8を通過する時間に送風ファン8が回転した距離だけ送風ファン8回転方向に移動して吹き出されるが、その移動方向と反対方向に、送風ファン8の位置を冷却器1中心位置に対して偏るようにしたものである。
【0026】
送風ファン8の位置を冷却器1の中心位置に対して冷凍室右側吹出し風路17a側に配置することによって、図9のように冷凍室4に通じる風路や左右風路分岐点19を大きく変更することなく、点線で示した温度の高い冷気を左右に分配することができる。これにより、冷凍室吹出し冷気の左右温度差を低減することができる。
【0027】
尚本実施の形態では、送風ファン8の回転方向を時計回りの場合で規定したが、これに限るものではなく、送風ファン8の回転方向が反時計回りの場合、送風ファン8の位置を冷却器1の中心位置に対して冷凍室左側吹出し風路17b側に配置するものとする。
【0028】
要するに、冷気は送風ファン8を通過する時間に送風ファン8が回転した距離だけ送風ファン8回転方向に移動して吹き出されるが、その移動方向と反対方向に、送風ファン8の位置を冷却器1中心位置に対して偏るようにすればよい。
【0029】
実施の形態3.
図10〜16は実施の形態3を示す図で、図10は冷凍冷蔵庫の風路グリルを背面から見た図、図11は風路グリルの側面図、図12は空気混合部内の3次元的流路部材として発泡金属を用いた図、図13は空気混合部が2次元的風路の場合の図、図14は空気混合部内の3次元的流路部材としてハニカム構造薄板を複数積層した場合の図、図15は風路グリルの側面図、図16は貫流送風機を用いた場合の冷凍冷蔵庫の風路グリルを背面から見た図である。
この実施の形態3における冷凍冷蔵庫の構成は図2と同様でありその説明は省略する。
【0030】
この実施の形態では、図10に示すように冷却器1の下方に空気混合部20を備えている。
【0031】
図11に示すように、空気混合部20には、冷蔵側戻り風路22から冷蔵室の戻り冷気が、また冷凍側戻り風路23から冷凍室の戻り冷気が流入し、空気混合部20内の3次元的流路部材21を通り抜けることによって混合されるように構成されている。
【0032】
空気混合部20を備えることによって、冷気が冷却器1に流入する前に温度の高い冷蔵室側からの戻り冷気と冷凍室側からの戻り冷気を混合し、温度分布を無くしてから冷却器1に供給することができる。これによって冷凍室4左右の冷気吹出し温度を等しくすることができるため、冷凍室4内に生ずる左右の温度差を低減できる。
【0033】
また、空気混合部20内の3次元的流路部材21としては、図12のように発泡金属24とすることで、図中矢印で示したように、冷気が3次元的に様々な方向に進むことが可能となる。このため、空隙率が90%以上の発泡金属24を用いると通風抵抗もほとんど無く、冷気を混合することができる。
【0034】
一方、図13(a)のように単に穴をあけただけの2次元的風路の場合、図13(b)のように穴の位置以外に流入した冷気は流れを妨げられ、穴の位置に流入した冷気は一方向に進む。これにより冷気は混合されるが、3次元流路の場合と比べ冷気の進行方向が特定されるため混合の効果は小さく、流れを妨げるため通風抵抗も大きくなる。
【0035】
なお、空気混合部20は冷却器1の上部と送風ファン8の間に配置しても良いが、冷却器1の下部に配置したほうが戻り冷気を混合し、冷却器1に流入する冷気温度を全体的に上げることができるので、冷却器1の蒸発温度を高くすることが可能となり、冷凍サイクルの効率を向上させることができる。
【0036】
また、空気混合部20内の3次元的流路部材21として図14のようなハニカム構造薄板28を第1層、第2層、第3層というように隣り合うハニカム構造薄板28のハニカム孔が互い違いになるように複数積層することによっても、発泡金属24の場合と同様の効果が得られる。
【0037】
その他、金属たわしを3次元的流路部材21として空気混合部20内に充填しても同様の効果が得られる。
【0038】
図15のように、空気混合部20内に、仕切板29を戻り冷気流入方向に対し垂直に千鳥配置になるように設け、これを第1混合部26とする。第1混合部26によって冷蔵室側からの戻り冷気と、冷凍室側からの戻り冷気を混合する。
【0039】
さらに空気混合部20の上側に仕切板29が冷却器1に冷気が流入する方向に対し、垂直に千鳥配置になるように設け、これを第2混合部27とする。第2混合部27により、冷気をさらに混合、整流し、冷却器1に均一に流入させることができる。
【0040】
空気混合部20で冷気を混合、整流し、均一に冷却器1に流入させることができるが、送風ファン8に貫流ファン25を用いることにより、さらに冷却器1のどの位置においても通過する冷気の流量を一定にすることが可能となる。これにより冷却器通過後の冷気温度を冷却器のどの位置においても等しくすることができる。
【0041】
【発明の効果】
この発明に係る冷凍冷蔵庫は、風路グリルの上部に送風ファン、下部に冷却器を配置し、冷却器の両側から冷凍室の戻り冷気が流入すると共に冷却器の中央部に冷蔵室の戻り冷気が流入し、送風ファンから吹き出された冷気を、左右の冷凍室背面冷気吹出し口へ分配するための左右風路分岐点を風路グリルに備えた冷凍冷蔵庫において、冷却器の中心に流入する冷蔵室の戻り冷気が、左右の冷凍室背面冷気吹出し口へ均等に分配されるように、左右風路分岐点又は送風ファンを風路グリルに配置することにより、冷凍室内冷気吹出し口の左右温度差を低減し、冷凍室内に生じた左右温度分布を改善することができる。
【図面の簡単な説明】
【図1】実施の形態1を示す図で、冷凍冷蔵庫の風路グリル内部における冷凍室冷気吹出し口に通じる風路を冷蔵庫背面から見た図である。
【図2】実施の形態1を示す図で、冷凍冷蔵庫の構成を示す縦断面図である。
【図3】実施の形態1を示す図で、風路グリルの背面図である。
【図4】本発明と比較のための従来の冷凍冷蔵庫の風路グリルの側面図である。
【図5】本発明と比較のための従来の冷凍冷蔵庫の風路グリルの背面図である。
【図6】実施の形態1を示す図で、風路グリルの背面図である。
【図7】実施の形態1を示す図で、風路グリルの背面図である。
【図8】実施の形態2を示す図で、冷凍冷蔵庫の風路グリルを背面から見た図である。
【図9】実施の形態2を示す図で、冷凍冷蔵庫の風路グリル内部における冷凍室冷気吹出し口に通じる風路を冷蔵庫背面から見た図である。
【図10】実施の形態3を示す図で、冷凍冷蔵庫の風路グリルを背面から見た図である。
【図11】実施の形態3を示す図で、風路グリルの側面図である。
【図12】実施の形態3を示す図で、空気混合部内の3次元的流路部材として発泡金属を用いた図である。
【図13】実施の形態3を示す図で、空気混合部が2次元的風路の場合の図である。
【図14】実施の形態3を示す図で、空気混合部内の3次元的流路部材としてハニカム構造薄板を複数積層した場合の図である。
【図15】実施の形態3を示す図で、風路グリルの側面図である。
【図16】実施の形態3を示す図で、貫流送風機を用いた場合の冷凍冷蔵庫の風路グリルを背面から見た図である。
【符号の説明】
1 冷却器、2 圧縮機、3 風路グリル、4 冷凍室、5 野菜室、6 製氷室、7 冷蔵室、8 送風ファン、9 風路グリル内部風路、10a 冷凍室背面右側冷気吹出し口、10b 冷凍室背面左側冷気吹出し口、11 冷凍室天面吹出し口、12 冷凍室冷気戻り口、13 冷凍室上部ケース、14 冷凍室下部ケース、15 冷蔵室冷気戻り口、16 内箱、17a 冷凍室右側吹出し風路、17b 冷凍室左側吹出し風路、19 左右風路分岐点、20 空気混合部、21 3次元的流路部材、22 冷蔵側戻り風路、23 冷凍側戻り風路、24 発泡金属、25 貫流ファン、26 第1混合部、27 第2混合部、28 ハニカム構造薄板、29 仕切板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator-freezer, and more particularly to a refrigerator-freezer in which the temperature distribution in the freezer compartment of the refrigerator-freezer is uniform and power consumption is reduced.
[0002]
[Prior art]
In a conventional refrigerator-freezer, an air channel grill for distributing cold air to each cooling room such as a freezer room, a refrigerator room, an ice making room, and a vegetable room is arranged at the rear of the inner box of the refrigerator-freezer. A cooling fan is arranged below the blower fan, and cool air is supplied to each cooling chamber by the blower fan, and the cool air circulated through each cooling chamber is cooled again from the return cold air flow inlet arranged at the lower part of the cooler. Return to.
[0003]
Since the return cold air from each cooling chamber has a different temperature, the return cold air having a different temperature flows into the lower part of the cooler. Even after the cool air passes through the cooler and the blower fan, the cool air remains distributed in temperature and is distributed to the cool air outlets installed on the left and right sides of the freezer compartment at the right and left air channel branch points in the air channel grill.
[0004]
For this reason, the temperature of the cold air blown out from the cold air outlet of the freezer compartment is not uniform on the left and right, and this is the cause of the occurrence of different temperature distributions on the left and right in the freezer compartment.
[0005]
[Patent Document 1]
JP 10-019444 (pages 2-7, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 11-183011 (pages 2 to 4, FIG. 2)
[Patent Document 3]
JP 2001-133118 A (3rd page, FIG. 1)
[Patent Document 4]
JP 2002-107032 A (2nd page, FIG. 2)
[0006]
[Problems to be solved by the invention]
In the conventional refrigerator-freezer, if the temperature of the return cold air flowing into the cooler is not uniform depending on the cooler position, the temperature distribution is not eliminated even after the cool air passes through the cooler, and the cool air temperature near the center line of the cooler It remains high compared to the cold air temperature at the location. Cold air with a temperature distribution is sucked into the blower fan, but the time for the cool air to pass through the blower fan is very short, and the cool air sucked from each position of the blower fan is blown during the time when the cold air passes through the blower fan. Since the fan is blown and moved in the direction of rotation of the blower fan for a small distance, the cool air is not sufficiently stirred even after passing through the blower fan, and the temperature distribution remains. When the relatively high temperature cold air is distributed to both the left and right outlets, there is a difference in the outlet cold air temperature between the left and right outlets arranged in the freezer compartment. This is a factor causing different temperature distributions in the freezer compartment on the left and right.
[0007]
This invention was made in order to solve the above problems, and it aims at reducing the temperature distribution which has arisen in the freezer compartment of a refrigerator-freezer, and reducing power consumption.
[0008]
[Means for Solving the Problems]
The refrigerator-freezer according to the present invention has a blower fan at the upper part of the air channel grille and a cooler at the lower part. The return cold air from the freezer compartment flows from both sides of the cooler and the return cold air from the refrigerator compartment at the center of the cooler. Refrigeration refrigerator that has a left and right air channel branch point in the air channel grill to distribute the cool air blown out from the blower fan to the left and right freezer compartment rear air outlets, and that flows into the center of the cooler The left and right air channel branch points or the blower fans are arranged in the air channel grille so that the return cold air of the chamber is evenly distributed to the left and right freezer compartment rear cool air outlets.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIGS. 1 to 7 are diagrams showing the first embodiment. FIG. 1 is a view of an air passage leading to a freezer compartment cool air outlet in the air passage grill of the refrigerator refrigerator as viewed from the rear of the refrigerator, and FIG. 2 is a configuration of the refrigerator refrigerator. FIG. 3 is a rear view of the air channel grille, FIG. 4 is a side view of the air channel grill of a conventional refrigerator-freezer for comparison with the present invention, and FIG. FIG. 6 is a rear view of the air passage grille, and FIG. 7 is a rear view of the air passage grille.
[0010]
FIG. 1 is a view of an air passage leading to a freezer compartment cold air outlet in the air passage grill of the refrigerator refrigerator as viewed from the rear of the refrigerator. In the drawing, an air blow fan 8 which is an axial fan is provided above the air passage grill internal air passage 9. Is placed. The refrigerator compartment cold air return port 15 is located at the center of the air channel grill. The cold air that has passed through the blower fan 8 branches off at the right and left air passage branch point 19 and is divided into a freezer compartment right side blowout air passage 17a and a freezer compartment left side blowout air passage 17b, and the freezer compartment rear right side cold air outlet 10a and the freezer compartment rear surface, respectively. The air is blown out from the left cold air outlet 10b into the freezer compartment. In addition, right and left, such as a blowing position in FIG. 1, are unified with the position with respect to the refrigerator front.
[0011]
In FIG. 2, the cooler 1 is disposed on an air passage grill 3 formed on the back surfaces of the vegetable compartment 5 and the freezer compartment 4. The compressor 2 which comprises a refrigerating cycle is arrange | positioned at the back bottom part of a refrigerator-freezer. The refrigerator-freezer is partitioned into a freezer compartment 4, a vegetable compartment 5, an ice making compartment 6, and a refrigerator compartment 7 from the bottom.
[0012]
Cold air to the freezer compartment 4 is taken in from the freezer compartment rear cold air outlet 10 and the freezer compartment top outlet 11, and returns to the air path grill 3 from the freezer compartment cold air outlet 12. The freezer compartment 4 includes a freezer compartment upper case 13 and a freezer compartment lower case 14.
[0013]
An air passage grill 3 for distributing cold air to each room such as the freezer compartment 4 and the refrigerator compartment 7 is disposed at the rear part of the inner box 16 of the refrigerator-freezer, and the blower fan 8 is disposed below the air passage grill 3 at the upper part thereof. Each cooler 1 is arranged, and the cold air generated by the cooler 1 by the blower fan 8 is supplied to each chamber such as the freezer compartment 4 and the refrigerator compartment 7 through the air passage in the air passage grill 3. In order to distribute the cold air to the cold air outlet 10 at the back of the freezer compartment, a left and right air passage branch point 19 is provided in the air passage grill 3, and the cold air circulated through each chamber is a return cold air flow arranged at the lower part of the cooler 1. In the cold air circulation system returning from the inlet to the cooler 1 again, the left and right air passage branch points 19 are arranged on the left outlet air passage side of the freezer compartment. The definitions of front and back are as shown in FIG.
[0014]
FIG. 3 shows the back of the airway grill 3. In the conventional refrigerator-freezer, as shown in FIG. 3, the return cold air from the freezer compartment flows from both sides of the cooler 1, and the return cold air from the refrigerating compartment having a relatively high temperature flows into the center of the cooler 1. Yes. For this reason, the cool air before passing through the cooler is about 2 to 3 ° C. higher in the central portion. Since the cold air is not so stirred even after passing through the cooler 1, the temperature of the cold air after passing through the cooler is about 1 ° C. higher than the temperature at the left and right end portions.
[0015]
FIG. 4 shows a side view of the air path grill 3 of the conventional refrigerator-freezer, and FIG. 5 shows a rear surface of the air path grill 3 of the conventional refrigerator-freezer. Note that the left and right sides in FIG. 5 are unified with respect to the front of the refrigerator, and the rotation direction of the blower fan is also counterclockwise in the figure, but is unified when viewed from the front of the refrigerator (clockwise).
[0016]
Cold air having a temperature distribution is sucked into the blower fan 8 and sent out to the freezer outlet, but since the thickness of the blower fan 8 is thin as shown in FIG. The cool air sucked from each position of the blower fan 8 is moved and blown in the blower fan rotation direction by a small distance that the blower fan 8 is rotated during the time when the cool air passes through the blower fan 8 as shown in FIG. Therefore, the cold air is not sufficiently stirred even after passing through the blower fan 8, and the temperature distribution still remains.
[0017]
In the air passage leading to the freezer compartment outlet in the air passage grill of FIG. 5, cold air is distributed to the left and right freezer compartment rear cold air outlets 10 at the left and right air passage branch points 19. Since it is clockwise when viewed from the front, if this left and right air passage branch point 19 exists in the vicinity of the extension line of the central position of the blower fan 8, the cool air having a relatively high temperature is biased and distributed to the freezing compartment left side cold air blowing air passage 17b. Then, the cold air blown out from the freezer back left side cold air outlet 10b is higher than the freezer back right side cold air outlet 10a, and the left side temperature in the freezer compartment is higher than the right side.
[0018]
FIG. 6 is a view of the inside of the air channel grill 3 of the refrigerator-freezer according to the present invention as seen from the back side. As shown in FIG. 6, by arranging the left and right air passage branch point 19 on the freezer left side air outlet 17 b side, the cool air having a high temperature indicated by the dotted line is distributed to the left and right. The left-right temperature difference can be reduced.
[0019]
In other words, the cool air is blown out by moving in the direction of rotation of the blower fan 8 by the distance that the blower fan 8 has rotated during the time it passes through the blower fan 8, but in the direction of movement, the left and right airway branch points 19 is provided so as to move from the extension line of the central position of the blower fan 8.
[0020]
The position of the left and right air passage branch point 19 is determined so that the left and right temperature differences are equal.
[0021]
In the present embodiment, the rotation direction of the blower fan 8 is defined in the clockwise direction. However, the present invention is not limited to this. If the rotation direction of the blower fan 8 is counterclockwise, the left and right air passage branch point 19 is defined. Are arranged on the right side air outlet 17a side of the freezer compartment.
[0022]
Further, as shown in FIG. 7, the cold air blowing air passage and the left and right air passage branch points 19 are provided independently corresponding to the positions where the cold air having a high temperature and the cold air having a low temperature are blown out from the blower fan 8, respectively. It is possible to reduce the difference in temperature between the left and right chambers.
[0023]
Embodiment 2. FIG.
8 and 9 are diagrams showing the second embodiment, FIG. 8 is a view of the air channel grill of the refrigerator-freezer as viewed from the back, and FIG. 9 is the air channel leading to the freezer compartment cool air outlet in the air channel grill of the refrigerator-freezer. It is the figure which looked at from the refrigerator back.
The structure of the refrigerator-freezer in this Embodiment 2 is the same as that of FIG. 2, and the description is abbreviate | omitted.
[0024]
As shown in FIG. 8, the position of the blower fan 8 is arranged on the right side of the freezer compartment with respect to the center position of the cooler 1.
[0025]
The cool air is blown out by moving in the direction of rotation of the blower fan 8 by the distance that the blower fan 8 has rotated during the time it passes through the blower fan 8, but the position of the blower fan 8 is centered in the cooler 1 in the direction opposite to the moving direction. It is designed to be biased with respect to the position.
[0026]
By arranging the position of the blower fan 8 on the right side of the freezer compartment 17a with respect to the center position of the cooler 1, the air passage leading to the freezer compartment 4 and the left and right air passage branch points 19 are enlarged as shown in FIG. Without changing, it is possible to distribute the cool air having a high temperature indicated by the dotted line to the left and right. Thereby, the right-and-left temperature difference of freezer compartment blowing cold air can be reduced.
[0027]
In the present embodiment, the rotation direction of the blower fan 8 is defined in the clockwise direction. However, the present invention is not limited to this. When the rotation direction of the blower fan 8 is counterclockwise, the position of the blower fan 8 is cooled. Suppose that it is arrange | positioned with respect to the center position of the container 1 at the freezer compartment left side blowing air path 17b side.
[0028]
In short, the cool air is blown out by moving in the direction of rotation of the blower fan 8 by the distance that the blower fan 8 has rotated during the time it passes through the blower fan 8, but the position of the blower fan 8 is cooled in the direction opposite to the moving direction. What is necessary is just to deviate with respect to 1 center position.
[0029]
Embodiment 3 FIG.
10 to 16 are diagrams showing the third embodiment, FIG. 10 is a view of the air channel grill of the refrigerator refrigerator as viewed from the back, FIG. 11 is a side view of the air channel grill, and FIG. 12 is a three-dimensional view in the air mixing unit. FIG. 13 is a diagram in which a foam metal is used as a flow channel member, FIG. 13 is a diagram in the case where the air mixing portion is a two-dimensional air channel, and FIG. 14 is a case in which a plurality of honeycomb structure thin plates are stacked as a three-dimensional flow channel member in the air mixing portion. FIG. 15 is a side view of the air channel grille, and FIG. 16 is a view of the air channel grill of the refrigerator-freezer when the cross-flow fan is used as viewed from the back.
The structure of the refrigerator-freezer in this Embodiment 3 is the same as that of FIG. 2, The description is abbreviate | omitted.
[0030]
In this embodiment, an air mixing unit 20 is provided below the cooler 1 as shown in FIG.
[0031]
As shown in FIG. 11, the return air from the refrigerating room flows into the air mixing unit 20 from the refrigerating side return air passage 22, and the return cold air from the freezing room flows from the freezing side return air passage 23 into the air mixing unit 20. It is configured to be mixed by passing through the three-dimensional flow path member 21.
[0032]
By providing the air mixing unit 20, before the cold air flows into the cooler 1, the return cold air from the high-temperature refrigerator compartment side and the return cold air from the freezer compartment side are mixed to eliminate the temperature distribution, and then the cooler 1. Can be supplied to. As a result, the cold air blowing temperatures on the left and right sides of the freezer compartment 4 can be made equal, so that the temperature difference between the left and right sides generated in the freezer compartment 4 can be reduced.
[0033]
Further, as the three-dimensional flow path member 21 in the air mixing section 20, by using a foam metal 24 as shown in FIG. 12, the cold air is three-dimensionally changed in various directions as indicated by arrows in the figure. It becomes possible to proceed. For this reason, when the foam metal 24 having a porosity of 90% or more is used, there is almost no ventilation resistance, and cold air can be mixed.
[0034]
On the other hand, in the case of a two-dimensional air path in which holes are simply formed as shown in FIG. 13A, the flow of cold air other than the positions of holes as shown in FIG. The cold air that flows into the air travels in one direction. Although cold air is mixed by this, compared with the case of a three-dimensional flow path, since the advancing direction of cold air is specified, the effect of mixing is small, and since it prevents a flow, ventilation resistance becomes large.
[0035]
The air mixing unit 20 may be arranged between the upper part of the cooler 1 and the blower fan 8, but the arrangement of the air mixing unit 20 at the lower part of the cooler 1 mixes the return cold air and changes the cold air temperature flowing into the cooler 1. Since the overall temperature can be increased, the evaporation temperature of the cooler 1 can be increased, and the efficiency of the refrigeration cycle can be improved.
[0036]
Further, as the three-dimensional flow path member 21 in the air mixing section 20, the honeycomb structure thin plate 28 as shown in FIG. 14 has the honeycomb holes of the adjacent honeycomb structure thin plate 28 such as the first layer, the second layer, and the third layer. The same effect as in the case of the foam metal 24 can be obtained by stacking a plurality of layers so as to be staggered.
[0037]
In addition, the same effect can be obtained by filling the air mixing unit 20 with metal scrubbing as the three-dimensional flow path member 21.
[0038]
As shown in FIG. 15, the partition plate 29 is provided in the air mixing unit 20 so as to be arranged in a staggered manner perpendicular to the cold air inflow direction. The first mixing unit 26 mixes the return cold air from the refrigerator compartment side and the return cold air from the freezer compartment side.
[0039]
Further, a partition plate 29 is provided on the upper side of the air mixing unit 20 so as to be arranged in a staggered manner perpendicular to the direction in which the cool air flows into the cooler 1. The second mixing unit 27 can further mix and rectify the cold air and allow it to uniformly flow into the cooler 1.
[0040]
Cooling air can be mixed and rectified by the air mixing unit 20 and uniformly flown into the cooler 1, but by using the cross-flow fan 25 for the blower fan 8, It becomes possible to make the flow rate constant. Thereby, the cold air temperature after passing through the cooler can be made equal at any position of the cooler.
[0041]
【The invention's effect】
The refrigerator-freezer according to the present invention has a blower fan at the upper part of the air channel grille and a cooler at the lower part. The return cold air from the freezer compartment flows from both sides of the cooler and the return cold air from the refrigerator compartment at the center of the cooler. Refrigeration refrigerator that has left and right air channel branch points in the air channel grill to distribute the cold air blown out from the blower fan to the left and right freezer compartment rear air outlets, and that flows into the center of the cooler The right and left temperature difference of the freezing room cold air outlet is arranged by arranging the right and left air channel branch point or the blower fan in the air channel grille so that the return air of the room is evenly distributed to the left and right freezer back air outlets. And the right and left temperature distribution generated in the freezer compartment can be improved.
[Brief description of the drawings]
FIG. 1 shows the first embodiment, and is a view of an air passage leading to a freezer compartment cold air outlet in the air passage grill of the refrigerator-freezer as viewed from the back of the refrigerator.
FIG. 2 shows the first embodiment, and is a longitudinal sectional view showing the configuration of the refrigerator-freezer.
FIG. 3 shows the first embodiment and is a rear view of the air channel grill.
FIG. 4 is a side view of an air channel grill of a conventional refrigerator-freezer for comparison with the present invention.
FIG. 5 is a rear view of an air channel grill of a conventional refrigerator-freezer for comparison with the present invention.
6 shows the first embodiment and is a rear view of the air channel grill. FIG.
FIG. 7 shows the first embodiment and is a rear view of the air channel grill.
FIG. 8 shows the second embodiment, and is a view of the air channel grill of the refrigerator-freezer as seen from the back side.
FIG. 9 is a diagram showing the second embodiment, and is a view of the air passage leading to the freezer compartment cool air outlet in the air passage grill of the refrigerator refrigerator as viewed from the back of the refrigerator.
FIG. 10 shows the third embodiment, and is a view of the air path grill of the refrigerator-freezer as viewed from the back side.
FIG. 11 shows the third embodiment and is a side view of the air channel grill.
FIG. 12 shows the third embodiment, and is a diagram using foam metal as a three-dimensional flow path member in the air mixing section.
FIG. 13 shows the third embodiment, and is a diagram in the case where the air mixing section is a two-dimensional air path.
FIG. 14 is a diagram illustrating the third embodiment, and is a diagram in the case where a plurality of honeycomb structure thin plates are stacked as a three-dimensional flow path member in the air mixing unit.
FIG. 15 shows the third embodiment and is a side view of the air channel grill.
FIG. 16 is a diagram showing the third embodiment and is a view of the air channel grill of the refrigerator-freezer when the cross-flow fan is used as viewed from the back side.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cooler, 2 Compressor, 3 Airway grille, 4 Freezer room, 5 Vegetable room, 6 Ice making room, 7 Refrigeration room, 8 Air blower fan, 9 Airway grille internal airway, 10a Freezing room back right side cold air outlet, 10b Freezer compartment rear left side cold air outlet, 11 Freezer compartment top outlet, 12 Freezer compartment cooler return port, 13 Freezer compartment upper case, 14 Freezer compartment lower case, 15 Refrigerator compartment cold air return port, 16 Inner box, 17a Freezer compartment Right air outlet, 17b Freezer left air outlet, 19 Left and right air branch, 20 Air mixing section, 21 Three-dimensional flow path member, 22 Refrigeration return air path, 23 Refrigeration return air path, 24 Foam metal 25 Cross-flow fan, 26 1st mixing part, 27 2nd mixing part, 28 Honeycomb structure thin plate, 29 Partition plate.

Claims (10)

風路グリルの上部に送風ファン、下部に冷却器を配置し、前記冷却器の両側から冷凍室の戻り冷気が流入すると共に前記冷却器の中央部に冷蔵室の戻り冷気が流入し、前記送風ファンから吹き出された冷気を、左右の冷凍室背面冷気吹出し口へ分配するための左右風路分岐点を前記風路グリルに備えた冷凍冷蔵庫において、
前記冷却器の中心に流入する冷蔵室の戻り冷気が、左右の冷凍室背面冷気吹出し口へ均等に分配されるように、前記左右風路分岐点又は前記送風ファンを前記風路グリルに配置することを特徴とする冷凍冷蔵庫。
A blower fan is disposed at the upper part of the air channel grille and a cooler is disposed at the lower part. The return cold air from the freezer compartment flows from both sides of the cooler and the return cold air from the refrigerator compartment flows into the central part of the cooler. In the refrigerator-freezer provided with the left and right air passage branching points in the air passage grill for distributing the cold air blown from the fans to the left and right freezer compartment rear cold air outlets,
The left and right air passage branch points or the blower fans are arranged in the air passage grille so that the return cold air of the refrigerator compartment flowing into the center of the cooler is evenly distributed to the left and right freezer compartment rear air outlets. A refrigerator-freezer characterized by that.
前記冷却器で生成された冷気が、前記送風ファンを通過する際に前記送風ファンの回転方向に移動して吹き出され、その移動した方向に、前記左右風路分岐点を前記送風ファン中心位置の延長線から移動して設けることを特徴とする請求項1記載の冷凍冷蔵庫。When the cool air generated by the cooler passes through the blower fan, the cool air moves in the rotation direction of the blower fan and is blown out. In the moved direction, the left and right air passage branch point is located at the center position of the blower fan. The refrigerator-freezer according to claim 1, wherein the refrigerator-freezer is provided by moving from an extension line. 低温度の冷気吹出し口と高温度の冷気吹出し口のいずれも左右で対称に、前記冷凍室内に各冷気吹出し口を複数分布させることを特徴とする請求項1又は請求項2記載の冷凍冷蔵庫。3. The refrigerator-freezer according to claim 1, wherein both the low temperature cold air outlet and the high temperature cold air outlet are symmetrically distributed in the left and right directions, and a plurality of the cold air outlets are distributed in the freezer compartment. 前記冷却器で生成された冷気が、前記送風ファンを通過する際に前記送風ファンの回転方向に移動して吹き出され、その移動した方向と反対方向に、前記送風ファンを移動して設けることを特徴とする請求項1記載の冷凍冷蔵庫。When the cool air generated by the cooler passes through the blower fan, it moves in the rotational direction of the blower fan and is blown out, and the blower fan is moved and provided in a direction opposite to the moved direction. The refrigerator-freezer according to claim 1, wherein the refrigerator is a refrigerator. 風路グリルの上部に送風ファン、下部に冷却器を配置した冷凍冷蔵庫において、
前記風路グリル内に、冷蔵室からの戻り冷気と、冷凍室からの戻り冷気とが混合されるように前記冷却器下部に空気混合部を備えたことを特徴とする冷凍冷蔵庫。
In the refrigerator-freezer in which a blower fan is placed at the top of the airway grill and a cooler is placed at the bottom,
A refrigerator-freezer comprising an air mixing unit at a lower portion of the cooler so that the return cold air from the refrigerator compartment and the return cold air from the freezer compartment are mixed in the air channel grill.
前記空気混合部に3次元的流路を形成したことを特徴とする請求項5記載の冷凍冷蔵庫。The refrigerator-freezer according to claim 5, wherein a three-dimensional flow path is formed in the air mixing unit. 空隙率の大きな部材を充填することにより、前記空気混合部内に3次元的流路を形成したことを特徴とする請求項6記載の冷凍冷蔵庫。The refrigerator-freezer according to claim 6, wherein a three-dimensional flow path is formed in the air mixing unit by filling a member having a large porosity. ハニカム構造の薄板をハニカム孔位置が互い違いになるように積層することにより、前記空気混合部内に3次元的流路を形成したことを特徴とする請求項6記載の冷凍冷蔵庫。7. The refrigerator-freezer according to claim 6, wherein a three-dimensional flow path is formed in the air mixing section by laminating honeycomb-structured thin plates so that the honeycomb hole positions are staggered. 前記空気混合部内の戻り冷気流入口付近に多数の仕切板を、戻り冷気流入方向に対して垂直になるよう千鳥状に配置し、さらに前記空気混合部の前記冷却器付近に、別の多数の仕切板を冷気が前記冷却器に流入する方向に対して垂直になるよう千鳥状に配置することを特徴とする請求項5記載の冷凍冷蔵庫。A large number of partition plates are arranged in a staggered manner in the vicinity of the return cold air flow inlet in the air mixing unit so as to be perpendicular to the return cold air inflow direction. 6. The refrigerator-freezer according to claim 5, wherein the partition plates are arranged in a staggered manner so as to be perpendicular to a direction in which cold air flows into the cooler. 前記空気混合部と貫流ファンとを組み合わせることを特徴とする請求項5乃至請求項9の何れかに記載の冷凍冷蔵庫。The refrigerator-freezer according to any one of claims 5 to 9, wherein the air mixing unit and the cross-flow fan are combined.
JP2003196878A 2003-07-15 2003-07-15 Refrigerator-freezer Pending JP2005036988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196878A JP2005036988A (en) 2003-07-15 2003-07-15 Refrigerator-freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196878A JP2005036988A (en) 2003-07-15 2003-07-15 Refrigerator-freezer

Publications (1)

Publication Number Publication Date
JP2005036988A true JP2005036988A (en) 2005-02-10

Family

ID=34207182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196878A Pending JP2005036988A (en) 2003-07-15 2003-07-15 Refrigerator-freezer

Country Status (1)

Country Link
JP (1) JP2005036988A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886867A (en) * 2010-07-16 2010-11-17 合肥美的荣事达电冰箱有限公司 Return air duct and refrigerator with same
JP2016217659A (en) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 refrigerator
JP2017020690A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 refrigerator
EP2153145B1 (en) * 2007-04-04 2018-04-11 LG Electronics Inc. Ventilating device and the refrigerator having the same
CN109425173A (en) * 2017-09-01 2019-03-05 三菱电机株式会社 Refrigerator
WO2019043913A1 (en) * 2017-09-01 2019-03-07 三菱電機株式会社 Refrigerator
CN109432564A (en) * 2018-12-26 2019-03-08 南京舒普思达医疗设备有限公司 A kind of ventilator spiral duct module
JP2019525123A (en) * 2017-02-15 2019-09-05 美的集団股▲フン▼有限公司Midea Group Co., Ltd. Airway module and refrigerator
EP3647692A4 (en) * 2017-06-29 2020-07-08 Qingdao Haier Joint Stock Co., Ltd Refrigerator
WO2022097695A1 (en) * 2020-11-05 2022-05-12 三菱電機株式会社 Refrigerator
CN115143679A (en) * 2022-07-04 2022-10-04 广东哈士奇制冷科技股份有限公司 Air-cooled refrigerator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2153145B1 (en) * 2007-04-04 2018-04-11 LG Electronics Inc. Ventilating device and the refrigerator having the same
CN101886867A (en) * 2010-07-16 2010-11-17 合肥美的荣事达电冰箱有限公司 Return air duct and refrigerator with same
JP2016217659A (en) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 refrigerator
JP2017020690A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 refrigerator
JP2019525123A (en) * 2017-02-15 2019-09-05 美的集団股▲フン▼有限公司Midea Group Co., Ltd. Airway module and refrigerator
EP3647692A4 (en) * 2017-06-29 2020-07-08 Qingdao Haier Joint Stock Co., Ltd Refrigerator
WO2019043914A1 (en) * 2017-09-01 2019-03-07 三菱電機株式会社 Refrigerator
WO2019043913A1 (en) * 2017-09-01 2019-03-07 三菱電機株式会社 Refrigerator
JPWO2019043913A1 (en) * 2017-09-01 2020-03-26 三菱電機株式会社 refrigerator
TWI691692B (en) * 2017-09-01 2020-04-21 日商三菱電機股份有限公司 refrigerator
JPWO2019043914A1 (en) * 2017-09-01 2020-05-28 三菱電機株式会社 refrigerator
CN109425173A (en) * 2017-09-01 2019-03-05 三菱电机株式会社 Refrigerator
AU2017430067B2 (en) * 2017-09-01 2020-11-12 Mitsubishi Electric Corporation Refrigerator
CN109425173B (en) * 2017-09-01 2021-05-07 三菱电机株式会社 Refrigerator with a door
CN109432564A (en) * 2018-12-26 2019-03-08 南京舒普思达医疗设备有限公司 A kind of ventilator spiral duct module
CN109432564B (en) * 2018-12-26 2024-03-26 南京舒普思达医疗设备有限公司 Spiral air duct module of breathing machine
WO2022097695A1 (en) * 2020-11-05 2022-05-12 三菱電機株式会社 Refrigerator
CN115143679A (en) * 2022-07-04 2022-10-04 广东哈士奇制冷科技股份有限公司 Air-cooled refrigerator

Similar Documents

Publication Publication Date Title
KR100811488B1 (en) Refrigerator
CN101755181B (en) Evaporator air management system for trailer refrigeration
JP2005036988A (en) Refrigerator-freezer
JP4382825B2 (en) Cold air supply device for refrigerator and refrigerator using the same
US7584627B2 (en) Refrigerator
EP3926263B1 (en) Refrigerator having return air inlets formed in two side walls of refrigerator body
KR101931940B1 (en) A refrigerator
JP2006138609A (en) Refrigerator
KR20100103891A (en) Cooling module for hybrid automobile
JP6888904B2 (en) Refrigeration cycle system
JP2008045817A (en) Refrigerator-freezer
JP2003075087A (en) Refrigerator
JP4196499B2 (en) Freezer refrigerator
JP4275057B2 (en) refrigerator
JP5627647B2 (en) Open showcase
JP3372170B2 (en) refrigerator
JP3619679B2 (en) Cooling storage
JP2004101088A (en) Refrigerator
CN219222991U (en) Liner assembly for refrigerator and refrigerator
JP6049259B2 (en) Vehicle and panel
JPH11325694A (en) Cooling storage unit
JP3674367B2 (en) Air-cooled absorption refrigeration system
JP2002062017A (en) Refrigerator
KR100288834B1 (en) Uniformly freezing structure of refrigerator
KR100288835B1 (en) Uniformly freezing structure of refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A7424