JP2005036665A - Molecular drag pump - Google Patents

Molecular drag pump Download PDF

Info

Publication number
JP2005036665A
JP2005036665A JP2003197727A JP2003197727A JP2005036665A JP 2005036665 A JP2005036665 A JP 2005036665A JP 2003197727 A JP2003197727 A JP 2003197727A JP 2003197727 A JP2003197727 A JP 2003197727A JP 2005036665 A JP2005036665 A JP 2005036665A
Authority
JP
Japan
Prior art keywords
rotor
casing
molecular pump
blade
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003197727A
Other languages
Japanese (ja)
Other versions
JP4503947B2 (en
Inventor
Shigeru Kaneto
成 金戸
Tetsuo Obayashi
哲郎 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Vacuum Ltd
Original Assignee
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Vacuum Ltd filed Critical Osaka Vacuum Ltd
Priority to JP2003197727A priority Critical patent/JP4503947B2/en
Publication of JP2005036665A publication Critical patent/JP2005036665A/en
Application granted granted Critical
Publication of JP4503947B2 publication Critical patent/JP4503947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molecular drag pump reducing surface temperature of an upper end surface part of a rotor of a turbo molecular pump part as compared with a conventional one with meeting a demand of a device on which vacuum exhaust is performed for avoiding high temperature radiation heat from a molecular drag pump side and suppressing increase of manufacturing cost and running cost. <P>SOLUTION: In this molecular drag pump, the rotor of the turbo molecular pump part 2 is formed to enable to be separated into two of an upper part rotor 6a and the lower part rotor 6b, and packing 7a, 7b of heat insulating material is put therebetween to prevent heat transfer therebetween. Also in this molecular drag pump, a casing covering a stationary blade stage of the turbo molecular pump part 2 is formed to enable to be separated into two of an upper casing rotor 10a and the lower part casing 10b, and packing 11a, 11b of heat insulating material is put therebetween to prevent heat transfer therebetween. The upper part casing 10a and the lower part casing 10b are cooled by a cooling means using cooling water pipe. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は高真空を発生させる分子ポンプにおいて、特に第1段目にターボ分子ポンプ部を配置した分子ポンプに関する。
【0002】
【従来の技術】
従来の複合分子ポンプの一例を図3に示した。
【0003】
該複合分子ポンプは、ターボ分子ポンプ部aとねじ溝真空ポンプ部nとからなり、竪形に形成されている。
【0004】
該ターボ分子ポンプ部aは複合分子ポンプの上方(吸気口f側)に配置されていて、ロータcの外周部に放射状に動翼を突設してなる動翼段a1、a2、a3、…、を多段に有しており、又、これら動翼段の間には放射状に静翼を配置してなる静翼段b1、b2、b3、…、を多段に有している。
【0005】
前記ねじ溝真空ポンプ部nは、前記ロータcの下方部に連設された円筒状ロータ部eの外側に外側ステータを有して形成した一次側ねじ溝真空ポンプ部n1と、前記円筒状ロータ部eの内側に内側ステータを有して形成した二次側ねじ溝真空ポンプ部n2とからなる。
【0006】
hは前記ロータcに接続する回転軸であり、該回転軸hはベアリングハウジングjに回動自在に軸支されている。
【0007】
又、kは前記ベアリングハウジングj等を冷却するためにベース部mに設けた冷却水管である。
【0008】
当該複合分子ポンプの作動は、前記吸気口fより排気を吸入し、ターボ分子ポンプ部a、一次側ねじ溝真空ポンプ部n1、次いで二次側ねじ溝真空ポンプ部n2を経て、排気口gより排気を排出する。
【0009】
【発明が解決しようとする課題】
真空排気が行なわれる装置の中には、排気を行なう真空ポンプ側からの熱影響を嫌うものがある。
【0010】
従来の分子ポンプのロータの表面温度は40℃乃至80℃程度であるが、このような温度からの放射熱は好ましくなく、ロータの表面温度を室温又は27℃程度迄とすることが要求される場合があった。
【0011】
この様な場合、従来は分子ポンプの吸気口部にバッフルプレートを設けて、分子ポンプのロータからの放射熱を防ぐようにした例がある。
【0012】
しかし、このように吸気口部にバッフルプレートを設けると、吸気抵抗が増大するために、排気速度の大きな真空ポンプが必要になってコスト高になるという問題点があった。
【0013】
又、分子ポンプの外周部に低温の冷却水を循環させて、分子ポンプ全体の温度を下げるようにした例がある。
【0014】
しかし、このように低温の冷却水を供給するためには、更に冷却水を冷却するための装置が必要になって、不経済であるという問題があった。
【0015】
本発明は前記の問題点を解消し、バッフルプレート無しで、しかも従来程度の水温の冷却水を用いて、真空ポンプ側からの放射熱の影響が出ないような分子ポンプを提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は上記の目的を達成すべく、複数の動翼をロータの外周部に放射状に突設してなる動翼段を多段に有すると共に、これら動翼段間に各々放射状に静翼を配置してなる静翼段を多段に有するターボ分子ポンプ、及び又は、該ターボ分子ポンプ部に連設されたねじ溝真空ポンプ部を有する複合分子ポンプにおいて、前記ロータを、上部動翼段を有する上部ロータと下部動翼段を有する下部ロータとに2分割可能に形成すると共に、これら上部ロータと下部ロータとの間に断熱部材を介在させて両者間の熱伝導を阻止するように形成し、更に前記静翼段を覆うケーシングに前記静翼段の一部又は全部を冷却する冷却手段を設けて、該冷却した静翼段により前記上部ロータの温度を冷却するように形成した。
【0017】
【発明の実施の形態】
本発明の一実施の形態を図1により説明する。
【0018】
図1は本発明を採用した複合分子ポンプ1の縦断面図であり、該複合分子ポンプ1はターボ分子ポンプ部2とねじ溝真空ポンプ部3とを竪形に連設して形成されており、上端部に吸気口4を有し、下方部に排気口5を有する。
【0019】
前記ターボ分子ポンプ部2は、上下に2分割可能に形成されたロータアッセンブリ6を有しており、上部ロータ6aの外周部に複数の動翼を放射状に突設した多段の上部動翼段6a1、6a2、…、を有すると共に、該上部ロータ6aに連設された下部ロータ6bの外周部に複数の動翼を放射状に突設した多段の下部動翼段6b1、6b2、…、を有して、これら上部ロータ6aと下部ロータ6bとの間に断熱材製のパッキン7a、7bを介在させて両者間の熱伝導の阻止を図りつつ、両者一体のロータアッセンブリ6に形成している。
【0020】
尚、前記ロータ6a、6b即ちロータアッセンブリ6及び静翼の表面の一部又は全部には放射率が約0.9のセラミックスコーティングを施工して、ロータ等の表面の放射率を高めている。尚、セラミックスコーティングとは、アルミ合金製のロータアッセンブリ等を陽極にして高電圧で電解することにより、表面に酸化皮膜を電着形成するものである。
【0021】
前記上部動翼段6a1、6a2、…、の各動翼段間には、各々複数の静翼を放射状に配置してなる上部静翼段8a1、8a2、…、があって、これら上部静翼段8a1、8a2、…、は各々その外周部を円環状のディスタンスピース9で挟持して、その外周部を覆う上部ケーシング10a内に係止されている。
【0022】
又、前記下部動翼段6b1、6b2、…、の各動翼段間には各々複数の静翼を放射状に配置してなる下部静翼段8b1、8b2、…、があって、これら下部静翼段8b1、8b2、…、は各々その外周部を円環状のディスタンスピース9で挟持して、その外周部を覆う下部ケーシング10b内に係着されている。
【0023】
前記上部ケーシング10aと前記下部ケーシング10bとは一体に組合わさってケーシングアッセンブリ10を形成しており、これら上部ケーシング10aと下部ケーシング10bの間には断熱材製のパッキン11a、11bを介在させて、両者間の熱伝導の阻止を図っている。
【0024】
又、これら上部ケーシング10a及び下部ケーシング10bは、各々を冷却するための冷却水管12a又は12bが、それぞれ上部にケーシング10a又は下部ケーシング10bを取り巻くように設置されている。
【0025】
尚、ねじ溝真空ポンプ部3は従来のものと同様の構造で、前記下部ロータ6bの下方部に連設された円筒状ロータ部6cの外側に外側ステータ3a1を有して形成した一次側ねじ溝真空ポンプ部3aと、前記円筒状ロータ部6cの内側に内側ステータ3b1を有して形成した二次側ねじ溝ポンプ部3bとからなる。
【0026】
又、回転軸13は前記円筒状ロータ部6c内を挿通して前記下部ロータ6bの下面に接続して配置されており、該回転軸13はベアリングハウジング14に回動自在に軸支されており、該ベアリングハウジング14は前記ねじ溝真空ポンプ部3のハウジング3cの下端部に固定したベース部17の中央部に立設されている。
【0027】
尚、15は回転軸駆動用のモータであり、16は前記ベース部17に配設された冷却水管である。
【0028】
次に本実施の形態の複合分子ポンプ1の作動及びその効果について説明する。
【0029】
複合分子ポンプ1の吸気口4を真空排気が行なわれる装置に取付け、ロータアッセンブリ6を高速で回転させて前記装置の排気を行なう。
【0030】
この排気作用による発熱や駆動モータ15からの発熱、及び軸受部からの発熱等によって回転軸13やロータ部の温度が上昇し、回転軸13やロータ部が40℃乃至80℃程度となっても、前記ロータアッセンブリ6の上部ロータ6aの温度を、前記装置が許容する放射熱の温度、例えば、27℃に保つことができる。
【0031】
図2は、上部ケーシング10a及び下部ケーシング10bに設けた冷却水管12a、12bに通す冷却水の温度と、前記上部ロータ6aの表面温度との関係を示すグラフの一例である。
【0032】
即ち、図2において、X軸は上部ロータ6aの表面温度を示し、縦軸Yは前記冷却水管12a、12bに供給する冷却水の水温を示す。
【0033】
該グラフから、上部ロータ6aの表面温度を27℃にするためには、供給する冷却水の温度を26℃にすればよいことが判る。
【0034】
このように上部ケーシング10aを冷却水で冷却して、前記上部ロータ6aの周りの上部静翼段8a1、8a2、…、や環状のディスタンスピース9を冷却することにより、ロータアッセンブリ6の上部をなす上部ロータ6aの温度を排気が行われる装置側からの要求温度にまで引き下げることができる。
【0035】
尚、上部ロータ6aは、表面温度に相当する熱放射を吸気口4に向けて放射しており、前記装置に悪い熱的影響を与えない。
【0036】
又、下部ロータ6b及び回転軸13などの前記上部ロータ6aと熱的に遮断された部分は、従来の40℃乃至80℃の高温の状態のままでもよいので、前記上部ロータ6aを冷却するための僅かな冷却水量の増加だけで前記装置側の要求に応えることができる。
【0037】
尚、冷却水管12bは、無くてもよい。
【0038】
【発明の効果】
このように本発明によれば、真空排気が行なわれる装置の、分子ポンプからの放射熱の影響を嫌う要求に対して、分子ポンプの吸気口部にバッフルプレートを設ける必要がなく、又、低水温の冷却水も必要でなく、従来の分子ポンプに使われている通常温度の冷却水を用いて、ロータの上端面部の表面温度の低い分子ポンプを提供することができる効果を有する。
【図面の簡単な説明】
【図1】本発明を採用した複合分子ポンプの断面図である。
【図2】前記複合分子ポンプの、冷却水温度と上部ロータの表面温度との関係を示すグラフの一例である。
【図3】従来の複合分子ポンプの一例の縦断面図である。
【符号の説明】
1 分子ポンプ(複合分子ポンプ)
2 ターボ分子ポンプ部
3 ねじ溝真空ポンプ部
6a 上部ロータ
6b 下部ロータ
7a、7b、11a、11b 断熱部材(パッキン)
10a 上部ケーシング
10b 下部ケーシング
12a、12b 冷却手段(冷却水管)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molecular pump that generates a high vacuum, and more particularly to a molecular pump in which a turbo molecular pump unit is arranged in the first stage.
[0002]
[Prior art]
An example of a conventional complex molecular pump is shown in FIG.
[0003]
The composite molecular pump includes a turbo molecular pump part a and a thread groove vacuum pump part n, and is formed in a bowl shape.
[0004]
The turbo molecular pump part a is arranged above the composite molecular pump (on the intake port f side), and the moving blade stages a1, a2, a3,... Are formed by projecting the moving blades radially on the outer periphery of the rotor c. Are arranged in multiple stages, and stationary blade stages b1, b2, b3,... Formed by arranging stationary blades radially between these rotor blade stages are provided in multiple stages.
[0005]
The thread groove vacuum pump part n includes a primary side thread groove vacuum pump part n1 formed by having an outer stator outside a cylindrical rotor part e provided continuously to a lower part of the rotor c, and the cylindrical rotor. It comprises a secondary-side thread groove vacuum pump part n2 formed with an inner stator inside the part e.
[0006]
Reference symbol h denotes a rotating shaft connected to the rotor c, and the rotating shaft h is pivotally supported by the bearing housing j.
[0007]
K is a cooling water pipe provided in the base portion m for cooling the bearing housing j and the like.
[0008]
The operation of the composite molecular pump is to suck exhaust gas from the intake port f, and from the exhaust port g through the turbo molecular pump part a, the primary-side thread groove vacuum pump part n1, and then the secondary-side thread groove vacuum pump part n2. Exhaust the exhaust.
[0009]
[Problems to be solved by the invention]
Some devices that are evacuated do not like the thermal effect from the side of the vacuum pump that evacuates.
[0010]
The surface temperature of the rotor of a conventional molecular pump is about 40 ° C. to 80 ° C. However, radiant heat from such a temperature is not preferable, and the surface temperature of the rotor is required to be room temperature or about 27 ° C. There was a case.
[0011]
In such a case, there is a conventional example in which a baffle plate is provided at the inlet of the molecular pump to prevent radiant heat from the rotor of the molecular pump.
[0012]
However, when the baffle plate is provided at the intake port as described above, the intake resistance increases, so that a vacuum pump with a high exhaust speed is required, resulting in a high cost.
[0013]
There is an example in which low temperature cooling water is circulated around the outer periphery of the molecular pump to lower the temperature of the entire molecular pump.
[0014]
However, in order to supply such low-temperature cooling water, a device for cooling the cooling water is further required, which is uneconomical.
[0015]
An object of the present invention is to provide a molecular pump that solves the above-described problems and does not have the influence of radiant heat from the vacuum pump side without using a baffle plate and using cooling water having a water temperature of a conventional level. And
[0016]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention has a plurality of blade stages formed by projecting a plurality of blades radially on the outer periphery of the rotor, and a plurality of blades are arranged radially between these blade stages. In a turbomolecular pump having a plurality of stationary vane stages and / or a composite molecular pump having a thread groove vacuum pump connected to the turbomolecular pump, the rotor is an upper part having an upper rotor stage. A rotor and a lower rotor having a lower rotor blade stage are formed so as to be divided into two parts, and a heat insulating member is interposed between the upper rotor and the lower rotor so as to prevent heat conduction between them, A cooling means for cooling part or all of the stationary blade stage is provided in a casing covering the stationary blade stage, and the temperature of the upper rotor is cooled by the cooled stationary blade stage.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
[0018]
FIG. 1 is a longitudinal sectional view of a composite molecular pump 1 employing the present invention. The composite molecular pump 1 is formed by connecting a turbo molecular pump portion 2 and a thread groove vacuum pump portion 3 in a bowl shape. The upper end portion has an intake port 4 and the lower portion has an exhaust port 5.
[0019]
The turbo molecular pump section 2 has a rotor assembly 6 formed so as to be divided into two vertically, and a multistage upper rotor blade stage 6a1 in which a plurality of rotor blades project radially from the outer periphery of the upper rotor 6a. , 6a2, ..., and a plurality of lower rotor blade stages 6b1, 6b2, ... in which a plurality of rotor blades project radially from the outer periphery of the lower rotor 6b connected to the upper rotor 6a. In this way, the packing 7a, 7b made of a heat insulating material is interposed between the upper rotor 6a and the lower rotor 6b so as to prevent heat conduction between them, and the rotor assembly 6 is formed as an integral part of both.
[0020]
A ceramic coating having an emissivity of about 0.9 is applied to part or all of the surfaces of the rotors 6a and 6b, that is, the rotor assembly 6 and the stationary blades, to increase the emissivity of the surface of the rotor and the like. The ceramic coating is to deposit an oxide film on the surface by electrolysis at a high voltage with an aluminum alloy rotor assembly or the like as an anode.
[0021]
There are upper stator blade stages 8a1, 8a2,... Formed by radially arranging a plurality of stator blades between the upper rotor blade stages 6a1, 6a2,. Each of the steps 8a1, 8a2,... Is held in an upper casing 10a that covers the outer periphery of the outer periphery of the step 8a1, 8a2,.
[0022]
Further, there are lower stator blade stages 8b1, 8b2,... Formed by radially arranging a plurality of stator blades between the lower rotor blade stages 6b1, 6b2,. Each of the blade stages 8b1, 8b2,... Is held in a lower casing 10b that covers an outer peripheral portion of the blade stage 8b1, 8b2,.
[0023]
The upper casing 10a and the lower casing 10b are integrally combined to form a casing assembly 10. Between the upper casing 10a and the lower casing 10b, packings 11a and 11b made of heat insulating material are interposed, The heat conduction between the two is prevented.
[0024]
The upper casing 10a and the lower casing 10b are each provided with a cooling water pipe 12a or 12b for cooling the upper casing 10a and the lower casing 10b so as to surround the casing 10a or the lower casing 10b, respectively.
[0025]
The thread groove vacuum pump portion 3 has the same structure as the conventional one, and is formed by having an outer stator 3a1 outside the cylindrical rotor portion 6c connected to the lower portion of the lower rotor 6b. It consists of a groove vacuum pump portion 3a and a secondary screw groove pump portion 3b formed with an inner stator 3b1 inside the cylindrical rotor portion 6c.
[0026]
The rotating shaft 13 is inserted into the cylindrical rotor portion 6c and connected to the lower surface of the lower rotor 6b. The rotating shaft 13 is rotatably supported by the bearing housing 14. The bearing housing 14 is erected at the center portion of the base portion 17 fixed to the lower end portion of the housing 3c of the thread groove vacuum pump portion 3.
[0027]
In addition, 15 is a motor for driving a rotating shaft, and 16 is a cooling water pipe disposed on the base portion 17.
[0028]
Next, the operation and effects of the complex molecular pump 1 of the present embodiment will be described.
[0029]
The intake port 4 of the complex molecular pump 1 is attached to a device that is evacuated, and the rotor assembly 6 is rotated at high speed to evacuate the device.
[0030]
Even if the heat generated by the exhaust action, the heat generated from the drive motor 15 and the heat generated from the bearing portion increase the temperature of the rotary shaft 13 and the rotor portion, and the temperature of the rotary shaft 13 and the rotor portion reaches about 40 ° C. to 80 ° C. The temperature of the upper rotor 6a of the rotor assembly 6 can be maintained at the radiant heat temperature allowed by the device, for example, 27 ° C.
[0031]
FIG. 2 is an example of a graph showing the relationship between the temperature of the cooling water passing through the cooling water pipes 12a and 12b provided in the upper casing 10a and the lower casing 10b and the surface temperature of the upper rotor 6a.
[0032]
That is, in FIG. 2, the X axis indicates the surface temperature of the upper rotor 6a, and the vertical axis Y indicates the temperature of the cooling water supplied to the cooling water pipes 12a and 12b.
[0033]
From this graph, it can be seen that the temperature of the supplied cooling water should be 26 ° C. in order to set the surface temperature of the upper rotor 6 a to 27 ° C.
[0034]
In this way, the upper casing 10a is cooled with cooling water to cool the upper stationary blade stages 8a1, 8a2,... And the annular distance piece 9 around the upper rotor 6a, thereby forming the upper portion of the rotor assembly 6. The temperature of the upper rotor 6a can be lowered to the required temperature from the apparatus side where the exhaust is performed.
[0035]
The upper rotor 6a radiates heat radiation corresponding to the surface temperature toward the intake port 4 and does not adversely affect the device.
[0036]
Further, the portions that are thermally cut off from the upper rotor 6a such as the lower rotor 6b and the rotating shaft 13 may remain at a high temperature of 40 ° C. to 80 ° C. in order to cool the upper rotor 6a. Only a slight increase in the amount of cooling water can meet the requirements on the apparatus side.
[0037]
The cooling water pipe 12b may be omitted.
[0038]
【The invention's effect】
As described above, according to the present invention, it is not necessary to provide a baffle plate at the intake port of the molecular pump in response to a request for evacuation of the apparatus that evacuates, and to avoid the influence of radiant heat from the molecular pump. There is no need for cooling water at a water temperature, and there is an effect that it is possible to provide a molecular pump having a low surface temperature at the upper end surface portion of the rotor by using cooling water at a normal temperature used in a conventional molecular pump.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a complex molecular pump employing the present invention.
FIG. 2 is an example of a graph showing the relationship between the cooling water temperature and the surface temperature of the upper rotor of the complex molecular pump.
FIG. 3 is a longitudinal sectional view of an example of a conventional complex molecular pump.
[Explanation of symbols]
1 Molecular pump (complex molecular pump)
2 Turbo molecular pump part 3 Thread groove vacuum pump part 6a Upper rotor 6b Lower rotor 7a, 7b, 11a, 11b Thermal insulation member (packing)
10a Upper casing 10b Lower casing 12a, 12b Cooling means (cooling water pipe)

Claims (4)

複数の動翼をロータの外周部に放射状に突設してなる動翼段を多段に有すると共に、これら動翼段間に各々放射状に静翼を配置してなる静翼段を多段に有するターボ分子ポンプ、及び又は、該ターボ分子ポンプ部に連設されたねじ溝真空ポンプ部を有する複合分子ポンプにおいて、前記ロータを、上部動翼段を有する上部ロータと下部動翼段を有する下部ロータとに2分割可能に形成すると共に、これら上部ロータと下部ロータとの間に断熱部材を介在させて両者間の熱伝導を阻止するように形成し、更に前記静翼段を覆うケーシングに前記静翼段の一部又は全部を冷却する冷却手段を設けて、該冷却した静翼段により前記上部ロータの温度を冷却するように形成した分子ポンプ。A turbo turbine having a plurality of rotor blade stages each having a plurality of rotor blades radially projecting from the outer periphery of the rotor, and a plurality of stator blade stages each having a plurality of stator blades radially disposed between the rotor blade stages. In a molecular pump and / or a composite molecular pump having a thread groove vacuum pump connected to the turbo molecular pump, the rotor includes an upper rotor having an upper blade stage and a lower rotor having a lower blade stage. In addition, a heat insulating member is interposed between the upper rotor and the lower rotor so as to prevent heat conduction therebetween, and the stator blades are formed on a casing covering the stator blade stage. A molecular pump provided with cooling means for cooling a part or all of the stage so as to cool the temperature of the upper rotor by the cooled stationary blade stage. 前記静翼段を覆うケーシングを、前記上部動翼段間に配置された上部静翼段を係着する上部ケーシングと、前記下部動翼段間に配置された下部静翼段を係着する下部ケーシングとに2分割可能に形成すると共に、これら上部ケーシングと下部ケーシングとの間に断熱部材を介在させて両者間の熱伝導を阻止するように形成した請求項1に記載の分子ポンプ。A casing covering the stationary blade stage, an upper casing engaging the upper stationary blade stage disposed between the upper moving blade stages, and a lower part engaging the lower stationary blade stage disposed between the lower moving blade stages. The molecular pump according to claim 1, wherein the molecular pump is formed so as to be divided into two parts in the casing, and a heat insulating member is interposed between the upper casing and the lower casing to prevent heat conduction therebetween. 前記上部ケーシング及び前記下部ケーシング、又は前記上部ケーシングに、冷却水管からなる冷却手段を設置して、これら冷却手段により前記上部ロータの温度を室温又は指定した温度に維持するように形成した請求項1又は請求項2に記載の分子ポンプ。The cooling means comprising cooling water pipes is installed in the upper casing and the lower casing or the upper casing, and the cooling means is formed so as to maintain the temperature of the upper rotor at room temperature or a specified temperature. Or the molecular pump of Claim 2. 前記動翼を含む前記ロータと前記静翼の表面の一部又は全部にセラミックスコーティングを形成した請求項1乃至請求項3のいずれか1に記載の分子ポンプ。The molecular pump according to any one of claims 1 to 3, wherein a ceramic coating is formed on part or all of the surfaces of the rotor and the stationary blade including the moving blade.
JP2003197727A 2003-07-16 2003-07-16 Molecular pump Expired - Fee Related JP4503947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197727A JP4503947B2 (en) 2003-07-16 2003-07-16 Molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197727A JP4503947B2 (en) 2003-07-16 2003-07-16 Molecular pump

Publications (2)

Publication Number Publication Date
JP2005036665A true JP2005036665A (en) 2005-02-10
JP4503947B2 JP4503947B2 (en) 2010-07-14

Family

ID=34207772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197727A Expired - Fee Related JP4503947B2 (en) 2003-07-16 2003-07-16 Molecular pump

Country Status (1)

Country Link
JP (1) JP4503947B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069066A (en) * 2003-08-21 2005-03-17 Ebara Corp Turbo vacuum pump and semiconductor manufacturing device having this turbo vacuum pump
JP2014051952A (en) * 2012-09-10 2014-03-20 Shimadzu Corp Turbo molecular pump
WO2014045438A1 (en) * 2012-09-24 2014-03-27 株式会社島津製作所 Turbomolecular pump
CN108412785A (en) * 2018-02-26 2018-08-17 北京海斯德电机技术有限公司 A kind of composite molecular pump
CN108412786A (en) * 2018-02-26 2018-08-17 北京海斯德电机技术有限公司 A kind of composite molecular pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7546410B2 (en) 2020-08-07 2024-09-06 エドワーズ株式会社 Vacuum pump and rotor for vacuum pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183297A (en) * 1987-01-23 1988-07-28 Mitsubishi Electric Corp Turbo molecular pump
JPH03246305A (en) * 1990-02-26 1991-11-01 Nissan Motor Co Ltd Shaft construction for turbomachinery
JPH0730395U (en) * 1993-11-10 1995-06-06 セイコー精機株式会社 Turbo molecular pump
JPH07508082A (en) * 1992-06-19 1995-09-07 ライボルト アクチエンゲゼルシヤフト gas friction vacuum pump
JP3034699U (en) * 1996-08-13 1997-02-25 株式会社大阪真空機器製作所 Compound molecular pump
JPH10264219A (en) * 1997-03-27 1998-10-06 Toshiba Corp Melt injection apparatus
JP2002081397A (en) * 2000-09-06 2002-03-22 Ebara Corp Vacuum pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183297A (en) * 1987-01-23 1988-07-28 Mitsubishi Electric Corp Turbo molecular pump
JPH03246305A (en) * 1990-02-26 1991-11-01 Nissan Motor Co Ltd Shaft construction for turbomachinery
JPH07508082A (en) * 1992-06-19 1995-09-07 ライボルト アクチエンゲゼルシヤフト gas friction vacuum pump
JPH0730395U (en) * 1993-11-10 1995-06-06 セイコー精機株式会社 Turbo molecular pump
JP3034699U (en) * 1996-08-13 1997-02-25 株式会社大阪真空機器製作所 Compound molecular pump
JPH10264219A (en) * 1997-03-27 1998-10-06 Toshiba Corp Melt injection apparatus
JP2002081397A (en) * 2000-09-06 2002-03-22 Ebara Corp Vacuum pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069066A (en) * 2003-08-21 2005-03-17 Ebara Corp Turbo vacuum pump and semiconductor manufacturing device having this turbo vacuum pump
JP2014051952A (en) * 2012-09-10 2014-03-20 Shimadzu Corp Turbo molecular pump
WO2014045438A1 (en) * 2012-09-24 2014-03-27 株式会社島津製作所 Turbomolecular pump
CN108412785A (en) * 2018-02-26 2018-08-17 北京海斯德电机技术有限公司 A kind of composite molecular pump
CN108412786A (en) * 2018-02-26 2018-08-17 北京海斯德电机技术有限公司 A kind of composite molecular pump

Also Published As

Publication number Publication date
JP4503947B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP6287475B2 (en) Vacuum pump
KR101286187B1 (en) Multistage dry vaccum pump
JP2527398B2 (en) Turbo molecular pump
TWI467898B (en) A motor, a vacuum pump and a method of removing heat from a motor rotor located within a subatmospheric pressure environment during use of a motor
WO2019188732A1 (en) Vacuum pump
JP4156830B2 (en) Vacuum pump
JP2000274394A (en) Turbo molecular pump
US6503050B2 (en) Turbo-molecular pump having enhanced pumping capacity
JP2003269367A (en) Vacuum pump
KR20160119758A (en) Vacuum pump and heat insulating spacer used for said vacuum pump
JP4503947B2 (en) Molecular pump
US20140241853A1 (en) Vacuum pump
JP2003269369A (en) Vacuum pump
EP3808982A1 (en) Vacuum pump with thermal insulation
JP6353257B2 (en) Exhaust port parts and vacuum pump
WO2020120955A1 (en) Multi-stage turbomolecular pump
JP6390098B2 (en) Vacuum pump
JP7533324B2 (en) Vacuum pump
JP4916655B2 (en) Vacuum pump
EP3808983B1 (en) Vacuum pump with heater in the side cover
JP2574810B2 (en) Vacuum pump
JP2003148379A (en) Turbo-molecular pump
JP2003083282A (en) Turbo-molecular pump
US11143191B2 (en) Drag pump and a set of vacuum pumps including a drag pump
JP3794775B2 (en) Molecular pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4503947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees