JP2005036661A - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP2005036661A
JP2005036661A JP2003197574A JP2003197574A JP2005036661A JP 2005036661 A JP2005036661 A JP 2005036661A JP 2003197574 A JP2003197574 A JP 2003197574A JP 2003197574 A JP2003197574 A JP 2003197574A JP 2005036661 A JP2005036661 A JP 2005036661A
Authority
JP
Japan
Prior art keywords
lubricating oil
scroll compressor
component
outer region
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003197574A
Other languages
Japanese (ja)
Inventor
Noboru Iida
飯田  登
Takashi Morimoto
敬 森本
Akira Iwashida
鶸田  晃
Yoshiyuki Futagami
義幸 二上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003197574A priority Critical patent/JP2005036661A/en
Publication of JP2005036661A publication Critical patent/JP2005036661A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the problem that when lubricating oil is supplied from a lubricating oil reservoir of a compressor to a compressing mechanism, branched to two routes, one of which is supplied to a low pressure space via a back pressure chamber by using a throttle, the other of which is increased to be supplied to the low pressure space if a differential pressure between a discharge pressure and a low pressure increases when a turning bearing and a bearing are lubricated and an amount of the lubricating oil of the turning bearing and the bearing decreases. <P>SOLUTION: This scroll compressor takes out the lubricating oil from the lubricating oil reservoir at a bottom of a sealed container to en exterior, supplies the lubricating oil to the back pressure chamber, and thus may not affect an influence of lubricating the bearings by a change of the differential pressure. In this scroll compressor, the lubricating oil taken out to the exterior is cooled. Thus, intake heating can be reduced, and an efficiency can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は冷凍サイクル装置等に用いられるスクロール圧縮機に関するものである。
【0002】
【従来の技術】
従来のこの種の圧縮機について図面と共に説明する。図6は、密閉容器301の内に、電動機303と、圧縮機構部302が配設されているスクロール圧縮機である。電動機303は密閉容器301の内側に固定されたステータ304と、このステータ304の内側に回転自在に支持されたロータ305とからなり、このロータ305には駆動軸306が貫通状態で結合されている。この駆動軸306の一端は上記圧縮機構部302の一部を構成する軸受け部品307に固定されている軸受け308に回転自在に支持されている。軸受け308により支持されている駆動軸の先端には駆動軸306に対して偏心運動を行うクランク軸309が備えられている。
【0003】
一方、固定渦巻き部品310と旋回渦巻き部品311を噛み合わせることにより複数の圧縮空間を形成し、旋回渦巻部品311の自転拘束部品312を備えて自転を防止し、クランク軸309により旋回渦巻き部品311を旋回渦巻き部品311に接合した旋回軸受け313を介して旋回運動のみをさせることによって、圧縮空間を渦巻の中心に向かって容積を減少させながら移動させることにより吸入ポート313から冷媒ガス等を吸入し、圧縮する。圧縮された冷媒ガス等は吐出ポート315を通り、密閉容器内空間316に吐出される。
【0004】
また駆動軸306の他端側は軸受け部品317によって支持されており、駆動軸306の他端側の先端には容積型ポンプ318を備えており、潤滑油溜まり319から容積型ポンプ318は駆動軸306の軸方向の中心に設けられた潤滑油を供給する給油経路320を経てクランク軸309の上部の潤滑油溜まり321を経由して旋回軸受け313を潤滑および冷却し、潤滑油溜まり322を経て軸受け308を潤滑した後、再循環を行う。
【0005】
一方、潤滑油溜まり321に供給された潤滑油の一部は、旋回渦巻き部品311の内部に設けられた長孔323を経由して絞り部324より旋回鏡板325と軸受け部品307に設けられた窪み326と固定渦巻き部品310の上面327とシール部材328で構成された空間329に、減圧されて供給される。
【0006】
なお、シール部材328は高圧部である潤滑油溜まり322と空間329のシールの役割を持っている。またこの空間329には自転拘束部品312が配設されておりこの空間329に供給される潤滑油により潤滑を行っている。
【0007】
空間329に供給された潤滑油が溜まるに従い、空間329の圧力が上昇するが、その圧力を一定に保つために、空間329と圧縮空間を生成する吸入空間330の間に圧力調整機構331が構成されており、空間329の圧力が設定された圧力より高くなると圧力調整機構331が作動して空間329内の潤滑油は吸入空間330に供給され、空間329内の圧力はほぼ一定に保たれると共に吸入空間330に供給された潤滑油は圧縮空間に導かれ、圧縮中の冷媒ガス等の漏れを防ぐシールの役割と、固定渦巻き部品310と旋回渦巻き部品311の接触面を潤滑する役割を果たしている。同時に空間329内の潤滑油は固定渦巻き部品と旋回渦巻き部品の鏡板の摺動面の潤滑も行いつつ吸入空間へ導かれる(例えば特許文献1参照)。
【0008】
【特許文献1】
特開2001−317475号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記構成において潤滑油溜まり319から空間329を経由して吸入空間へ供給された潤滑油の温度が高いため、吸入された冷媒ガスを暖め吸入加熱を招き、圧縮機の効率を低下させる。また潤滑油の温度が高いと潤滑油の粘度が低下し、自転拘束部品312の潤滑性能や固定渦巻き部品と旋回渦巻き部品の鏡板との摺動面の潤滑性能を低下させる。
【0010】
また潤滑油溜まり319から容積型ポンプ318によって潤滑油溜まり321に供給される潤滑油は旋回軸受け313と軸受け308を潤滑する経路と絞り部324と圧力調整機構331を経由して吸入空間へ供給される経路をもっているため、高圧縮比低回転運転時には潤滑油溜まり321と吸入空間の差圧が大きくなり、後者の経路に供給される潤滑油が増大、対して前者の経路に供給される潤滑油は減少し旋回軸受け313と軸受け308の信頼性を低下させる課題を有していた。
【0011】
本発明はこのような従来の課題を解決するものであり、高効率かつ高信頼性のスクロール圧縮機を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1に記載のスクロール圧縮機は、密閉容器内に、スクロール圧縮機部と電動機部を収納し、前記密閉容器の底部に潤滑油を溜める潤滑油溜まりを備え、前記スクロール圧縮機部は、固定渦巻羽根と固定鏡板を有する固定渦巻部品と、旋回渦巻羽根と旋回鏡板を有する旋回渦巻部品とを噛み合わせて複数の圧縮空間を形成し、前記旋回部品を旋回運動させる自転拘束部品とクランク軸を設けた駆動軸と前記駆動軸を支持する軸受けを持つ軸受け部品を備え、前記旋回渦巻部品の前記旋回渦巻羽根面と反対側に背圧室を設け、前記背圧室を環状のシール部材により内側領域と外側領域に区画し、前記外側領域と吸入圧力領域とを連通する連通路と、前記外側領域の圧力と吸入圧力との差に応じて前記連通路を開閉する手段を備えたスクロール圧縮機において、前記潤滑油溜まりから前記背圧室の前記内側領域に潤滑油を供給し、吐出圧力にするとともに、前記外側領域に潤滑油を導入する経路を前記潤滑油溜まりから前記密閉容器の外へ潤滑油を引き出し、潤滑油を冷却器により冷却した後に、絞りにより減圧して前記外側領域に供給する経路としたことを特徴とする。
【0013】
請求項2に記載のスクロール圧縮機は、請求項1に記載の絞りを請求項1に記載の軸受け部品に構成した絞り効果のある細穴であることを特徴とする。
【0014】
請求項3に記載のスクロール圧縮機は、請求項1に記載の絞りを請求項1に記載の固定渦巻き 部品に構成した絞り効果のある細穴であることを特徴とする。
【0015】
請求項4に記載のスクロール圧縮機は、請求項1に記載の絞りを請求項1に記載の固定渦巻き部品に請求項1に記載の冷却器と請求項1に記載の外側領域を連通する経路を設け、この経路の前記外側領域に解放されている部分を請求項1に記載の旋回鏡板により間欠的に開閉することにより構成したことを特徴とする。
【0016】
請求項5に記載のスクロール圧縮機は、請求項4に記載の経路の一部を絞り効果のある細穴としたことを特徴とする。
【0017】
請求項6に記載のスクロール圧縮機は、請求項1から請求項5に記載のスクロール圧縮機の冷媒を二酸化炭素とすることを特徴とする。
【0018】
請求項7に記載のスクロール圧縮機は、請求項1から請求項5に記載のスクロール圧縮機の冷媒を炭化水素系冷媒とすることを特徴とする。
【0019】
【発明の実施の形態】
本発明の第1の実施の形態による圧縮機は、密閉容器内に、スクロール圧縮機部と電動機部を収納し、前記密閉容器の底部に潤滑油を溜める潤滑油溜まりを備え、前記スクロール圧縮機部は、固定渦巻羽根と固定鏡板を有する固定渦巻部品と、旋回渦巻羽根と旋回鏡板を有する旋回渦巻部品とを噛み合わせて複数の圧縮空間を形成し、前記旋回部品を旋回運動させる自転拘束部品とクランク軸を設けた駆動軸と前記駆動軸を支持する軸受けを持つ軸受け部品を備え、前記旋回渦巻部品の前記旋回渦巻羽根面と反対側に背圧室を設け、前記背圧室を環状のシール部材により内側領域と外側領域に区画し、前記外側領域と吸入圧力領域とを連通する連通路と、前記外側領域の圧力と吸入圧力との差に応じて前記連通路を開閉する手段を備えたスクロール圧縮機において、前記潤滑油溜まりから前記背圧室の前記内側領域に潤滑油を供給し、吐出圧力にするとともに、前記外側領域に潤滑油を導入する経路を前記潤滑油溜まりから前記密閉容器の外へ潤滑油を引き出し、潤滑油を冷却器により冷却した後に、絞りにより減圧して前記外側領域に供給する経路を設けたものであり、高温である前記潤滑油溜まりの潤滑油を冷却器により冷却し、前記外側領域を経由して吸入空間に供給することにより、吸入空間に吸入された冷媒ガスを暖めることはなく、圧縮機の効率を上げることができると共に、潤滑油の温度を下げることにより潤滑油の粘度が低下させずに済み、それが自転拘束部品の潤滑性能や固定渦巻き部品と旋回渦巻き部品の鏡板との摺動面の潤滑性能を向上させる。
【0020】
また、密閉容器の底の潤滑油溜まりから容積型ポンプによって供給される潤滑油は旋回軸受けとや軸受けだけを潤滑するため、旋回軸受けと軸受けの信頼性を高めることができ、高効率で信頼性の高いスクロール圧縮機を実現できる。
【0021】
本発明の第2の実施の形態による圧縮機は、第1の実施の形態に加え、前記絞りを前記軸受け部品に絞り効果のある細穴を設けたものでありキャピラリーチューブ等の絞り部品を使用することなく低コストのスクロール圧縮機を実現できる。
【0022】
本発明の第3の実施の形態による圧縮機は、第1の実施の形態に加え、前記絞りを前記固定渦巻き部品に絞り効果のある細穴を設けたものであり、キャピラリーチューブ等の絞り部品を使用することなく低コストのスクロール圧縮機を実現できる。
【0023】
本発明の第4の実施の形態による圧縮機は、第1の実施の形態に加え、前記絞りを前記固定渦巻き部品に前記冷却器と前記外側領域を連通する経路を設け、この経路の前記外側領域に解放されている部分を前記旋回鏡板により間欠的に開閉することにより構成ものであり絞りとして細穴を設けることなく吸入空間へ供給する潤滑油の量を低減でき、信頼性が高く低コストなスクロール圧縮機を実現できる。
【0024】
本発明の第5の実施の形態による圧縮機は、第1の実施の形態に加え、前記経路の一部を細穴とすることにより更に供給する潤滑油の量を低減でき、高効率のスクロール圧縮機を実現できる。
【0025】
本発明の第6の実施の形態による圧縮機は、第1から第5の実施の形態に加え、冷媒を高圧側の温度が特に高くなる、すなわち密閉容器の潤滑油溜まりの潤滑油の温度が高くなる二酸化炭素を用いた場合において高効率で信頼性が高く、かつ環境に配慮したスクロール圧縮機を実現できる。
【0026】
本発明の第7の実施の形態による圧縮機は、第1から第5の実施の形態に加え、冷媒を潤滑油に溶解しやすく粘度が低下しやすい炭化水素系冷媒とした場合において高効率で信頼性が高くかつ環境に配慮したスクロール圧縮機が実現できる。
【0027】
以下、上記の本発明の実施の形態を図面に基づいて説明する。
【0028】
(実施の形態1)
図1はこの発明に係るスクロール圧縮機の断面図である。密閉容器1の内に、電動機3と、圧縮機構部2が配設されている。電動機3は密閉容器1の内側に固定されたステータ4と、このステータ4の内側に回転自在に支持されたロータ5とからなり、このロータ5には駆動軸6が貫通状態で結合されている。この駆動軸6の一端は上記圧縮機構部2の一部を構成する軸受け部品7に固定されている軸受け8に回転自在に支持されている。軸受け8により支持されている駆動軸の先端には駆動軸6に対して偏心運動を行うクランク軸9が備えられている。
【0029】
一方、固定渦巻き部品10と旋回渦巻き部品11を噛み合わせることにより複数の圧縮空間を形成し、旋回渦巻部品11の自転拘束部品12を備えて自転を防止し、クランク軸9により旋回渦巻き部品11を旋回渦巻き部品11に接合した旋回軸受け13を介して旋回運動のみをさせることによって、圧縮空間を渦巻の中心に向かって容積を減少させながら移動させることにより吸入ポート14から冷媒ガス等を吸入し、圧縮する。圧縮された冷媒ガス等は吐出ポート15を通り、密閉容器内空間16に吐出される。
【0030】
また、駆動軸6の他端側は軸受け部品17によって支持されており、駆動軸6の他端側の先端には容積型ポンプ18を備えており、潤滑油溜まり19から容積型ポンプ18は駆動軸6の軸方向の中心に設けられた潤滑油を供給する給油経路20を経てクランク軸9の上部の潤滑油溜まり21を経由して旋回軸受け13を潤滑および冷却し、潤滑油溜まり22を経て軸受け8を潤滑した後、潤滑油溜り19に戻る。
【0031】
一方、密閉容器1の底部には、該底部の潤滑油溜まり19の潤滑油を器外へ取り出す潤滑油抽出管33が設けられている。潤滑油抽出管33の下流には冷却器34が設けられている。冷却器34により冷却された潤滑油は絞り35により減圧された後、潤滑油注入管36により密閉容器1と軸受け部品7を通して旋回鏡板25と軸受け部品7に設けられた窪み26と固定渦巻き部品10の上面27とシール部材28で構成された空間29に、供給される。なお、シール部材28は高圧部である潤滑油溜まり22と空間29のシールの役割を持っている。
【0032】
また、この空間29には自転拘束部品12が配設されておりこの空間29に供給される潤滑油により潤滑を行っている。空間29に供給された潤滑油が溜まるに従い、空間29の圧力が上昇するが、その圧力を一定に保つために、空間29と圧縮空間を生成する吸入空間30の間に圧力調整機構31が構成されており、空間29の圧力が設定された圧力より高くなると圧力調整機構31が作動して空間29内の潤滑油は吸入空間30に供給され、空間29内の圧力はほぼ一定に保たれると共に吸入空間30に供給された潤滑油は圧縮空間に導かれ、圧縮中の冷媒ガス等の漏れを防ぐシールの役割と、固定渦巻き部品10と旋回渦巻き部品11の接触面を潤滑する役割を果たしている。また空間29にある潤滑油は旋回鏡板25と固定渦巻き部品の摺動面の潤滑も行っている。
【0033】
上記の構成で空間29に供給された潤滑油は潤滑油溜まり19の潤滑油より温度は低く、温度が低いため粘度も高い。潤滑油の温度が低いため、空間29を経て吸入空間へ供給されても吸入ガスの吸入加熱を大きくすることが無く圧縮機の体積効率を上げ、高効率を実現することができる。
【0034】
また、潤滑油の粘度が高いため、自転拘束部品12や固定渦巻き部品10と旋回渦巻き部品11の潤滑性を上げ信頼性を上げると共に圧縮中の冷媒ガスの漏れを更に減らすことができ圧縮機の効率を上げることができる。また旋回軸受け13と軸受け8を潤滑する潤滑油の経路とは別経路で構成されているので高圧と低圧の差圧が大きくなり、その結果、空間29への潤滑油の供給が増大しても旋回軸受け13と軸受け8の給油量は減少することが無く、信頼性の高い圧縮機を実現することができる。
【0035】
(実施の形態2)
本発明の実施の形態2を図面に基づいて説明する。図2はこの発明に係るスクロール圧縮機の断面図である。図2において図1と同じ構成については同じ符号を使い、説明を省略する。本形態では実施の形態1で用いられている絞り35を軸受け部品7に細穴24を設けて構成したものである。上記の構成で、絞り35を器外に出すことが無く、加工等により軸受け部品7に構成できるため低コストを実現できる。
【0036】
(実施の形態3)
本発明の実施の形態3を図面に基づいて説明する。図3はこの発明に係るスクロール圧縮機の断面図である。図3において図1と同じ構成については同じ符号を使い、説明を省略する。本形態では実施の形態1で用いられている絞り35を固定渦巻き部品10に細穴24を設けて構成したものである。上記の構成で、絞り35を器外に出すことが無く、加工等により固定渦巻き部品7に構成できるため低コストを実現できる。
【0037】
(実施の形態4)
本発明の実施の形態4を図面に基づいて説明する。図4はこの発明に係るスクロール圧縮機のの断面図である。図4において図1と同じ構成については同じ符号を使い、説明を省略する。本形態では実施の形態1で用いられている絞り35の代わりに固定渦巻き部品11に設けられた穴23を、旋回鏡板25の上面が旋回運動により空間29に対して開閉することにより、潤滑油の供給と停止を行い、空間29に供給される潤滑油の量を調整できるように構成されている。上記の構成で絞りを用いることなく潤滑油の供給量を調整できるため加工が容易でかつ絞りに発生する閉塞などの課題が無く信頼性の高い圧縮機を実現できる。
【0038】
(実施の形態5)
本発明の実施の形態5を図面に基づいて説明する。図5はこの発明に係るスクロール圧縮機の断面図である。図5において図4と同じ構成については同じ符号を使い、説明を省略する。本形態では実施の形態4の穴23の一部を細穴24にして構成したものである。上記の構成で旋回鏡板の旋回運動により潤滑油の供給穴の開口部を開閉し、かつ供給穴の一部を細穴にしているので更に潤滑油の供給量を低減でき、高効率の圧縮機を実現できる。
【0039】
(実施の形態6)
本発明の実施の形態6を説明する。本実施の形態では、実施の形態1から5において作動冷媒を二酸化炭素としたものであり、二酸化炭素液冷媒の洗浄性に対して、冷却して粘度の上がった潤滑油を背圧室に供給するので、背圧室にある自転拘束部品や羽根スラスト面の潤滑性を高め、圧縮機の信頼を向上することが出来る。
【0040】
(実施の形態7)
本発明の実施の形態7を説明する。本実施の形態では実施の形態1から5において作動冷媒を潤滑油に溶解しやすく粘度が低下しやすい炭化水素としたものであり、潤滑油を冷却することで潤滑油の粘度を上げて背圧室へ供給するので背圧室にある自転拘束部品や羽根スラスト面の潤滑性を高め、圧縮機の信頼を向上することが出来る。
【0041】
【発明の効果】
上記から明らかなように、請求項1に記載の発明は、吸入空間に供給する潤滑油の温度が低いため、吸入ガスの吸入加熱を大きくすることが無く圧縮機の体積効率を上げ、高効率を実現することができる。また潤滑油の粘度が高いため、自転拘束部品や固定渦巻き部品と旋回渦巻き部品の潤滑性を上げ信頼性を上げると共に圧縮中の冷媒ガスの漏れを更に減らすことができ圧縮機の効率を上げることができるという効果を奏する。また旋回軸受けと軸受けを潤滑する潤滑油の経路とは別経路で構成されているので高圧と低圧の差圧が大きくなり、その結果、吸入空間への潤滑油の供給が増大しても旋回軸受けと軸受けの給油量は減少することが無く、信頼性を高めるという効果を奏する。
【0042】
請求項2に記載の発明は、請求項1に記載の発明の絞りを器外に出すことが無く、加工等により軸受け部品に構成できるため低コストを実現できるという効果を奏する。
【0043】
請求項3に記載の発明は、請求項1に記載の発明の絞りを器外に出すことが無く、加工等により固定渦巻き部品に構成できるため低コストを実現できるという効果を奏する。
【0044】
請求項4に記載の発明は、請求項1に記載の発明の絞りを器外に出すことが無く、かつ絞りを細穴でない構成で実現できるので圧縮機の信頼性を高めるという効果を奏する。
【0045】
請求項5に記載の発明は、請求項1に記載の発明の絞りを器外に出すことが無く、かつ絞りを細穴と絞り出口の開閉により実現できるので圧縮機の効率をを高めるという効果を奏する。
【0046】
請求項6に記載の発明は、請求項1から5に記載の発明において冷媒を高圧側の温度が特に高くなる、すなわち密閉容器の潤滑油溜まりの潤滑油の温度が高くなる二酸化炭素を用いた場合において高効率で信頼性が高まるという効果を奏する。
【0047】
請求項7に記載の発明は、請求項1から5に記載の発明において冷媒を潤滑油に溶解しやすく粘度が低下しやすい炭化水素系冷媒を用いた場合において高効率で信頼性が高まるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すスクロール圧縮機の断面図
【図2】本発明の第2の実施形態におけるスクロール圧縮機の断面図
【図3】本発明の第3の実施形態を示すスクロール圧縮機の断面図
【図4】本発明の第4の実施形態を示すスクロール圧縮機の断面図
【図5】本発明の第5の実施形態を示すスクロール圧縮機の断面図
【図6】従来のスクロール圧縮機の断面図
【符号の説明】
1 密閉容器
2 圧縮機構部
3 電動機
4 ステータ
5 ロータ
6 駆動軸
7 軸受け部品
8 軸受け
10 固定渦巻き部品
11 旋回渦巻き部品
12 自転拘束部品
13 旋回軸受け
19、21、22 潤滑油溜まり
24 細孔
25 旋回鏡板
34 冷却器
35 絞り
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scroll compressor used in a refrigeration cycle apparatus or the like.
[0002]
[Prior art]
A conventional compressor of this type will be described with reference to the drawings. FIG. 6 shows a scroll compressor in which an electric motor 303 and a compression mechanism 302 are disposed in a sealed container 301. The electric motor 303 includes a stator 304 fixed inside the hermetic container 301 and a rotor 305 rotatably supported inside the stator 304, and a drive shaft 306 is coupled to the rotor 305 in a penetrating state. . One end of the drive shaft 306 is rotatably supported by a bearing 308 fixed to a bearing component 307 constituting a part of the compression mechanism 302. A crankshaft 309 that performs an eccentric motion with respect to the drive shaft 306 is provided at the tip of the drive shaft supported by the bearing 308.
[0003]
On the other hand, a plurality of compression spaces are formed by meshing the fixed spiral component 310 and the swirl swirl component 311, and the rotation restraint component 312 of the swirl swirl component 311 is provided to prevent rotation, and the crankshaft 309 causes the swirl swirl component 311 to be rotated. By making the swirl motion only through the swivel bearing 313 joined to the swirl spiral component 311, moving the compression space toward the center of the swirl while reducing the volume, the refrigerant gas or the like is sucked from the suction port 313, Compress. The compressed refrigerant gas or the like passes through the discharge port 315 and is discharged into the sealed container inner space 316.
[0004]
Further, the other end side of the drive shaft 306 is supported by a bearing component 317, and a positive displacement pump 318 is provided at the distal end of the other end side of the drive shaft 306. The swivel bearing 313 is lubricated and cooled via a lubricating oil reservoir 321 at the upper part of the crankshaft 309 via an oil supply passage 320 for supplying lubricating oil provided at the axial center of 306, and the bearing via a lubricating oil reservoir 322. After lubricating 308, recirculation is performed.
[0005]
On the other hand, a part of the lubricating oil supplied to the lubricating oil reservoir 321 passes through a long hole 323 provided inside the swirling spiral component 311, and is a depression provided in the swivel end plate 325 and the bearing component 307. 326, the upper surface 327 of the fixed spiral component 310, and the space 329 formed by the seal member 328 are supplied under reduced pressure.
[0006]
The seal member 328 serves as a seal between the lubricating oil reservoir 322 which is a high pressure portion and the space 329. The space 329 is provided with a rotation restricting component 312 and is lubricated by the lubricating oil supplied to the space 329.
[0007]
As the lubricating oil supplied to the space 329 accumulates, the pressure in the space 329 increases. In order to keep the pressure constant, a pressure adjusting mechanism 331 is configured between the space 329 and the suction space 330 that generates the compression space. When the pressure in the space 329 becomes higher than the set pressure, the pressure adjusting mechanism 331 is activated and the lubricating oil in the space 329 is supplied to the suction space 330, and the pressure in the space 329 is kept almost constant. At the same time, the lubricating oil supplied to the suction space 330 is guided to the compression space and plays a role of a seal for preventing leakage of refrigerant gas and the like during compression and a function of lubricating the contact surface between the fixed spiral component 310 and the swirl spiral component 311. Yes. At the same time, the lubricating oil in the space 329 is guided to the suction space while lubricating the sliding surfaces of the end plate of the fixed spiral component and the swirl spiral component (for example, see Patent Document 1).
[0008]
[Patent Document 1]
JP-A-2001-317475 [0009]
[Problems to be solved by the invention]
However, since the temperature of the lubricating oil supplied from the lubricating oil reservoir 319 via the space 329 to the suction space is high in the above configuration, the sucked refrigerant gas is warmed and sucked and heated, thereby reducing the efficiency of the compressor. Further, when the temperature of the lubricating oil is high, the viscosity of the lubricating oil is lowered, and the lubricating performance of the rotation restraint component 312 and the lubricating performance of the sliding surface between the fixed spiral component and the end plate of the swirl spiral component are decreased.
[0010]
Further, the lubricating oil supplied from the lubricating oil reservoir 319 to the lubricating oil reservoir 321 by the positive displacement pump 318 is supplied to the suction space via the turning bearing 313 and the path for lubricating the bearing 308, the throttle portion 324, and the pressure adjusting mechanism 331. Therefore, during high-compression ratio and low-speed operation, the differential pressure between the lubricating oil reservoir 321 and the suction space increases, and the lubricating oil supplied to the latter path increases, whereas the lubricating oil supplied to the former path Has a problem of reducing the reliability of the swivel bearing 313 and the bearing 308.
[0011]
The present invention solves such a conventional problem, and an object thereof is to provide a scroll compressor having high efficiency and high reliability.
[0012]
[Means for Solving the Problems]
The scroll compressor according to claim 1 is provided with a lubricating oil reservoir that houses a scroll compressor portion and an electric motor portion in a sealed container and stores lubricating oil at a bottom portion of the sealed container, and the scroll compressor portion includes: A fixed spiral part having a fixed spiral blade and a fixed end plate, and a swirl spiral part having a swirl spiral blade and a swivel end plate are meshed to form a plurality of compression spaces, and a rotation restraint part and a crankshaft that cause the swivel part to swing. And a bearing part having a bearing that supports the driving shaft, a back pressure chamber is provided on the opposite side of the swirl spiral blade surface of the swirl spiral part, and the back pressure chamber is formed by an annular seal member. A scroll that is divided into an inner region and an outer region, and that includes a communication passage that communicates the outer region and the suction pressure region, and means that opens and closes the communication passage according to a difference between the pressure and the suction pressure of the outer region. In the compressor, the lubricating oil is supplied from the lubricating oil reservoir to the inner region of the back pressure chamber to obtain a discharge pressure, and a route for introducing the lubricating oil to the outer region is provided from the lubricating oil reservoir to the sealed container. The lubricating oil is drawn out, cooled by a cooler, and then reduced in pressure by a throttle to be supplied to the outer region.
[0013]
According to a second aspect of the present invention, the scroll compressor is a narrow hole having a throttling effect in which the throttling according to the first aspect is formed in the bearing part according to the first aspect.
[0014]
According to a third aspect of the present invention, the scroll compressor is a narrow hole having a throttling effect in which the throttling according to the first aspect is formed in the fixed spiral component according to the first aspect.
[0015]
According to a fourth aspect of the present invention, there is provided the scroll compressor according to the first aspect, wherein the throttle according to the first aspect communicates the fixed spiral component according to the first aspect with the cooler according to the first aspect and the outer region according to the first aspect. And a portion opened to the outer region of the path is intermittently opened and closed by the swivel mirror plate according to claim 1.
[0016]
A scroll compressor according to a fifth aspect is characterized in that a part of the path according to the fourth aspect is a narrow hole having a throttling effect.
[0017]
The scroll compressor according to claim 6 is characterized in that the refrigerant of the scroll compressor according to claims 1 to 5 is carbon dioxide.
[0018]
A scroll compressor according to claim 7 is characterized in that the refrigerant of the scroll compressor according to claims 1 to 5 is a hydrocarbon-based refrigerant.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
A compressor according to a first embodiment of the present invention includes a scroll compressor unit and an electric motor unit housed in a hermetic container, and includes a lubricating oil reservoir that accumulates lubricating oil at the bottom of the hermetic container, and the scroll compressor The rotation engaging part that rotates the swirl part by forming a plurality of compression spaces by meshing a fixed swirl part having a fixed swirl blade and a fixed end plate and a swirl swirl part having a swirl swirl blade and a swirl end plate. And a drive part provided with a crankshaft and a bearing part having a bearing that supports the drive axis, a back pressure chamber is provided on the opposite side of the swirl spiral blade surface of the swirl spiral part, and the back pressure chamber is formed in an annular shape. A communication passage that is divided into an inner region and an outer region by a seal member, and that communicates the outer region and the suction pressure region; and a means for opening and closing the communication passage according to a difference between the pressure and the suction pressure in the outer region. Tasuku In the air compressor, the lubricating oil is supplied from the lubricating oil reservoir to the inner region of the back pressure chamber to make a discharge pressure, and a route for introducing the lubricating oil to the outer region is sealed from the lubricating oil reservoir. After the lubricating oil is drawn out of the container, the lubricating oil is cooled by a cooler, and then the passage is provided with a path for reducing the pressure by a throttle and supplying it to the outer region, and cooling the lubricating oil in the lubricating oil pool that is hot. The refrigerant is cooled by a compressor and supplied to the suction space via the outer region, so that the refrigerant gas sucked into the suction space is not warmed, the efficiency of the compressor can be increased, and the temperature of the lubricating oil can be increased. By lowering the viscosity, the viscosity of the lubricating oil does not need to be lowered, which improves the lubrication performance of the rotation restraint component and the lubrication performance of the sliding surface between the fixed spiral component and the end plate of the swirl spiral component.
[0020]
In addition, since the lubricant supplied by the positive displacement pump from the lubricating oil reservoir at the bottom of the sealed container lubricates only the slewing bearing and the bearing, the reliability of the slewing bearing and the bearing can be improved, and high efficiency and reliability are achieved. High scroll compressor can be realized.
[0021]
In addition to the first embodiment, the compressor according to the second embodiment of the present invention is such that the throttle is provided with a narrow hole having a throttling effect in the bearing part, and a throttle part such as a capillary tube is used. Thus, a low cost scroll compressor can be realized.
[0022]
In addition to the first embodiment, the compressor according to the third embodiment of the present invention is such that the throttle is provided with a narrow hole having a throttle effect in the fixed spiral part, and a throttle part such as a capillary tube is provided. A low-cost scroll compressor can be realized without using the compressor.
[0023]
In the compressor according to the fourth embodiment of the present invention, in addition to the first embodiment, the throttle is provided with a path that communicates the cooler and the outer region to the fixed spiral part, and the outer side of the path The part that is open to the area is opened and closed intermittently by the swivel mirror, and the amount of lubricating oil supplied to the suction space can be reduced without providing a narrow hole as a throttle, making it highly reliable and low cost A simple scroll compressor can be realized.
[0024]
The compressor according to the fifth embodiment of the present invention, in addition to the first embodiment, can further reduce the amount of lubricating oil to be supplied by making a part of the passage a narrow hole, and can achieve a highly efficient scroll. A compressor can be realized.
[0025]
In the compressor according to the sixth embodiment of the present invention, in addition to the first to fifth embodiments, the temperature of the refrigerant becomes particularly high on the high pressure side, that is, the temperature of the lubricating oil in the lubricating oil reservoir of the closed container is increased. When using higher carbon dioxide, a highly efficient, reliable and environmentally friendly scroll compressor can be realized.
[0026]
In addition to the first to fifth embodiments, the compressor according to the seventh embodiment of the present invention is highly efficient when the refrigerant is a hydrocarbon-based refrigerant that is easy to dissolve in lubricating oil and has a low viscosity. A highly reliable and environmentally friendly scroll compressor can be realized.
[0027]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0028]
(Embodiment 1)
FIG. 1 is a cross-sectional view of a scroll compressor according to the present invention. An electric motor 3 and a compression mechanism 2 are disposed in the sealed container 1. The electric motor 3 includes a stator 4 fixed inside the hermetic container 1 and a rotor 5 supported rotatably inside the stator 4, and a drive shaft 6 is coupled to the rotor 5 in a penetrating state. . One end of the drive shaft 6 is rotatably supported by a bearing 8 fixed to a bearing component 7 constituting a part of the compression mechanism portion 2. A crankshaft 9 that performs an eccentric motion with respect to the drive shaft 6 is provided at the tip of the drive shaft supported by the bearing 8.
[0029]
On the other hand, a plurality of compression spaces are formed by meshing the fixed spiral component 10 and the swirl swirl component 11, and the rotation constraining component 12 of the swirl swirl component 11 is provided to prevent rotation. By causing only the swivel motion through the swivel bearing 13 joined to the swirl spiral part 11, the refrigerant space or the like is sucked from the suction port 14 by moving the compression space toward the center of the swirl while reducing the volume, Compress. The compressed refrigerant gas or the like passes through the discharge port 15 and is discharged into the sealed container inner space 16.
[0030]
Further, the other end side of the drive shaft 6 is supported by a bearing component 17, and a positive displacement pump 18 is provided at the tip of the other end side of the drive shaft 6. The positive displacement pump 18 is driven from the lubricating oil reservoir 19. The swivel bearing 13 is lubricated and cooled via a lubricating oil reservoir 21 at the top of the crankshaft 9 via an oil supply path 20 for supplying lubricating oil provided in the axial center of the shaft 6, and then passed through a lubricating oil reservoir 22. After the bearing 8 is lubricated, it returns to the lubricating oil reservoir 19.
[0031]
On the other hand, a lubricating oil extraction pipe 33 for taking out the lubricating oil in the lubricating oil reservoir 19 at the bottom is provided at the bottom of the sealed container 1. A cooler 34 is provided downstream of the lubricating oil extraction pipe 33. The lubricating oil cooled by the cooler 34 is depressurized by the throttle 35 and then passed through the hermetic container 1 and the bearing component 7 by the lubricating oil injection tube 36 and the recess 26 and the fixed spiral component 10 provided in the swivel end plate 25 and the bearing component 7. Is supplied to a space 29 constituted by an upper surface 27 and a seal member 28. The seal member 28 serves as a seal between the lubricating oil reservoir 22 and the space 29 which are high pressure portions.
[0032]
In addition, the rotation restraint component 12 is disposed in the space 29, and lubrication is performed with the lubricating oil supplied to the space 29. As the lubricating oil supplied to the space 29 accumulates, the pressure in the space 29 increases. In order to keep the pressure constant, a pressure adjusting mechanism 31 is configured between the space 29 and the suction space 30 that generates the compression space. When the pressure in the space 29 becomes higher than the set pressure, the pressure adjusting mechanism 31 is operated to supply the lubricating oil in the space 29 to the suction space 30, and the pressure in the space 29 is kept almost constant. At the same time, the lubricating oil supplied to the suction space 30 is guided to the compression space and plays a role of a seal that prevents leakage of refrigerant gas and the like during compression and a role of lubricating the contact surface between the fixed spiral component 10 and the swirl spiral component 11. Yes. The lubricating oil in the space 29 also lubricates the sliding surfaces of the swivel end plate 25 and the fixed spiral part.
[0033]
The lubricating oil supplied to the space 29 with the above configuration is lower in temperature than the lubricating oil in the lubricating oil reservoir 19 and has a high viscosity because the temperature is low. Since the temperature of the lubricating oil is low, even if it is supplied to the suction space through the space 29, the suction heating of the suction gas is not increased, and the volumetric efficiency of the compressor can be increased and high efficiency can be realized.
[0034]
Further, since the viscosity of the lubricating oil is high, the lubrication property of the rotation restraint component 12, the fixed spiral component 10 and the swirl spiral component 11 is increased and reliability is improved, and the leakage of refrigerant gas during compression can be further reduced. Efficiency can be increased. Further, since the path of the lubricating oil that lubricates the swivel bearing 13 and the bearing 8 is configured, the differential pressure between the high pressure and the low pressure increases, and as a result, even if the supply of the lubricating oil to the space 29 increases. The amount of lubrication of the slewing bearing 13 and the bearing 8 does not decrease, and a highly reliable compressor can be realized.
[0035]
(Embodiment 2)
A second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a sectional view of the scroll compressor according to the present invention. In FIG. 2, the same components as those in FIG. In this embodiment, the diaphragm 35 used in the first embodiment is configured by providing the bearing member 7 with the narrow hole 24. With the above configuration, the diaphragm 35 is not exposed to the outside, and the bearing part 7 can be configured by processing or the like, so that low cost can be realized.
[0036]
(Embodiment 3)
A third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a cross-sectional view of the scroll compressor according to the present invention. In FIG. 3, the same components as those in FIG. In this embodiment, the diaphragm 35 used in the first embodiment is configured by providing the fixed spiral component 10 with the narrow hole 24. With the above configuration, the iris 35 is not brought out of the vessel, and the fixed spiral component 7 can be configured by processing or the like, so that low cost can be realized.
[0037]
(Embodiment 4)
Embodiment 4 of the present invention will be described with reference to the drawings. FIG. 4 is a cross-sectional view of the scroll compressor according to the present invention. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. In this embodiment, instead of the diaphragm 35 used in the first embodiment, the hole 23 provided in the fixed spiral component 11 is opened and closed with respect to the space 29 by the swivel movement of the upper surface of the swivel end plate 25, so that the lubricating oil And the amount of lubricating oil supplied to the space 29 can be adjusted. Since the supply amount of the lubricating oil can be adjusted without using a throttle with the above-described configuration, it is easy to process and there is no problem such as blockage occurring in the throttle, and a highly reliable compressor can be realized.
[0038]
(Embodiment 5)
Embodiment 5 of the present invention will be described with reference to the drawings. FIG. 5 is a cross-sectional view of the scroll compressor according to the present invention. In FIG. 5, the same components as those in FIG. In this embodiment, a part of the hole 23 of the fourth embodiment is formed as a narrow hole 24. With the above configuration, the opening of the lubrication oil supply hole is opened and closed by the revolving motion of the swivel end plate, and a part of the supply hole is made into a narrow hole, so that the amount of lubrication oil supply can be further reduced, and a highly efficient compressor Can be realized.
[0039]
(Embodiment 6)
Embodiment 6 of the present invention will be described. In the present embodiment, the working refrigerant in Embodiments 1 to 5 is carbon dioxide, and the lubricating oil that has been cooled and increased in viscosity is supplied to the back pressure chamber for the detergency of the carbon dioxide liquid refrigerant. Therefore, the lubricity of the rotation restraint parts and the blade thrust surface in the back pressure chamber can be improved, and the reliability of the compressor can be improved.
[0040]
(Embodiment 7)
Embodiment 7 of the present invention will be described. In the present embodiment, the working refrigerant in Embodiments 1 to 5 is a hydrocarbon which is easily dissolved in the lubricating oil and whose viscosity is likely to decrease, and by cooling the lubricating oil, the viscosity of the lubricating oil is increased to increase the back pressure. Since it is supplied to the chamber, it is possible to improve the lubricity of the rotation restraint parts and the blade thrust surface in the back pressure chamber and improve the reliability of the compressor.
[0041]
【The invention's effect】
As apparent from the above, the invention according to claim 1 increases the volumetric efficiency of the compressor without increasing the suction heating of the suction gas since the temperature of the lubricating oil supplied to the suction space is low, and the high efficiency. Can be realized. Also, because the viscosity of the lubricating oil is high, the lubricity of the rotation restraint parts, fixed swirl parts, and swirl swirl parts is increased and the reliability is improved, and the leakage of refrigerant gas during compression can be further reduced, thereby increasing the efficiency of the compressor. There is an effect that can be. Also, since the swirl bearing and the lubricating oil path for lubricating the bearing are configured separately, the differential pressure between the high pressure and the low pressure increases, and as a result, even if the supply of lubricating oil to the suction space increases, the swivel bearing As a result, the amount of oil supplied to the bearing does not decrease and the reliability is improved.
[0042]
The invention according to claim 2 has the effect of realizing low cost because the diaphragm of the invention according to claim 1 is not put out of the container and can be formed into a bearing part by processing or the like.
[0043]
The invention described in claim 3 does not bring out the aperture of the invention described in claim 1 outside the device, and can be configured as a fixed spiral part by processing or the like, and thus has an effect of realizing low cost.
[0044]
The invention described in claim 4 has the effect of improving the reliability of the compressor because the throttle of the invention described in claim 1 is not brought out of the container and the throttle can be realized with a configuration that is not a narrow hole.
[0045]
According to the fifth aspect of the present invention, the throttle according to the first aspect of the present invention is not brought out of the apparatus, and the throttle can be realized by opening and closing the narrow hole and the throttle outlet, so that the efficiency of the compressor is improved. Play.
[0046]
The invention according to claim 6 uses carbon dioxide in which the temperature of the refrigerant on the high-pressure side is particularly high, that is, the temperature of the lubricating oil in the lubricating oil reservoir of the closed container is increased in the invention of claims 1 to 5. In some cases, there is an effect that reliability is increased with high efficiency.
[0047]
The invention according to claim 7 has the effect of increasing the efficiency and reliability in the case of using a hydrocarbon-based refrigerant in which the refrigerant is easily dissolved in the lubricating oil and the viscosity is liable to be lowered in the invention according to claims 1 to 5. Play.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a scroll compressor according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of a scroll compressor according to a second embodiment of the present invention. FIG. 4 is a sectional view of a scroll compressor showing a fourth embodiment of the present invention. FIG. 5 is a sectional view of a scroll compressor showing a fifth embodiment of the present invention. FIG. 6 is a sectional view of a conventional scroll compressor.
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism part 3 Electric motor 4 Stator 5 Rotor 6 Drive shaft 7 Bearing part 8 Bearing 10 Fixed vortex part 11 Rotating vortex part 12 Rotation restraint part 13 Rotating bearing 19, 21, 22 Lubricating oil pool 24 Pore 25 Rotating end plate 34 Cooler 35 Aperture

Claims (7)

密閉容器内に、スクロール圧縮機部と電動機部を収納し、前記密閉容器の底部に潤滑油を溜める潤滑油溜まりを備え、前記スクロール圧縮機部は、固定渦巻羽根と固定鏡板を有する固定渦巻部品と、旋回渦巻羽根と旋回鏡板を有する旋回渦巻部品とを噛み合わせて複数の圧縮空間を形成し、前記旋回部品を旋回運動させる自転拘束部品とクランク軸を設けた駆動軸と前記駆動軸を支持する軸受けを持つ軸受け部品を備え、前記旋回渦巻部品の前記旋回渦巻羽根の反対側に背圧室を設け、前記背圧室を環状のシール部材により内側領域と外側領域に区画し、前記外側領域と吸入圧力領域とを連通する連通路と、前記外側領域の圧力と吸入圧力との差に応じて前記連通路を開閉する手段を備えたスクロール圧縮機において、前記潤滑油溜まりから前記背圧室の前記内側領域に潤滑油を供給し、吐出圧力にするとともに、前記外側領域に潤滑油を導入する経路を前記潤滑油溜まりから前記密閉容器の外へ潤滑油を引き出し、潤滑油を冷却器により冷却した後に、絞りにより減圧して前記外側領域に供給する経路としたことを特徴とするスクロール圧縮機。A scroll compressor unit and an electric motor unit are housed in a sealed container, and a lubricating oil reservoir is provided for storing lubricating oil at the bottom of the sealed container. The scroll compressor unit has a fixed spiral component having a fixed spiral blade and a fixed end plate. And a swirl spiral blade and a swirl spiral component having a swivel end plate are meshed to form a plurality of compression spaces, and a rotation restraint component for rotating the swivel component, a drive shaft provided with a crankshaft, and the drive shaft are supported. A back pressure chamber is provided on the opposite side of the swirl spiral blade of the swirl spiral component, and the back pressure chamber is partitioned into an inner region and an outer region by an annular seal member, and the outer region In a scroll compressor comprising a communication passage that communicates with a suction pressure region, and means for opening and closing the communication passage according to a difference between the pressure in the outer region and the suction pressure. Lubricating oil is supplied to the inner region of the back pressure chamber to be a discharge pressure, and the lubricating oil is drawn out from the lubricating oil reservoir to the outside of the hermetic container through a route for introducing the lubricating oil to the outer region. A scroll compressor characterized in that after being cooled by a cooler, the passage is depressurized by a throttle and supplied to the outer region. 前記絞りは、前記軸受け部品に設けた細穴であることを特徴とした請求項1記載のスクロール圧縮機。The scroll compressor according to claim 1, wherein the throttle is a narrow hole provided in the bearing part. 前記絞りは、前記固定渦巻き部品に設けた細穴であることを特徴とした請求項1記載のスクロール圧縮機。The scroll compressor according to claim 1, wherein the throttle is a narrow hole provided in the fixed spiral part. 前記絞りは、前記固定渦巻き部品に前記冷却器と前記外側領域を連通する経路を設け、この経路の前記外側領域に解放されている部分を前記旋回鏡板により間欠的に開閉することにより構成したことを特徴とする請求項1記載のスクロール圧縮機。The diaphragm is configured by providing a path through which the cooler and the outer region communicate with the fixed spiral component, and intermittently opening and closing a portion of the path that is open to the outer region by the swivel end plate. The scroll compressor according to claim 1. 請求項4に記載の経路の一部を絞り効果のある細穴としたことを特徴とするスクロール圧縮機。A scroll compressor characterized in that a part of the path according to claim 4 is a narrow hole having a throttling effect. 冷媒が二酸化炭素であることを特徴とする請求項1から請求項5に記載のスクロール圧縮機。The scroll compressor according to any one of claims 1 to 5, wherein the refrigerant is carbon dioxide. 冷媒が炭化水素系冷媒であることを特徴とする請求項1から請求項5に記載のスクロール圧縮機。The scroll compressor according to any one of claims 1 to 5, wherein the refrigerant is a hydrocarbon refrigerant.
JP2003197574A 2003-07-16 2003-07-16 Scroll compressor Pending JP2005036661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197574A JP2005036661A (en) 2003-07-16 2003-07-16 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197574A JP2005036661A (en) 2003-07-16 2003-07-16 Scroll compressor

Publications (1)

Publication Number Publication Date
JP2005036661A true JP2005036661A (en) 2005-02-10

Family

ID=34207661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197574A Pending JP2005036661A (en) 2003-07-16 2003-07-16 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2005036661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438539B2 (en) 2005-03-24 2008-10-21 Hitachi Air Conditioning Systems Co., Ltd Hermetic type scroll compressor and refrigerating and air-conditioning apparatus
WO2016108444A1 (en) * 2014-12-31 2016-07-07 Samsung Electronics Co., Ltd. Scroll compressor and air conditioner having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438539B2 (en) 2005-03-24 2008-10-21 Hitachi Air Conditioning Systems Co., Ltd Hermetic type scroll compressor and refrigerating and air-conditioning apparatus
WO2016108444A1 (en) * 2014-12-31 2016-07-07 Samsung Electronics Co., Ltd. Scroll compressor and air conditioner having the same

Similar Documents

Publication Publication Date Title
KR101480464B1 (en) Scoroll compressor and refrigerator having the same
JP3731068B2 (en) Rotary compressor
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
JP2014129793A (en) Scroll compressor
JP2001317480A (en) Screw compressor
JP2011058439A (en) Scroll compressor
JP5433604B2 (en) Scroll compressor
JPWO2002061285A1 (en) Scroll compressor
JPS61261694A (en) Scroll fluid machine
JP2011174453A (en) Scroll compressor
JP3045961B2 (en) Scroll gas compression
KR100688656B1 (en) Oil feeding structure for scroll compressor
JP2005036661A (en) Scroll compressor
JP2005048666A (en) Scroll compressor
JP5660151B2 (en) Scroll compressor
CN108884830B (en) Screw compressor
JPH11101187A (en) Scroll compressor
JP4407253B2 (en) Scroll compressor
JP2004225578A (en) Rotary compressor
JP2003065236A (en) Hermetic electric compressor
JP2000110751A (en) Oil supply mechanism for scroll type compressor
JP2005048689A (en) Scroll compressor
JP2004251129A (en) Rotary compressor
JP2005048688A (en) Scroll compressor
JP2604835B2 (en) Rotary compressor