JP2005035835A - Method for forming discharge port of glass panel and discharge port forming member - Google Patents

Method for forming discharge port of glass panel and discharge port forming member Download PDF

Info

Publication number
JP2005035835A
JP2005035835A JP2003274240A JP2003274240A JP2005035835A JP 2005035835 A JP2005035835 A JP 2005035835A JP 2003274240 A JP2003274240 A JP 2003274240A JP 2003274240 A JP2003274240 A JP 2003274240A JP 2005035835 A JP2005035835 A JP 2005035835A
Authority
JP
Japan
Prior art keywords
sealing
glass
glass tube
molded body
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003274240A
Other languages
Japanese (ja)
Inventor
Osamu Asano
修 浅野
Takuya Kusaya
拓也 草谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Nippon Sheet Glass Spacia Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Nippon Sheet Glass Spacia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Nippon Sheet Glass Spacia Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003274240A priority Critical patent/JP2005035835A/en
Priority to CNA2004100638659A priority patent/CN1576255A/en
Priority to KR1020040054910A priority patent/KR20050008529A/en
Publication of JP2005035835A publication Critical patent/JP2005035835A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure excellent air tightness as a discharge port. <P>SOLUTION: When the discharge port 6 for discharging a gas in a tightly closed gap part V between a pair of plate glasses 1 to the outside is provided on one plate glass 1A in the plate glasses 1 arranged with a certain interval in the thickness direction, a throughhole 3 is provided on one plate glass 1A and a discharging glass tube 7 is erected in the throughhole 3. A seal part K is formed by externally engaging an annular sealing formed body 8 to a base end part of the glass tube 7 and heating and melting the sealing formed body 8 to flow over the base end part of the glass tube 7 and the throughhole peripheral part 1a of one plate glass 1A and solidifying. The seal part is formed by setting the dimensional relation between the sealing formed body 8 and the discharging glass tube 7 to be (the height of the formed body)/(the thickness in the diameter direction)≥0.44 and (the height of the formed body)/(the gap between the sealing formed body and the glass tube)≥7.0. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一対の板ガラス間の中空部が減圧(又は、ガス封入)されているガラスパネル(例えば、減圧複層ガラスや、プラズマディスプレーパネル等)を形成する上で、中空部の減圧を実施する際の排出口を、ガラスパネル本体に形成する技術に関し、更に詳しくは、厚み方向に間隔をあけて配置した一対の板ガラスのうちの何れか一方の板ガラスに、前記両板ガラス間の密閉空隙部内の気体を外部に排出するための排出口を設けるにあたり、前記一方の板ガラスに貫通孔を設け、前記貫通孔に排出用ガラス管を立設すると共に、前記ガラス管の基端部に、環状のシール用成形体を外嵌させ、前記シール用成形体を加熱溶融させることで、前記ガラス管の基端部と前記一方の板ガラスの前記貫通孔周縁部とにわたって流動させ、固化させてシール部を形成するガラスパネルの排出口形成方法、及び、その方法に使用する排出口形成部材に関する。   In the present invention, when forming a glass panel in which a hollow portion between a pair of plate glasses is depressurized (or filled with gas) (for example, a reduced pressure double-glazed glass or a plasma display panel), the hollow portion is depressurized. In more detail, it relates to a technology for forming a discharge port in the glass panel body, and more specifically, in one of the pair of plate glasses arranged at intervals in the thickness direction, in a sealed gap between the two plate glasses. In providing a discharge port for discharging the gas to the outside, the one plate glass is provided with a through hole, a discharge glass tube is erected in the through hole, and a circular end is formed at the base end of the glass tube. A sealing molded body is externally fitted, and the sealing molded body is heated and melted to flow and solidify over the base end portion of the glass tube and the peripheral edge portion of the one plate glass. Outlet forming method of a glass panel to form a Lumpur unit, and to a discharge port forming member for use in the method.

従来、この種のガラスパネルの排出口形成技術としては、シール用成形体を加熱溶融させる際の最高温度の管理や、温度と時間との関係を規定する加熱管理等に関しては細かい仕様を設定して排出口を形成しているものの、前記シール用成形体と排出用ガラス管との相対的な寸法に関しては特別な規定を設けることは行われてなかった。
従って、シール用成形体と排出用ガラス管とは、前記板ガラスの貫通孔に排出用ガラス管を立てた状態で、環状のシール用成形体を外嵌させることができるように(ガラス管外径)<(シール用成形体内径)と言う条件だけがあり、それ以外の規定はなかった。
尚、この様な従来技術に関しては、当業者の間で広く知られているものであり、シール用成形体と排出用ガラス管との寸法設定に関して詳しく言及した特許文献などは見あたらないので、先行技術文献は示していない。
Conventionally, as this type of glass panel discharge port forming technology, detailed specifications are set for the management of the maximum temperature when heat-melting the molding for sealing and the heating management for defining the relationship between temperature and time. However, no special provision has been made regarding the relative dimensions of the molded body for sealing and the glass tube for discharging.
Therefore, the sealing molded body and the discharge glass tube are arranged so that the annular sealing molded body can be fitted outside in the state in which the discharging glass tube stands in the through hole of the plate glass (the outer diameter of the glass tube). ) <(Inner diameter of the molded article for sealing) was the only condition, and there were no other regulations.
Such a conventional technique is widely known among those skilled in the art, and there is no patent document or the like that specifically refers to the dimension setting of the sealing molded body and the discharge glass tube. Technical literature is not shown.

上述した従来のガラスパネルの排出口形成技術によれば、図11(イ)に示すように立設した排出用ガラス管7にシール用成形体8を外嵌させた状態でそのシール用成形体8を加熱溶融させると、図11(ロ)に示すように貫通孔周縁部1aと排出用ガラス管7との両方にわたって密着した良好な状態に流動して固化するものばかりでなく、中には、図11(ハ)に示すように、貫通孔周縁部1a表面上に主として流動するだけで、排出用ガラス管7との接触が少ない状態で固化することがあり、この場合には、排出用ガラス管7とシール部Kとの接着性が不良になり易く、排出口としての密閉性が低くなるという問題点があった。   According to the conventional glass panel discharge port forming technique described above, the seal molding 8 is fitted on the discharge glass tube 7 erected as shown in FIG. When 8 is heated and melted, as shown in FIG. 11 (b), not only those that flow and solidify in a good state in close contact with both the peripheral edge 1a of the through-hole and the discharge glass tube 7, As shown in FIG. 11 (c), it may solidify in a state where there is little contact with the glass tube 7 for discharge only by flowing mainly on the surface of the peripheral edge 1a of the through hole. There is a problem that the adhesiveness between the glass tube 7 and the seal portion K tends to be poor, and the sealing performance as a discharge port is lowered.

従って、本発明の目的は、上記問題点を解消し、排出口として良好な密閉性を確保できるガラスパネルの排出口形成技術を提供するところにある。   Accordingly, an object of the present invention is to provide a glass panel discharge port forming technique capable of solving the above-mentioned problems and ensuring a good sealing property as a discharge port.

請求項1の発明の特徴構成は、厚み方向に間隔をあけて配置した一対の板ガラスのうちの何れか一方の板ガラスに、前記両板ガラス間の密閉空隙部内の気体を外部に排出するための排出口を設けるにあたり、前記一方の板ガラスに貫通孔を設け、前記貫通孔に排出用ガラス管を立設すると共に、前記ガラス管の基端部に、環状のシール用成形体を外嵌させ、前記シール用成形体を加熱溶融させることで、前記ガラス管の基端部と前記一方の板ガラスの前記貫通孔周縁部とにわたって流動させ、固化させてシール部を形成するガラスパネルの排出口形成方法において、前記シール用成形体と排出用ガラス管との寸法設定を、次の通り設定して前記シール部を形成するところにある。
H/W≧0.44
H/S≧7.0
但し、
H:シール用成形体の高さ寸法(mm)
W:(φ2−φ1)/2 (シール用成形体の径方向厚み寸法)(mm)
S:(φ1−G)/2 (シール用成形体とガラス管との隙間寸法)(mm)
φ1:シール用成形体の内径(直径)寸法(mm)
φ2:シール用成形体の外径(直径)寸法(mm)
G:ガラス管の外径(直径)寸法(mm)
According to the first aspect of the present invention, the exhaust gas for exhausting the gas in the sealed gap between the two glass sheets to any one of the pair of glass sheets arranged at intervals in the thickness direction is provided. In providing the outlet, the one plate glass is provided with a through hole, a discharge glass tube is erected in the through hole, and an annular sealing molded body is externally fitted to the base end of the glass tube, In the method for forming a glass panel outlet, the sealing body is heated and melted to flow over the base end portion of the glass tube and the peripheral edge portion of the through hole of the one plate glass and solidify to form a seal portion. The dimensions of the seal molding and the discharge glass tube are set as follows to form the seal portion.
H / W ≧ 0.44
H / S ≧ 7.0
However,
H: Height of the molded body for sealing (mm)
W: (φ 2 −φ 1 ) / 2 (Diameter thickness dimension of the molded article for sealing) (mm)
S: (φ 1 −G) / 2 (Dimension of gap between sealing molded body and glass tube) (mm)
φ 1 : Inner diameter (diameter) dimension (mm) of seal molding
φ 2 : Outer diameter (diameter) dimension (mm) of the molded article for sealing
G: Outer diameter (diameter) of glass tube (mm)

請求項1の発明の特徴構成によれば、シール用成形体の良好な流動状態を、シール用成形体の断面形状から規定するH/Wと、シール用成形体と排出用ガラス管との隙間空間の断面形状から規定するH/Sという両式で求めることができ、良好な形状にシール部を形成することが可能となる。
その結果、溶融したシール用成形体が、排出用ガラス管と一方の板ガラスの貫通孔周縁部との何れの表面にも充分接触する状態に流動し、良質のシール部を形成することができるようになり、シール不良率の低減化を図ることが可能となる。
因みに、上述の両式を規定する定数は、多数のサンプルのシール性能の良否を基に求められている。
ここで、前記両式について追加説明を行う。
H/Wという関係は、シール用成形体が溶融した時に、排出用ガラス管側に流動しやすい断面寸法がどのようなものであるかを示すもので、扁平形状より、縦長形状の方が流動幅が大きくなる傾向があるのを基にして、結果的に、H/W≧0.44が好ましいという結論を得た。
H/Sという関係は、シール用成形体がその高さ寸法の割に排出用ガラス管と離れすぎると、溶融したシール用成形体が排出用ガラス管の位置まで流動し難くなる傾向を基にして、結果的に、H/S≧7.0が好ましいという結論を得た。
According to the characteristic configuration of the invention of claim 1, the H / W that defines a good flow state of the sealing molded body from the cross-sectional shape of the sealing molded body, and the gap between the sealing molded body and the discharge glass tube It can be obtained by both equations of H / S defined from the cross-sectional shape of the space, and the seal portion can be formed in a good shape.
As a result, the melted molded article for sealing flows into a state where it sufficiently comes into contact with any surface of the discharge glass tube and the peripheral edge of the through hole of one plate glass, so that a high-quality sealing part can be formed. Thus, it becomes possible to reduce the sealing failure rate.
Incidentally, the constants that define both of the above equations are obtained based on the quality of sealing performance of a large number of samples.
Here, additional explanation will be given for both of the above equations.
The relationship H / W indicates the cross-sectional dimension that tends to flow toward the discharge glass tube when the sealing molded body is melted, and the vertically long shape flows more than the flat shape. As a result, it was concluded that H / W ≧ 0.44 is preferable based on the tendency that the width becomes large.
The relationship H / S is based on the tendency that if the sealing molded body is too far from the discharge glass tube for its height, the molten sealing molded body will not easily flow to the position of the discharge glass tube. As a result, it was concluded that H / S ≧ 7.0 is preferable.

請求項2の発明の特徴構成は、前記シール用成形体と排出用ガラス管との隙間寸法Sを0.05mm以上に設定するところにある。   The characteristic configuration of the invention of claim 2 resides in that a gap dimension S between the sealing molded body and the discharge glass tube is set to 0.05 mm or more.

請求項2の発明の特徴構成によれば、請求項1の発明による作用効果を叶えることができるのに加えて、この隙間寸法Sが小さすぎると、排出用ガラス管にシール用成形体を外嵌させる際に、互いの接触抵抗が大きくなり過ぎる傾向がある。しかし、対象物が割れ易いガラスであるから無理矢理嵌合させるわけにはいかず、慎重に嵌合作業を実施する必要があるから手間と時間が掛かり、装着性が低下し易い。
そして、この限界点として前記隙間寸法Sを0.05mm以上に設定することで、嵌合作業に手間が掛かり難くなることを見出し、その結果、良好な装着性を得ることが可能となった。
According to the characteristic configuration of the invention of claim 2, in addition to being able to achieve the function and effect of the invention of claim 1, if the gap dimension S is too small, the sealing molded body is attached to the discharge glass tube. When fitting, mutual contact resistance tends to be too large. However, since the object is made of glass that is easily broken, it cannot be forcedly fitted, and it is necessary to perform the fitting work carefully.
Then, it was found that setting the gap dimension S to 0.05 mm or more as the limit point makes it difficult for the fitting work to be taken, and as a result, it has become possible to obtain good wearability.

請求項3の発明の特徴構成は、請求項1又は2のガラスパネルの排出口形成方法に使用する排出口形成部材において、前記シール用成形体と排出用ガラス管とで構成し、両者の寸法設定が次の通り設定してあるところにある。
H/W≧0.44
H/S≧7.0
但し、
H:シール用成形体の高さ寸法(mm)
W:(φ2−φ1)/2 (シール用成形体の径方向厚み寸法)(mm)
S:(φ1−G)/2 (シール用成形体とガラス管との隙間寸法)(mm)
φ1:シール用成形体の内径(直径)寸法(mm)
φ2:シール用成形体の外径(直径)寸法(mm)
G:ガラス管の外径(直径)寸法(mm)
According to a third aspect of the present invention, there is provided a discharge port forming member for use in the glass panel discharge port forming method according to the first or second aspect, wherein the sealing molded body and the discharge glass tube are used. The settings are as follows.
H / W ≧ 0.44
H / S ≧ 7.0
However,
H: Height of the molded body for sealing (mm)
W: (φ 2 −φ 1 ) / 2 (Diameter thickness dimension of the molded article for sealing) (mm)
S: (φ 1 −G) / 2 (Dimension of gap between sealing molded body and glass tube) (mm)
φ 1 : Inner diameter (diameter) dimension (mm) of seal molding
φ 2 : Outer diameter (diameter) dimension (mm) of the molded article for sealing
G: Outer diameter (diameter) of glass tube (mm)

請求項3の発明の特徴構成によれば、シール用成形体の良好な流動状態を、シール用成形体の断面形状から規定するH/Wと、シール用成形体と排出用ガラス管との隙間空間の断面形状から規定するH/Sという両式で求めることができ、良好な形状にシール部を形成することが可能となる。
その結果、溶融したシール用成形体が、排出用ガラス管と一方の板ガラスの貫通孔周縁部との何れの表面にも充分接触する状態に流動し、良質のシール部を形成することができるようになり、シール不良率の低減化を図ることが可能となる。
因みに、上述の両式は、請求項1の発明に係わる作用効果の説明でも触れたとおり、多数のサンプルのシール性能の良否を基に求められている。
According to the characteristic configuration of the invention of claim 3, H / W which defines a good flow state of the sealing molded body from the cross-sectional shape of the sealing molded body, and a gap between the sealing molded body and the discharge glass tube It can be obtained by both equations of H / S defined from the cross-sectional shape of the space, and the seal portion can be formed in a good shape.
As a result, the melted molded article for sealing flows into a state where it sufficiently comes into contact with any surface of the discharge glass tube and the peripheral edge of the through hole of one plate glass, so that a high-quality sealing part can be formed. Thus, it becomes possible to reduce the sealing failure rate.
Incidentally, both the above-described equations are obtained based on the quality of the sealing performance of a large number of samples, as mentioned in the explanation of the function and effect related to the invention of claim 1.

請求項4の発明の特徴構成は、前記シール用成形体と排出用ガラス管との隙間寸法Sを0.05mm以上に設定してあるところにある。   The characteristic configuration of the invention of claim 4 resides in that a gap dimension S between the sealing molded body and the discharge glass tube is set to 0.05 mm or more.

請求項4の発明の特徴構成によれば、請求項3の発明による作用効果を叶えることができるのに加えて、請求項2の発明に係わる作用効果の説明でも触れたとおり、排出用ガラス管とシール用成形体との嵌合作業に手間が掛かり難くなり、その結果、良好な装着性を得ることが可能となった。   According to the characteristic configuration of the invention of claim 4, in addition to being able to achieve the function and effect of the invention of claim 3, as mentioned in the explanation of the function and effect of the invention of claim 2, the glass tube for discharge As a result, it is possible to obtain a good mounting property.

以下に本発明の実施の形態を図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は、同一又は相当の部分を示している。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the parts indicated by the same reference numerals as those in the conventional example indicate the same or corresponding parts.

図1〜6は、本発明の「ガラスパネルの排出口形成技術」を使用して形成したガラスパネルPを示すもので、ガラスパネルPは、一対の板ガラス1間に、板面に沿って間隔をあけて複数のスペーサ2を介在させて形成してあるガラスパネル本体P1に対して、両板ガラス1A,1B間の密閉空隙部Vを減圧密閉することで構成してある。   FIGS. 1-6 shows the glass panel P formed using the "glass panel discharge port formation technology" of this invention, and a glass panel P is a space | interval along a plate surface between a pair of plate glass 1. With respect to the glass panel main body P1 formed with a plurality of spacers 2 interposed therebetween, the sealed gap V between the two glass plates 1A and 1B is sealed under reduced pressure.

前記一対の板ガラス1は、それぞれ厚み寸法3mm(JIS規格でいう3mm板ガラスで、実質的には、厚み誤差を考慮すると、2.7〜3.3mmとなる)で透明なフロート板ガラスで構成してあり、両板ガラス1の外縁全周にわたっては低融点ガラス(例えば、はんだガラス)の封止部4を設けて、前記密閉空隙部Vの密閉を図ってある。そして、前記密閉空隙部Vは、一方の板ガラス1Aに形成した排出口6から吸引する方法によって、約1.33Pa(1.0×10-2Torr)以下の減圧環境を呈する状態に構成してある。
因みに、両板ガラス1の外周縁部は、一方の板ガラス1Aが板面方向に沿って突出する状態に配置してあり、この突出部5を形成してあることによって、前記封止部4の形成時に、この突出部5に封止部材(例えば、前記低融点ガラス)を載置した状態で、効率的に且つ確実に密閉空隙部V外周部を密閉することが可能となる。
Each of the pair of plate glasses 1 is composed of a transparent float plate glass having a thickness dimension of 3 mm (3 mm plate glass as defined in JIS standard, which is substantially 2.7 to 3.3 mm in consideration of a thickness error). In addition, a sealing portion 4 of low melting point glass (for example, solder glass) is provided over the entire outer periphery of the both glass plates 1 so as to seal the sealing gap V. And the said airtight space | gap part V is comprised in the state which exhibits the reduced pressure environment of about 1.33 Pa (1.0 * 10 <-2 > Torr) or less by the method of attracting | sucking from the discharge port 6 formed in one plate glass 1A. is there.
Incidentally, the outer peripheral edge part of both plate glass 1 is arrange | positioned in the state which one plate glass 1A protrudes along a plate | board surface direction, and formation of the said sealing part 4 by forming this protrusion part 5 is formed. Sometimes, it becomes possible to efficiently and reliably seal the outer peripheral portion of the sealed void portion V in a state where a sealing member (for example, the low melting point glass) is placed on the protruding portion 5.

前記スペーサ2は、圧縮強度が約4.9×108Pa(5×103kgf/cm2)以上の材料、例えば、ステンレス鋼(SUS304)を使用して、直径が0.3mm〜1.0mm程度で、高さが0.15mm〜1.0mm程度の円柱形が好ましく、また、各スペーサ2間の間隔は、20mm程度が好ましい。 The spacer 2 uses a material having a compressive strength of about 4.9 × 10 8 Pa (5 × 10 3 kgf / cm 2 ) or more, for example, stainless steel (SUS304), and has a diameter of 0.3 mm to 1. A cylindrical shape having a height of about 0 mm and a height of about 0.15 mm to 1.0 mm is preferable, and the interval between the spacers 2 is preferably about 20 mm.

次に、前記密閉空隙部Vの減圧に関して、図5を用いて説明する。
前記一対の板ガラス1のうちの何れか一方の板ガラス1Aには、前記密閉空隙部Vの減圧を行うための排出口6を設けてある。この排出口6は、前記一方の板ガラス1Aに形成した貫通孔3に、排出用ガラス管(以後、単にガラス管という)7を配置し、貫通孔3周壁とガラス管7との間を、低融点ガラスを環状に成形したシール用成形体8を溶融固化させて密閉連結してある。そして、前記ガラス管7の先端部7aは、減圧後に加熱溶融して閉塞した閉塞部Cに構成してある(図6参照)。
Next, decompression of the sealed void portion V will be described with reference to FIG.
One of the glass plates 1A of the pair of glass plates 1 is provided with a discharge port 6 for reducing the pressure of the sealed void portion V. This discharge port 6 has a discharge glass tube (hereinafter simply referred to as a glass tube) 7 disposed in the through hole 3 formed in the one plate glass 1A, and the space between the peripheral wall of the through hole 3 and the glass tube 7 is low. A molded body 8 for sealing, in which a melting point glass is formed into an annular shape, is melt-solidified and hermetically connected. And the front-end | tip part 7a of the said glass tube 7 is comprised in the obstruction | occlusion part C which heat-melted and obstruct | occluded after pressure reduction (refer FIG. 6).

具体的には、図2、図3に示すように、貫通孔3に連通するように、ガラス管7を板ガラス1Aに立設すると共に、そのガラス管7の立設部のまわりにガラス管7よりも低融点である材料(ここでは低融点ガラス)で構成されたシール用成形体8を配置する。
つまり、前記貫通孔3は、図3に示すように、直径が約2.1mm程度の大径孔3aと約1.4mm程度の小径孔3bとを、一方の板ガラス1Aに同一軸芯上に連設状態に形成して構成してある。
また、前記大径孔3aには、ガラス管7を立設すると共に、厚さH=1.1mm、外径φ2=6mm、内径φ1=2.3mmのドーナツ状に成形されたシール用成形体8を、ガラス管7に外嵌状態に配置してある。
Specifically, as shown in FIGS. 2 and 3, the glass tube 7 is erected on the sheet glass 1 </ b> A so as to communicate with the through-hole 3, and the glass tube 7 is disposed around the erected portion of the glass tube 7. A sealing molded body 8 made of a material having a lower melting point (here, low melting point glass) is disposed.
That is, as shown in FIG. 3, the through-hole 3 has a large-diameter hole 3a having a diameter of about 2.1 mm and a small-diameter hole 3b having a diameter of about 1.4 mm on one plate glass 1A on the same axis. They are formed in a continuous state.
Further, a glass tube 7 is erected in the large-diameter hole 3a, and is used for a seal formed into a donut shape having a thickness H = 1.1 mm, an outer diameter φ 2 = 6 mm, and an inner diameter φ 1 = 2.3 mm. The molded body 8 is arranged on the glass tube 7 in an externally fitted state.

一方、前記ガラス管7は、当該実施形態においては、外径G=2.06mm、高さは6mm以下に設定してあり、厚みに関しては、0.1〜1.0mmのものを使用するのが好ましい。即ち、厚みが1.0mmを越えるものを使用すると、先端部7aの閉塞時に、昇温から自己融着までに時間を要すことになり、周囲の不要な部位まで温度が上昇し、甚だしい場合にはその結果生じる温度勾配のために板ガラス1又はシール用成形体8にクラックを生じてしまう危険性がある。また、厚みが0.1mm未満のものを使用すると、昇温は容易に実施できるものの、自己融解して形状を保つのが困難となる上、強度が弱いから極めて破損し易くなる。   On the other hand, the glass tube 7 is set to have an outer diameter G = 2.06 mm, a height of 6 mm or less, and a thickness of 0.1 to 1.0 mm in the embodiment. Is preferred. In other words, if a material with a thickness exceeding 1.0 mm is used, it takes time from the temperature rise to self-bonding when the tip 7a is closed, and the temperature rises to unnecessary parts in the surrounding area. Has a risk of cracking the glass sheet 1 or the molded article 8 for sealing due to the resulting temperature gradient. Further, when a material having a thickness of less than 0.1 mm is used, the temperature can be easily raised, but it is difficult to maintain its shape by self-melting, and it is very easy to break because of its low strength.

前記シール用成形体8を加熱溶融によって流動させてシール部Kを形成するにあたり、前記シール用成形体8とガラス管7との各寸法については、以下の三つの条件を満たすように設定してある。これらの設定によると、後述する実施例に示すとおり、排出口形成効率、及び、シール効果の点で好ましい。
H/W≧0.44
H/S≧7.0
S≧0.05mm
但し、
H:シール用成形体の高さ寸法(mm)
W:(φ2−φ1)/2 (シール用成形体の径方向厚み寸法)(mm)
S:(φ1−G)/2 (シール用成形体とガラス管との隙間寸法)(mm)
φ1:シール用成形体の内径(直径)寸法(mm)
φ2:シール用成形体の外径(直径)寸法(mm)
G:ガラス管の外径(直径)寸法(mm)
In forming the seal portion K by flowing the sealing molded body 8 by heating and melting, the dimensions of the sealing molded body 8 and the glass tube 7 are set so as to satisfy the following three conditions. is there. According to these settings, as shown in Examples described later, it is preferable in terms of discharge port formation efficiency and sealing effect.
H / W ≧ 0.44
H / S ≧ 7.0
S ≧ 0.05mm
However,
H: Height of the molded body for sealing (mm)
W: (φ 2 −φ 1 ) / 2 (Diameter thickness dimension of the molded article for sealing) (mm)
S: (φ 1 −G) / 2 (Dimension of gap between sealing molded body and glass tube) (mm)
φ 1 : Inner diameter (diameter) dimension (mm) of seal molding
φ 2 : Outer diameter (diameter) dimension (mm) of the molded article for sealing
G: Outer diameter (diameter) of glass tube (mm)

以上のようにガラス管7、及び、シール用成形体8を設置した後、本実施形態では、環境温度をシール用成形体8が溶融するまで昇温させて流動させた後、冷却することで固化させ、ガラス管7を板ガラス1Aに接着固定したシール部Kを形成することができる。   After installing the glass tube 7 and the sealing molded body 8 as described above, in this embodiment, the environmental temperature is raised until the sealing molded body 8 is melted and fluidized, and then cooled. The seal part K which solidified and bonded the glass tube 7 to the plate glass 1A can be formed.

そして、その後、適宜、ガラス管7を介して密閉空隙部Vを吸引して、密閉空隙部Vを減圧状態に保持しながら、前記ガラス管7の先端部7aを加熱融解して前記閉塞部Cを形成してある(図6参照)。   Then, the closed space C is sucked through the glass tube 7 as appropriate, and the distal end portion 7a of the glass tube 7 is heated and melted while the closed space V is kept in a reduced pressure state, thereby the closed portion C. (See FIG. 6).

その密閉空隙部Vを減圧状態に保持する一例を示すと、図5に示すように、加熱炉B内にガラスパネルPを板ガラス1Aが上側になるように水平に支持し、その板ガラス1Aの板面に吸引封止装置Aの吸引カップA2を載置してガラス管7を覆う。
前記吸引封止装置Aは、有底円筒状の吸引カップA2の横側部に、密閉空隙部V内の気体を吸引排出するフレキシブルパイプA3を連通接続し、吸引カップA2の先端には板ガラス1Aの板面との間を密閉する弾性OリングA4を備え、吸引カップA2の底部内側にはガラス管7の先端部7aを加熱溶融させる電気ヒータA5を設けてある。
そして、吸引カップA2の先端をOリングA4を介して板ガラス1Aの板面に密着させ、例えば200℃程度に加熱して密閉空隙部V内を活性化しながら、フレキシブルパイプA3を介して密閉空隙部V内の気体を吸引排出して、密閉空隙部Vを減圧する。
次に、電気ヒータA5により、ガラス管7の先端部7aを局部加熱(約1000℃)することにより溶融させて、図6に示すように、貫通孔3を封止し、この状態で冷却した後、溶融したガラス管7を覆う保護用キャップ10を板ガラス1Aに接着する。
この先端部7aの閉塞に関しては、先端部7aを局部加熱(約1000℃)するわけであるが、その熱線が焼結した前記シール部Kに直接あたることによって溶融するのを防止するために、図5に示すように、前記シール部Kを覆い隠す状態に遮熱板11を配置した状態で実施される。
As shown in FIG. 5, the glass panel P is horizontally supported so that the glass sheet 1A is on the upper side in the heating furnace B, as shown in FIG. The suction cup A2 of the suction sealing device A is placed on the surface to cover the glass tube 7.
In the suction sealing device A, a flexible pipe A3 for sucking and discharging the gas in the sealed gap V is connected to the lateral side portion of the bottomed cylindrical suction cup A2, and a plate glass 1A is connected to the tip of the suction cup A2. An elastic O-ring A4 that seals between the plate surfaces of the glass tube 7 is provided, and an electric heater A5 that heats and melts the tip 7a of the glass tube 7 is provided inside the bottom of the suction cup A2.
Then, the tip of the suction cup A2 is brought into close contact with the plate surface of the plate glass 1A through the O-ring A4 and heated to, for example, about 200 ° C. to activate the inside of the sealed gap V, and the sealed gap through the flexible pipe A3 The gas in V is sucked and discharged, and the sealed gap V is decompressed.
Next, the tip 7a of the glass tube 7 was melted by local heating (about 1000 ° C.) with the electric heater A5, and the through hole 3 was sealed as shown in FIG. 6 and cooled in this state. Thereafter, a protective cap 10 covering the molten glass tube 7 is bonded to the glass sheet 1A.
Regarding the blocking of the tip portion 7a, the tip portion 7a is locally heated (about 1000 ° C.), but in order to prevent melting by direct contact of the heat rays with the sintered seal portion K, As shown in FIG. 5, the heat shield plate 11 is disposed in a state of covering the seal portion K.

〔実施例〕
前記シール用成形体8とガラス管7とを、図7、図8に示すように、6種類の寸法設定毎に多数用意し、それぞれのグループ毎に、ガラス管7へのシール用成形体8を外嵌させる際の装着性、及び、シール用成形体8を溶融させて形成したシール部のシール性について実験を行った。
〔Example〕
As shown in FIGS. 7 and 8, a large number of the molded body 8 for sealing and the glass tube 7 are prepared for each of six types of dimension settings, and the molded body 8 for sealing to the glass tube 7 for each group. Experiments were carried out on the mounting property when externally fitting the sealing member and the sealing property of the seal portion formed by melting the molded article 8 for sealing.

装着性の結果は、図9に示すように、○、△、×の三段階で評価し、○のものが良好であるとした。この結果によると、ガラス管7とシール用成形体8との隙間寸法Sが、0.05mm以上であることが、良好な装着性を得るために必要なポイントとなっている。
因みに、装着性の実験内容、及び、前記三段階の評価について詳しく説明する。
シール用成形体の内径:φ1 の異なるものを数種用意し、実際の貫通孔にさした(立てた)ガラス管(個々に外径:Gを計測)にこれを通す実験を行った。
実験後、シール用成型体及びガラス管を精密観察することで装着性に関し次のように分類した。
×:シール用成形体の装着ができない(ガラス管が通らない)。
△:シール用成形体の装着は可能であるが、シール用成形体若しくはガラス管に、装着による外傷(カケ等)が見られる。
○:シール用成形体の装着が可能であり、夫々に外傷も見られない。
As shown in FIG. 9, the results of the wearability were evaluated in three stages, ◯, Δ, and ×, and ◯ was considered good. According to this result, the gap dimension S between the glass tube 7 and the sealing molded body 8 is 0.05 mm or more, which is a necessary point for obtaining good mounting properties.
Incidentally, the details of the wearability experiment and the three-stage evaluation will be described in detail.
Several types of sealing molded bodies having different inner diameters: φ 1 were prepared, and an experiment was conducted in which these were passed through (standing) glass tubes (individually measured outer diameter: G) placed in actual through holes.
After the experiment, the seal moldings and the glass tubes were closely observed and classified as follows in terms of wearability.
X: The molded product for sealing cannot be attached (the glass tube cannot pass).
Δ: Mounting of the sealing molded body is possible, but damage (such as chipping) due to mounting is observed on the sealing molded body or the glass tube.
○: A molded article for sealing can be attached, and no trauma is observed in each case.

シール性の結果は、図10に示すように、シール効果の不良率を求め、その結果によって1.5%以下の不良率のものを良好であるとした。この結果によると
H/W≧0.44
H/S≧7.0
の条件を満たすことが、良好なシール効果を得て不良率の低下を図るために必要なポイントとなっている。
因みに、シール性の実験内容、及び、良否の判定について詳しく説明する。
[1]小サイズ(100mm角程度)のガラス中心に貫通孔をあけ、その片側にガラス管及びシール用成形体を設置して一定条件(実炉・操業条件)にて焼結させたサンプルを作成。
[2]そのサンプルのガラス管については先端を溶融(封止)して、ガラス管自体は気密性を確保する状態としておく。
[3]準備したサンプルの片側をHeリークディテクターに繋ぎ(真空排気し)、反対側は大気開放とする。
[4]大気開放した側にHeガスを吹きかけ、Heリークディテクターによる検知を確認、検知されていればシール成形体の気密性が無いものと判断する。
As a result of the sealing performance, as shown in FIG. 10, a defective rate of the sealing effect was obtained, and a defective rate of 1.5% or less was determined to be good according to the result. According to this result, H / W ≧ 0.44
H / S ≧ 7.0
Satisfying this condition is a necessary point for obtaining a good sealing effect and reducing the defect rate.
Incidentally, the details of the sealability experiment and the determination of pass / fail will be described in detail.
[1] A sample in which a through-hole is formed in the center of a small-sized glass (about 100 mm square), a glass tube and a molding for sealing are installed on one side, and the sample is sintered under certain conditions (actual furnace and operating conditions). Create.
[2] The tip of the sample glass tube is melted (sealed), and the glass tube itself is kept in a state of ensuring airtightness.
[3] One side of the prepared sample is connected to a He leak detector (evacuated), and the other side is opened to the atmosphere.
[4] He gas is blown on the air-released side, and detection by the He leak detector is confirmed. If the detection is detected, it is determined that the seal molded body is not airtight.

以上の結果から、排出口のシール性を良好に確保するには、
H/W≧0.44
H/S≧7.0
を満たす寸法設定のガラス管とシール用成形体を使用する必要がある。
また、更に、良好な装着性をも要求するためには、上の二つの条件の他に、
S≧0.05mm
を満たす寸法設定のガラス管とシール用成形体を使用する必要がある。
From the above results, in order to ensure a good sealing performance of the outlet,
H / W ≧ 0.44
H / S ≧ 7.0
It is necessary to use a glass tube with a dimension that satisfies the above and a molded body for sealing.
Furthermore, in addition to the above two conditions, in order to require good wearability,
S ≧ 0.05mm
It is necessary to use a glass tube with a dimension that satisfies the above and a molded body for sealing.

〔別実施形態〕
以下に他の実施の形態を説明する。
[Another embodiment]
Other embodiments will be described below.

〈1〉 本発明の「ガラスパネルの排出口形成技術」によって形成されるガラスパネルは、多種にわたる用途に使用することが可能で、例えば、建築用・乗物用(自動車の窓ガラス、鉄道車両の窓ガラス、船舶の窓ガラス)・機器要素用(プラズマディスプレイ等の表示パネルの表面ガラスや、冷蔵庫の開閉扉や壁部、保温装置の開閉扉や壁部)等に用いることが可能である。
〈2〉 前記板ガラスは、先の実施形態で説明した厚み3mmの板ガラスに限るものではなく、他の厚みの板ガラスであってもよい。また、ガラスの種別は任意に選定することが可能であり、例えば型板ガラス、すりガラス(表面処理により光を拡散させる機能を付与したガラス)、網入りガラス又は強化ガラスや熱線吸収、紫外線吸収、熱線反射等の機能を付与した板ガラスや、それらとの組み合わせであってもよい。
また、ガラスの組成については、ソーダ珪酸ガラス(ソーダ石灰シリカガラス)や、ホウ珪酸ガラスや、アルミノ珪酸ガラスや、各種結晶化ガラスであってもよい。
〈3〉 前記板ガラスは、一方の板ガラスと他方の板ガラスとが、長さや巾寸法が異なるものを使用するのに限定されるものではなく、同寸法に形成してあるものを使用するものであってもよい。そして、両板ガラスの重ね方は、端縁部どうしが揃う状態に重ね合わせてあってもよい。また、一方の板ガラスと他方の板ガラスとの厚み寸法が異なるものを組み合わせてガラスパネルを構成してあってもよい。
〈4〉 前記スペーサは、先の実施形態で説明したステンレス鋼製のスペーサに限るものではなく、例えば、インコネルや、それ以外にも、他の金属・石英ガラス・セラミックス等であってもよく、要するに、外力を受けて両板ガラスどうしが接することがないように支持できるものであればよい。また、その形状についても、円柱形に限らず、角柱形などにすることができ、各スペーサ間の間隔についても、適宜変更が可能である。
〈5〉 前記シール用成形体8は、先の実施形態で説明した低融点ガラスで構成されたものに限るものではなく、例えば、金属ハンダやろう材等であってもよく、それらを総称してシール用成形体と言う。
<1> The glass panel formed by the “glass panel discharge port forming technology” of the present invention can be used for a wide variety of applications, for example, for buildings and vehicles (window glass of automobiles, railway vehicles, etc.). It can be used for window glass, ship's window glass) and device elements (surface glass of display panels such as plasma displays, doors and walls of refrigerators, doors and walls of heat insulating devices), and the like.
<2> The plate glass is not limited to the plate glass having a thickness of 3 mm described in the previous embodiment, and may be a plate glass having another thickness. The type of glass can be arbitrarily selected. For example, template glass, ground glass (glass having a function of diffusing light by surface treatment), meshed glass or tempered glass, heat ray absorption, ultraviolet ray absorption, heat ray It may be a plate glass provided with a function such as reflection, or a combination thereof.
The glass composition may be soda silicate glass (soda lime silica glass), borosilicate glass, aluminosilicate glass, or various crystallized glasses.
<3> The plate glass is not limited to one in which one plate glass and the other plate glass have different lengths or width dimensions, but uses ones formed in the same dimensions. May be. And how to laminate | stack both plate glass may be piled up in the state which edge parts align. Moreover, you may comprise the glass panel combining the thing from which the thickness dimension of one plate glass and the other plate glass differs.
<4> The spacer is not limited to the stainless steel spacer described in the previous embodiment, and may be, for example, Inconel or other metals, quartz glass, ceramics, etc. In short, any material can be used as long as it can be supported so that the two glass plates do not contact each other under external force. Further, the shape is not limited to the cylindrical shape, and may be a prism shape or the like, and the interval between the spacers can be appropriately changed.
<5> The molded body 8 for sealing is not limited to the low melting point glass described in the previous embodiment, and may be, for example, metal solder or brazing material. It is called a molded product for sealing.

ガラスパネルを示す一部切欠き斜視図Partially cutaway perspective view showing glass panel 排出口を示す分解斜視図Exploded perspective view showing the outlet ガラスパネルの要部を示す断面図Sectional view showing the main part of the glass panel ガラスパネルの要部を示す断面図Sectional drawing which shows the principal part of a glass panel 密閉空隙部の減圧状況を示す要部断面図Cross-sectional view of the main part showing the decompression status of the sealed void ガラスパネルの排出口を示す要部断面図Cross-sectional view of the main part showing the discharge port of the glass panel ガラス管とシール用成形体との寸法を表す断面図Sectional drawing showing dimensions of glass tube and molded body for sealing 実施例による試験体の寸法一覧を示す図The figure which shows the dimension list of the test body by an Example 実施例による装着性の結果を示す図The figure which shows the result of the mounting | wearing property by an Example 実施例による不良率の結果を示す図The figure which shows the result of the defect rate by an Example 従来のシール部形成状況を示す要部断面図Cross-sectional view of the main part showing the state of conventional seal formation

符号の説明Explanation of symbols

1 一対の板ガラス
1A 一方の板ガラス
1a 貫通孔周縁部
3 貫通孔
6 排出口
7 排出用ガラス管(以後、単にガラス管という)
8 シール用成形体
G 外径
φ1 内径 φ2 外径
H 厚さ
K シール部
S (φ1−G)/2 (シール用成形体とガラス管との隙間寸法)
V 密閉空隙部
W (φ2−φ1)/2 (シール用成形体の径方向厚み寸法)
DESCRIPTION OF SYMBOLS 1 A pair of plate glass 1A One plate glass 1a Through-hole peripheral part 3 Through-hole 6 Outlet 7 Discharge glass tube (henceforth only called a glass tube)
8 Molded body for sealing G Outer diameter φ 1 Inner diameter φ 2 Outer diameter H Thickness K Seal part S (φ 1 -G) / 2 (Dimension of gap between sealing molded body and glass tube)
V Sealed gap W (φ 21 ) / 2 (Diameter thickness dimension of the molded article for sealing)

Claims (4)

厚み方向に間隔をあけて配置した一対の板ガラスのうちの何れか一方の板ガラスに、前記両板ガラス間の密閉空隙部内の気体を外部に排出するための排出口を設けるにあたり、前記一方の板ガラスに貫通孔を設け、前記貫通孔に排出用ガラス管を立設すると共に、前記ガラス管の基端部に、環状のシール用成形体を外嵌させ、前記シール用成形体を加熱溶融させることで、前記ガラス管の基端部と前記一方の板ガラスの前記貫通孔周縁部とにわたって流動させ、固化させてシール部を形成するガラスパネルの排出口形成方法であって、
前記シール用成形体と排出用ガラス管との寸法設定を、次の通り設定して前記シール部を形成するガラスパネルの排出口形成方法。
H/W≧0.44
H/S≧7.0
但し、
H:シール用成形体の高さ寸法(mm)
W:(φ2−φ1)/2 (シール用成形体の径方向厚み寸法)(mm)
S:(φ1−G)/2 (シール用成形体とガラス管との隙間寸法)(mm)
φ1:シール用成形体の内径(直径)寸法(mm)
φ2:シール用成形体の外径(直径)寸法(mm)
G:ガラス管の外径(直径)寸法(mm)
In providing a discharge port for discharging the gas in the sealed gap between the two glass plates to the outside of any one of the pair of glass plates arranged at intervals in the thickness direction, the one glass plate A through hole is provided, and a discharge glass tube is erected in the through hole, and an annular sealing molded body is fitted on the base end portion of the glass tube, and the sealing molded body is heated and melted. And a glass panel discharge port forming method for forming a seal portion by flowing over and solidifying the base end portion of the glass tube and the peripheral edge portion of the one plate glass,
A method for forming a discharge port of a glass panel, wherein the seal part is set by setting the dimensions of the molded body for sealing and the glass tube for discharging as follows.
H / W ≧ 0.44
H / S ≧ 7.0
However,
H: Height of the molded body for sealing (mm)
W: (φ 2 −φ 1 ) / 2 (Diameter thickness dimension of the molded article for sealing) (mm)
S: (φ 1 −G) / 2 (Dimension of gap between sealing molded body and glass tube) (mm)
φ 1 : Inner diameter (diameter) dimension (mm) of seal molding
φ 2 : Outer diameter (diameter) dimension (mm) of the molded article for sealing
G: Outer diameter (diameter) of glass tube (mm)
前記シール用成形体と排出用ガラス管との隙間寸法Sを0.05mm以上に設定する請求項1に記載のガラスパネルの排出口形成方法。   The method for forming a discharge opening for a glass panel according to claim 1, wherein a clearance dimension S between the molded body for sealing and the discharge glass tube is set to 0.05 mm or more. 請求項1又は2のガラスパネルの排出口形成方法に使用する排出口形成部材であって、
前記シール用成形体と排出用ガラス管とで構成し、両者の寸法設定が次の通り設定してある排出口形成部材。
H/W≧0.44
H/S≧7.0
但し、
H:シール用成形体の高さ寸法(mm)
W:(φ2−φ1)/2 (シール用成形体の径方向厚み寸法)(mm)
S:(φ1−G)/2 (シール用成形体とガラス管との隙間寸法)(mm)
φ1:シール用成形体の内径(直径)寸法(mm)
φ2:シール用成形体の外径(直径)寸法(mm)
G:ガラス管の外径(直径)寸法(mm)
A discharge port forming member for use in the discharge port forming method for a glass panel according to claim 1 or 2,
A discharge port forming member comprising the sealing molded body and a discharge glass tube, the dimension of which is set as follows.
H / W ≧ 0.44
H / S ≧ 7.0
However,
H: Height of the molded body for sealing (mm)
W: (φ 2 −φ 1 ) / 2 (Diameter thickness dimension of the molded article for sealing) (mm)
S: (φ 1 −G) / 2 (Dimension of gap between sealing molded body and glass tube) (mm)
φ 1 : Inner diameter (diameter) dimension (mm) of seal molding
φ 2 : Outer diameter (diameter) dimension (mm) of the molded article for sealing
G: Outer diameter (diameter) of glass tube (mm)
前記シール用成形体と排出用ガラス管との隙間寸法Sを0.05mm以上に設定してある請求項3に記載の排出口形成部材。   The discharge port forming member according to claim 3, wherein a gap dimension S between the sealing molded body and the discharge glass tube is set to 0.05 mm or more.
JP2003274240A 2003-07-14 2003-07-14 Method for forming discharge port of glass panel and discharge port forming member Withdrawn JP2005035835A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003274240A JP2005035835A (en) 2003-07-14 2003-07-14 Method for forming discharge port of glass panel and discharge port forming member
CNA2004100638659A CN1576255A (en) 2003-07-14 2004-07-13 Forming method for discharge port of glass sheet and discharge port forming parts thereof
KR1020040054910A KR20050008529A (en) 2003-07-14 2004-07-14 Method of forming gas-evacuating opening of glass panel and device for forming the gas-evacuating opening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274240A JP2005035835A (en) 2003-07-14 2003-07-14 Method for forming discharge port of glass panel and discharge port forming member

Publications (1)

Publication Number Publication Date
JP2005035835A true JP2005035835A (en) 2005-02-10

Family

ID=34211255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274240A Withdrawn JP2005035835A (en) 2003-07-14 2003-07-14 Method for forming discharge port of glass panel and discharge port forming member

Country Status (3)

Country Link
JP (1) JP2005035835A (en)
KR (1) KR20050008529A (en)
CN (1) CN1576255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104280A (en) * 2012-05-18 2018-07-05 ガーディアン・インダストリーズ・コーポレーション Method and apparatus for making vacuum insulated glass (vig) window unit including pump-out tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104280A (en) * 2012-05-18 2018-07-05 ガーディアン・インダストリーズ・コーポレーション Method and apparatus for making vacuum insulated glass (vig) window unit including pump-out tube

Also Published As

Publication number Publication date
CN1576255A (en) 2005-02-09
KR20050008529A (en) 2005-01-21

Similar Documents

Publication Publication Date Title
AU2002363814B2 (en) Glass panel
US20020106463A1 (en) Vacuum IG window unit with polymer spacers
US7045181B2 (en) Double glazing
JP4049607B2 (en) Glass panel manufacturing method and glass panel manufactured by the method
US8377525B2 (en) Vacuum insulating glass unit with large pump-out port, and/or method of making the same
EP0955438B1 (en) Improvements to thermally insulating glass panels
WO2000004268A1 (en) Glass panel and method of forming the same
WO2003035566A1 (en) Glass panel and method of manufacturing the glass panel
EP1195496A2 (en) Glass panel
JP2002226235A (en) Low pressure double layered glass
JP2005035835A (en) Method for forming discharge port of glass panel and discharge port forming member
WO1999059931A1 (en) Glass panel
WO2000041980A1 (en) Glass panel
WO2003000613A1 (en) Method of manufacturing glass panel
JP2004339010A (en) Method of forming suction opening of glass panel
WO2004048286A1 (en) Heat shielding device
JP7041163B2 (en) Glass panel
JP2002167246A (en) Method of fabricating glass panel
JP2003095680A (en) Method for attaching glass tube
JP2001335346A (en) Glass panel
WO2000041979A1 (en) Glass panel
JP2004265775A (en) Reduced pressure treatment device
JP2002255591A (en) Method for manufacturing glass panel
JP2005129266A (en) Reduced pressure treatment device
JP2001180986A (en) Low pressure double glazing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080513