JP2005035793A - Device and method for supplying powdery and granular material - Google Patents

Device and method for supplying powdery and granular material Download PDF

Info

Publication number
JP2005035793A
JP2005035793A JP2004193886A JP2004193886A JP2005035793A JP 2005035793 A JP2005035793 A JP 2005035793A JP 2004193886 A JP2004193886 A JP 2004193886A JP 2004193886 A JP2004193886 A JP 2004193886A JP 2005035793 A JP2005035793 A JP 2005035793A
Authority
JP
Japan
Prior art keywords
granular material
relay
compressed gas
pipe
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004193886A
Other languages
Japanese (ja)
Other versions
JP4561202B2 (en
Inventor
Noboru Watabe
昇 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintobrator Ltd
Original Assignee
Sintobrator Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintobrator Ltd filed Critical Sintobrator Ltd
Priority to JP2004193886A priority Critical patent/JP4561202B2/en
Publication of JP2005035793A publication Critical patent/JP2005035793A/en
Application granted granted Critical
Publication of JP4561202B2 publication Critical patent/JP4561202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method for supplying a powdery and granular material for securing stability in quantitative feed of the powdery and granular material and precisely performing variable control of a feeding amount by improving fluidity of the powdery and granular material. <P>SOLUTION: In the powdery and granular material supplying device, a casing 5 is continuously provided beneath a storage tank 1, an inside of the casing and the inside of the storage tank 1 are communicated through a powdery and granular material delivery pipe 4 vertically provided on a bottom part of the storage tank 1, the powdery and granular material stored in the storage tank 1 is fed outside under pressure with compressed gas by means of a powdery and granular material feeding cylinder 16 on the bottom part of the casing 5. A vibration imparting unit 15 provided with a relay member receiving the powdery and granular material flowing down from the powdery and granular material delivery pipe 4 of the storage tank 1 and feeding it to the powdery and granular material feeding cylinder 16 and a vibration-generating source 14 for vibrating the relay member is arranged in a compressed gas chamber 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば粉体塗料(微細な粉粒体)を塗装面に噴射するスプレーガンや、噴射材(微細な粉粒体)を硬脆材料に噴射してその噴射面の平滑加工、グラデーション(模様付け)加工、溝加工、などを施すエアーブラスト装置などに使用され、粉粒体を圧縮気体に混合して定量供給する粉粒体供給装置、及びその装置を用いた粉粒体供給方法に関するものである。   The present invention is, for example, a spray gun that sprays a powder paint (fine powder) onto a painted surface, a spray material (fine powder) that is sprayed onto a hard and brittle material, smoothing the spray surface, gradation (Pattern) Powder and particle supply device used in an air blasting device for performing processing, grooving, etc., and supplying powder quantitatively by mixing it with compressed gas, and powder supply method using the device It is about.

本発明に係る粉粒体供給装置において、粉粒体の定量供給及びその供給量の可変制御をする場合にはその粉粒体の流動性を一定に保持する必要があるもので、その流動性を左右する因子にはその粉粒体が持つ付着力のみならず粒子の形状や周囲の湿度などの環境条件などがあり、取り扱う粉粒体の粒子径が特に50μm以下の微粉体の場合にはその微粉体に与える前記流動性を左右する因子の影響が大でありその流動性が変化することが予測される。   In the granular material supply apparatus according to the present invention, when the quantitative supply of the granular material and the variable control of the supply amount are required, the fluidity of the granular material needs to be kept constant. Factors that affect the particle size include not only the adhesion of the particles but also the environmental conditions such as the shape of the particles and the surrounding humidity, especially when the particle size of the particles handled is a fine powder of 50 μm or less. The influence of the factors affecting the fluidity on the fine powder is large, and it is predicted that the fluidity will change.

前記のような取り扱う粉粒体が微粉体の場合には、その微粉体がホッパー内壁への付着や、微粉体同士がブリッジを形成した棚吊り現象や、ホッパー下部の供給管内の閉塞現象が発生し易く供給量が不安定となる問題点があって、これらを防止する方法としてホッパー側壁に振動(又は衝撃)発生源、を付設してホッパー側壁を振動(又は衝撃)をさせる方法、或いはホッパー内の粉粒体を機械的に攪拌する方法を備えた粉粒体供給装置が一般的に知られている。   When the granular material handled as described above is a fine powder, the fine powder adheres to the inner wall of the hopper, a shelf hanging phenomenon in which the fine powder forms a bridge, or a clogging phenomenon in the supply pipe below the hopper occurs. There is a problem that the supply amount becomes unstable easily, and as a method for preventing these problems, a vibration (or impact) generation source is attached to the hopper side wall to vibrate (or shock) the hopper side wall, or a hopper 2. Description of the Related Art Generally, a powder supply apparatus provided with a method for mechanically stirring powder inside is known.

その一例として、特許文献1には、微粉体(粒径:50μm以下)を貯留したホッパーの下部に供給細管(内径:0.5〜2.Omm)を連設し、その供給細管、又は/及びホッパーを機械式モータ、振動モータ、電磁式バイブレータなどから成る振動手段(振動数:10〜200Hz)によって振動させ、その振動数を変更することにより微粉体の供給量を可変制御できるようにした供給方法、及びその装置が開示されている。
特開平8−33839号公報 (図1)
As an example, Patent Document 1 discloses that a supply thin tube (inner diameter: 0.5-2.Omm) is continuously provided at the lower part of a hopper in which fine powder (particle size: 50 μm or less) is stored. The hopper is vibrated by vibration means (frequency: 10-200 Hz) composed of a mechanical motor, vibration motor, electromagnetic vibrator, etc., and the amount of fine powder supplied can be variably controlled by changing the frequency. A supply method and apparatus are disclosed.
JP-A-8-33839 (FIG. 1)

前記、特許文献1の発明は、当該公報の図1に示されるように微粉体を貯留したホッパーと、そのホッパー下部に連設した供給細管と、その供給細管に付設した振動手段とから成り、該振動手段は、請求項4、請求項5に記載されるように供給細管、又は/及びホッパーに振動を与えホッパー内の微粉体を供給細管を通して供給する構成にし、その振動数を変更することにより供給量の変更ができるようになっている。   The invention of Patent Document 1 comprises a hopper storing fine powder as shown in FIG. 1 of the publication, a supply thin tube connected to the lower portion of the hopper, and a vibration means attached to the supply thin tube. The vibration means is configured to vibrate the supply tubule and / or the hopper and supply fine powder in the hopper through the supply tubule as described in claims 4 and 5, and to change the vibration frequency. This makes it possible to change the supply amount.

しかしながら、粒子径が50μm以下の微粉体は、前記のようにその微粉体に与える前記流動性を左右する因子の影響が大であり、流動性の変化が考えられる微粉体の定量供給、及び供給量の可変制御をする供給装置として振動モータなどから成る振動手段のみの当該発明の供給方法では前記のような微粉体の付着等が解決されない場合が考えられ、供給装置内の粉体系路の圧力の調整及び一定化を図る必要があって、定量供給の安定性や供給量の可変制御性に問題が残されている。   However, the fine powder having a particle size of 50 μm or less is greatly influenced by the factors affecting the fluidity given to the fine powder as described above, and the quantitative supply and supply of the fine powder in which the fluidity can be changed. The supply method of the present invention using only vibration means such as a vibration motor as a supply device for variable control of the amount may not solve the above-mentioned adhesion of fine powder, and the pressure of the powder system path in the supply device Therefore, there is a problem in stability of quantitative supply and variable controllability of supply amount.

本発明は、前記従来技術の問題点を解決し、微粉体の流動性を変化させない定量供給の安定性と供給量の可変制御を的確にする粉粒体供給装置、及び粉粒体供給方法を提供することにある。   The present invention solves the above-mentioned problems of the prior art, and provides a powder supply device and a powder supply method for accurately adjusting the stability of quantitative supply without changing the fluidity of fine powder and the variable control of the supply amount. It is to provide.

前記課題を解決するために成された本発明は、底部をホッパー状とした貯留タンクの下方にケーシングを連設して、このケーシング内の圧縮気体室と貯留タンクとを貯留タンクの底部に垂設した粉粒体送出管をもって連通するとともに、圧縮気体室に供給される圧縮気体により粉粒体を外部に供給するための粉粒体送給筒を、ケーシングの底部に突設した粉粒体供給装置であって、前記圧縮気体室には、粉粒体送出管より送られてくる粉粒体を粉粒体送給筒に送り込むための中継部材を振動発生源に支持させて、中継部材を粉粒体送給筒から離間させて配置したことを特徴とする粉粒体供給装置を請求項1の発明とする。そして、前記した発明において、中継部材を、中継管からなるものとして、この中継管を粉粒体送出管に着脱自在に装着したものを請求項2の発明とし、中継部材を、中継タンクとこの下部に接続された中継管とからなるものとして、当該中継タンクを粉粒体送出管から離間させて振動発生源に支持させたことを特徴とするものを請求項3の発明とする。   The present invention, which has been made to solve the above-mentioned problems, has a casing continuously provided below a storage tank having a hopper shape at the bottom, and the compressed gas chamber and the storage tank in the casing are suspended from the bottom of the storage tank. A granular material that is communicated with the provided granular material delivery pipe and has a granular material supply tube for supplying the granular material to the outside by the compressed gas supplied to the compressed gas chamber. In the supply device, the compressed gas chamber has a vibration generating source supporting a relay member for feeding the granular material sent from the granular material delivery pipe to the granular material feeding tube, and the relay member The granular material supply apparatus according to claim 1 is characterized in that the granular material supply device is arranged separately from the granular material supply cylinder. In the above-described invention, the relay member is formed of a relay pipe, and the relay pipe is detachably attached to the powder material delivery pipe. The relay member is the relay tank and the relay tank. The invention according to claim 3 is characterized in that it comprises a relay pipe connected to the lower part, and the relay tank is separated from the powder material delivery pipe and supported by a vibration generating source.

また、上記した発明において、圧縮気体室に圧縮気体を供給する圧縮気体供給口をケーシングの側壁に設けるとともに、圧縮気体室から貯留タンク内の上方に達する通気管を設けて、貯留タンクと中継部材と粉粒体送給筒とを、圧縮気体室と同一圧力にしたものを請求項4の発明とし、中継タンクとして、その上端開口の内径が貯留タンクの粉粒体送出管より大径で、且つ、底部に中継管を着脱自在に設けたものであり、この中継タンクの上端開口に前記粉粒体送出管を相互間に充分な隙間を設けて挿入して粉粒体送出管に接触することがないようにする一方、前記中継管の先端をケーシング底部に設けた粉粒体送給筒に接触することがないように相互に充分な隙間を設けて挿入したものを請求項5の発明とする。また、この請求項5における中継管の形状として、中継タンクの底部に垂下される縦管部に横管部を続かせたL形のもので、この横管部の先端をケーシングの底部に設けた粉粒体送給筒の上端に側方より挿入したものを請求項6の発明とし、請求項2における中継管の形状として、粉粒体送出管に装着される縦管部に横管部を続かせたL形のもので、この横管部の先端を斜め上向きとして、粉粒体送給筒の上端開口に側方より挿入したものを請求項7の発明とする。さらに、前記した請求項1〜7の何れかの発明における振動発生源を圧電素子としたものを請求項8の発明とし、これら請求項1〜8の何れかに記載の発明において、粉粒体送給筒に続かせた粉粒体送給管の先端に噴射ノズルを接続し、貯留タンクに噴射材を貯留し、その噴射材を噴射ノズルより噴射させるエアーブラスト装置に用いたことを特徴とする粉粒体供給装置を請求項9の発明とする。   Moreover, in the above-described invention, a compressed gas supply port for supplying compressed gas to the compressed gas chamber is provided on the side wall of the casing, and a vent pipe extending from the compressed gas chamber to the inside of the storage tank is provided, and the storage tank and the relay member And the granular material supply cylinder, the pressure of the compressed gas chamber is the same as the invention of claim 4, the relay tank, the inner diameter of the upper end opening is larger than the granular material delivery pipe of the storage tank, In addition, a relay pipe is detachably provided at the bottom, and the granular material delivery pipe is inserted into the upper end opening of the relay tank with a sufficient gap therebetween to contact the granular material delivery pipe. The invention of claim 5 wherein the relay pipe is inserted with a sufficient gap so that the tip of the relay pipe does not come into contact with the granular material feeding cylinder provided at the bottom of the casing. And Further, the shape of the relay pipe in claim 5 is an L shape in which the horizontal pipe part is connected to the vertical pipe part suspended from the bottom part of the relay tank, and the tip of the horizontal pipe part is provided at the bottom part of the casing. According to the invention of claim 6, the powder tube is inserted from the side into the upper end of the granular material feeding cylinder, and the shape of the relay pipe in claim 2 is the horizontal tube portion attached to the vertical tube portion attached to the granular material delivery tube. In the invention of claim 7, an L-shaped one in which the tip of the horizontal tube is obliquely upward is inserted from the side into the upper end opening of the granular material feeding cylinder. Furthermore, in the invention according to any one of claims 1 to 8, the vibration generating source according to any one of claims 1 to 7 is a piezoelectric element, and the invention according to claim 8 is used. The spray nozzle is connected to the tip of the granular material feed pipe that is connected to the feed cylinder, the spray material is stored in a storage tank, and used for an air blast device that sprays the spray material from the spray nozzle. The granular material supply device to be used is the invention of claim 9.

また、前記した請求項1〜請求項9のいずれかに記載の粉粒体供給装置を用いて、 圧縮気体室に圧縮気体を供給することにより、圧縮気体室と貯留タンクと振動供給ユニットの中継タンクと粉粒体送給筒に至る粉粒体の流路系の圧力を前記圧縮気体室の圧力と同一圧力としたことを特徴とする粉粒体供給方法を請求項10の発明とし、同じく、請求項1〜請求項9のいずれかに記載の粉粒体供給装置を用いて、圧縮気体室に圧縮気体を供給し、前記粉粒体の流路系を同一圧力にして、粉粒体を加圧状態にすると共に、中継部材の振動数と振幅の組合せ変更により、粉粒体の定量供給、又は供給量の可変制御するようにしたことを特徴とする粉粒体の供給方法を請求項11の発明とする。さらにまた、前記した請求項1〜9のいずれかに記載の粉粒体供給装置を用い、振動発生源の振動数を100〜600Hz、振幅を70μm以下の範囲で選択設定して、粉粒体を供給することを特徴とする粉粒体の供給方法を請求項12の発明とし、請求項2〜8のいずれかに記載の粉粒体供給装置を用い、中継管の内径がφ0.2〜10.0mmの範囲にある複数の中継管を用意し、これら内径が異なる中継管を交換することにより粉粒体の供給量を段階制御することを特徴とした粉粒体供給方法を請求項13の発明とする。また、前記した請求項12または13の発明を実施するにあたり、振動発生源の振動数を100〜600Hz、振幅を70μm以下の範囲で変更して粉粒体の供給量を微量制御するようにした発明を請求項14の発明とし、前記した請求項12〜14のいずれかの発明を実施するにあたり、貯留タンクに粒径5〜80μmの粉粒体を充填して、粉粒体を5〜700mg/secの供給速度にて供給するようにした発明を請求項15の発明とする。   Moreover, by supplying the compressed gas to the compressed gas chamber by using the powder and particle supply device according to any one of claims 1 to 9, the compressed gas chamber, the storage tank, and the vibration supply unit are relayed. The powder supply method according to claim 10, wherein the pressure of the flow path system of the powder reaching the tank and the powder supply cylinder is the same as the pressure of the compressed gas chamber. Using the granular material supply apparatus according to any one of claims 1 to 9, compressed gas is supplied to a compressed gas chamber, and the flow path system of the granular material is set to the same pressure, whereby the granular material A method for supplying powder particles, wherein the powder is quantitatively supplied or the supply amount is variably controlled by changing the combination of the frequency and amplitude of the relay member. The invention of item 11. Furthermore, using the granular material supply apparatus according to any one of claims 1 to 9, the frequency of the vibration source is selected and set within a range of 100 to 600 Hz and the amplitude is 70 μm or less. The method for supplying granular material according to claim 12 is characterized in that the internal diameter of the relay pipe is 0.2 to 0.2 mm using the granular material supply device according to any one of claims 2 to 8. A powder supply method comprising: preparing a plurality of relay pipes in a range of 10.0 mm; and stepwise controlling a supply amount of the powder granules by exchanging relay pipes having different inner diameters. It is set as invention of this. In carrying out the invention according to claim 12 or 13, the supply amount of the granular material is controlled in a minute amount by changing the frequency of the vibration source in the range of 100 to 600 Hz and the amplitude within 70 μm. In carrying out the invention according to any one of claims 12 to 14, the storage tank is filled with a granular material having a particle size of 5 to 80 μm, and the granular material is 5 to 700 mg. The invention of supplying at a supply rate of / sec is the invention of claim 15.

本発明の粉粒体供給装置は、粉粒体の貯留タンクの下方にケーシングを連設してこのケーシング内に設けた圧縮気体室と前記貯留タンクとを粉粒体送出管によって連通させるとともに、ケーシングの底部には、貯留タンクから送出された粉粒体を圧縮気体により外部に供給するための粉粒体送給筒を突設したうえに、圧縮気体室には、粉粒体送出管より送られてくる粉粒体を粉粒体送給筒に送り込むための中継部材を、粉粒体送給筒に非接触となるように振動発生源に支持させて中継部材の中継管内に圧縮気体の混入が少なく粉粒体が充填された状態とするとともに、前記貯留タンク、ケーシング内の圧縮気体室の圧力を同一にしたので、中継管内の粉粒体とその出口となる粉粒体送給筒に負荷される圧力が同一となるから、中継部材の中継管の振動が効果的に作用し、流動性が悪い粉粒体においてもその流動性を改善して一定の速度で移送することができる。上記中継部材を、L字形の中継管からなるものとして、この中継管を粉粒体送出管に着脱自在に装着することによって、粉粒体を円滑に移送することができる。あるいは、中継部材を、中継タンクとこの下部に装着された中継管とからなるものとして、当該中継タンクを粉粒体送出管から離間させて振動発生源に支持させることによっても、中継部材を完全に粉粒体送出管及び粉粒体送給筒から引き離して振動させることができて、粉粒体を円滑に移送することができる。   The granular material supply device of the present invention has a casing continuously provided below the granular material storage tank, and communicates the compressed gas chamber provided in the casing and the storage tank with the granular material delivery pipe, At the bottom of the casing, a powder feed tube for supplying the powder sent from the storage tank to the outside by compressed gas is projected, and the compressed gas chamber is provided with a powder feed pipe. A relay member for feeding the granular material to be fed into the granular material feeding cylinder is supported by a vibration source so as to be in non-contact with the granular material feeding cylinder, and compressed gas is introduced into the relay pipe of the relay member. Since the pressure of the storage tank and the compressed gas chamber in the casing is made the same, the granular material in the relay pipe and the granular material serving as the outlet thereof are fed. Since the pressure applied to the cylinder is the same, relay of the relay member Can vibration of effectively acts to transfer at a constant speed also improves the fluidity at poor flowability granular material. By assuming that the relay member is composed of an L-shaped relay pipe and the relay pipe is detachably attached to the powder body delivery pipe, the powder body can be smoothly transferred. Alternatively, the relay member is made up of a relay tank and a relay pipe attached to the lower part of the relay member, and the relay tank is completely separated from the granular material delivery pipe and supported by the vibration generating source. It can be made to oscillate away from a granular material delivery tube and a granular material supply pipe | tube, and a granular material can be conveyed smoothly.

以下、図面を参照しつつ本発明の好ましい実施形態を説明する。
図1、及び図2に示す粉粒体供給装置について、1は上端を開口部2とし該開口部2に着脱自在の蓋3が設けられ下部にホッパー形状の底部1aを形成した密閉構造の貯留タンクであって、該貯留タンク1の底部1aのホッパー形状の下端には粉粒体送出管4が垂設されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
1 and FIG. 2, a storage unit 1 has a sealed structure in which an upper end is an opening 2 and a detachable lid 3 is provided in the opening 2, and a hopper-shaped bottom 1 a is formed in the lower part. A powder delivery pipe 4 is suspended from a hopper-shaped lower end of the bottom 1 a of the storage tank 1.

5は側壁に圧縮気体供給口6を設け貯留タンク1の下端に着脱自在にボルト固定で連設した筒状のケーシングであって、該ケーシング5の上部に位置する貯留タンク1の底部1aと下部に着脱自在に設けたボルト固定の底板51とにより圧縮気体室7を形成する。8は下端開口を前記圧縮気体室7に臨ませ上端開口を貯留タンク1の開口部2付近に位置させて貯留タンク1内の圧力を圧縮気体室7内と同圧にするために設けた通気管であり、8aは上端開口を貯留タンク1の上端の開口部2付近に位置させ下端に開閉弁8bを取り付けた排気管であって該排気管8aは蓋3を取り外す前に前記開閉弁8bを開にして貯留タンク1内に残留する圧縮気体を抜き取るためのものである。   Reference numeral 5 denotes a cylindrical casing provided with a compressed gas supply port 6 on the side wall and detachably connected to the lower end of the storage tank 1 by bolts. The bottom 1a and the lower part of the storage tank 1 positioned above the casing 5 A compressed gas chamber 7 is formed by a bolt-fixed bottom plate 51 that is detachably provided on the base plate 51. 8 is a passage provided so that the lower end opening faces the compressed gas chamber 7 and the upper end opening is positioned near the opening 2 of the storage tank 1 so that the pressure in the storage tank 1 is the same as that in the compressed gas chamber 7. 8a is an exhaust pipe in which an upper end opening is positioned in the vicinity of the opening 2 at the upper end of the storage tank 1 and an open / close valve 8b is attached to the lower end. The exhaust pipe 8a is connected to the open / close valve 8b before removing the lid 3. Is used for extracting compressed gas remaining in the storage tank 1.

ケーシング5の圧縮気体室7内には、前記貯留タンク1の底部1aの下端に垂設された粉粒体送出管4が挿入される上端開口12と下端開口18に中継管13が着脱自在に取り付けられる中継タンク11と振動発生源14を一体化して振動供給ユニット15を形成し、該振動供給ユニット15はその振動発生源14を介してケーシング5の底板51に設けられたブラケット14aにボルト固定されている。尚、前記中継タンク11の上端開口12の内径は、前記貯留タンク1の粉粒体送出管4の外径より大径とし隙間が設けられており、振動発生源14の作動により中継タンク11を振動させた際に該中継タンク11の上端開口12が貯留タンク1の粉粒体送出管4に接触しないようにしてある。又、中継タンク11の中継管13の形状は、図示の如くL字形が好ましいが、その粉粒体の流動性が特に悪い場合には図示しないストレート形状にする必要がある。   In the compressed gas chamber 7 of the casing 5, the relay pipe 13 is detachably attached to the upper end opening 12 and the lower end opening 18 into which the granular material delivery pipe 4 suspended from the lower end of the bottom 1 a of the storage tank 1 is inserted. The relay tank 11 to be attached and the vibration generation source 14 are integrated to form a vibration supply unit 15, and the vibration supply unit 15 is bolted to a bracket 14 a provided on the bottom plate 51 of the casing 5 via the vibration generation source 14. Has been. In addition, the inner diameter of the upper end opening 12 of the relay tank 11 is larger than the outer diameter of the powder delivery pipe 4 of the storage tank 1, and a gap is provided. The upper end opening 12 of the relay tank 11 is prevented from coming into contact with the granular material delivery pipe 4 of the storage tank 1 when oscillated. Further, the shape of the relay pipe 13 of the relay tank 11 is preferably L-shaped as shown in the figure, but if the fluidity of the granular material is particularly bad, it is necessary to have a straight shape (not shown).

16はケーシング5の底板51に形成した粉粒体送給筒であって、上端開口17を圧縮気体室7内に臨ませ前記中継タンク11の中継管13の先端部が挿入され、該粉粒体送給筒16の下端に噴射手段20を先端に取り付けた粉粒体送給管19が接続されている。尚、前記中継タンク11の中継管13の形状が図示の如くL字形である場合の前記粉粒体送給筒16の上端開口17の形状は、中継タンク11の中継管13の先端部が粉粒体送給筒1116の側部から挿入されることとなるから、その挿入箇所となる粉粒体送給筒16の上端開口17をその半外周を切除して半筒状に形成するもので、前記中継タンク11の中継管13の形状が図示しないストレート形状である場合の前記粉粒体送給筒16の上端開講17は水平開口形状であってよい。又、粉粒体送給筒16の上端開口17の内径は中継タンク11の中継管13の外径より大径とし隙間が設けられており、中継タンク11を振動発生源14の作動により振動させた際に該中継タンク11の中継管13の先端部が粉粒体送給筒16の上端開口17に接触しないようにしてある。   Reference numeral 16 denotes a granular material feeding cylinder formed on the bottom plate 51 of the casing 5. The upper end opening 17 faces the compressed gas chamber 7, and the tip of the relay pipe 13 of the relay tank 11 is inserted. Connected to the lower end of the body feeding cylinder 16 is a granular material feeding pipe 19 having an injection means 20 attached to the tip. When the shape of the relay pipe 13 of the relay tank 11 is L-shaped as shown in the drawing, the shape of the upper end opening 17 of the granular material feeding cylinder 16 is such that the tip of the relay pipe 13 of the relay tank 11 is powdered. Since it will be inserted from the side part of the granular material supply cylinder 1116, the upper end opening 17 of the granular material supply cylinder 16 which becomes the insertion location is cut out on the semi-periphery to form a semi-cylindrical shape. When the shape of the relay pipe 13 of the relay tank 11 is a straight shape (not shown), the upper end opening 17 of the granular material feeding cylinder 16 may be a horizontal opening shape. Further, the inner diameter of the upper end opening 17 of the granular material feeding cylinder 16 is larger than the outer diameter of the relay pipe 13 of the relay tank 11 and is provided with a gap. The relay tank 11 is vibrated by the operation of the vibration source 14. In this case, the tip of the relay pipe 13 of the relay tank 11 does not come into contact with the upper end opening 17 of the granular material feeding cylinder 16.

このように構成された本発明の粉粒体供給装置は、貯留タンク1内に上端の開口部2より粉粒体を投入した後、貯留タンク1の開口部2に蓋3を取り付け固定して貯留タンク1を密閉状態にし、次いで[A]圧縮気体供給口6より圧縮気体を供給すると共に[B]振動発生源14に通電して振動供給ユニット15の中継タンク11を振動させる。   The granular material supply apparatus of the present invention configured as described above, after putting the granular material into the storage tank 1 from the opening 2 at the upper end, attaches and fixes the lid 3 to the opening 2 of the storage tank 1. The storage tank 1 is sealed, then [A] the compressed gas is supplied from the compressed gas supply port 6 and [B] the vibration generating source 14 is energized to vibrate the relay tank 11 of the vibration supply unit 15.

前記[A]に記載の圧縮気体供給口6より供給された圧縮気体は、圧縮気体室から(1)通気管8を通して貯留タンク1内、(2)振動供給ユニット15の中継タンク11の上端開口12より中継タンク11内、(3)ケーシング5の底板51に設けられた粉粒体送給筒16の上端開口17より粉粒体送給筒16内、に夫々導入されて前記(1)〜(3)の流路系の粉粒体を一定の圧力で加圧することとなるからその流路系の粉粒体を一定の速度で移送することができる。尚、湿度を嫌う粉粒体を取り扱う場合には、前記圧縮気体を供給する装置に除湿機を付けて除湿すればその粉粒体の流動性を向上させて一定の速度で移送できるものであり、湿度を嫌う粉粒体であっても定量供給及び可変制御を精度良く行うことができる。   The compressed gas supplied from the compressed gas supply port 6 described in [A] is (1) the inside of the storage tank 1 through the vent pipe 8 and (2) the upper end opening of the relay tank 11 of the vibration supply unit 15. 12 is introduced into the relay tank 11 and (3) the powder feed cylinder 16 from the upper end opening 17 of the powder feed cylinder 16 provided on the bottom plate 51 of the casing 5. Since the granular material of the channel system of (3) is pressurized at a constant pressure, the granular material of the channel system can be transferred at a constant speed. In addition, when handling powders that dislike humidity, if the dehumidifier is attached to the device that supplies the compressed gas, the fluidity of the powders can be improved and transferred at a constant speed. Quantitative supply and variable control can be performed with high accuracy even for powders that dislike humidity.

又、前記〔B〕に記載の中継タンク11の振動(振動数と振動強度)は、前記(1)〜(3)の流路系の粉粒体の供給量を決定して粉粒体の定量供給及びその供給量の可変制御を図るもので、その中継タンク11の振動と前記〔A〕に記載の粉粒体への加圧力の作用で粉粒体の流動性を一定に保持しながら粉粒体送給管19を介して噴射手段20から墳射することができる。尚、振動させる部分が貯留タンク1と隔離させた容量が小さい中継タンク11のみであるために、振動発生源14は電圧を変更することにより歪(振幅)を変更することができる圧電素子を採用して振動供給ユニット15を小型化できるが、該振動発生源14は圧電素子に限るものでなく他の電磁式バイブレータや振動モータであっても良い。   Further, the vibration (frequency and vibration strength) of the relay tank 11 described in [B] is determined by determining the supply amount of the granular material in the flow path system of (1) to (3). While aiming at variable supply and variable control of the supply amount, while maintaining the fluidity of the granular material constant by the action of the vibration of the relay tank 11 and the pressure applied to the granular material described in [A] above Spraying can be performed from the spraying means 20 via the powder and granular material supply pipe 19. In addition, since only the relay tank 11 having a small capacity isolated from the storage tank 1 is vibrated, the vibration generating source 14 employs a piezoelectric element that can change the strain (amplitude) by changing the voltage. Thus, the vibration supply unit 15 can be reduced in size, but the vibration generating source 14 is not limited to the piezoelectric element, and may be another electromagnetic vibrator or a vibration motor.

尚、図1に示した貯留タンク1の容量が3リットルに対し、中継タンク11の容量は0.02リットルである。   Incidentally, the capacity of the storage tank 1 shown in FIG. 1 is 3 liters, whereas the capacity of the relay tank 11 is 0.02 liters.

次に、図3に示す本発明の粉粒体供給装置をエアーブラスト装置に組み込んだ場合の一使用例について説明する。   Next, an example of use when the granular material supply device of the present invention shown in FIG. 3 is incorporated in an air blast device will be described.

22は本発明の粉粒体供給装置であって、該粉粒体供給装置22のケーシング5の圧縮気体供給口6には圧縮気体供給装置23から供給される圧縮気体の圧力を制御する電空比例弁26を設けた圧縮気体の供給配管26aが接続され、粉粒体供給装置22の粉粒体送給管19の先端には、エアーブラスト装置21のキャビネット37内に噴射手段20として設けた噴射ノズルが接続されている。31、32、33は、スライダードライバー34によって噴射ノズルを三次元作動させるX軸、Y軸、Z軸であり、35はワーク(被加工物)、36はキャビネット37の前面に設けたワーク35出し入れ用の開閉扉、29は集塵ダクト28を介してキャビネット37内の粉塵を回収する集塵機である。24は(1)圧縮気体を供給する電空比例弁26と、(2)粉粒体供給装置22の振動タンクを振動させる振動発生源と、(3)噴射手段20(噴射ノズル)の三次元制御作動をさせるスライダードライバー34と、に接続し、前記(1)電空比例弁26による圧縮気体の設定圧力(2)振動発生源の振動数と振動強度(振幅)、(3)スライダードライバー34の三次元作動、を作動制御するプログラムが内蔵されている制御手段である。   Reference numeral 22 denotes a granular material supply device according to the present invention, and an electropneumatic system that controls the pressure of the compressed gas supplied from the compressed gas supply device 23 to the compressed gas supply port 6 of the casing 5 of the granular material supply device 22. A compressed gas supply pipe 26 a provided with a proportional valve 26 is connected, and provided at the tip of the powder supply pipe 19 of the powder supply apparatus 22 as an injection means 20 in the cabinet 37 of the air blast apparatus 21. The injection nozzle is connected. 31, 32, and 33 are an X axis, a Y axis, and a Z axis that three-dimensionally operate the spray nozzle by the slider driver 34, 35 is a workpiece (workpiece), and 36 is a workpiece 35 provided on the front surface of the cabinet 37. The open / close door 29 is a dust collector that collects dust in the cabinet 37 via the dust collection duct 28. Reference numeral 24 denotes (1) an electro-pneumatic proportional valve 26 that supplies compressed gas, (2) a vibration generation source that vibrates the vibration tank of the granular material supply device 22, and (3) three-dimensional injection means 20 (injection nozzle). (1) set pressure of compressed gas by the electro-pneumatic proportional valve 26 (2) vibration frequency and vibration intensity (amplitude) of the vibration source, and (3) slider driver 34. The control means has a built-in program for controlling the three-dimensional operation.

以下、本発明の粉粒体供給装置22の一使用例としてのエアーブラスト装置21について説明をする。   Hereinafter, an air blasting device 21 as an example of use of the granular material supply device 22 of the present invention will be described.

ワ一ク35をエアーブラスト装置21の開閉扉36からキャビネット37内に載置固定した後、粉粒体供給装置22の貯留タンク1内に粉粒体(噴射材)を投入してブラスト加工の前準備をする。次に、制御手投24を起動すれば(1)電空比例弁26による圧縮気体の圧力を設定し圧縮気体供給装置23から供給配管26aを介して粉粒体供給装置22のケーシング5内の圧縮気体室7へ圧縮気体を供給、と(2)振動発生源の適正な振動数と振動強度(振幅)を設定し粉粒体(噴射材)の供給量(噴射料)設定、と(3)スライダードライバー34の三次元作動の設定による噴射手段20(噴射ノズル)の走査設定、が連動してブラスト加工が開始され前記制御手段24に内蔵されているプログラムに基づいて前記(1)〜(3)の作動してブラスト加工が自動的に終了する。尚、制御手段24に内蔵する前記(1)〜(3)の作動制御プログラムの条件を変更することにより各種のブラスト加工を行うことができる。   After the work 35 is placed and fixed in the cabinet 37 from the open / close door 36 of the air blasting device 21, the powder (injection material) is put into the storage tank 1 of the powder supply device 22 and subjected to blasting. Make preparations. Next, when the control hand throw 24 is activated, (1) the pressure of the compressed gas by the electro-pneumatic proportional valve 26 is set, and the compressed gas supply device 23 in the casing 5 of the granular material supply device 22 is supplied via the supply pipe 26a. Supplying compressed gas to the compressed gas chamber 7, and (2) setting the appropriate frequency and vibration strength (amplitude) of the vibration source and setting the supply amount (injection charge) of the granular material (injection material), and (3 ) The blasting is started in conjunction with the scanning setting of the ejection means 20 (injection nozzle) by setting the three-dimensional operation of the slider driver 34, and the above (1) to ( The blasting process is automatically terminated by the operation of 3). Various blasting processes can be performed by changing the conditions of the operation control programs (1) to (3) incorporated in the control means 24.

以下、本発明の粉粒体供給装置を完成するに至った実施例を説明する。   Hereinafter, the Example which came to complete the granular material supply apparatus of this invention is described.

〔I〕粉粒体の平均粒径が1)8μm(#1500)、2)11.5μm(♯1000)、3)30μm(#400)、の材質がアルミナの粉粒体と、〔II〕内径が1)0.3mm、2)1.Omm、3)3.Omm、の中継管13を準備し、前記〔I〕に記載の3種類の粉粒体を〔II〕に記載の3種類の中継管13を夫々用いた9例に対して〔III〕圧力が0.5MPaの圧縮気体を圧縮気体供給口6に供給し、〔IV〕振動発生源14に用いた圧電素子の電圧を振動強度(振幅)が最大となる200Vとし振動数を150〜600Hzの間を50Hz間隔に変化させて粉粒体の供給量(噴射量)を測定した結果、その供給量(噴射量)が前記の9例とも〔IV〕振動発生源14(圧電素子)の振動数が300Hzで最大を示し、圧電素子の振動数を150〜300Hzの間は粉粒体の供給量(噴射量)が上昇傾向にあり、圧電素子の振動数を300〜600Hzの間は粉粒体の供給量(噴射量)が下降傾向にあった。1)粉粒体の平均粒径が8μm(#1500)/中継管13の内径が0.3mm、の状態を図4に示し、2)粉粒体の平均粒径が11.5μm(#1000)/中継管13の内径が1.Omm、の状態を図6に示し、3)粉粒体の平均粒径が30μm(#400)/中継管13の内径が3.Omm、の状態を図8に示す。尚、前記振動発生源14に用いた圧電素子の電圧を200V(最大)にした時の振幅は70μmであった。 [I] A granular material having an average particle size of 1) 8 μm (# 1500), 2) 11.5 μm (# 1000), 3) 30 μm (# 400), and [II] The inner diameter is 1) 0.3 mm, 2) Omm, 3) 3. The Omm relay pipe 13 is prepared, and the three types of powders described in [I] are used in the nine cases using the three types of relay pipes 13 described in [II]. 0.5 MPa compressed gas is supplied to the compressed gas supply port 6 [IV] The voltage of the piezoelectric element used for the vibration generating source 14 is 200 V at which the vibration strength (amplitude) is maximum, and the frequency is between 150 to 600 Hz. As a result of measuring the supply amount (injection amount) of the granular material by changing the frequency at intervals of 50 Hz, the supply amount (injection amount) is [IV] the frequency of the vibration generating source 14 (piezoelectric element) in all the nine examples The maximum is shown at 300 Hz, the supply amount (injection amount) of the granular material tends to increase when the frequency of the piezoelectric element is 150 to 300 Hz, and the frequency of the granular material is between 300 and 600 Hz. The supply amount (injection amount) was on a downward trend. 1) FIG. 4 shows a state in which the average particle size of the granular material is 8 μm (# 1500) / the inner diameter of the relay pipe 13 is 2 mm, and 2) the average particle size of the granular material is 11.5 μm (# 1000). ) / The inner diameter of the relay pipe 13 is 1. The state of Omm is shown in FIG. 6, and 3) The average particle diameter of the granular material is 30 μm (# 400) / the inner diameter of the relay pipe 13 is 3. The state of Omm is shown in FIG. The amplitude when the voltage of the piezoelectric element used for the vibration source 14 was 200 V (maximum) was 70 μm.

又、前記〔I〕に記載の3種類の粉粒体を〔II〕に記載の3種類の粉粒体供給管13を夫々用いた9例に対して、前記振動発生源14に用いた圧電素子の振動数を前記の試みから粉粒体の供給量(噴射量)が最大であった300Hzに設定し、電圧を0〜200Vの間を25V間隔に変化させて粉粒体の供給量(噴射量)の制御範囲が最も広い中継管13の内径を確認した結果、1)粉粒体の平均粒径が8μm(♯1500)は図5に示すように中継管13の内径が0.3mm、2)粉粒体の平均粒径が11.5μm(#1000)は図7に示すように中継管13の内径が1.Omm、3)粉粒体の平均粒径が30μm(♯400)は図9に示すように中継管13の内径が3.Omm、であった。   In addition, the piezoelectric material used for the vibration source 14 was compared with the nine examples using the three types of granular material described in [I] and the three types of granular material supply pipes 13 described in [II]. The frequency of the element was set to 300 Hz where the supply amount (injection amount) of the granular material was the maximum from the above attempt, and the supply amount of granular material (by changing the voltage between 0 to 200 V at 25 V intervals) As a result of confirming the inner diameter of the relay pipe 13 having the widest control range of the injection amount), 1) When the average particle diameter of the granular material is 8 μm (# 1500), the inner diameter of the relay pipe 13 is 0.3 mm as shown in FIG. 2) When the average particle size of the granular material is 11.5 μm (# 1000), the inner diameter of the relay pipe 13 is 1. Omm, 3) When the average particle size of the granular material is 30 μm (# 400), as shown in FIG. Omm.

尚、前記試みの圧電素子の電圧(25V間隔)の変化を上昇させた場合と下降させた場合の同一電圧レベルにおける粉粒体の供給量(噴射量)の最大変動割合を確認した結果、1)粉粒体の平均粒径が8μm(♯1500)/中継管13の内径が0.3mmにおいては±20%以内、2)粉粒体の平均粒径が11.5μm(#1000)/中継管13の内径が1.Omm、及び3)粉粒体の平均粒径が30μm(#400)/中継管13の内径が3.Ommにおいては土10%以内、であった。   In addition, as a result of confirming the maximum fluctuation ratio of the supply amount (injection amount) of the granular material at the same voltage level when the change of the voltage (25V interval) of the piezoelectric element of the above attempt is increased and decreased, 1 The average particle size of the powder is 8 μm (# 1500) / within 20 mm when the inner diameter of the relay tube 13 is 0.3 mm. 2) The average particle size of the powder is 11.5 μm (# 1000) / relay The inner diameter of the tube 13 is 1. Omm, and 3) The average particle diameter of the granular material is 30 μm (# 400) / the inner diameter of the relay pipe 13 is 3. In Omm, it was within 10% of soil.

図10に上記したものとは別の形態の粉粒体供給装置を示す。
この粉粒体供給装置においても、底部1aをホッパー状とした貯留タンク1の下方にケーシング5が連設され、このケーシング5内の圧縮気体室7と貯留タンク1とが貯留タンク1の底部1aに垂設した伸縮、可撓性の材質からなる粉粒体送出管4によって連通されている。この粉粒体送出管4の上部には粉粒体の自重を受け止めて粉粒体の送出を円滑ならしめる耐圧部材61が設けられている。耐圧部材61は上端が閉口され下端が開口されたパイプ状のものであって、その側面には粉粒体の流入口62を有する。
FIG. 10 shows a granular material supply apparatus having a form different from that described above.
Also in this granular material supply apparatus, a casing 5 is continuously provided below a storage tank 1 having a bottom portion 1a having a hopper shape, and the compressed gas chamber 7 and the storage tank 1 in the casing 5 are connected to the bottom portion 1a of the storage tank 1. It is communicated by a granular material delivery tube 4 made of a stretchable / flexible material suspended from the tube. A pressure-resistant member 61 that receives the weight of the powder and smoothes the powder is provided on the upper part of the powder and powder delivery pipe 4. The pressure-resistant member 61 is a pipe-shaped member whose upper end is closed and whose lower end is opened, and has a powder particle inlet 62 on its side surface.

また、ケーシング5の底部51には、粉粒体を外部に供給するための粉粒体送給筒16が突設されている。そして、粉粒体送出管4より送られてくる粉粒体を粉粒体送給筒16に送り込むための中継管13が、取り付け部材63を介して振動発生源14に支持されている。中継管13は図示のとおり粉粒体送給管4に着脱自在に装着される縦管部13aに横管部13bを続かせたL形のものである。縦管部13aは斜めに粉粒体送出管4に装着、且つ傾斜させた振動発生源14に支持されているので、横管部13bの先端は斜め上向きとなっていて、自重により粉粒体が横管部13b先端から押し出されにくくしてある。そして、この横管部13b先端は、粉粒体送給筒16の上端に形成した半筒状の受入口17に側方より挿入されているが、粉粒体送給筒16と横管部13b先端とは振動によっても接触することのないように十分な余裕をもって離間されている。   In addition, a powder particle supply cylinder 16 for supplying powder particles to the outside protrudes from the bottom 51 of the casing 5. The relay pipe 13 for feeding the powder sent from the powder feed pipe 4 to the powder feed cylinder 16 is supported by the vibration generating source 14 via the attachment member 63. As shown in the figure, the relay pipe 13 has an L shape in which a horizontal pipe portion 13b is connected to a vertical pipe portion 13a that is detachably attached to the granular material supply pipe 4. Since the vertical tube portion 13a is supported by the vibration generating source 14 that is obliquely attached to the granular material delivery tube 4 and inclined, the tip of the horizontal tube portion 13b is inclined upward, and the granular material is caused by its own weight. Is difficult to be pushed out from the tip of the horizontal tube portion 13b. And this horizontal tube part 13b front-end | tip is inserted from the side into the semi-cylindrical receiving port 17 formed in the upper end of the granular material supply cylinder 16, but the granular material supply cylinder 16 and the horizontal tube part It is separated from the tip of 13b with a sufficient margin so as not to come into contact with vibration.

以上のように構成された粉粒体供給装置においては、圧縮気体供給口6から供給された圧縮気体により圧縮気体室7、貯留タンク1、中継管13内部が同一圧力とされる。そして、この圧縮気体が粉粒体供給筒16の受入口17に流入する際に、横管部13b先端に負圧がかかるので粉粒体は受入口17に流れ込むこととなる。   In the granular material supply apparatus configured as described above, the compressed gas chamber 7, the storage tank 1, and the relay pipe 13 have the same pressure by the compressed gas supplied from the compressed gas supply port 6. And when this compressed gas flows into the receiving port 17 of the granular material supply cylinder 16, a negative pressure is applied to the tip of the horizontal tube portion 13b, so that the granular material flows into the receiving port 17.

なお、中継管13として、内径φ0.2〜10.0mmである複数の中継管13を用意し、これら内径が異なる中継管13を交換することによって粉粒体の供給量を段階的に制御することができる。   As the relay pipe 13, a plurality of relay pipes 13 having an inner diameter φ of 0.2 to 10.0 mm are prepared, and the supply amount of the granular material is controlled stepwise by exchanging the relay pipes 13 having different inner diameters. be able to.

以下、実施例に従い上記した粉粒体供給装置についての試験結果を説明する。この試験における条件は次のとおりである。
粉粒体:GC#400、供給量10g/min、電圧:130Vpp、周波数(振動数)470Hz、測定時間、15sec、測定回数:10回、初期投入量:3リットル、
図11には時間の経過による各10回の供給量の平均値を示したが、粉粒体が切れる8時間まで極めて安定して粉粒体が供給されていることが分かる。また、図12には供給量に及ぼす電圧(振幅)の影響、図13には供給量に及ぼす周波数(振動数)の影響を示すが、電圧又は周波数を変化させることにより供給量を調整できることが分かる。
Hereinafter, the test result about the above-mentioned granular material supply apparatus is demonstrated according to an Example. The conditions in this test are as follows.
Powder: GC # 400, supply rate 10g / min, voltage: 130Vpp, frequency (frequency) 470Hz, measurement time, 15sec, number of measurements: 10 times, initial charge: 3 liters,
FIG. 11 shows the average value of the supply amount of 10 times over time. It can be seen that the powder is supplied very stably up to 8 hours when the powder is cut. FIG. 12 shows the influence of voltage (amplitude) on the supply amount, and FIG. 13 shows the influence of frequency (frequency) on the supply amount. The supply amount can be adjusted by changing the voltage or frequency. I understand.

以上の説明で明らかなように本発明の粉粒体供給装置は、ケーシング5内の圧縮気体室7に圧縮気体が供給されることにより、粉粒体が貯留される貯留タンク1内と、該貯留タンク1内の粉粒体が通過する振動発生源14により振動する中継タンク11内と、該中継タンク11内の粉粒体が通過してその粉粒体を先端の噴射手段20に送給する粉粒体送給管19が接続された粉粒体送給筒16内と、該粉粒体送給筒16に接続される粉粒体供給管19、噴射手段20、から成る粉粒体の流路系が前記圧縮気体室7に供給された圧縮気体の圧力と同一圧力で加圧状態となり、その圧縮気体の加圧力の作用で、例えば流動性が悪い粉粒体の場合でもその流動性を改善して一定の速度で移送することができる。   As is apparent from the above description, the granular material supply device of the present invention is configured such that the compressed gas is supplied to the compressed gas chamber 7 in the casing 5 to store the granular material in the storage tank 1. In the relay tank 11 that vibrates by the vibration source 14 through which the granular material in the storage tank 1 passes, and the granular material in the relay tank 11 passes and the granular material is fed to the injection means 20 at the tip. The granular material which consists of the granular material supply cylinder 16 to which the granular material supply pipe | tube 19 to be connected is connected, the granular material supply pipe | tube 19 connected to this granular material supply cylinder 16, and the injection means 20 The flow path system becomes pressurized at the same pressure as the pressure of the compressed gas supplied to the compressed gas chamber 7, and the flow of the compressed gas, for example, even in the case of a granular material having poor fluidity, It can be transported at a constant speed with improved properties.

以上説明したように、本発明は、粉粒体の貯留タンク1、経路への付着、棚つり、及び閉塞を起こすことがないようにするために、言い換えれば、定量供給と、その量的コントロールを容易にするために、
(1) 粒体の貯留タンク1から中継部材の中継管13の出口、粉粒体送給筒16の上端開口17までの圧力を同一(一定)とした。よって、流動性が改善される。
(2) 中継部材の中継管13内に、圧縮気体を介在させない粉粒体を充填状態とした。この結果、振動発生源からの振動力の伝達が良好となる。また、定量供給性がよくなる。
As explained above, in order to prevent the granular material from adhering to the storage tank 1, the path, shelving, and clogging, in other words, the quantitative supply and the quantitative control thereof are performed. To facilitate
(1) The pressure from the granular storage tank 1 to the outlet of the relay pipe 13 of the relay member and the upper end opening 17 of the granular material feeding cylinder 16 was made the same (constant). Therefore, fluidity is improved.
(2) In the relay pipe 13 of the relay member, a granular material that does not interpose compressed gas was filled. As a result, the transmission of the vibration force from the vibration source is good. In addition, quantitative supply is improved.

また、図10に示す粉粒体供給装置において、
(1) 貯留タンク1と中継管13との間を密閉連結構造としたことにより、流動性が悪い粉粒体であっても、圧縮気体室7内にオーバーフローさせることなく、中継管13内に粉粒体を充填することができる。
(2) 中継管13の出口(横管部13b)を斜め上向きとしたことにより、中継管13内の粉粒体の充填率が向上するとともに、振動発生源の振動強度の変更による供給量の制御性が向上する。さらに、振動発生源14のON−OFFによる粉粒体の供給・停止制御性の向上を的確にできる。
(3) 連続運転にて定量供給可能な粉粒体の粒度を確認した結果、図1に示す粉粒体供給装置においてはオーバーフローすることなく連続運転・定量供給可能な粒度は#600(25μm)までであったのに対し、図10に示す供給装置においては#1500(10μm)まで可能であった。
Moreover, in the granular material supply apparatus shown in FIG.
(1) Since the storage tank 1 and the relay pipe 13 have a hermetically connected structure, even if the granular material has poor fluidity, it does not overflow into the compressed gas chamber 7 and flows into the relay pipe 13. The powder can be filled.
(2) By making the outlet of the relay pipe 13 (horizontal pipe portion 13b) obliquely upward, the filling rate of the granular material in the relay pipe 13 is improved, and the supply amount by changing the vibration intensity of the vibration source is increased. Controllability is improved. Furthermore, it is possible to accurately improve the supply / stop controllability of the granular material by turning the vibration source 14 on and off.
(3) As a result of confirming the particle size of the granular material that can be quantitatively supplied in continuous operation, the particle size that can be continuously operated and quantitatively supplied without overflow in the granular material supply device shown in FIG. 1 is # 600 (25 μm). In contrast to the above, in the supply apparatus shown in FIG. 10, it was possible to reach # 1500 (10 μm).

以上のように粉粒体の流動性を改善したことにより、粉粒体の流路系に設けた中継管13を、取り扱う粉粒体の粒度に適合する内径に基づいて選択設計する段階制御と、振動発生源14の振動数と振動強度(振幅)の組合せによる微量制御とを的確に行うことができる。
従って、本発明は高精度の定量供給(定量噴射)と供給量(噴射量)の可変制御をすることができる粉粒体供給装置、及びその装置を用いた粉粒体供給方法として工業的価値極めて大なものである。
As described above, by improving the fluidity of the granular material, the relay pipe 13 provided in the flow channel system of the granular material is selected and designed based on the inner diameter that matches the particle size of the granular material to be handled. Further, it is possible to accurately perform a minute amount control by a combination of the vibration frequency and the vibration intensity (amplitude) of the vibration source 14.
Therefore, the present invention is an industrial value as a granular material supply device capable of variable control of high-precision quantitative supply (quantitative injection) and supply amount (injection amount), and a granular material supply method using the device. It is extremely large.

本発明の粉粒体供給装置の正面断面図である。It is front sectional drawing of the granular material supply apparatus of this invention. 図1におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 本発明の粉粒体供給装置をエアーブラスト装置に使用した場合の構成を示す斜視図である。It is a perspective view which shows the structure at the time of using the granular material supply apparatus of this invention for an air blasting apparatus. 粉粒体の平均粒径が8μm、中継管の内径が0.3mmの場合の振動発生源に用いた圧電素子の振動数と粉粒体供給量の関係を示すグラフである。It is a graph which shows the relationship between the frequency of the piezoelectric element used for the vibration generation source, and a granular material supply amount in case the average particle diameter of a granular material is 8 micrometers and the internal diameter of a relay pipe is 0.3 mm. 粉粒体の平均粒径が8μm、中継管の内径が0.3mmの場合の振動発生源に用いた圧電素子の電圧と粉粒体供給量の関係を示すグラフである。It is a graph which shows the relationship between the voltage of the piezoelectric element used for the vibration generation source, and a granular material supply amount in case the average particle diameter of a granular material is 8 micrometers and the internal diameter of a relay pipe is 0.3 mm. 粉粒体の平均粒径が11.5μm、中継管の内径が1.0mmの場合の振動発生源に用いた圧電素子の振動数と粉粒体供給量の関係を示すグラフである。It is a graph which shows the relationship between the frequency of the piezoelectric element used for the vibration generation source, and a granular material supply amount when the average particle diameter of a granular material is 11.5 micrometers and the internal diameter of a relay pipe is 1.0 mm. 粉粒体の平均粒径が11.5μm、中継管の内径が1.0mmの場合の振動発生源に用いた圧電素子の電圧と粉粒体供給量の関係を示すグラフである。It is a graph which shows the relationship between the voltage of the piezoelectric element used for the vibration generation source, and a granular material supply amount in case the average particle diameter of a granular material is 11.5 micrometers and the internal diameter of a relay pipe is 1.0 mm. 粉粒体の平均粒径が30μm、中継管の内径が3.0mmの場合の振動発生源に用いた圧電素子の振動数と粉粒体供給量の関係を示すグラフである。It is a graph which shows the relationship between the frequency of the piezoelectric element used for the vibration generation source, and a granular material supply amount in case the average particle diameter of a granular material is 30 micrometers and the internal diameter of a relay pipe is 3.0 mm. 粉粒体の平均粒径が30μm、中継管の内径が3.0mmの場合の振動発生源に用いた圧電素子の電圧と粉粒体供給量の関係を示すグラフである。It is a graph which shows the relationship between the voltage of the piezoelectric element used for the vibration generation source, and a granular material supply amount in case the average particle diameter of a granular material is 30 micrometers and the internal diameter of a relay pipe is 3.0 mm. 別の実施形態の粉粒体供給装置を示す正面断面図である。It is front sectional drawing which shows the granular material supply apparatus of another embodiment. 時間の経過による粉粒体供給量の安定性を示すグラフである。It is a graph which shows stability of the granular material supply amount by progress of time. 粉粒体供給量に及ぼす電圧の影響を示すグラフである。It is a graph which shows the influence of the voltage which acts on a granular material supply amount. 粉粒体供給量に及ぼす周波数の影響を示すグラフである。It is a graph which shows the influence of the frequency which acts on a granular material supply amount.

符号の説明Explanation of symbols

1 貯留タンク
1a ホッパー状の底部
2 開口部
3 蓋
4 粉粒体送出管
5 ケーシング
51 底板
6 圧縮気体供給口
7 圧縮気体室
8 通気管
8a 排気管
8b 開閉弁
11 中継タンク
12 上端開口
13 中継管
13a 縦管部
13b 横管部
14 振動発生源
14a ブラケット
15 振動供給ユニット
16 粉粒体送給筒
17 上端開口
19 粉粒体送給管
20 噴射手段
21 エアーブラスト装置
22 粉粒体供給装置
23 圧縮気体供給装置
24 制御手段
26 電空比例弁
26a 供給配管
28 集塵ダクト
29 集塵機
31 X軸
32 Y軸
33 Z軸
34 スライダードライバー
35 ワーク
36 開閉弁
37 キャビネット
61 耐圧部材
62 粉粒体の流入口



DESCRIPTION OF SYMBOLS 1 Storage tank 1a Hopper-shaped bottom part 2 Opening part 3 Lid 4 Granule delivery pipe 5 Casing 51 Bottom plate 6 Compressed gas supply port 7 Compressed gas chamber 8 Vent pipe 8a Exhaust pipe 8b On-off valve 11 Relay tank 12 Upper end opening 13 Relay pipe 13a Longitudinal tube portion 13b Horizontal tube portion 14 Vibration source 14a Bracket 15 Vibration supply unit 16 Granule supply tube 17 Upper end opening 19 Powder supply tube 20 Injection means 21 Air blast device 22 Powder supply device 23 Compression Gas supply device 24 Control means 26 Electropneumatic proportional valve 26a Supply piping 28 Dust collection duct 29 Dust collector 31 X-axis 32 Y-axis 33 Z-axis 34 Slider driver 35 Work 36 Open / close valve 37 Cabinet 61 Pressure-resistant member 62 Inlet of powder



Claims (15)

底部をホッパー状とした貯留タンクの下方にケーシング5を連設して、このケーシング5内の圧縮気体室7と貯留タンク1とを貯留タンク1の底部に垂設した粉粒体送出管4をもって連通するとともに、圧縮気体室7に供給される圧縮気体により粉粒体を外部に供給するための粉粒体送給筒16を、ケーシング5の底部に突設した粉粒体供給装置であって、前記圧縮気体室7には、粉粒体送出管4より送られてくる粉粒体を粉粒体送給筒16に送り込むための中継部材を振動発生源14に支持させて、中継部材を粉粒体送給筒16から離間させて配置したことを特徴とする粉粒体供給装置。   A casing 5 is continuously provided below a storage tank having a hopper-like bottom, and a compressed gas chamber 7 and the storage tank 1 in the casing 5 are suspended from the bottom of the storage tank 1 with a granular material delivery pipe 4. It is a granular material supply device in which a granular material supply cylinder 16 for communicating with the compressed gas chamber 7 and supplying the granular material to the outside by a compressed gas supplied to the compressed gas chamber 7 protrudes from the bottom of the casing 5. In the compressed gas chamber 7, a relay member for feeding the granular material sent from the granular material delivery pipe 4 to the granular material feeding cylinder 16 is supported by the vibration generating source 14, and the relay member is A granular material supply device, wherein the granular material supply device is disposed apart from the granular material supply cylinder. 中継部材を、中継管13からなるものとして、この中継管13を粉粒体送出管4に着脱自在に装着したことを特徴とする請求項1に記載の粉粒体供給装置。   2. The granular material supply apparatus according to claim 1, wherein the relay member is composed of the relay tube, and the relay tube is detachably attached to the granular material delivery tube. 中継部材を、中継タンク11とこの下部に接続された中継管13とからなるものとして、当該中継タンク11を粉粒体送出管4から離間させて振動発生源14に支持させたことを特徴とする請求項1に記載の粉粒体供給装置。   The relay member is composed of the relay tank 11 and the relay pipe 13 connected to the lower part thereof, and the relay tank 11 is supported by the vibration generating source 14 while being separated from the granular material delivery pipe 4. The granular material supply apparatus according to claim 1. 圧縮気体室7に圧縮気体を供給する圧縮気体供給口6をケーシング5の側壁に設けるとともに、圧縮気体室7から貯留タンク1内の上方に達する通気管8を設けて、貯留タンク1と中継部材と粉粒体送給筒16とを、圧縮気体室7と同一圧力にしたことを特徴とする請求項1〜3の何れかに記載の粉粒体供給装置。   A compressed gas supply port 6 for supplying compressed gas to the compressed gas chamber 7 is provided on the side wall of the casing 5, and a vent pipe 8 extending from the compressed gas chamber 7 to the upper side of the storage tank 1 is provided. The granular material supply apparatus according to any one of claims 1 to 3, wherein the same pressure as that of the compressed gas chamber 7 is used for the granular material feeding cylinder 16. 中継タンク11は、その上端開口の内径が貯留タンク1の粉粒体送出管4より大径で、且つ、底部に中継管13を着脱自在に設けたものであり、この中継タンク11の上端開口に前記粉粒体送出管4を相互間に充分な隙間を設けて挿入して粉粒体送出管4に接触することがないようにする一方、前記中継管13の先端をケーシング5底部に設けた粉粒体送給筒16に接触することがないように相互に充分な隙間を設けて挿入したことを特徴とする請求項3または4に記載の粉粒体供給装置。   The relay tank 11 has an inner diameter at its upper end opening larger than that of the granular material delivery pipe 4 of the storage tank 1 and a detachable relay pipe 13 at the bottom. The granule delivery pipe 4 is inserted with a sufficient gap between them so that it does not come into contact with the granule delivery pipe 4, while the tip of the relay pipe 13 is provided at the bottom of the casing 5 The granular material supply device according to claim 3 or 4, wherein the granular material supply device is inserted with a sufficient gap so as not to come into contact with the granular material feeding cylinder. 中継管13の形状が、中継タンク11の底部に垂下される縦管部13aに横管部13bを続かせたL形のもので、この横管部13bの先端をケーシング5の底部に設けた粉粒体送給筒16の上端に側方より挿入したことを特徴とする請求項5に記載の粉粒体供給装置。   The shape of the relay pipe 13 is an L shape in which the horizontal pipe part 13b is connected to the vertical pipe part 13a suspended from the bottom of the relay tank 11, and the tip of the horizontal pipe part 13b is provided at the bottom of the casing 5. The granular material supply apparatus according to claim 5, wherein the granular material supply cylinder is inserted into an upper end of the granular material supply cylinder from a side. 中継管13の形状が、粉粒体送出管4に装着される縦管部13aに横管部13bを続かせたL形のもので、この横管部13bの先端を斜め上向きとして、粉粒体送給筒16の上端開口17の側方より挿入したことを特徴とする請求項2に記載の粉粒体供給装置。   The shape of the relay pipe 13 is an L-shape in which the horizontal pipe part 13b is connected to the vertical pipe part 13a attached to the granular material delivery pipe 4, and the tip of the horizontal pipe part 13b is obliquely upward, The granular material supply device according to claim 2, wherein the granular material supply device is inserted from the side of the upper end opening 17 of the body feeding cylinder 16. 振動発生源14が圧電素子である請求項1〜7の何れかに記載の粉粒体供給装置。   The powder supply apparatus according to any one of claims 1 to 7, wherein the vibration generating source 14 is a piezoelectric element. 粉粒体送給筒16に続かせた粉粒体送給管19の先端に噴射ノズル20を接続し、貯留タンク1に噴射材を貯留し、その噴射材を噴射ノズル20より噴射させるエアーブラスト装置21に用いたことを特徴とする請求項1〜8の何れかに記載の粉粒体供給装置。   An air blast in which an injection nozzle 20 is connected to the tip of the granular material supply pipe 19 connected to the granular material supply cylinder 16, the injection material is stored in the storage tank 1, and the injection material is injected from the injection nozzle 20. The granular material supply apparatus according to claim 1, wherein the granular material supply apparatus is used in the apparatus 21. 請求項1〜請求項9のいずれかに記載の粉粒体供給装置を用いて、 圧縮気体室7に圧縮気体を供給することにより、圧縮気体室7と貯留タンク1と中継部材と粉粒体送給筒16に至る粉粒体の流路系の圧力を前記圧縮気体室7の圧力と同一圧力としたことを特徴とする粉粒体供給方法。   The compressed gas chamber 7, the storage tank 1, the relay member, and the granular material by supplying the compressed gas to the compressed gas chamber 7 using the granular material supply device according to claim 1. 2. A method for supplying granular material, wherein the pressure in the flow path system of the granular material reaching the feeding cylinder 16 is the same as the pressure in the compressed gas chamber 7. 請求項1〜請求項9のいずれかに記載の粉粒体供給装置を用いて、圧縮気体室7に圧縮気体を供給し、前記粉粒体の流路系を同一圧力にして、粉粒体を加圧状態にすると共に、中継部材の振動数と振幅の組合せ変更により、粉粒体の定量供給、又は供給量の可変制御をするようにしたことを特徴とする粉粒体供給方法。   Using the granular material supply apparatus according to any one of claims 1 to 9, compressed gas is supplied to the compressed gas chamber 7, the flow path system of the granular material is set to the same pressure, and the granular material A method of supplying a granular material, wherein the powder is quantitatively supplied or the supply amount is variably controlled by changing the combination of the frequency and the amplitude of the relay member. 請求項1〜請求項9のいずれかに記載の粉粒体供給装置を用い、振動発生源14の振動数を100〜600Hz、振幅を70μm以下の範囲で選択設定して、粉粒体を供給することを特徴とした粉粒体供給方法。   Using the granular material supply apparatus according to any one of claims 1 to 9, the frequency of the vibration source 14 is selected and set in a range of 100 to 600 Hz and the amplitude is 70 μm or less, and the granular material is supplied. A granular material supply method characterized by: 請求項2〜8のいずれかに記載の粉粒体供給装置を用い、中継管13の内径がφ0.2〜10.0mmの範囲にある複数の中継管13を用意し、これら内径が異なる中継管13を交換することにより粉粒体の供給量を段階制御することを特徴とした請求項12に記載の粉粒体供給方法。   Using the granular material supply apparatus according to any one of claims 2 to 8, a plurality of relay pipes 13 having an inner diameter of the relay pipe 13 in a range of φ0.2 to 10.0 mm are prepared, and the relays having different inner diameters are prepared. The method for supplying granular material according to claim 12, wherein the supply amount of granular material is controlled in stages by exchanging the tube 13. 振動発生源14の振動数を100〜600Hz、振幅を70μm以下の範囲で変更して粉粒体の供給量を微量制御することを特徴とした請求項12または13に記載の粉粒体供給方法。   14. The method for supplying granular material according to claim 12 or 13, wherein the supply amount of the granular material is controlled by changing the frequency of the vibration source 14 within a range of 100 to 600 Hz and an amplitude within a range of 70 [mu] m or less. . 貯留タンク1に粒径5〜80μmの粉粒体を充填して、粉粒体を5〜700mg/secの供給速度にて供給する請求項12または13または14に記載の粉粒体供給方法。   The granular material supply method according to claim 12, 13 or 14, wherein the storage tank 1 is filled with a granular material having a particle size of 5 to 80 μm, and the granular material is supplied at a supply rate of 5 to 700 mg / sec.
JP2004193886A 2003-06-30 2004-06-30 Powder body supply apparatus and powder body supply method Active JP4561202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193886A JP4561202B2 (en) 2003-06-30 2004-06-30 Powder body supply apparatus and powder body supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003187803 2003-06-30
JP2004193886A JP4561202B2 (en) 2003-06-30 2004-06-30 Powder body supply apparatus and powder body supply method

Publications (2)

Publication Number Publication Date
JP2005035793A true JP2005035793A (en) 2005-02-10
JP4561202B2 JP4561202B2 (en) 2010-10-13

Family

ID=34220492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193886A Active JP4561202B2 (en) 2003-06-30 2004-06-30 Powder body supply apparatus and powder body supply method

Country Status (1)

Country Link
JP (1) JP4561202B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081289A (en) * 2006-09-28 2008-04-10 Sinto Brator Co Ltd Opening and closing valve for supplying powder and granular material
CN103449060A (en) * 2013-08-29 2013-12-18 晨光生物科技集团莎车有限公司 Uniform feeding system for material sealing tank
JP2016120987A (en) * 2014-12-24 2016-07-07 花王株式会社 Granule spraying apparatus and spraying method of granule
CN112924124A (en) * 2020-12-30 2021-06-08 广东电网有限责任公司电力科学研究院 Vibration table for testing vibration characteristic of gas relay and testing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188724U (en) * 1981-05-22 1982-11-30
JPH01134628U (en) * 1988-03-07 1989-09-13
JPH07213887A (en) * 1994-02-01 1995-08-15 Kyowa Hakko Kogyo Co Ltd Discharge method of granular body and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188724U (en) * 1981-05-22 1982-11-30
JPH01134628U (en) * 1988-03-07 1989-09-13
JPH07213887A (en) * 1994-02-01 1995-08-15 Kyowa Hakko Kogyo Co Ltd Discharge method of granular body and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081289A (en) * 2006-09-28 2008-04-10 Sinto Brator Co Ltd Opening and closing valve for supplying powder and granular material
CN103449060A (en) * 2013-08-29 2013-12-18 晨光生物科技集团莎车有限公司 Uniform feeding system for material sealing tank
JP2016120987A (en) * 2014-12-24 2016-07-07 花王株式会社 Granule spraying apparatus and spraying method of granule
CN112924124A (en) * 2020-12-30 2021-06-08 广东电网有限责任公司电力科学研究院 Vibration table for testing vibration characteristic of gas relay and testing method

Also Published As

Publication number Publication date
JP4561202B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
RU2288090C2 (en) Method and apparatus for removing surface layer and(or) sealing and(or) applying coating on solid surfaces
KR100256865B1 (en) Improvements in and relating to powder coating
US6715640B2 (en) Powder fluidizing devices and portable powder-deposition apparatus for coating and spray forming
US20120009046A1 (en) Device for Emptying Powder Bags for Powder Spraying Apparatus
CN103476511B (en) For transporting the device and method of powder from powder source
US5271695A (en) Device for pneumatically feeding powder from a container
US20150151319A1 (en) Device for conveying coating powder from a powder container
MXPA02010572A (en) A portable device for accurately metering and delivering cohesive bulk solid powders.
JP2014510624A (en) Device for pneumatically transporting powder and method for cleaning the device
CA2044205C (en) Device for pneumatically feeding powder from a container
JPH01502413A (en) Abrasive injection processing machine
JP4561202B2 (en) Powder body supply apparatus and powder body supply method
JPH04226217A (en) Pneumatic powdery body transport device
CA2175301C (en) Improved pressurization system for abrasive supply pot
JP4268868B2 (en) Apparatus and method for transporting material transported in the form of fine particles, powder, granules or granules from a storage container into a work container or transport container, or an equivalent storage space
US3896998A (en) Apparatus for spraying particulate material
JP5274899B2 (en) Powder discharge unit, powder discharge device, powder discharge method, powder discharge device, processing method of workpiece, and powder cartridge
JPH0330854A (en) Powder supply apparatus
JP4781241B2 (en) Powder paint recovery processing equipment
US11224886B2 (en) Powder conveyor for the conveying of coating powder, and powder center comprising the powder conveyor for supplying a powder coating facility
JP2002501121A (en) Powder injection system for detonation spray gun
JP2007261807A (en) Device for supplying minute amount of powder
JP4164159B2 (en) Direct pressure continuous abrasive supply and injection method and apparatus
JP2520814Y2 (en) Refractory spray equipment
JPH10217125A (en) Constant quantity supplying device for blasting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4561202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250