JP2005034822A - Metal separation/recovery technique from solution by oxidation reduction process - Google Patents
Metal separation/recovery technique from solution by oxidation reduction process Download PDFInfo
- Publication number
- JP2005034822A JP2005034822A JP2003302066A JP2003302066A JP2005034822A JP 2005034822 A JP2005034822 A JP 2005034822A JP 2003302066 A JP2003302066 A JP 2003302066A JP 2003302066 A JP2003302066 A JP 2003302066A JP 2005034822 A JP2005034822 A JP 2005034822A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- solution
- valence
- reaction
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
食品、飲料、医薬品、繊維、染色、化学、鉄鋼金属、電気、機械鍍金、窯業、セラミック、シリコン、クリーニング、各種金属再生処理工業、等の含金属溶液からの金属の分離・回収に関する。 The present invention relates to the separation and recovery of metals from metal-containing solutions such as foods, beverages, pharmaceuticals, textiles, dyeing, chemistry, steel metal, electricity, mechanical plating, ceramics, ceramics, silicon, cleaning, various metal recycling industries.
通常の含金属溶液処理には、中和沈殿法、イオン交換吸着法、キレート樹脂吸着法、共沈法、フェライト共沈法、微生物法などが適用され、その技術の進歩は目覚ましいものがあったが、これら処理法は微量金属の除去回収にはまだまだ不完全であり、有害重金属の解毒の面でも不十分である。
発明者の一人、坂口孝司は微生物の生体機能を利用する金属の回収除去技術を開発したが、使用する微生物の管理が難しい等の難点があった。
また、重金属の毒性は還元条件によって軽減されることを見い出しているが、現状では微生物の活動に伴う還元条件の創出に頼っている。
しかしながら、微生物を利用する重金属の除去には、autotrophicの微生物を使用する場合、生育速度が遅い等の難点があり、確実な金属の分離・回収除去は難しい等問題点も多い。
発明者の一人、上村親士は「食品等の還元性水素水とその製造方法並びに製造裝置」(特許第2890342号=特開平8−56632号)で溶液に水素を溶解させて還元性を創出する技術を開発したが、大量の水を還元処理する技術ではなかった。その後、流動する大量の水を瞬間的に酸化処理、還元処理することを可能とし、かつ強い酸化力と強い還元力を付与することを可能とする「水素ガス及び酸素ガスの減圧・加圧溶解方式のコロイド溶液による自動酸化・還元処理システム」(特願2003−158698)を開発した。しかし、酸化力、還元力を強化するだけでは金属の分離・回収や解毒は不可能である。Normal metal-containing solution treatment includes neutralization precipitation method, ion exchange adsorption method, chelate resin adsorption method, coprecipitation method, ferrite coprecipitation method, microbial method, etc., and the technological progress was remarkable. However, these treatment methods are still incomplete for removing and collecting trace metals, and are insufficient for detoxification of harmful heavy metals.
One of the inventors, Takashi Sakaguchi, has developed a technique for recovering and removing metals that utilizes the biological functions of microorganisms. However, there are difficulties such as difficulty in managing the microorganisms used.
In addition, we have found that the toxicity of heavy metals is reduced by reducing conditions, but at present we rely on the creation of reducing conditions accompanying the activity of microorganisms.
However, removal of heavy metals using microorganisms has problems such as slow growth rate when using autotropic microorganisms, and there are many problems such as difficult separation / recovery and removal of metals.
One of the inventors, Shinji Uemura, created reducibility by dissolving hydrogen in the solution in "Reducible hydrogen water for foods and its production method and production apparatus" (Patent No. 2890342 = JP-A-8-56632). However, it was not a technology for reducing a large amount of water. After that, it is possible to instantaneously oxidize and reduce a large amount of flowing water, and to provide strong oxidizing power and strong reducing power. "Automatic oxidation / reduction treatment system using colloidal solution" (Japanese Patent Application No. 2003-158698) was developed. However, separation and recovery of metals and detoxification are impossible only by enhancing the oxidizing power and reducing power.
金属の分離回収は従来の技術に加えて元素の酸化・還元の外的雰囲気での作用機作に基づいた、新しい技術を組み合わせなければ不可能である。
本発明では両発明者の技術を融合して、含金属溶液を酸化・還元処理して、元素の原子価の増減を行うことを特徴としている。
本法の還元法による金属の処理方法では、元素の原子価の減少が見られるが、この反応は交流電流の通電と磁場変換による元素の電子状態の撹乱及び超音波照射、高周波照射、電磁波照射、紫外線及び放射線照射等の装置におけるエネルギー供給による励起作用によって起る。
そこで本発明では、還元処理後、電子状態の撹乱処理装置と反応のエネルギー励起処理装置を用い、元素の原子価を低下させ、還元条件で溶解性が高まる元素と低下する元素を分離除去し、金属元素の分離回収を可能にする技術、並びに酸化処理後の電子状態の撹乱と励起処理による原子価を高める処理による他金属との分離回収技術も併せて提供した。Separation and recovery of metals is not possible without combining new techniques based on the mechanism of action in the external atmosphere of element oxidation / reduction in addition to conventional techniques.
The present invention is characterized by combining the techniques of the two inventors to oxidize and reduce the metal-containing solution to increase or decrease the valence of the element.
In the metal treatment method by the reduction method of this method, the valence of the element is decreased, but this reaction is caused by disturbance of the electronic state of the element by application of alternating current and magnetic field conversion, ultrasonic irradiation, high frequency irradiation, electromagnetic wave irradiation. It is caused by the excitation action by the energy supply in the apparatus such as ultraviolet ray and radiation irradiation.
Therefore, in the present invention, after the reduction treatment, using an electronic state disturbance treatment device and a reaction energy excitation treatment device, the valence of the element is reduced, and the element that increases the solubility and the element that decreases under the reduction conditions are separated and removed. A technology that enables separation and recovery of metal elements, as well as a technology for separation and recovery of other metals from the disturbance of the electronic state after the oxidation treatment and the treatment for increasing the valence by excitation treatment, are also provided.
本法により毒性の低い3価クロム(Cr3+)に還元し、当該溶液にアルカリ溶液を加えて、水に不溶性の水酸化クロムとして沈殿除去する。
This method is reduced to trivalent chromium (Cr 3+ ) having low toxicity, and an alkaline solution is added to the solution to precipitate and remove it as water-insoluble chromium hydroxide.
過剰の6価セレンは、胃腸、腎障害など人体に対して強い毒性を示すが、溶
還元し、これを沈殿除去する。Excess hexavalent selenium is highly toxic to the human body, such as gastrointestinal and renal disorders.
Reduction and precipitation removal.
が最も安定で、水溶液中では通常このイオン種として存在する。当該イオンも人体に対し毒性を示す。この6価イオンを本法により、水に不溶性の4価ウラン(UO2)に還元し、生じたウラニナイトなどの4価ウランを沈殿物として除去する。
Is the most stable and usually exists as this ionic species in aqueous solution. The ions are also toxic to the human body. This hexavalent ion is reduced to tetravalent uranium (UO 2 ) insoluble in water by this method, and the resulting tetravalent uranium such as urainite is removed as a precipitate.
水銀は溶液中では通常2価陽イオン(Hg2+)として存在し、人体に対し強い
ゼロの元素状水銀に還元し、気化した水銀を回収除去する。Mercury is usually present as a divalent cation (Hg 2+ ) in solution and is strong against the human body.
Reduce to zero elemental mercury and collect and remove vaporized mercury.
金属の分離・回収装置の基本原理は The basic principle of metal separation and recovery equipment is
に示した通りである。
溶液導入口1から溶液を送り、還元処理装置2、金属元素電子撹乱装置3を通過させ、(元素によってはアルカリ混合槽5でアルカリ塩類供給装置4からのアルカリと混合し、)反応励起装置6で反応させ、金属沈殿槽7で金属沈殿物8と金属除去溶液9に分離し、金属を回収する。
金属除去排液9は残予の金属元素が残っており、そのままでは排出できないので、酸化処理装置10を通過して、アルカリ混合槽12でアルカリ塩類供給装置11からのアルカリと混合し、金属沈殿槽13で金属沈殿物14と金属除去溶液15に分離し、金属元素を除いて溶液を排出する。It is as shown in.
The solution is sent from the
Since the remaining metal element remains in the metal
には還元処理金属分離・回収装置のうち、励起条件に紫外線照射のエネルギーを利用するライン装置を示した。
装置では溶液導入口1から溶液を送り、溶液バルブBを通過し、還元処理装置へ送入する。
水素ボンベHの水素をガスゲージで圧力・流量を調整し、ガス注入ノズルGnから、還元処理装置2へ注入する。
還元処理装置2では、減圧攪拌槽S、ポンプによる高速攪拌槽P、加圧攪拌槽S、で溶液と水素を高速攪拌によるキャビテーションにより、瞬間的に溶液へ水素を溶解し、極めて低い酸化還元電位に達し、還元処理を行う。
還元処理装置2の後は、金属元素電子撹乱装置3を通過する。
金属元素電子撹乱装置3では電圧調整装置Ecで調整した交流電流を電極Eで通電する。
交流電流を用いる理由は、電気分解と違い元素の電子状態を撹乱することが目的であるので、通電によるガスの発生等を防止するねらいからである。
元素の気化など通電が不適切な元素に対しては、通電に代わる元素の電子状態の撹乱方法として強力な磁場変換による磁場変換装置Mを提供する。
電子撹乱装置3を通過後、還元混合槽5へ送る。
還元混合槽5では、アルカリが必要な場合は、アルカリ塩類供給装置4からのアルカリと混合し、攪拌モーターmで攪拌子Stを動かして攪拌混合を行う。
攪拌混合した溶液は、反応励起装置6送る。
反応励起装置6は反応槽内に反応が均一になるように攪拌装置Agを備え、上部から紫外線照射装置を並べて溶液と混合物へ照射し、これを制御装置Cbで照射強度を調整し、反応を加速させる。励起装置により金属元素の原子価変換は確実に進行する。
反応励起装置6で反応を終了させた溶液は、ポンプPで金属沈殿槽7へ送る。
金属沈殿槽7では、金属沈殿物8と金属除去溶液9に分離し、下層に溜まった金属8を沈殿槽底から回収する。
金属除去溶液9は上澄み液として上部排出口から排出し、後の処理へ送る。Shows a line device that uses the energy of ultraviolet irradiation as an excitation condition among the reduction metal separation / recovery devices.
In the apparatus, the solution is fed from the
Hydrogen in the hydrogen cylinder H is adjusted in pressure and flow rate with a gas gauge, and injected into the
In the
After the
In the metal element
The reason for using an alternating current is that, unlike electrolysis, the purpose is to disturb the electronic state of the element, so that the generation of gas due to energization is prevented.
For elements that are inappropriately energized, such as element vaporization, a magnetic field conversion device M based on powerful magnetic field conversion is provided as a method for disturbing the electronic state of an element instead of energization.
After passing through the
In the reduction mixing
The stirred and mixed solution is sent to the
The
The solution whose reaction has been terminated by the
In the
The
には酸化・還元処理金属分離・回収装置のうち、励起条件に超音波、高周波照射エネルギーを利用するライン装置を示した。
本装置では前記紫外線照射のライン装置とは反応励起装置6が相違するだけで他は全く同一であるので反応励起装置6の部分のみの説明を行う。
反応励起装置6は反応槽内に反応が均一になるように攪拌装置Agを備え、上部から超音波、高周波照射装置を並べて溶液とアルカリ混合物へ照射し、これを制御装置Cbで照射強度を調整し、反応を加速させる。励起装置により金属元素の原子価変換が確実に進行して目的金属を分離回収することができる。Shows a line device that uses ultrasonic and high-frequency irradiation energy as an excitation condition among the oxidation / reduction treatment metal separation / recovery devices.
In this apparatus, only the
The
には酸化・還元処理金属分離・回収装置のうち、励起条件に放射線、電磁波照射エネルギーを利用するライン装置を示した。
本装置では前記紫外線照射のライン装置とは反応励起装置6が相違するだけで他は全く同一であるので反応励起装置6の部分のみの説明を行う。
反応励起装置6は反応槽内に反応が均一になるように攪拌装置Agを備え、上部から放射線、電磁波照射装置を並べて溶液へ照射し、これを制御装置Cbで照射強度を調整し、反応を加速させる。励起装置により金属元素の原子価の増減が確実に進行し、溶解性の低下による分離回収が可能になる。Shows a line device that uses radiation and electromagnetic radiation energy for excitation conditions among the oxidation / reduction treated metal separation / recovery devices.
In this apparatus, only the
The
には酸化処理金属分離回収装置のうち、励起条件に紫外線照射のエネルギーを利用するライン装置を示した。
金属除去排液9に残予の金属元素が存在している場合は、そのままでは排出できないので、還元処理金属分離・回収装置から送られてくる金属除去溶液を酸化処理装置10を通過して、溶液の酸化処理を行う。
酸化処理は送られてくる金属除去溶液9を溶液バルブBを通過し、酸化処理装置10へ送入する。
酸素ボンベOの酸素をガスゲージで圧力・流量を調整し、ガス注入ノズルGnから、酸化処理装置10へ注入する。
酸化処理装置10では、減圧攪拌槽S、ポンプによる高速攪拌槽P、加圧攪拌槽S、で溶液と水素を高速攪拌によるキャビテーションにより、瞬間的に溶液へ酸素を溶解し、高い酸化還元電位に達し、酸化処理を行う。
酸化処理装置10の後は、金属元素電子撹乱装置11を通過する。
金属元素電子撹乱装置11では電圧調整装置Ecで調整した交流電流を電極Eで通電する。
金属元素電子撹乱処理した溶液は、必要に応じ酸化混合槽13へ送る。
酸化混合槽13では、必要に応じ酸化アルカリ塩類供給槽12からのアルカリと混合し、攪拌モーターmで攪拌子Stを動かして攪拌混合を行う。
攪拌混合した溶液又はアルカリと攪拌混合した溶液は、反応励起装置14に導き、上部から紫外線照射装置を並べて溶液と沈殿の混合物へ照射し、反応を加速させ、ポンプPで金属沈殿槽15へ送る。
金属沈殿槽15では、金属沈殿物16と金属除去排液17に分離し、金属元素を除いて溶液を17から排出し、放流する。Shows a line device that uses the energy of ultraviolet irradiation as an excitation condition among the oxidized metal separation and recovery devices.
When the remaining metal element is present in the metal
In the oxidation treatment, the
Oxygen in the oxygen cylinder O is adjusted in pressure and flow rate with a gas gauge and injected into the
In the
After the
In the metal element
The solution subjected to the metal element electron disturbance treatment is sent to the
In the
The solution mixed with stirring or the solution mixed with alkali is guided to the
In the
以上説明したように本発明では、水素ガス、酸素ガスを排液に対し、減圧撹拌の工程、高速撹拌の工程、加圧撹拌の工程を経て、微細な泡として溶解させ、強い還元力の還元剤、強い酸化力の酸化剤として機能させ、通電、磁場変換、紫外線照射、音波波照射、高周波照射、電磁波照射及び放射線照射等によって元素の価電を変換し、反応を励起させて、金属を溶液から分離回収する効果を有している。 As described above, in the present invention, hydrogen gas and oxygen gas are dissolved into fine bubbles through a vacuum stirring step, a high-speed stirring step, and a pressure stirring step with respect to the effluent to reduce strong reducing power. It functions as an oxidant with strong oxidizing power, converts the valence of the element by energization, magnetic field conversion, ultraviolet irradiation, acoustic wave irradiation, high frequency irradiation, electromagnetic wave irradiation, radiation irradiation, etc., excites the reaction, It has the effect of separating and recovering from the solution.
還元条件下において、金属元素の原子価を低下させることにより、不溶化による分離回収を行い、溶液からの金属回収除去を完全に行うことが可能となり、さらに溶存する他の金属を除いて放流し、環境浄化と金属資源回収のリサイクル化に大きな効果を有している。 Under reducing conditions, by reducing the valence of the metal element, it is possible to separate and recover by insolubilization, to completely recover and remove the metal from the solution, and to discharge it by removing other dissolved metals, It has a great effect on environmental purification and recycling of metal resources.
〈処理工程〉
1−溶液供給口
2−還元処理装置
3−還元条件金属元素電子撹乱装置(交流通電装置、磁場変換装置)
4−還元アルカリ塩類供給槽
5−還元混合槽
6−反応励起装置
7−金属元素沈殿、分離、回収槽
8−金属元素分離、回収
9−金属元素除去排液採取、酸化処理工程供給口
10−酸化処理装置
11−酸化条件金属元素電子撹乱装置(交流通電装置、磁場変換装置)
12−酸化アルカリ塩類供給槽
13−酸化混合槽
14−反応励起装置
15−金属元素沈殿、分離、回収槽
16−金属元素分離、回収
17−金属元素除去排液排出口
〈処理装置〉
H−水素ボンベ
O−酸素ボンベ
B−排液導入バルブ
G−ガス圧・流量ゲージ
Gn−ガス注入ノズル
S−減圧攪拌槽、加圧攪拌槽
P−高速攪拌ポンプ
A−アルカリ性塩類注入口
St−アルカリ性塩類混合槽並びに混合攪拌子
m−アルカリ性塩類混合攪拌子モーター
Ec−交流電流電源制御装置
E−交流電流電極
Ag−励起反応槽攪拌装置
M−磁場変換装置
Cb−紫外線・超音波・高周波・放射線・電磁波発生制御装置
UV−紫外線照射装置
USW−超音波・高周波照射装置
R−放射線・電磁波照射装置<Processing process>
1-solution supply port 2-reduction treatment device 3-reduction condition metal element electron disturbance device (AC energization device, magnetic field conversion device)
4-reduction alkali salt supply tank 5-reduction mixing tank 6-reaction excitation apparatus 7-metal element precipitation, separation, recovery tank 8-metal element separation, recovery 9-metal element removal waste liquid collection, oxidation treatment process supply port 10- Oxidation treatment device 11-oxidation condition metal element electron disturbance device (AC energization device, magnetic field conversion device)
12-alkali oxide salt supply tank 13-oxidation mixing tank 14-reaction excitation apparatus 15-metal element precipitation, separation, recovery tank 16-metal element separation, recovery 17-metal element removal drainage outlet <Processing equipment>
H-Hydrogen cylinder O-Oxygen cylinder B-Drainage introduction valve G-Gas pressure / flow gauge Gn-Gas injection nozzle S-Low pressure stirring tank, pressurized stirring tank P-High speed stirring pump A-Alkaline salt inlet St-Alkaline Salt mixing tank and mixing stirrer m-Alkaline salt mixing stirrer motor Ec-AC current power supply control device E-AC current electrode Ag-excitation reaction tank stirring device M-magnetic field conversion device Cb-ultraviolet, ultrasonic, high frequency, radiation, Electromagnetic wave generation control device UV-UV irradiation device USW-Ultrasonic / high-frequency irradiation device R-Radiation / electromagnetic wave irradiation device
Claims (8)
含金属溶液が酸化性を示す場合は、還元条件によって沈降し易い金属元素に対し、溶液へ水素を溶解させて溶液を還元条件下で、電・磁場変換装置で電子状態の撹乱を行い、溶存する金属の原子価を低下させて、
これに必要に応じてアルカリを加え、励起装置で反応を励起することにより反応性を高め、元素の溶解性の低下を促し、還元条件で溶解し易くなる成分と分離し、沈降除去を完全に遂行することを特徴とする還元条件下の原子価変換方式による溶液の金属の還元法分離・回収技術。In order to separate and recover hexavalent chromium, hexavalent selenium, hexavalent uranium, molybdenum, divalent mercury and other metal substances present in the solution, the metal is reduced by the reduction action of molecular or atomic hydrogen. However, as a method of separating and recovering metals by reducing the valence number,
If the metal-containing solution is oxidizable, dissolve the hydrogen in the solution for the metal elements that are likely to settle under the reducing conditions, disturb the electronic state with an electric / magnetic field converter under reducing conditions, and dissolve the solution. Reduce the valence of the metal
If necessary, alkali is added and the reaction is excited by an exciter to increase the reactivity, promote a decrease in element solubility, separate from components that are easily dissolved under reducing conditions, and remove sedimentation completely. Technology for separation and recovery of metal in solution by valence conversion method under reducing conditions characterized by performing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003302066A JP2005034822A (en) | 2003-07-17 | 2003-07-17 | Metal separation/recovery technique from solution by oxidation reduction process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003302066A JP2005034822A (en) | 2003-07-17 | 2003-07-17 | Metal separation/recovery technique from solution by oxidation reduction process |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005034822A true JP2005034822A (en) | 2005-02-10 |
Family
ID=34213937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003302066A Pending JP2005034822A (en) | 2003-07-17 | 2003-07-17 | Metal separation/recovery technique from solution by oxidation reduction process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005034822A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20092165A1 (en) * | 2009-12-09 | 2011-06-10 | Eni Spa | PROCEDURE FOR REMOVING SELENIUM FROM A WASTEWATER CURRENT |
CN102477487A (en) * | 2010-11-26 | 2012-05-30 | 韩国地质资源研究院 | Efficient uranium leaching method using ultrasonic waves |
CN105417779A (en) * | 2015-11-30 | 2016-03-23 | 镇江亿海精密仪器设备有限公司 | Treatment equipment for wastewater containing heavy metal ions |
CN109574358A (en) * | 2018-12-30 | 2019-04-05 | 江门市崖门新财富环保工业有限公司 | The recycling and water body reuse technology of chromium in a kind of chromate waste water |
CN115738486A (en) * | 2023-01-10 | 2023-03-07 | 华侨大学 | Ceramic blank waste recovery system |
-
2003
- 2003-07-17 JP JP2003302066A patent/JP2005034822A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20092165A1 (en) * | 2009-12-09 | 2011-06-10 | Eni Spa | PROCEDURE FOR REMOVING SELENIUM FROM A WASTEWATER CURRENT |
CN102477487A (en) * | 2010-11-26 | 2012-05-30 | 韩国地质资源研究院 | Efficient uranium leaching method using ultrasonic waves |
CN105417779A (en) * | 2015-11-30 | 2016-03-23 | 镇江亿海精密仪器设备有限公司 | Treatment equipment for wastewater containing heavy metal ions |
CN109574358A (en) * | 2018-12-30 | 2019-04-05 | 江门市崖门新财富环保工业有限公司 | The recycling and water body reuse technology of chromium in a kind of chromate waste water |
CN115738486A (en) * | 2023-01-10 | 2023-03-07 | 华侨大学 | Ceramic blank waste recovery system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101440012B1 (en) | Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid and method for producing copper-containing substance | |
US8323510B2 (en) | Ultrasound assisted heavy metal recovery | |
KR102550935B1 (en) | Compositions and methods for the treatment and purification of aqueous wastewater streams | |
CN111039363A (en) | Electrochemical coupling membrane separation self-induced Fenton-like copper complex breaking and strengthening removal device and application thereof | |
Liu et al. | Removal of toxic cadmium (II) from zinc sulfate solution with zinc powder enhanced by ultrasound: Kinetics and mechanism | |
Liu et al. | Oxidative leaching of V-Cr–bearing reducing slag via a Cr (III) induced Fenton-like reaction in concentrated alkaline solutions | |
JP2005034822A (en) | Metal separation/recovery technique from solution by oxidation reduction process | |
KR100248973B1 (en) | Method and apparatus for decomposing organic solutions composed of chelating solutions and/or organic acids containing radioactive metal ions and collection method and apparatus using the same | |
Senturk | The treatment of zinc-cyanide electroplating rinse water using an electrocoagulation process | |
USH1852H (en) | Waste treatment of metal plating solutions | |
Zhang et al. | Valuable components recovery from wastewater and brine using electrocoagulation-based coupled process: A systematic review | |
JP2014095108A (en) | Treatment apparatus for plating waste liquid and method of producing phosphoric acid containing fertilizer solution | |
CN105384286B (en) | A kind of processing method of industrial wastewater recycling | |
CN1654353A (en) | Comprehensive treating method for waste water containing organics and heavy metals | |
JP3215066B2 (en) | Treatment method for wastewater containing selenium | |
JP2004283678A (en) | Method and apparatus for treatment of solid matter contaminated with heavy metals | |
KR101520877B1 (en) | High Grade Advanced Treatment Catalyst for the Removal of COD and Phosphorus in Wastewater Using Nickel-Silicon-Magnesium-Titanium-Iron-Aluminum Alloy Nano Particle and High Grade Advanced Treatment System and Method Using Thereof | |
Otgon et al. | Arsenic removal from waste water by ozone oxidation combined with ferric precipitation | |
JP2004130175A (en) | Method for separating metal ion from solution of metal complex | |
JPH09150159A (en) | Cod-related component removing method for the component containing water | |
KR20010107341A (en) | Method of Treating Highly Concentrated Organic Waste Water using Recycled Steeler's Dust as Catalysts | |
JP2006026496A (en) | Method and equipment for treating cyanide-containing waste water | |
JP2016198703A (en) | Heavy metal individual separation recovery device and heavy metal individual separation recovery method | |
CN113087107A (en) | Method for recycling chromium-containing wastewater by using magnetic nanoparticles | |
JP2019122885A (en) | Waste water treatment method, and waste water treatment system |