JP2005034147A - Method for producing unpolished rice powder and heating apparatus - Google Patents

Method for producing unpolished rice powder and heating apparatus Download PDF

Info

Publication number
JP2005034147A
JP2005034147A JP2004189528A JP2004189528A JP2005034147A JP 2005034147 A JP2005034147 A JP 2005034147A JP 2004189528 A JP2004189528 A JP 2004189528A JP 2004189528 A JP2004189528 A JP 2004189528A JP 2005034147 A JP2005034147 A JP 2005034147A
Authority
JP
Japan
Prior art keywords
brown rice
heating
powder
heated
flour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004189528A
Other languages
Japanese (ja)
Inventor
Takeshi Imoto
武 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004189528A priority Critical patent/JP2005034147A/en
Publication of JP2005034147A publication Critical patent/JP2005034147A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an unpolished rice powder which is scarcely discolored, nor scarcely damaged in vitamins, is made to eliminate offensive smell, keeps flavor, is hygienic and safe, is prevented from proceeding of oxidation, and can be stored for a long period, by solving such a problem that the unpolished rice powder is rapidly oxidized and difficult to be stocked/stored because of containing a fat and oil component, and to provide a continuous heating apparatus for the same. <P>SOLUTION: The method for producing the unpolished rice powder comprises uniformly heating unpolished rice powder until a temperature of the powder reaches 80-160°C, immediately after a process for grinding unpolished rice is finished. The heating apparatus has a hollow heating cylinder which has a cross section of a polygonal shape and is rotated and with which the unpolished rice powder is stirred/transported, and further has a rotary grinder which is mounted on the inside of the heating cylinder and with which aggregated unpolished rice powder is impacted and ground, so that the unpolished rice powder is uniformly and continuously heated, by preventing moisture and the flavor from being emitted/eliminated, while the powder is charged into the cylinder through one of ends thereof and discharged therefrom through the other end. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パン、麺、菓子および料理の食品素材として、栄養成分の低下が少なく、しかも、衛生的に安全で長期保存ができる玄米粉の製造方法および玄米をはじめとする穀物粉の製造装置に関するものである。 The present invention relates to a method for producing brown rice flour and an apparatus for producing grain flour including brown rice, which are less sanitary and less sanitary as food materials for bread, noodles, confectionery and dishes, and which can be stored hygienically and safely. It is about.

玄米粉は、精白により胚乳を主体とする米粉と異なり、発芽機構をもつ胚芽と糠をもっており、このため、栄養的にデンプン、タンパク質が主要成分の他にビタミン、ミネラル、繊維および抗酸化性物質などの微量成分に富み、これらの微量成分は人の生命体を維持するために欠くことができないものをもっている。
この玄米粉の製造方法は、玄米のまま粉砕するか、または含水した玄米を加熱し、乾燥した後、粉砕工程を経てつくられる方法である。(特許文献1)
また、前述の製法を改良した新しい製造方法では、含水した玄米を攪拌しながら、蒸し・乾燥・焙煎の諸工程を密閉された同一の焙煎釜内で行い、その後粉砕して玄米粉にする方法がとられている。(特許文献2)
これら製造方法の中での加熱工程は、玄米粉に香りや味を付けたり、または、保存性を高めるなどの目的のために行われている。
一方、玄米粉を製造するために必要な加熱装置のなかで関連する装置として、粉粒体を飽和水蒸気による加圧下で、回転軸に備えられた複数の棒状羽根を高速回転することによって、粉粒体を変質させずに短時間に効果的に滅菌させる連続式加熱装置がある。(特許文献3)
また、粉粒体を混合槽内に投入し、混合槽内に取り付けたスクリュウなどの攪拌手段によって粉粒体を攪拌しつつ移送する間に、加圧気体によって加熱殺菌する方法などがある。(特許文献4)
特開昭57−166949 特開昭60−176553 特開平3−83567 特開平11−235377
Brown rice flour is different from rice flour mainly composed of endosperm due to whitening, and has germ and buds with a germination mechanism. Therefore, nutritionally starch, protein, vitamins, minerals, fiber and antioxidants in addition to the main components They are rich in trace components such as those that are indispensable for maintaining a human life.
This method for producing brown rice flour is a method in which the brown rice is pulverized as it is or is heated and dried, and then dried through a pulverization step. (Patent Document 1)
In addition, in the new production method improved by the above-described production method, the steaming, drying and roasting processes are carried out in the same sealed roasting kettle while stirring the water-containing brown rice, and then pulverized into brown rice flour. The way to do it is taken. (Patent Document 2)
The heating step in these production methods is performed for the purpose of adding a scent or taste to brown rice flour or enhancing the storage stability.
On the other hand, as a related apparatus among the heating apparatuses necessary for producing brown rice flour, the powder particles are subjected to high-speed rotation by rotating a plurality of rod-shaped blades provided on the rotating shaft under pressure with saturated steam. There is a continuous heating device that sterilizes effectively in a short time without altering the granules. (Patent Document 3)
In addition, there is a method in which a granular material is charged into a mixing tank and heated and sterilized with a pressurized gas while the granular material is transferred while being stirred by a stirring means such as a screw attached in the mixing tank. (Patent Document 4)
JP-A 57-166949 JP-A-60-176553 JP-A-3-83567 JP-A-11-235377

(1)製造方法
生玄米粉には糠を含み、この中には油脂が存在している。このことから、玄米粒のまま粉砕するか、または玄米を加熱した後、粉砕する従来の方法で製造した場合、保存中に油脂やタンパク質などが変質するため、いずれの製法でも問題を抱えている。
先ず、玄米のまま粉砕した生玄米粉について、製品として流通した場合を検討する。表1に夏季を想定して温度30℃で保存試験を行った結果を示す。この結果によると、その指標のひとつである酸価の値が、保存日数0日では9の値が、保存日数30日で43となり、保存日数60日では65と高くなると共に玄米粉は糠臭や異臭を感じ始めるようになり、品質が劣ってくる。
これは、夏季の高い温度における保存では玄米中の油脂成分の酸化が進んだためである。
(1) Production method Raw brown rice flour contains rice bran, in which fats and oils are present. For this reason, if the conventional method of pulverizing brown rice grains as it is, or heating the brown rice and then pulverizing it, the fats and oils and proteins are altered during storage, so there is a problem with either method. .
First, consider the case where raw brown rice flour crushed as brown rice is distributed as a product. Table 1 shows the results of a storage test conducted at a temperature of 30 ° C. assuming summer. According to this result, the acid value, which is one of the indicators, is 9 when the storage day is 0, 43 when stored for 30 days, and 65 when stored for 60 days, and brown rice flour has a bad smell. The odor starts to feel bad and the quality is inferior.
This is because the fat and oil components in the brown rice have been oxidized during storage at high temperatures in summer.

Figure 2005034147
Figure 2005034147

(保存温度30℃)
また、生玄米の表面には一般生菌が多く付着しているため、生玄米を洗浄することなく、そのまま粉砕した生玄米粉には一般生菌を3.2*10個/gと多く含む結果となり、食品衛生面で非衛生的な製品になる。このように、生玄米粉の製品の流通は、保存性と衛生面から課題が生じている。
これら保存性と衛生面に対する解決策の一つとして、生玄米粉を酸素透過性の少なく、耐熱性の袋に封入して、100〜120℃の温度で蒸気殺菌する方法が一般的に行われるが、この加熱方法では小袋でも加熱時間が30分以上と多く要し、また、大袋では内部まで熱が伝達できにくく、このため、殺菌が不十分となったり、玄米粉内部の水分蒸発で玄米粉が袋内で部分的に固まり、まだらになる欠点をもっている。
(Storage temperature 30 ° C)
In addition, since the surface of raw brown rice has a lot of general viable bacteria attached to it, the raw brown rice powder crushed as it is without washing the raw brown rice has a large amount of 3.2 * 10 5 pieces / g. This results in an unsanitary product in terms of food hygiene. Thus, the distribution of the raw brown rice flour product has problems in terms of storage stability and hygiene.
As one of the solutions to these preservability and hygiene, a method is generally used in which raw brown rice flour is sealed in a heat-resistant bag with little oxygen permeability and steam sterilized at a temperature of 100 to 120 ° C. However, in this heating method, even in a small bag, the heating time is as long as 30 minutes or more, and in a large bag, it is difficult to transfer heat to the inside, so that sterilization is insufficient or brown rice powder is evaporated due to moisture evaporation inside The powder has the disadvantage of becoming partially moistened and mottled in the bag.

また、蒸気加熱した場合、保存試験においても保存開始当初に過酸化物価が8meq/kgであった値が、1カ月後には31meq/kgに、2カ月後には45meq/kgに上昇し、食品衛生法に定める過酸化物価の上限値30meq/kgを超えるなど、やはり問題がある。仮に、 これらの問題が解決されたとしても加熱温度が100℃を越えて長時間加熱されているので、玄米粉が糊化されて、生玄米粉とは別の製品になっていることから、物性面からも問題が残る。 In addition, when steam heated, the value of the peroxide value of 8 meq / kg at the beginning of storage in the storage test increased to 31 meq / kg after 1 month and 45 meq / kg after 2 months. There are still problems, such as exceeding the upper limit of 30 meq / kg of the peroxide value stipulated by law. Even if these problems are solved, since the heating temperature exceeds 100 ° C for a long time, the brown rice flour has been gelatinized and is different from raw brown rice flour. Problems also remain in terms of physical properties.

次に、特開昭57−166949号を改良した特開昭60−176553号による製造法では、含水された玄米を攪拌しながら、蒸し・乾燥・焙煎の諸工程を同一の焙煎釜内で加熱温度が160℃になるまで行い、その後粉砕する方法がとられている。
我々もこの方法にならい玄米粉の試作を行った。すなわち、含水率14%の生玄米を水洗いし、約30分間浸漬した後、断面が正6角形をした密閉型の回転釜をもつ加熱装置を使用して、充分水きりした浸漬玄米を入れて玄米の製品温度が160℃の目標温度に達するまで一定火力で、回転釜を回転させながら加熱した。その後、玄米を回転釜から取り出し冷却後、粉砕して玄米粉を試作した。
Next, in the production method according to JP-A-60-176553, which is an improvement of JP-A-57-166949, the steps of steaming, drying and roasting are carried out in the same roasting kettle while stirring the hydrated brown rice. The heating is performed until the heating temperature reaches 160 ° C. and then pulverized.
We also made a trial production of brown rice flour following this method. That is, after washing raw brown rice with a moisture content of 14% and soaking for about 30 minutes, using a heating device with a closed rotary kettle with a regular hexagonal cross section, put the soaked brown rice sufficiently drained and brown rice The product was heated while rotating the rotary kettle at a constant heating power until the product temperature reached a target temperature of 160 ° C. Thereafter, the brown rice was taken out from the rotary kettle, cooled, pulverized, and a brown rice powder was produced as a prototype.

この玄米粉を保存温度20℃で保存試験した結果、酸化が進み、その指標のひとつである過酸化物価が保管初日には13meq/kgであった値が2カ月後には66meq/kg(詳細を後述の表2に示す)と増加を示した。この値は、食品衛生法に定める過酸化物価の上限値30meq/kgを超えて抵触している。このことから、この160℃で粒加熱する製法でつくった玄米粉においても2カ月間までの保存には問題があった。 As a result of a storage test of this brown rice flour at a storage temperature of 20 ° C., oxidation progressed, and the peroxide value, which is one of the indicators, was 13 meq / kg on the first day of storage, but the value is 66 meq / kg after 2 months (details (Shown in Table 2 below) and an increase. This value conflicts with exceeding the upper limit of 30 meq / kg of the peroxide value defined in the Food Sanitation Law. For this reason, brown rice flour produced by the method of grain heating at 160 ° C. also had a problem in storage for up to 2 months.

なお、この粒加熱する製法では、高い温度で長い時間加熱されているので、出来た製品は糊化度が進んでおり、生玄米粉とは別の製品である。
また、焙煎のためには玄米を粒の形で加熱するので、熱効率が悪く、多くの燃料を消費する。また、加熱には長時間を要するので、栄養成分など製品の品質が低下する。
このように、従来の玄米粉の製造法には、生玄米粉および加熱された玄米粉いずれも保存性、食品衛生の面で問題を抱えており、これら2種類の玄米粉について上記の問題点を解決する方法が求められている。
In this grain heating method, since the product is heated at a high temperature for a long time, the resulting product has a higher degree of gelatinization and is a product different from raw brown rice flour.
Moreover, since brown rice is heated in the form of grains for roasting, the heat efficiency is poor and a lot of fuel is consumed. Moreover, since heating requires a long time, the quality of products, such as a nutrient component, falls.
Thus, both the raw brown rice powder and the heated brown rice flour have problems in terms of storage stability and food sanitation in the conventional method for producing brown rice flour. The above-mentioned problems with these two types of brown rice flour There is a need for a solution.

(2)製造装置
玄米粉を始めとする穀物粉の加熱装置として、滅菌、殺菌などを目的にした次の装置について検討する。
先ず、特許文献3の粉粒体を飽和水蒸気による加圧下で、回転軸に備えられた複数の棒状羽根を高速回転することによって、粉粒体を変質させずに短時間に効果的に滅菌させる連続式加熱装置がある。
この装置は、滅菌用のため加熱温度が100℃を少し超える程度の温度を上限としている。このため、食品衛生としての滅菌作用は可能であるが、しかし長期の保存性を確保する熱化学変化を起こすに必要とされる温度と時間を確保できにくい。また飽和水蒸気を使用して加熱しているため、玄米粉に含まれる油成分との間で酸化が起こりやすく、逆に保存性が短期間となる。更に、飽和水蒸気が玄米粉に作用し玄米粉は糊化が進んだ製品になり、望む製品を製造できない等の欠点をもつ。
また、特許文献4の粉粒体を混合槽内に投入し、混合槽内に取り付けたスクリュウなどの攪拌手段によって粉粒体を攪拌しつつ移送する間に、加圧気体によって加熱殺菌する方法がある。
この方法によると、加圧気体を用いて玄米粉を直接加熱するため、玄米粉が加熱されたときに生成される香り成分が加圧気体と共に外部へ蒸散されて残りにくく、香りの少ない製品になる。また、加圧気体に存在する水蒸気や玄米粉から蒸発した水蒸気が作用し、玄米粉が糊化されて回転軸や攪拌羽根上に付着し、後から剥がれ落ち、製品が不均一になる恐れがある。また、設備が複雑で高価格であるなどこれらの装置もまた問題を抱えている。
更に、穀物粉について保存性の改善を目的にした粉体の連続式加熱装置は見当たらない。
我々が求める加熱装置は、玄米粉をはじめとする穀物粉の殺菌、保存性の改善、色づけ、香りづけなどが可能な装置であり、しかも小規模生産用として多くの小規模生産業者に製造装置を提供することがねらいである。
従って、機器装置は簡素であり、設備費は安価でなければならない。しかも、一台の装置で穀物粉の加熱ばかりでなく、通常行われる穀物粒の加熱をも兼用できれば、多種多様な種々の用途に向く製品が生産でき、機器の利用度が高まり、所期の目的が達成される。
(2) Manufacturing device The following devices for the purpose of sterilization, sterilization, etc. will be examined as a heating device for grain flour including brown rice flour.
First, the granular material of Patent Document 3 is effectively sterilized in a short time without altering the granular material by rotating a plurality of rod-shaped blades provided on the rotating shaft at high speed under pressure with saturated steam. There is a continuous heating device.
Since this apparatus is for sterilization, the upper limit is a temperature at which the heating temperature slightly exceeds 100 ° C. For this reason, sterilization action as food hygiene is possible, but it is difficult to secure the temperature and time required for causing a thermochemical change that ensures long-term preservation. Moreover, since it heats using saturated water vapor | steam, it is easy to generate | occur | produce between oil components contained in brown rice flour, and conversely, preservability becomes a short period. Furthermore, saturated steam acts on the brown rice flour, and the brown rice flour becomes a product that has been gelatinized, and thus has the disadvantage that the desired product cannot be produced.
Also, there is a method in which the powder and granule of Patent Document 4 is put into a mixing tank and heated and sterilized with a pressurized gas while the powder and granular material is stirred and transferred by a stirring means such as a screw attached in the mixing tank. is there.
According to this method, the brown rice powder is directly heated using the pressurized gas, so that the scent component generated when the brown rice powder is heated is hardly evaporated and remains with the pressurized gas, resulting in a product with less fragrance. Become. In addition, the water vapor present in the pressurized gas and the water vapor evaporated from the brown rice flour act, and the brown rice flour is gelatinized and adheres to the rotating shaft and the stirring blade. is there. These devices also have problems, such as complex equipment and high prices.
Further, there is no continuous powder heating device for improving the storage stability of grain flour.
The heating device we want is a device that can sterilize grains, including brown rice flour, improve storage stability, color, and scent. It is also a manufacturing device for many small-scale producers for small-scale production. The aim is to provide.
Therefore, the equipment must be simple and the equipment costs must be low. Moreover, if not only the heating of cereal flour but also the usual heating of cereal grains can be combined with a single device, products suitable for a wide variety of different applications can be produced, and the utilization of equipment will be increased. The objective is achieved.

本発明は前記事情に鑑みてなされたもので、従来の玄米粉の製造方法や加熱装置ではなくて、全く新規な玄米粉の製造方法および加熱装置を提供するものであり、以下その解決手段を説明する。 The present invention has been made in view of the above circumstances, and provides a completely new brown rice flour production method and heating device, not a conventional brown rice flour production method and heating device. explain.

請求項1の玄米粉の製造方法は、玄米を粉砕工程の直後に加熱する、又は、分割された複数の粉砕工程がある場合、分割された先の粉砕工程が終了した直後に加熱し冷却後に再粉砕する、ただし、玄米粉の加熱条件は同加熱における製品温度が80℃〜160℃に到達することを特長とする。 In the method for producing brown rice powder according to claim 1, the brown rice is heated immediately after the pulverization step, or when there are a plurality of divided pulverization steps, the brown rice flour is heated immediately after the previous pulverization step is finished and cooled. However, the heating condition of the brown rice powder is characterized in that the product temperature in the heating reaches 80 ° C to 160 ° C.

請求項2の玄米粉の製造方法は、玄米粒を加熱板または加熱釜を用いて加熱した後に粉砕する、或いは玄米粒を湯の浸漬または湯の噴射によって加熱した後、玄米を乾燥した後に粉砕する、ただし、玄米の加熱条件は同加熱後の製品温度がいずれも55℃〜75℃に到達することを特長とする。 The method for producing brown rice powder according to claim 2 pulverizes after heating the brown rice grains using a heating plate or a heating kettle, or heating the brown rice grains by immersion in hot water or spraying hot water, and then drying the brown rice. However, the heating conditions for brown rice are characterized in that the product temperature after the heating reaches 55 ° C to 75 ° C.

請求項3の連続式加熱装置は、請求項1に記載する玄米粉をはじめとする穀物粉の製造方法において、多角形断面形状を有し、一端は穀物粉の投入口とし他端は排出口とする中空の加熱筒と、同加熱筒の投入口内部まで挿入した推進機構付き投入筒を備えた投入ホッパーと、同加熱筒を加熱させるための加熱器と、同加熱筒を回転させるための回転装置と、同加熱筒の内部にて団粒化した穀物粉を衝撃粉砕させるための回転粉砕機を回転させる構造をもつ回転粉砕装置と、同加熱筒に投入された穀物粉を投入側から排出側に移動させるための傾斜調整器とを備えたことを特長とする。 A continuous heating apparatus according to claim 3 is a method for producing grain flour including brown rice flour according to claim 1, having a polygonal cross-sectional shape, one end being a grain flour inlet and the other being an outlet. A hollow heating cylinder, a charging hopper provided with a charging cylinder with a propulsion mechanism inserted into the charging cylinder, a heater for heating the heating cylinder, and for rotating the heating cylinder A rotating device, a rotary crusher having a structure for rotating a rotary crusher for impact crushing the grain powder aggregated inside the heating cylinder, and the grain powder charged in the heating cylinder from the input side It is characterized by having an inclination adjuster for moving to the discharge side.

請求項4の連続式加熱装置は、請求項3に記載する穀物粉の連続式加熱装置において、脱着可能とした同回転粉砕機を取り除くことによって、請求項2に記載する玄米粒をはじめとする穀物粒の加熱が可能となることを特長とする。 The continuous heating apparatus according to claim 4 includes the brown rice grains according to claim 2 by removing the rotary grinder that can be detached in the continuous heating apparatus for grain flour according to claim 3. It is characterized by the ability to heat grain grains.

請求項1による玄米粉の製造方法の発明によれば、粉体加熱を行うので、以下の効果が得られる。
(1)一般生菌数を減少または死滅させた、衛生面からみて安全な、玄米粉が提供できる。
(2)玄米粉における酸化の進行を抑制し安定状態にでき、しかも水分低下により乾燥度が高まり、保存中の異臭が消えるので、6カ月以上の長期の保存が可能になり、食品としての信頼性が高まる。
(3)低温度・短時間の加熱になるので、健康を守るために必要なビタミンおよび必須栄養素であるアミノ酸成分のリジン、リノール酸、リノレン酸等の損壊を少なくでき、製品の品質が向上できる。
(4)しかも、玄米粉の変色が少なく、物性的にも生玄米粉に近くなるので、パンや麺など食品素材として広く適用でき、種々の料理にも利用できる。
(5)長期の保存ができることから、ミルクやお湯に入れて飲む健康食品や食糧援助物品として広く世界へ向けて輸出や援助が可能となる。
According to the invention of the method for producing brown rice powder according to claim 1, since the powder is heated, the following effects can be obtained.
(1) It is possible to provide brown rice flour that is safe from the viewpoint of hygiene and has reduced or killed general viable bacteria.
(2) The progress of oxidation in brown rice flour can be suppressed to a stable state, and the dryness increases due to the decrease in moisture, and the odor during storage disappears. Increases nature.
(3) Because it is low temperature and short time heating, it can reduce the damage of vitamins and essential nutrients such as lysine, linoleic acid and linolenic acid, which are essential nutrients, and improve product quality. .
(4) Moreover, since brown rice flour has little discoloration and is close to raw brown rice flour in terms of physical properties, it can be widely applied as a food material such as bread and noodles, and can be used for various dishes.
(5) Since it can be stored for a long period of time, it can be exported and aided to the world as a health food and food aid article that can be drunk in milk or hot water.

請求項2による玄米粉の製造方法の発明によれば、物性的に生玄米粉と同等の玄米粉をつくることができるので、以下の効果が得られる。
(1)一般生菌数を減少または死滅させた、衛生面からみて安全な、玄米粉が提供できる。
(2)玄米粉における酸化の進行を抑制できるので、2カ月程度の保存が可能になり、食品としての信頼性が高まる。
(3)低温度・短時間の加熱になるので、生玄米粉と同様な栄養成分を確保できる。
(4)低温度・短時間の加熱になるので、変色が少なく、物性的にも生玄米粉に近くなり、パンや麺など食品素材として幅広く適用でき、種々の料理にも小麦粉の代替品として利用できる。
According to the invention of the method for producing brown rice flour according to claim 2, brown rice flour that is physically equivalent to raw brown rice flour can be produced, and the following effects are obtained.
(1) It is possible to provide brown rice flour that is safe from the viewpoint of hygiene and has reduced or killed general viable bacteria.
(2) Since the progress of oxidation in brown rice flour can be suppressed, it can be stored for about 2 months, and the reliability as a food is increased.
(3) Since it becomes low-temperature and short-time heating, it can secure the same nutrients as raw brown rice flour.
(4) Since it is heated at a low temperature for a short time, it has little discoloration and is close to raw brown rice flour in terms of physical properties and can be widely applied as a food material such as bread and noodles, and as a substitute for flour for various dishes Available.

請求項3による穀物粉の連続式加熱装置の発明によれば、以下の効果が得られる。
(1)粉体加熱のため、加熱時の温度が低温度となり、加熱時間が短時間である。従って、加熱効率が約3倍も良くなり、省エネルギーとなる。また、製品品質も向上する。
(2)加熱筒を回転攪拌すると共に、団粒化した穀物粉の衝撃粉砕を行うので、加熱ムラがなく、均一加熱が行われ、品質のよい穀物粉が提供できる。
(3)穀物粉に対し急速加熱が行われるので、今までの粒加熱とは異なる物性的・化学的変化を起こすことができる。
According to invention of the continuous heating apparatus of the grain flour by Claim 3, the following effects are acquired.
(1) Due to powder heating, the heating temperature is low and the heating time is short. Accordingly, the heating efficiency is improved by about 3 times and energy is saved. Product quality is also improved.
(2) Rotating and stirring the heating cylinder and impact pulverization of the agglomerated grain powder does not cause uneven heating, and uniform heating can be performed, thereby providing a quality grain powder.
(3) Grain flour is rapidly heated, so it can cause physical and chemical changes that are different from conventional grain heating.

請求項4による穀物粒の連続式加熱装置の発明によれば、脱着可能とした回転粉砕機を取り除くことによって、以下の効果が得られる。
(1)穀物粉の他、穀物粒をも加熱が可能であり、しかも他の装置に対して設備が簡素で、設備費は安価で、保守・点検も容易である。
According to the continuous grain grain heating device of the fourth aspect of the present invention, the following effects can be obtained by removing the rotary pulverizer that can be detached.
(1) In addition to cereal flour, cereal grains can be heated, and the equipment is simple compared to other equipment, the equipment costs are low, and maintenance and inspection are easy.

以下、本発明の実施の形態にかかる玄米粉の製造方法および玄米粉をはじめとする穀物粉の製造装置について説明する。
<本発明の製造方法に使用する製造装置に関する実施の形態>
Hereinafter, a method for producing brown rice flour and a device for producing grain flour including brown rice flour according to embodiments of the present invention will be described.
<Embodiment concerning manufacturing apparatus used for manufacturing method of the present invention>

(1)製造装置
図1は、本発明の製造方法に使用する製造装置に関する実施の形態にかかわる連続式加熱装置の構成を示す。
なお、この連続式加熱装置1は玄米粉に限らず、一般の穀物粉にも適用可能である。製造に使用する原料は穀物粉として説明する。
この連続式加熱装置1は、多角形断面形状を有する筒形状の加熱筒2と、加熱手段としての加熱器3、穀物粉の投入ホッパー4、排出ホッパー5、回転モータ6を備えた回転装置7、および回転粉砕装置22とから大略構成される。
加熱筒2の断面形状は、穀物粉を攪拌させる効果をもたせるために多角形断面を有するもので、ここでは、加熱筒2の断面形状は正6角形とし、また、加熱器3はガスバーナーを用いて説明する。
(1) Manufacturing apparatus FIG. 1 shows the configuration of a continuous heating apparatus according to an embodiment relating to a manufacturing apparatus used in the manufacturing method of the present invention.
In addition, this continuous heating apparatus 1 is applicable not only to brown rice flour but also to general grain flour. The raw material used for manufacturing is explained as grain flour.
This continuous heating device 1 includes a cylindrical heating cylinder 2 having a polygonal cross-sectional shape, a heater 3 as a heating means, a grain hopper 4, a discharge hopper 5, and a rotating device 7 having a rotating motor 6. , And the rotary crushing device 22.
The cross-sectional shape of the heating cylinder 2 has a polygonal cross-section in order to have the effect of stirring the grain flour. Here, the cross-sectional shape of the heating cylinder 2 is a regular hexagon, and the heater 3 has a gas burner. It explains using.

加熱筒2、加熱器3、投入ホッパー4、排出ホッパー5、回転装置7、回転粉砕装置22は、それぞれハウジング8の架台9に設けられている。架台9には、傾斜角調整脚18と固定脚19が取り付けられており、油圧シリンダ20を動作させて傾斜角調整脚18の高さを変えることにより、ハウジング8は投入側を排出側よりも高くして、架台9の傾斜角を調整させることが可能となっている。
ハウジング8の一部である炉壁15の内部には加熱筒2と加熱器3とが設けられており、加熱器3で燃焼された空気は加熱筒2を加温した後、排気筒16から排気される。
ハウジング8の左右両側の支持脚10A、10Bには、加熱筒2の軸受け12A、12Bがそれぞれ設けられており、加熱筒2は両軸受けで支持されて、ハウジング8の側壁を貫通している。
The heating cylinder 2, the heater 3, the charging hopper 4, the discharging hopper 5, the rotating device 7, and the rotating pulverizing device 22 are respectively provided on the gantry 9 of the housing 8. An inclination angle adjusting leg 18 and a fixed leg 19 are attached to the gantry 9, and by operating the hydraulic cylinder 20 to change the height of the inclination angle adjusting leg 18, the housing 8 has a closing side more than a discharging side. The inclination angle of the gantry 9 can be adjusted by increasing the angle.
A heating cylinder 2 and a heater 3 are provided inside a furnace wall 15 that is a part of the housing 8, and the air burned in the heater 3 warms the heating cylinder 2, and then from the exhaust cylinder 16. Exhausted.
The support legs 10 </ b> A and 10 </ b> B on the left and right sides of the housing 8 are respectively provided with bearings 12 </ b> A and 12 </ b> B of the heating cylinder 2, and the heating cylinder 2 is supported by both bearings and penetrates the side wall of the housing 8.

図2に示す投入側の回転輪11はプーリー構造をしており、回転モータ6はギヤー(図示していない)を介してベルト13で連結されている。回転モータ6の動力は、ギヤーとベルト13を介し減速されて回転輪11を緩やかに回転させ、回転輪11の内側に装着された加熱筒2を回転させることが可能になっている。
投入ホッパー4は、架台9の投入側に支持脚10Cを介して取り付けている。投入ホッパー4の底部には投入筒14を取り付け、投入筒14の先端部は加熱筒2の内部に挿入している。投入筒14の中には、図5に示す推進機構部30としてスプリング又はスクリュウを取り付け、その先端には供給モータ29を装着している。
排出ホッパー5は、投入ホッパー4の反対側に位置し、加熱筒2から排出され落下する穀物粒や粉を収集する。
2 has a pulley structure, and the rotary motor 6 is connected by a belt 13 through a gear (not shown). The power of the rotary motor 6 is decelerated through the gear and the belt 13 to rotate the rotating wheel 11 gently, and the heating cylinder 2 mounted inside the rotating wheel 11 can be rotated.
The input hopper 4 is attached to the input side of the gantry 9 via support legs 10C. A charging cylinder 14 is attached to the bottom of the charging hopper 4, and the leading end of the charging cylinder 14 is inserted into the heating cylinder 2. In the charging cylinder 14, a spring or a screw is attached as the propulsion mechanism 30 shown in FIG. 5, and a supply motor 29 is attached to the tip thereof.
The discharge hopper 5 is located on the opposite side of the input hopper 4 and collects grains and powder discharged from the heating cylinder 2 and falling.

回転粉砕装置22は、図3に示すように投入側支持金物21に据付られたギヤー付きの粉砕モータ25と加熱筒2の内部に納められた回転粉砕機23とから構成される。
ここで回転粉砕機23は粉砕モータ25とカップリング24で連結されており、一方、回転粉砕機23の粉砕軸26の反対側は排出側支持金物34に装着された粉砕軸受け31で固定されており、粉砕モータ25の回転に対応して回転粉砕機23は回転が可能になっている。
回転粉砕機23は、図4に示すように粉砕軸26を回転軸にして4本の衝撃粉砕バー28と16本の粉砕アーム27を用いて、粉砕軸26の両側部と中央部の3個所にて十字形に構築されている。
加熱筒2の投入側には、図6に示すように投入側支持金物21に直角に開口遮蔽板32Aが取り付けられており、その開口遮蔽板32Aの上部中央部2個所にそれぞれ調整扉軸35a、35bを回転軸にして開口調整扉33Aa、33Abが互いに反対方向に回転するように装着され、加熱筒2の投入側開口部を開閉調整できるようになっている。
As shown in FIG. 3, the rotary pulverization device 22 includes a pulverization motor 25 with gears installed on the input side support metal 21 and a rotary pulverizer 23 housed inside the heating cylinder 2.
Here, the rotary pulverizer 23 is connected to the pulverization motor 25 by a coupling 24, while the opposite side of the pulverization shaft 26 of the rotary pulverizer 23 is fixed by a pulverization bearing 31 mounted on a discharge side support metal 34. The rotary pulverizer 23 can be rotated in accordance with the rotation of the pulverization motor 25.
As shown in FIG. 4, the rotary pulverizer 23 uses four impact pulverization bars 28 and 16 pulverization arms 27 with the pulverization shaft 26 as a rotation axis, and is provided at three locations on both sides and the central portion of the pulverization shaft 26. It is built in a cross shape.
On the charging side of the heating cylinder 2, as shown in FIG. 6, an opening shielding plate 32A is attached at right angles to the loading side support metal 21, and the adjustment door shaft 35a is provided at two upper central portions of the opening shielding plate 32A. The opening adjustment doors 33Aa and 33Ab are mounted so as to rotate in opposite directions with the rotation axis 35b as a rotation axis, so that the opening side opening of the heating cylinder 2 can be adjusted for opening and closing.

また、加熱筒2の排出側には、図7に示すようにコの字をした排出側支持金物34が2個の排出側支持脚10Bに左右・上下、計4本の排出側支持金物取り付けボルト36によって脱着可能に取り付けられている。しかも、排出側支持金物34には粉砕軸受け31が取り付けられ、回転粉砕機23の粉砕軸26を支えている。
回転粉砕機23の装着は、加熱筒2の内部に挿入し、更に粉砕モータ25の回転軸に装着されているカップリング24の穴に回転粉砕機23の粉砕軸26を差込み、次に回転粉砕機23の粉砕軸26における反対側の軸に排出側支持金物34の粉砕軸受け31を差込みながら、排出側支持金物取り付けボルト36に排出側支持金物34に開けられた4個の穴を同時に通して排出側支持金物34を装着し、排出側支持金物取り付けボルト36に対してナット締めをして排出側支持金物34を固定する。
Further, on the discharge side of the heating cylinder 2, a discharge-side support hardware 34 having a U-shape as shown in FIG. The bolt 36 is detachably attached. Moreover, a crushing bearing 31 is attached to the discharge-side support metal 34 to support the crushing shaft 26 of the rotary crusher 23.
The rotary pulverizer 23 is inserted into the heating cylinder 2, and the pulverizing shaft 26 of the rotary pulverizer 23 is inserted into the hole of the coupling 24 mounted on the rotary shaft of the pulverizing motor 25, and then the rotary pulverizing is performed. While inserting the grinding bearing 31 of the discharge-side support metal 34 into the opposite shaft of the grinding shaft 26 of the machine 23, the four holes opened in the discharge-side support metal 34 are simultaneously passed through the discharge-side support metal mounting bolts 36. The discharge side support metal 34 is mounted, and the discharge side support metal mounting bolt 36 is tightened with a nut to fix the discharge side support metal 34.

最後にカップリング24と粉砕軸26の間を図示していないピン留めか、またはネジ締めで固定する。また、回転粉砕機23の取り外しは取り付けと反対の操作を行う。これらの操作によって、回転粉砕機23の脱着が可能となっている。
更に、排出側支持金物34の内部壁の両側にはガイド37を取り付け、開口遮蔽板32Bをガイド37へ挿入することにより、開口遮蔽板32Bの挿入高さを調整し、排出側開口部の調整を可能にしている。
Finally, the coupling 24 and the grinding shaft 26 are fixed by pinning (not shown) or screwing. Further, the removal of the rotary pulverizer 23 is performed in the opposite manner to the attachment. By these operations, the rotary crusher 23 can be detached.
Further, guides 37 are attached to both sides of the inner wall of the discharge side support metal 34, and the opening shielding plate 32B is inserted into the guide 37, thereby adjusting the insertion height of the opening shielding plate 32B and adjusting the discharge side opening. Is possible.

このように開口遮蔽板32Bの高さ調整、および開口調整扉33Aa、33Abの開閉調整によって加熱された穀物粉から蒸散する加熱筒2の内部に生ずる水蒸気および香りを加熱筒2の内部に残しながら穀物粉の乾燥および香りの放出を抑制することが可能になっている。 Thus, while leaving the steam and fragrance generated inside the heating cylinder 2 transpiration from the grain flour heated by the height adjustment of the opening shielding plate 32B and the opening / closing adjustment of the opening adjustment doors 33Aa and 33Ab, the inside of the heating cylinder 2 is left. It is possible to suppress the drying of grain flour and the release of aroma.

(2)動作
次に連続式加熱装置1の動作について説明する。
連続式加熱装置1を運転する前には、傾斜角調整脚18を油圧シリンダー20でもって穀物粉が投入側から排出側へ適性量流れるように架台9の傾斜を調整しておく。また、加熱筒2は運転前に加熱器3のガスバーナーで温め、予備加熱しておく。
(2) Operation Next, the operation of the continuous heating apparatus 1 will be described.
Before the continuous heating apparatus 1 is operated, the inclination of the gantry 9 is adjusted by using the inclination angle adjusting leg 18 with the hydraulic cylinder 20 so that an appropriate amount of grain flour flows from the input side to the discharge side. Moreover, the heating cylinder 2 is warmed with a gas burner of the heater 3 and preheated before operation.

図5に示す供給モータ29を動作させて、推進機構部30を回転させる。投入ホッパー4に入っている底部の穀物粉は、推進機構部30の回転により排出方向へ進み、投入筒14を通って加熱筒2の中に投入される。同時に、投入ホッパー4に入っている上部の穀物粉は底部へ移動する。
このように供給モータ29を連続運転させ、かつ投入ホッパー4へ絶やさず穀物粉を供給しつづけることにより、加熱筒2への穀物粉の連続的な供給が可能になる。また、供給モータ29の回転数をインバータにより調整することによって、穀物粉を任意な量だけ一定速度で供給する、定量供給が可能になる。
加熱筒2の入口へ投入された穀物粉は、回転モータ6を動作させて加熱筒2を回転させることにより、加熱筒2の傾斜により投入側から排出側へ移動する。穀物粉は、この移動の間に加熱器3で加熱された加熱筒2の内壁面から熱を授受され、加熱される。特に、被加熱物が穀物粉の粉体であることから、穀物粉と加熱筒2の内壁面との接触面積を大きくとることができるので、穀物粉は穀物粒の加熱時よりも短時間に温度上昇し、急速に加熱される。
The propulsion mechanism unit 30 is rotated by operating the supply motor 29 shown in FIG. Grain flour at the bottom of the charging hopper 4 advances in the discharging direction by the rotation of the propulsion mechanism 30, and is charged into the heating cylinder 2 through the charging cylinder 14. At the same time, the upper grain flour in the charging hopper 4 moves to the bottom.
Thus, by continuously operating the supply motor 29 and continuously supplying the grain flour to the charging hopper 4, the grain powder can be continuously supplied to the heating cylinder 2. Further, by adjusting the number of rotations of the supply motor 29 with an inverter, it becomes possible to supply a fixed amount by supplying an arbitrary amount of grain flour at a constant speed.
Grain powder charged into the inlet of the heating cylinder 2 moves from the charging side to the discharge side due to the inclination of the heating cylinder 2 by operating the rotary motor 6 to rotate the heating cylinder 2. Grain flour receives heat from the inner wall surface of the heating cylinder 2 heated by the heater 3 during this movement, and is heated. In particular, since the material to be heated is a powder of cereal powder, the contact area between the cereal powder and the inner wall surface of the heating cylinder 2 can be increased. The temperature rises and is heated rapidly.

従って、穀物粉の加熱形態時は穀物粒の加熱形態時とは加熱温度、加熱時間および加熱効率が異なり、低温度、短時間に加熱でき、しかも加熱効率が数倍も良くなり、省エネルギーとなる利点がある。
しかし、穀物粉を加熱筒2の中で回転させながら加熱すると、そのとき穀物粉の内部から蒸散される水分と油脂成分とにより穀物粉どうしがくっつき合い、丸まり次第に大きく造粒・団粒化する。この造粒・団粒化によって加熱筒2内部の粉は充分に加熱されず、不均一な加熱状態になる。
Therefore, the heating temperature, heating time, and heating efficiency of the grain powder heating mode are different from those of the grain heating mode, and it can be heated in a low temperature and in a short time, and the heating efficiency is improved several times, resulting in energy saving. There are advantages.
However, when the cereal powder is heated while rotating in the heating cylinder 2, the cereal powders stick together due to the water and oil components transpirated from the inside of the cereal powder, and gradually granulate and agglomerate as they round. . By this granulation / aggregation, the powder in the heating cylinder 2 is not sufficiently heated and becomes in a non-uniform heating state.

この解消のため、粉砕モータ25を動作させて加熱筒2内部に配置されている、衝撃粉砕機23を回転させ、衝撃粉砕バー28によって団粒化した穀物粉に衝撃力を与え、元の粉の状態に小さく粉砕する。また、衝撃粉砕バー28は粉砕アーム27の長さをそれぞれ互いに変えておくことで、粉砕の範囲を広めることができる。
このとき、回転粉砕機23は加熱筒2の回転方向と同一方向に回転させて、しかも加熱筒2の回転よりも回転数を大きくとることによって、加熱筒2における穀物粉の攪拌を乱さず、団粒化した穀物粉に回転粉砕バー28の衝撃力を加えて粉砕することができる。更に、回転粉砕機23の回転数を大きくすればするほど、粉砕された穀物粉は加熱筒2の中で飛散する状態になる。
In order to solve this problem, the pulverization motor 25 is operated to rotate the impact pulverizer 23 disposed inside the heating cylinder 2 to give impact force to the grain powder aggregated by the impact pulverization bar 28, so that the original powder Crush it to a small size. Further, the impact pulverization bar 28 can widen the pulverization range by changing the length of the pulverization arm 27 to each other.
At this time, the rotary pulverizer 23 is rotated in the same direction as the rotation direction of the heating cylinder 2, and the rotation number is larger than the rotation of the heating cylinder 2, so that the stirring of the grain flour in the heating cylinder 2 is not disturbed, The aggregated grain powder can be pulverized by applying the impact force of the rotary pulverization bar 28. Further, as the rotational speed of the rotary pulverizer 23 is increased, the pulverized grain powder is scattered in the heating cylinder 2.

加熱筒2の開口調整扉33A、および開口遮蔽板32Bを完全な開放状態にしておけば、穀物粉から蒸発された水分と香り成分は投入口と排出口から放出される。
このとき、仕上がった製品は乾燥が進み過ぎ、しかも香りの少ない製品となっている。このため、製品重量は減少し、香りが少なくなり、品質が低下してくるので、製品価格は安価になってくる。
一方、加熱筒2の開口調整扉33A、および開口遮蔽板32Bを閉状態にしておけば、加熱筒2の内部で蒸散水分が多く、多湿になるので、加熱筒2の内部で温度が低下している壁面や回転粉砕機23の回転粉砕バー28や粉砕軸26の表面に結露をおこし穀物粉がもつ油脂成分と共に付着し、加熱されて糊化が進み、金属表面に付着している個所で焦げ付きがおこり、最後には剥がれ落ち、正常な製品に混入し、品質が不均一な粗悪な製品になり問題がある。
If the opening adjustment door 33A and the opening shielding plate 32B of the heating cylinder 2 are completely opened, moisture and fragrance components evaporated from the grain flour are discharged from the inlet and outlet.
At this time, the finished product is too dry and has a low fragrance. For this reason, the product weight is reduced, the aroma is reduced, and the quality is lowered, so that the product price is reduced.
On the other hand, if the opening adjustment door 33A and the opening shielding plate 32B of the heating cylinder 2 are closed, the amount of transpiration moisture is increased inside the heating cylinder 2 and the humidity is increased. Where condensation occurs on the surface of the wall and the rotary crushing bar 28 of the rotary crusher 23 and the surface of the crushing shaft 26 and adheres together with the fat and oil component of the grain powder, and is heated and gelatinized to adhere to the metal surface. There is a problem that the product is burnt, peels off at the end, enters a normal product, and becomes a poor product with uneven quality.

この解消のため、加熱筒2は投入口と排出口は、開口調整扉33A、および開口遮蔽板32Bの開度を調整し、粉から蒸散する水分のほか香りをも含めてコントロールする。
穀物粉の加熱温度は、投入側から排出側に近づく程、高くなり、穀物粉から蒸発される水蒸気および香り成分は多く発生するようになり、加熱筒2の中で体積膨張が起こる。このため、加熱筒2の中で充満した水蒸気および香り成分は、排出側の開口遮蔽板32Bより上部位置にある投入側の開口調整扉33Aの方向に向けて流れるようになる。
ここで、回転粉砕機23の回転数を大きくしておき、粉砕された穀物粉を加熱筒2の中で飛散するようにしておけば、排出側の穀物粉から蒸発された水蒸気および香り成分は、その途中に飛散している穀物粉の中を緩やかに通りながら投入側に向かうことになり、このとき飛散している穀物粉には水蒸気および香り成分の一部が付着・吸収させることができる。
一方、付着・吸収されなかった水蒸気および香り成分は投入側の開口調整扉32Aから排出される。この結果、穀物粉から蒸発する水蒸気および香り成分は余分な蒸散・放出を防ぐことができ、製品の品質を高めることができる。
加熱筒2の傾斜角は、穀物粉が加熱筒2に投入されてから排出されるまでの滞留時間を測定し、計画した滞留時間になるように油圧シリンダー20を動作させて傾斜角調整脚18を調整する。
In order to eliminate this, the heating cylinder 2 controls the opening and the outlet of the opening adjusting door 33A and the opening shielding plate 32B to control the opening including the fragrance in addition to the water evaporated from the powder.
The heating temperature of the cereal powder increases as it approaches the discharge side from the input side, so that more water vapor and fragrance components are evaporated from the cereal powder, and volume expansion occurs in the heating cylinder 2. For this reason, the water vapor and the scent component filled in the heating cylinder 2 flow toward the inlet side opening adjustment door 33A located above the discharge side opening shielding plate 32B.
Here, if the rotational speed of the rotary pulverizer 23 is increased and the pulverized cereal powder is scattered in the heating cylinder 2, the water vapor and fragrance components evaporated from the cereal powder on the discharge side are In the middle of the process, the grain powder that is scattered in the middle of the process will gradually move toward the input side. At this time, the scattered grain powder can have some water vapor and fragrance components attached and absorbed. .
On the other hand, water vapor and scent components that have not adhered or absorbed are discharged from the opening side adjustment door 32A. As a result, water vapor and scent components evaporating from the cereal flour can prevent excessive transpiration and release, and can improve the quality of the product.
The inclination angle of the heating cylinder 2 is determined by measuring the residence time from when the grain flour is put into the heating cylinder 2 until it is discharged, and by operating the hydraulic cylinder 20 so as to reach the planned residence time. Adjust.

穀物粉の加熱温度は、排出ホッパー5の内部に取り付けた温度センサー17で、排出後の穀物粉の温度を測定する。
加熱器3の火力は、前記の温度センサー17で計測された穀物粉の温度を加熱器3の図示してない火力調整器に入力し、これにもとづき火力調整器で判定された出力でもって加熱器3のガスバーナーに連結される図示してないガス弁を自動で調整し、穀物粉の設定温度を制御する。
The heating temperature of the grain flour is measured by a temperature sensor 17 attached to the inside of the discharge hopper 5.
As for the heating power of the heater 3, the temperature of the grain flour measured by the temperature sensor 17 is input to a heating power regulator (not shown) of the heater 3, and heating is performed with the output determined by the heating power regulator based on this. A gas valve (not shown) connected to the gas burner of the vessel 3 is automatically adjusted to control the set temperature of the grain flour.

以上から、この連続式加熱装置1により穀物粉を加熱すると、低温度で短時間に、効率よく加熱され、しかも均一に加熱することができるので、穀物粒の加熱とは異なる、物性的に、化学的な変化を起すことができる。 From the above, when the cereal powder is heated by the continuous heating device 1, it can be heated efficiently and uniformly at a low temperature in a short time, and can be heated uniformly. Can cause chemical changes.

次に、穀物粒の加熱について説明する。
穀物粒の加熱の場合、被加熱体と加熱筒2の内壁面との接触面積が小さいので、穀物粒との伝熱効率が低い。このため、所定の温度を確保しようとすれば、加熱時間を長く必要とされるので、連続式加熱装置1における加熱筒2の傾斜角は極力緩やかに、小さくする。
また、穀物粒の場合、穀物粉と異なり団粒化の問題は考えなくてよいので、回転粉砕機23は取り外しを行うことによって穀物粒の加熱が可能となる。
Next, heating of the grain will be described.
In the case of heating the grain, the heat transfer efficiency with the grain is low because the contact area between the heated body and the inner wall surface of the heating cylinder 2 is small. For this reason, if it is going to ensure predetermined temperature, since heating time is required long, the inclination-angle of the heating cylinder 2 in the continuous heating apparatus 1 is made small as much as possible.
In the case of cereal grains, unlike cereal powder, there is no need to consider the problem of agglomeration. Therefore, the rotary pulverizer 23 can be removed to heat the cereal grains.

このように連続式加熱装置1における回転粉砕機23を脱着することによって、穀物粉および穀物粒の両者を同一の装置で加熱することができる。
<本発明の製造方法に関する実施の形態>
Thus, by removing the rotary pulverizer 23 in the continuous heating device 1, both the cereal flour and the cereal grain can be heated by the same device.
<Embodiment relating to the production method of the present invention>

比較例Comparative example

新しい製造法を探るため、先ず、従来の製造法である特開昭60−176553号による玄米を粒の形で加熱する粒加熱製造法で玄米粉を試作した。この玄米粉の保存試験結果を本発明の製造方法に関する実施の形態の比較例として、以下示す。
玄米を水洗いし粒加熱した後、粉砕して製作した試料の粒加熱粉について、保存試験を実施した。
In order to search for a new production method, first, a brown rice powder was experimentally produced by a grain heating production method in which brown rice was heated in the form of grains according to JP-A-60-176553, which is a conventional production method. The storage test result of this brown rice flour is shown below as a comparative example of the embodiment relating to the production method of the present invention.
The brown rice was washed with water, heated with grains, and then subjected to a storage test on the heated grains of the crushed sample.

試料の作成は次のとおりである。含水率14%の生玄米を水洗いし、30分間浸漬した後、断面が正6角形をした密閉型の回転釜をもつ加熱装置を使用して、充分水きりした浸漬玄米を回転釜に入れて玄米の製品温度が目標温度に達するまで一定火力で、回転釜を回転させながら加熱した。その加熱時間は製品温度によって異なり、約10分から60分である。加熱終了後、釜から加熱された玄米を取り出し、自然冷却した。その後、玄米を衝撃式粉砕機でもって粉砕し試料を作成した。そのときの玄米粉の平均粒径は約65ミクロンであった。なお、加熱温度は、特開昭60−176553号に示された160℃の温度の前後をとって、80〜180℃とし、20℃毎に変化させた。
次に、作成した粒加熱玄米粉を、酸素透過性が高いポリエチレンフイルムの袋に入れて封入し、保管温度20℃の恒温室にて60日間の保存試験を行った。測定項目は酸化の進行状況をみる指標として、酸価、過酸化物価およびカルボニル価を分析した。表2に粒加熱玄米粉の保存試験結果を示す。
The preparation of the sample is as follows. After washing raw brown rice with a water content of 14% and soaking for 30 minutes, using a heating device with a closed rotary kettle with a regular hexagonal cross section, put the soaked brown rice in enough water into the rotary kettle. The product was heated while rotating the rotary kettle at a constant heating power until the product temperature reached the target temperature. The heating time depends on the product temperature and is about 10 to 60 minutes. After the heating, the heated brown rice was taken out from the kettle and naturally cooled. Thereafter, brown rice was pulverized with an impact pulverizer to prepare a sample. The average particle size of the brown rice flour at that time was about 65 microns. The heating temperature was about 80 to 180 ° C. around the temperature of 160 ° C. disclosed in JP-A-60-176553, and was changed every 20 ° C.
Next, the produced grain-heated brown rice powder was sealed in a polyethylene film bag having high oxygen permeability, and a storage test for 60 days was performed in a thermostatic chamber at a storage temperature of 20 ° C. The measurement item was an acid value, a peroxide value, and a carbonyl value, which were used as indicators for observing the progress of oxidation. Table 2 shows the storage test results of the grain-heated brown rice flour.

Figure 2005034147
Figure 2005034147

表2の粒加熱玄米粉では、60日間保存した場合、酸価は非加熱では46であったが、加熱温度が高まるにつれ、100℃では15と、160℃では10と低下した。このように酸価の値は、100℃以上では保管初日の値12から大きな上昇を示さず、食品上として大きな問題はなかった。
また、60日後の過酸化物価は非加熱では15meq/kgであったが、加熱温度が高まるにつれて、100℃では108meq/kgと最も高く、その後、160℃では66meq/kgと緩やかに低下していった。しかし、過酸化物価が100℃を越える加熱温度では、いずれも30meq/kg以上を示すことから、食品衛生法に定める過酸化物価の上限値30meq/kgを超えて抵触している。
以上から粒加熱の製法では、いずれの加熱温度で製造しても酸化が進み、食品衛生の点から問題となった。因みに、今回の試験結果から推定すると、特開昭60−176553号にて行われている加熱温度160℃で加熱した場合、食品衛生法に抵触しない条件での保存期間は、過酸化物価からみて常温流通の場合、約1カ月間と推察され、この期間は余りに短期間である。
In the grain-heated brown rice flour of Table 2, when stored for 60 days, the acid value was 46 when unheated, but decreased to 15 at 100 ° C. and 10 at 160 ° C. as the heating temperature increased. Thus, the value of the acid value did not show a significant increase from the value 12 on the first day of storage at 100 ° C. or higher, and there was no major problem on food.
Further, the peroxide value after 60 days was 15 meq / kg in the non-heated state, but as the heating temperature increased, it was highest at 108 ° C. at 100 ° C., and then gradually decreased to 66 meq / kg at 160 ° C. It was. However, any heating temperature exceeding 100 ° C. shows 30 meq / kg or more, which is in conflict with the peroxide value exceeding the upper limit of 30 meq / kg defined in the Food Sanitation Law.
From the above, in the granule heating production method, oxidation progresses at any heating temperature, which is problematic from the viewpoint of food hygiene. By the way, when estimated from the results of this test, when heated at a heating temperature of 160 ° C. as disclosed in JP-A-60-176553, the storage period under conditions that do not conflict with the Food Sanitation Law is seen from the peroxide value. In the case of distribution at room temperature, it is estimated that it is about one month, and this period is too short.

このように熱酸化および自動酸化が生じたのは、玄米表面部は糠成分で、油脂として脂質を多く含んでいるためである。脂質には主に不飽和脂肪酸であるリノール酸やリノレン酸が多く存在しており、これらの脂質が加熱されることによって酸化分解が急速に進み、熱酸化が起こる。また、保存したときにも酸素との反応が進み、更に自動酸化が起こる。
一方、熱酸化のとき玄米が褐変したのは、米部の胚乳には主に糖質とタンパク質から組成されている。この玄米を加熱すると、アミノ酸やタンパク質などのアミノ化合物と、還元糖はじめ不飽和脂肪酸などの酸化によりカルボニル化合物が生成される。これらアミノ化合物とカルボニル化合物の間でアミノカルボニル反応が起こりメラノイジンと呼ばれる褐変物質が生成される。生玄米粉は概ね白色をしているが、加熱が進むことによってこの褐変物質の生成によって薄白色から乳白色に、更にはクリーム色へ変化し、香りも強くなっていった。
このように、玄米粉を粒加熱による160℃を中心とする従来の製造法では、保存性がよいとは云えず、商品として流通させるためには改良の余地が必要である。
The reason why the thermal oxidation and auto-oxidation occurred in this way is because the brown rice surface portion is a koji component and contains a large amount of lipids as fats and oils. Lipids mainly contain a large amount of unsaturated fatty acids such as linoleic acid and linolenic acid. When these lipids are heated, oxidative degradation rapidly proceeds and thermal oxidation occurs. In addition, when stored, the reaction with oxygen proceeds and further auto-oxidation occurs.
On the other hand, brown rice browned during thermal oxidation is mainly composed of carbohydrates and proteins in the endosperm of rice. When this brown rice is heated, carbonyl compounds are produced by oxidation of amino compounds such as amino acids and proteins, and reducing sugars and unsaturated fatty acids. An aminocarbonyl reaction occurs between the amino compound and the carbonyl compound to generate a browning substance called melanoidin. The raw brown rice flour is almost white, but as the heating proceeds, the browning substance is changed to light white to milky white and further to a cream color.
Thus, in the conventional manufacturing method centering on brown rice flour at 160 ° C. by grain heating, it cannot be said that the storage stability is good, and there is a need for improvement in order to distribute it as a product.

玄米粉の保存性を高めるため、図8に示すように新製法による粉加熱製造法により玄米粉を作成し、出来た製品について殺菌試験と保存試験と成分分析を行い評価した。
試料は、水洗いし乾燥した玄米を粉砕した後、加熱して粉加熱玄米粉をつくった。
即ち、先ず生玄米を清水にて水洗いした後、含水率14%になるまで乾燥し、その後、玄米を衝撃式粉砕機により粉砕し、平均粒径が65ミクロンの玄米粉を作成した。この玄米粉を本発明の製造装置に関する連続式加熱装置1の投入ホッパーに入れて、加熱した。 生玄米は同加熱装置の加熱筒を回転させつつ回転粉砕装置を動作させて、加熱筒の投入口から排出口へと移動中に加熱して均一な試料を作成した。傾斜角度は固定した。そのときの玄米粉の加熱時間は約3分間であった。また、加熱火力は目標とする製品の加熱温度に達するようにLPガス量を変化させて調整した。玄米粉製品の加熱温度は加熱筒から排出直後の玄米粉に温度センサーを差し込み測定した。
In order to improve the storage stability of brown rice flour, as shown in FIG. 8, brown rice flour was prepared by a powder heating manufacturing method using a new manufacturing method, and the resulting product was evaluated by performing a sterilization test, a storage test, and component analysis.
The sample was crushed brown rice that had been washed with water and dried, and then heated to produce powder-heated brown rice flour.
That is, first, raw brown rice was washed with fresh water, dried to a moisture content of 14%, and then the brown rice was pulverized by an impact pulverizer to produce brown rice flour having an average particle size of 65 microns. This brown rice flour was put into a charging hopper of the continuous heating apparatus 1 relating to the manufacturing apparatus of the present invention and heated. The raw brown rice was heated while moving the heating cylinder of the heating apparatus while moving from the inlet to the outlet of the heating cylinder to produce a uniform sample. The tilt angle was fixed. The heating time of the brown rice flour at that time was about 3 minutes. The heating thermal power was adjusted by changing the amount of LP gas so as to reach the target heating temperature of the product. The heating temperature of the brown rice flour product was measured by inserting a temperature sensor into the brown rice flour immediately after being discharged from the heating cylinder.

(1)殺菌試験
殺菌試験の試料は、生玄米を粉砕した玄米粉を前述のとおり連続式加熱装置1を用いて加熱し、製品温度が60℃、80℃、100℃、120℃、140℃、160℃に達するように火力を調整しつつ製作した。生菌分析に際しては、各試料となるそれぞれの玄米粉をシャーレの中で培養し、一般生菌数を顕微鏡で目視してカウントした。
(1) Sterilization test As for the sample of the sterilization test, the brown rice powder which grind | pulverized raw brown rice was heated using the continuous heating apparatus 1 as mentioned above, and product temperature was 60 degreeC, 80 degreeC, 100 degreeC, 120 degreeC, 140 degreeC. It was manufactured while adjusting the heating power to reach 160 ° C. In the analysis of viable bacteria, each brown rice flour used as each sample was cultured in a petri dish, and the number of viable bacteria was visually counted with a microscope.

表3に、このときの粉加熱玄米粉の殺菌試験結果を示す。
表3の比較例によると、生玄米粉がもっている一般生菌数は、3.2*10個/gでかなり多く、非衛生的な食品である。
実験例の粉加熱玄米粉においては、製品の加熱温度が100℃以上で加熱時間は約3分間で加熱すれば、一般生菌数は300個/g以下となり、一般生菌は殆ど死滅か、または大きく減少した。
ただし、加熱温度が80℃では、一般生菌数は1.7*10個/g存在しており、参考例に示す小麦粉と同程度であることから、衛生面からみて充分である。しかし、60℃以下の温度では、製品が衛生面からみて一般生菌数が多く不充分である。以上、衛生面からみて、加熱温度の下限値は、最も好ましくは一般生菌数が300以下を示す温度100℃から余裕をみた90℃である。また、好ましくは評価がやや良好となった温度80℃である。
Table 3 shows the sterilization test results of the powder-heated brown rice powder at this time.
According to the comparative example of Table 3, the number of general viable bacteria that raw brown rice flour has is considerably large at 3.2 * 10 5 cells / g, which is an unsanitary food.
In the powder heated brown rice powder of the experimental example, if the heating temperature of the product is 100 ° C. or higher and the heating time is about 3 minutes, the number of general viable bacteria is 300 cells / g or less, and the general viable bacteria are almost dead, Or greatly decreased.
However, when the heating temperature is 80 ° C., the number of general viable bacteria is 1.7 * 10 3 cells / g, which is about the same as the flour shown in the reference example, which is sufficient from the viewpoint of hygiene. However, at a temperature of 60 ° C. or lower, the product has a large number of general viable bacteria from the viewpoint of hygiene and is insufficient. As described above, from the viewpoint of hygiene, the lower limit value of the heating temperature is most preferably 90 ° C. with a margin from the temperature 100 ° C. at which the number of general viable bacteria is 300 or less. Further, the temperature is preferably 80 ° C. at which the evaluation becomes slightly good.

Figure 2005034147
Figure 2005034147

(2)保存試験
保存試験の試料は、生玄米を粉砕した玄米粉を(表3に示す)殺菌試験の実験例と同様に加熱して製作した。
試験ケースは、玄米粉加熱の加熱温度が80℃、100℃、120℃、140℃、160℃、180℃の6種類とした。保存方法は恒温室にて保存温度を20℃に保ち、6カ月間の保存を行った。表4に粉加熱玄米粉の保存試験結果を示す。
(2) Preservation test Samples for the preservation test were produced by heating brown rice powder obtained by pulverizing raw brown rice in the same manner as in the experimental example of the sterilization test (shown in Table 3).
The test case was made into six types of brown rice flour heating temperatures of 80 ° C, 100 ° C, 120 ° C, 140 ° C, 160 ° C and 180 ° C. The preservation | save method kept the preservation | save temperature at 20 degreeC in the thermostatic chamber, and preserve | saved for six months. Table 4 shows the results of the preservation test of the powder heated brown rice flour.

Figure 2005034147
Figure 2005034147

この結果によると、粉加熱した玄米粉の保存日数0日目は、粒加熱玄米粉に比べて酸価も過酸化物価もまたカルボニル価においても、いずれも低い値を示した。
また、粉加熱玄米粉の保存日数60日目は酸価、過酸化物価、カルボニル価においても、保存日数0日目に比べていずれも数値の変化は少なく、糠臭さもなくなった。
また、製品の色づきは加熱温度が140℃付近から変化を始め、若干、粒加熱よりも早かった。特に、加熱温度が160℃を越えた温度域では、製品の色がクリーム色を呈し始め、加熱温度が180℃では粉は加熱装置を構成する加熱筒の内部に付着しやすくなり、焦げを発生させる要因になる恐れが生じ始めた。
更に、6カ月保管の結果からみて、酸価、過酸化物価、カルボニル価において、大きい変化はなく、6カ月間以上の保存が可能であり、長期間の保存性に問題のないことを示した。
According to this result, the preservation | save day of the brown rice flour which carried out the powder heating showed the low value in all of the acid value, the peroxide value, and the carbonyl value compared with the grain heating brown rice flour.
In addition, on the 60th day of storage of the heated brown rice powder, the acid value, peroxide value, and carbonyl value all changed little compared to the 0th day of storage, and the odor was eliminated.
Moreover, the coloring of the product started to change when the heating temperature was around 140 ° C. and was slightly faster than the grain heating. In particular, in the temperature range where the heating temperature exceeds 160 ° C, the color of the product starts to show a cream color, and when the heating temperature is 180 ° C, the powder tends to adhere to the inside of the heating cylinder constituting the heating device and generates scorching. The fear of becoming a factor causing it to begin to arise.
Furthermore, from the results of storage for 6 months, there was no significant change in acid value, peroxide value, and carbonyl value, and it was possible to store for 6 months or more, indicating that there was no problem with long-term storage. .

ここで、このように粉加熱した玄米粉が、粒加熱した玄米粉よりも保存性が高まった要因としては、次のことが推察される。
粒加熱を行った場合、加熱された熱は玄米粒の表面から熱伝達される。このとき、玄米粒の表面には全重量の約1割に当たる糠層が存在しているので、大部分が脂質成分である糠層に高い温度が長時間かかることになる。逆に、デンプン成分の胚乳部には糠層よりも低い温度が長時間かかることになる。このため、糠層に存在する脂質は熱酸化が進み、その後保管中の自動酸化により過酸化物価が高くなり、保存性が悪くなった。
一方、粉加熱を行った場合、加熱された熱は粉砕された玄米粉それぞれの表面から熱伝達される。ところが、玄米粉は粒径が玄米粒に比べて極端に小さいので、加熱は短時間ではあるが、加熱され易く、低温度にて熱量が糠層の脂質成分および胚乳部のデンプン成分に均一にかつ効率的に授受された。玄米粒の表面に存在する糠層の粉砕粉についても同様に加熱された。
このため、糠層の粉砕粉に含まれる脂質は加熱量が少なくてすみ、粒加熱よりも酸化の進行が遅れ、保存性が改善された。しかし、粉加熱玄米粉は粒加熱玄米粉よりも玄米粉全体に均一にかつ効率的に熱量が授受されるので、よく加熱され、水分量が少なくなった。
また、米を貯蔵したときに生じる古米臭や糠臭さの原因には、米が貯蔵されると遊離脂肪酸が増加し、更に分解されてヘキサナール、ペンタナールなどとなり、古米臭が発生するが、これが粉加熱によって古米臭の元となる遊離脂肪酸分解物が更に分解されて臭いが蒸散・消滅したものと推察される。
Here, the following things are guessed as a factor by which the brown rice flour heated in this way increased the preservability rather than the grain-heated brown rice flour.
When grain heating is performed, the heated heat is transferred from the surface of the brown rice grain. At this time, since the cocoon layer corresponding to about 10% of the total weight is present on the surface of the brown rice grain, a high temperature is applied to the cocoon layer, which is mostly a lipid component, for a long time. In contrast, the endosperm portion of the starch component takes a longer temperature than the cocoon layer. For this reason, the lipid existing in the soot layer is thermally oxidized, and then the peroxide value is increased due to auto-oxidation during storage, resulting in poor storage stability.
On the other hand, when powder heating is performed, the heated heat is transferred from the surface of each crushed brown rice powder. However, since the grain size of brown rice flour is extremely small compared to that of brown rice grains, heating is easy, but it is easy to be heated, and the amount of heat is evenly distributed between the lipid component of the straw layer and the starch component of the endosperm at a low temperature. And it was passed efficiently. The crushed powder of the straw layer present on the surface of the brown rice grain was also heated in the same manner.
For this reason, the amount of heating of the lipid contained in the pulverized powder of the cocoon layer is small, and the progress of oxidation is delayed as compared with the grain heating, and the storage stability is improved. However, the powdered brown rice flour was more and more heated and the water content was reduced because the amount of heat was transferred to the whole brown rice flour more uniformly and efficiently than the grain heated brown rice flour.
In addition, the cause of the old rice odor and odor generated when the rice is stored is that when the rice is stored, free fatty acids increase and further decompose into hexanal, pentanal, etc., and an old rice odor is generated. It is inferred that the decomposition of free fatty acid, which is the source of old rice odor, is further decomposed by heating the powder, and the odor transpires and disappears.

ここで、玄米粉の食品としての安全性について検討してみたい。毒性を示すと云われる表4の粉加熱玄米粉におけるカルボニル価の値は、0日目では11〜17で、一方60日目では14〜15であり、これらの値には大きな差がみられないことから、毒性は問題がないものと考える。
更に、ここで4週齢Wistar系ラットにこの粉体加熱した玄米粉を飼料として28日間自由摂取で成育試験を実施した結果、ラットは良好に成育を示し、肝臓でのタンパク合成の抑制および成長の抑制はいずれも起こらず、安全性にも問題のないことを確認している。
I would like to examine the safety of brown rice flour as a food. The carbonyl value of the heated brown rice flour of Table 4 which is said to be toxic is 11 to 17 on the 0th day and 14 to 15 on the 60th day, and there is a large difference between these values. Because there is no toxicity, I think that toxicity is not a problem.
Furthermore, as a result of conducting a growth test on the 4-week-old Wistar rats using this powder-heated brown rice flour as a diet for 28 days, the rats showed good growth, inhibition of protein synthesis in the liver and growth. It has been confirmed that there is no problem with safety.

(3)成分分析
表5に、実施例の粉加熱玄米粉、比較例の粒加熱玄米粉および参考例の生玄米粉の3種類に関する成分分析を示した。
生玄米粉は玄米を水洗いし、水切り乾燥後に粉砕して試作した参考例である。
粉加熱玄米粉は、玄米を水洗いし、水切り乾燥後に一旦粉砕した玄米粉を連続式加熱装置1にて加熱した実験例1で、温度130℃にて加熱して試作したケースである。
また、粒加熱玄米粉は、玄米を水洗いし、30分間浸漬した後、水切りした浸漬玄米を正6角形断面の回転釜をもつ加熱装置に入れて、加熱した比較例で、加熱温度が160℃に至るまで加熱して試作したケースである。
(3) Component analysis In Table 5, the component analysis regarding three types of the powder heating brown rice flour of an Example, the grain heating brown rice flour of a comparative example, and the raw brown rice flour of a reference example was shown.
Raw brown rice flour is a reference example in which brown rice is washed with water, drained and dried, and then pulverized.
Powdered heated brown rice powder is a case where the brown rice powder was washed with water, dried after draining and dried, and then experimentally heated in a continuous heating device 1 at a temperature of 130 ° C. to make a prototype.
The grain-heated brown rice powder is a comparative example in which brown rice is washed with water, dipped for 30 minutes, and then drained, and the dipped brown rice is put in a heating device having a rotary kettle having a regular hexagonal cross section. This is a case where the prototype was heated up to.

Figure 2005034147
Figure 2005034147

表5の結果から、水分は、生玄米粉では13.5%、粉加熱玄米粉では2.6%、粒加熱玄米粉では7.4%となり、粉加熱玄米粉がよく乾燥されていて、水分が最も少なくなっている。この分、玄米粉の主要成分であるタンパク質、脂質、繊維、灰分、糖質、エネルギーはいずれも生玄米粉、粒加熱玄米粉よりも大きい値を示した。そして、保存性についても酸化の進行が抑制される他、水分低下の影響をも受けて粉加熱玄米粉、粒加熱玄米粉、生玄米粉の順によくなった。
また、人の健康を維持させるためのビタミンのうち、ビタミンB2およびビタミンEは、三者とも加熱温度による影響が少なかった。一方、ビタミンB1については加熱の影響を受けており、粉加熱玄米粉は0.20mg/100gで生玄米粉の0.45mg/100gよりも少ないが、しかし、粒加熱粉の0.16mg/100gよりも多く、加熱の影響は少なかった。
必須栄養素のリノール酸、リノレン酸については3ケース共加熱の影響がみられなかった。
From the results in Table 5, the moisture content is 13.5% for raw brown rice flour, 2.6% for flour heated brown rice flour, and 7.4% for grain heated brown rice flour, and the powder heated brown rice flour is well dried, The water is the least. For this amount, protein, lipid, fiber, ash, sugar and energy, which are the main components of brown rice flour, all showed higher values than raw brown rice flour and grain-heated brown rice flour. In addition to the suppression of the progress of oxidation in terms of storability, the effect of moisture reduction was also improved in the order of flour-heated brown rice flour, grain-heated brown rice flour, and raw brown rice flour.
Of the vitamins for maintaining human health, vitamin B2 and vitamin E were less affected by the heating temperature in all three. On the other hand, vitamin B1 is affected by heating, and the powder heated brown rice powder is 0.20 mg / 100 g, which is less than 0.45 mg / 100 g of raw brown rice powder, but 0.16 mg / 100 g of the grain heated powder. More and less affected by heating.
The essential nutrients linoleic acid and linolenic acid were not affected by heating in the three cases.

また、糊化度は、粉加熱玄米粉では41%と高くなり、粒加熱玄米粉では25%、生玄米粉では20%となり、この水分の順位とは逆の順位になった。これは、粉加熱玄米粉が粒加熱玄米粉に比べて均一に内部までよく加熱されたことを意味する。
このように粉加熱製法は、従来の160℃を中心とする温度域で使用する粒加熱製法に比べて低温度加熱で、かつ短時間加熱が可能であることから、加熱温度の影響が少なく、栄養成分的にみて品質が良好になった。また、香りも生じた。また、粉加熱製法は玄米粉に対して均一に加熱ができ、加熱効率が高いことから、出来た製品は水分が極端に低下した、しかも糊化度が進んでいた。
ここに、改めて表6に粉加熱玄米粉のなかに含まれ、人の健康を維持させ、人体の成育に関連する栄養成分として、ビタミンおよびアミノ酸の代表として有効性リジンを選び加熱温度に対して変化した分析結果を示す。
ビタミンB2およびビタミンEは、加熱温度による影響が少なかった。一方、ビタミンB1および有効性リジンは、160℃の加熱温度に至ると影響され、若干の低下がみられた。また、200℃、220℃では大きく低下した。
この結果から加熱温度の上限値は、最も好ましくは栄養成分の破壊が殆どない温度130℃であり、また、好ましくは栄養成分が一部破壊されるが、大半の栄養成分が留まる温度160℃である。また、160℃を越える加熱温度では、データは示さないが製品の糊化度が更に進み、生地に弾力性が低下するので、パンの膨れが劣り、麺の伸びやコシが悪くなる傾向がある。
In addition, the degree of gelatinization was as high as 41% in the powder heated brown rice flour, 25% in the grain heated brown rice flour, and 20% in the raw brown rice flour, which was in the reverse order of the moisture content. This means that the powder-heated brown rice flour was heated evenly and uniformly compared to the grain-heated brown rice flour.
Thus, the powder heating manufacturing method is less affected by the heating temperature because it can be heated at a low temperature and for a short time compared to the conventional grain heating manufacturing method used in a temperature range centered on 160 ° C., The quality was improved in terms of nutritional components. A fragrance was also produced. Moreover, since the powder heating method can uniformly heat brown rice flour and the heating efficiency is high, the resulting product has extremely low moisture content, and the degree of gelatinization has progressed.
Here again, Table 6 contains the powdered heated brown rice flour to maintain human health and select effective lysine as a representative of vitamins and amino acids as nutritional components related to the growth of the human body against the heating temperature. The changed analysis results are shown.
Vitamin B2 and vitamin E were less affected by the heating temperature. On the other hand, vitamin B1 and effective lysine were affected when reaching a heating temperature of 160 ° C., and a slight decrease was observed. Moreover, it decreased greatly at 200 ° C and 220 ° C.
From this result, the upper limit value of the heating temperature is most preferably 130 ° C. at which the nutrient components are hardly destroyed, and preferably the nutrient components are partially destroyed, but the temperature at which most of the nutrient components remain is 160 ° C. is there. At heating temperatures exceeding 160 ° C., data is not shown, but the degree of gelatinization of the product is further advanced, and the elasticity of the dough is lowered, so that the bread swells are inferior and the elongation and stiffness of the noodles tend to be poor. .

以上、加熱温度の下限値結果を組み合わせると、最も好ましい加熱温度域は、90℃〜130℃である。また、好ましい加熱温度域は、80℃〜160℃である。
また、そのときの加熱時間は連続式加熱装置1の傾斜した加熱筒を通過する時間であり、実験結果から通常の時間は3分を要する。一方、穀物が均一に揃って通過制御可能な時間は5分程度である。
As described above, when the lower limit result of the heating temperature is combined, the most preferable heating temperature range is 90 ° C to 130 ° C. Moreover, a preferable heating temperature range is 80 degreeC-160 degreeC.
Moreover, the heating time at that time is a time which passes through the inclined heating cylinder of the continuous heating apparatus 1, and a normal time of 3 minutes is required from the experimental results. On the other hand, the time during which grain can be uniformly controlled and controlled for passage is about 5 minutes.

Figure 2005034147
Figure 2005034147

以上の試験結果をまとめると、一般生菌数試験では粉砕工程の直後に加熱温度80℃以上の温度で、粉加熱すれば、一般生菌は低減又は死滅した。
また、保存試験から、粒加熱玄米粉が1カ月程度の保存性に比べて、粉加熱玄米粉は6カ月間保存しても酸価、過酸化物価およびカルボニル価の値が殆ど上昇せず長期保存ができた。
また、成分分析試験から、粉加熱玄米粉は栄養成分的にみても品質が良好であり、一方、香りも高く、糊化度も粒加熱玄米粉よりも進み、口に含んだときに甘みのあるザラツキ感の少ない粉になっていた。従って、この粉加熱玄米粉の用途としては、麺、パン、菓子に使用する小麦粉の代替原料の他、この粉は乳白色の色を呈し、しかも香りがあることからそのままミルクやお湯に入れて飲むこともできる。
Summarizing the above test results, in the general viable count test, when the powder was heated at a heating temperature of 80 ° C. or more immediately after the pulverization step, the viable bacteria were reduced or killed.
In addition, from the storage test, compared to the storage stability of grain-heated brown rice flour for about one month, even when the powder-heated brown rice flour is stored for 6 months, the acid value, peroxide value, and carbonyl value hardly increase. I was able to save it.
In addition, from the component analysis test, the powdered brown rice flour has good quality in terms of nutritional components, while the fragrance is higher and the degree of gelatinization is higher than that of the grain heated brown rice flour. It was a powder with a little rough feeling. Therefore, the heated brown rice flour can be used as an alternative raw material for flour used in noodles, bread and confectionery, as well as in milk or hot water as it has a milky white color and aroma. You can also

なお、この粉の平均粒径は衝撃式粉砕機にて粉砕しており、約65ミクロンであるが、この粉を更に再粉砕することによって、加熱時に粉どうしで固まった塊を粉砕することができるので、粉は固まりのない、均一に、しかも口の中でザラツキを感じにくい、平均粒径が約40ミクロンの微細な粉になる。
また、この製造方法は米や玄米だけでなく、発芽玄米、小麦粉、大麦粉や豆類など穀物粉一般の加熱にも適用可能である。
The average particle size of this powder is pulverized by an impact pulverizer and is about 65 microns. By re-pulverizing this powder, it is possible to pulverize a lump solidified by powder during heating. As a result, the powder becomes a fine powder with an average particle diameter of about 40 microns, which is not lumpy, uniform and hardly feels rough in the mouth.
Moreover, this manufacturing method can be applied not only to rice and brown rice but also to heating of grain flour such as germinated brown rice, wheat flour, barley flour and beans.

玄米がもつ栄養成分および物性は極力変えずに、しかも玄米表面に多く存在する一般生菌数を減少させるため、薬品殺菌および低加熱殺菌を行った玄米粉を作成し、各種分析試験のうえ評価した。
薬品殺菌は、食品洗浄に使用する次亜塩素酸ナトリウム溶液を清水に加え100ppmの溶液をつくり、この溶液に玄米を3分間浸漬させ、その後清水に入れて1分間洗浄した。その結果、一般生菌数は4400個/gに低下した。この値は衛生面からみて充分に安全な数値である300個/g以下ではなく、このため、溶液濃度を高めると作業者の安全性に課題があり、また、浸漬時間を延長すると玄米の色や品質を変化させるので、この試験はここで中止した。
In order to reduce the number of general viable bacteria present on the surface of brown rice without changing the nutrients and physical properties of brown rice as much as possible, we created brown rice flour that was sterilized by chemical and low heat sterilization and evaluated it through various analytical tests. did.
In chemical sterilization, a sodium hypochlorite solution used for food washing was added to fresh water to make a 100 ppm solution. Brown rice was immersed in this solution for 3 minutes, and then placed in fresh water for 1 minute. As a result, the number of general viable bacteria decreased to 4400 / g. This value is not less than 300 pieces / g, which is a sufficiently safe value from the viewpoint of hygiene. For this reason, if the solution concentration is increased, there is a problem in worker safety, and if the soaking time is extended, the color of brown rice The test was discontinued here because it changed the quality.

低加熱殺菌は、玄米を水洗いし自然乾燥した後、衝撃粉砕機を取り外した本発明の連続式加熱装置1を用いて、比較例と同様に粒加熱した。なお、加熱温度は加熱後の製品温度(以後、加熱温度と称す。)が50℃〜80℃となるように温度制御にて火力調整した。加熱時間は約3分であった。その後、粒加熱した玄米を粉砕して玄米粉を試作した。出来た玄米粉について、一般生菌数、糊化度を分析すると共に、保存温度20℃にて2カ月間保存し、酸化状況を測定した。 In the low heat sterilization, the brown rice was washed with water and dried naturally, and then the grain heating was performed in the same manner as in the comparative example using the continuous heating apparatus 1 of the present invention from which the impact pulverizer was removed. The heating temperature was adjusted by heating so that the product temperature after heating (hereinafter referred to as heating temperature) was 50 ° C. to 80 ° C. The heating time was about 3 minutes. Then, the brown rice powder heated by grain was pulverized to produce a brown rice powder. The resulting brown rice flour was analyzed for the number of viable bacteria and the degree of gelatinization, and stored for 2 months at a storage temperature of 20 ° C., and the oxidation state was measured.

表7に低加熱玄米粉の試験結果を示す。一般生菌数については玄米粒の生菌数を示し、加熱温度が50℃では5200個/g、55℃では580個/g、60℃、70℃および80℃では共に300個/gであった。この一般生菌数の分析結果からみると、加熱温度が55℃以上であることが望ましい。
一方、2カ月間の保存試験については、加熱温度が55℃、60℃では酸価が27〜28、過酸化物価は17meq/kg、カルボニル価は16であり、また、製品温度が70℃では、酸価が26、過酸化物価は27meq/kg、カルボニル価は17となり、いずれの加熱温度も食品衛生法上問題がなかった。
Table 7 shows the test results of the low heat brown rice flour. The number of viable bacteria is the number of brown rice grains. The heating temperature is 5200 / g at 50 ° C, 580 / g at 55 ° C, and 300 / g at 60 ° C, 70 ° C and 80 ° C. It was. From the analysis result of the general viable count, it is desirable that the heating temperature is 55 ° C. or higher.
On the other hand, in the storage test for 2 months, the acid value is 27 to 28, the peroxide value is 17 meq / kg, the carbonyl value is 16 at the heating temperature of 55 ° C and 60 ° C, and the product temperature is 70 ° C. The acid value was 26, the peroxide value was 27 meq / kg, and the carbonyl value was 17. None of the heating temperatures had any problems in the Food Sanitation Law.

製品温度が80℃では酸価が25、過酸化物価は37meq/kg、カルボニル価は18であり、過酸化物価が30meq/kgを超過しており、食品衛生法上問題が生じていた。
これら2カ月間の保存試験の結果から過酸化物価が30meq/kg以下になる値を想定すると、加熱温度は75℃以下であることが必要である。
また、玄米粉の物性面からみて、玄米を加熱した場合のデンプンの糊化度を調べた。糊化度の分析はグルコ・アミラーゼ法で行った。その結果、非加熱の生玄米および60℃加熱の玄米では20%に対し、70℃および80℃加熱の玄米では、21%と若干上昇した。
これらの結果から、水洗いによる浸漬時間が数分間と短く、含水率が14〜17%と低い玄米を75℃以下の温度で加熱しても、糊化度の上昇は行われず、また行われても低かった。
When the product temperature was 80 ° C., the acid value was 25, the peroxide value was 37 meq / kg, the carbonyl value was 18, and the peroxide value exceeded 30 meq / kg, which caused problems in the Food Sanitation Law.
Assuming that the peroxide value is 30 meq / kg or less from the results of these two months of storage tests, the heating temperature needs to be 75 ° C. or less.
In addition, from the viewpoint of the physical properties of brown rice flour, the gelatinization degree of starch when brown rice was heated was examined. The analysis of the gelatinization degree was performed by the gluco-amylase method. As a result, the unheated raw brown rice and 60 ° C heated brown rice increased 20%, while the 70 ° C and 80 ° C heated brown rice slightly increased to 21%.
From these results, the soaking time by washing with water is as short as a few minutes, and even when brown rice having a low moisture content of 14 to 17% is heated at a temperature of 75 ° C. or lower, the degree of gelatinization is not increased and is performed. Was also low.

以上から、加熱温度が55℃〜75℃であれば、一般生菌数の低減、酸化の抑制による保存性の改善、および糊化の抑制が行われる。この結果、生玄米を加熱温度55℃〜75℃で5分以内の短時間加熱することによって、生玄米では流通が課題であった一般生菌数、保存性、酸化、品質の問題が一挙に解消される。
すなわち、玄米の加熱温度は食品衛生、保存性、物性の点から、55℃〜75℃の範囲で、時間は5分間以内の短時間で行うのが望ましい。また、最も望ましい加熱温度は糊化が進展されない物性に関する条件を厳しくした、55℃〜60℃の範囲である。
また、そのときの加熱方法については、余り手段を選ばず、加熱釜以外に加熱板としてフライパンのような物でもよく、或いはお湯に浸漬してもよく、また玄米をネットに入れたり、また玄米を穴あきトレイに入れてトレイの上部を蓋してお湯を高圧噴射させてもよい。なお、お湯に浸漬したり、お湯を高圧噴射をするときの時間は3分以内で充分である。
その後、加熱された玄米は粉砕機を用いて粉砕して玄米粉をつくる。なお、加熱手段にお湯を用いた場合は、自然乾燥または温風乾燥を行って、玄米の含水率が14%に低下するまで乾燥する。
From the above, when the heating temperature is 55 ° C. to 75 ° C., the number of general viable bacteria is reduced, storage stability is improved by suppressing oxidation, and gelatinization is suppressed. As a result, by heating raw brown rice at a heating temperature of 55 ° C. to 75 ° C. for a short time of 5 minutes or less, the problems of general viable bacteria count, storage stability, oxidation, and quality, which were issues in circulation in raw brown rice, were all at once. It will be resolved.
That is, it is desirable that the brown rice is heated at a temperature in the range of 55 ° C. to 75 ° C. for a short time of 5 minutes or less from the viewpoint of food hygiene, storage stability and physical properties. The most desirable heating temperature is in the range of 55 ° C. to 60 ° C., where conditions relating to physical properties where gelatinization does not progress are strict.
Moreover, about the heating method at that time, it does not choose a surplus means, a thing like a frying pan as a heating plate other than a heating pot may be used, or it may be immersed in hot water, brown rice is put in a net, or brown rice May be put in a perforated tray and the top of the tray may be covered to spray hot water at a high pressure. It should be noted that the time required for immersing in hot water or spraying hot water at a high pressure is sufficient within 3 minutes.
Thereafter, the heated brown rice is pulverized using a pulverizer to produce brown rice flour. In addition, when hot water is used for the heating means, natural drying or warm air drying is performed, and drying is performed until the moisture content of the brown rice is reduced to 14%.

この低加熱殺菌により得られた玄米粉の特長は、粉の色は白く、一般生菌数が少なく衛生的であり、生玄米とほぼ同様の栄養成分が確保できる。粉の粒径は、小麦粉の粒径70~80ミクロンよりも小さく、生玄米粉と同様の約65ミクロンであり、少しザラツキ感は残るが、製パン性に優れている。
また、酸化の進行が抑制され、2カ月程度の保存性が生じて、短期間の流通が可能である。しかも糊化度が低いので、パン・麺・菓子などへ生玄米粉と同様な物性が保たれ、食品への適用が広いことである。
The characteristics of the brown rice powder obtained by this low heat sterilization are that the color of the powder is white, the number of general viable bacteria is small and hygienic, and the nutrient components similar to those of raw brown rice can be secured. The particle size of the flour is smaller than the particle size of wheat flour of 70 to 80 microns and is about 65 microns, which is the same as that of raw brown rice flour.
In addition, the progress of oxidation is suppressed, storage stability of about 2 months is generated, and short-term distribution is possible. Moreover, since the degree of gelatinization is low, the same physical properties as raw brown rice flour can be maintained for bread, noodles, confectionery, etc., and the application to food is wide.

Figure 2005034147
Figure 2005034147

<本発明の利用に関する実施の形態>
次に、本発明の玄米粉の利用に関する実施の形態について説明する。
玄米粉の使用目的の一つには、パン・麺・菓子および料理の食品素材などへの利用である。ここでは、パンと麺への利用について試験を行い、その有効性について確認した。
<Embodiment relating to utilization of the present invention>
Next, an embodiment relating to the use of the brown rice flour of the present invention will be described.
One of the purposes of using brown rice flour is to make bread, noodles, confectionery and food ingredients for cooking. Here, a test was conducted on the use for bread and noodles, and its effectiveness was confirmed.

水洗いした玄米を乾燥し粉砕した後、120℃の加熱温度にて実施例1の粉加熱を行い、作成した粉加熱玄米粉を用いて生麺を試作し、評価した。
試料は、小麦粉に粉加熱玄米粉を0%、10%、20%、30%添加した粉に粉基準で2%〜6%のNaClとなる食塩水を加えて混捏、生地熟成、圧延、線切りし、生麺を調整した。その後、15分間茹でた後に水冷して茹で麺を試作した。
ここに、粉加熱玄米粉を10%添加したときのNaClの影響を調べた結果を示す。生麺の引張り強度は、NaCl無添加時には1.6*10N/mからNaClが6%添加時には3.2*10N/mに緩やかに増加し、良好になった。伸び率は、NaCl無添加時には2.7%からNaClが2%、4%、6%添加時にはそれぞれ3.8%、3.9%、4.4%となり、特にNaClが2%添加時において急激に増加し、良好になった。切断強度は7.4*10N/mからNaClが2%、4%、6%添加時には、それぞれ6.0*10N/m、6.2*10N/m、5.7*10N/mとなり、特にNaClが2%において急激に低下した。
以上の結果からNaClが増加すると、引張り強度および伸び率は良好になるが、切断強度は低下する。しかし、そのときNaClを2%から増加させても引張り強度および伸び率は停滞状態になり、逆に、切断強度は低下し、麺は切れやすくなる。これらのことから、NaClの適正な添加量は2〜3%で充分である。このNaClの添加量は、通常のNaClが4〜6%程度からして約半分に低下しており、減塩になっていた。
また、そのときの食塩水の適正な加水量は、粉基準で無添加時には45%、10%添加時には47.5%、20%添加時には50%、30%添加時には52.5%であった。
次に、粉加熱玄米粉の混入率が0%、10%、30%の茹で麺に関して、硬さ、コシ、滑らかさおよび総合評価について、評価者30名にて7点評価法で官能評価した。この評価法は、基準を0点とし、また良くない場合はマイナス点を、逆に良い場合は+点を与え、−3~+3の範囲で評価を行う方法である。
After drying and pulverizing the washed brown rice, the powder of Example 1 was heated at a heating temperature of 120 ° C., and raw noodles were made and evaluated using the prepared powder-heated brown rice flour.
The sample is a mixture of wheat flour with 0%, 10%, 20%, 30% flour-heated brown rice flour and a salt solution of 2% to 6% NaCl on the basis of flour, kneading, dough ripening, rolling, wire cutting The raw noodles were adjusted. Thereafter, the mixture was boiled for 15 minutes, and then water-cooled to produce a boiled noodle.
Here, the result of investigating the influence of NaCl when adding 10% of powder heated brown rice flour is shown. The tensile strength of the raw noodles gradually improved from 1.6 * 10 4 N / m 2 when no NaCl was added to 3.2 * 10 4 N / m 2 when 6% NaCl was added. The elongation increases from 2.7% when no NaCl is added to 3.8%, 3.9%, and 4.4% when NaCl is added to 2%, 4%, and 6%, respectively, particularly when 2% NaCl is added. It increased rapidly and became better. The cutting strength is 7.4 * 10 4 N / m 2 to 6.0 * 10 4 N / m 2 , 6.2 * 10 4 N / m 2 when NaCl is added at 2%, 4% and 6%, It became 5.7 * 10 4 N / m 2 , and NaCl decreased rapidly especially at 2%.
From the above results, when NaCl is increased, the tensile strength and the elongation are improved, but the cutting strength is lowered. However, even if NaCl is increased from 2% at that time, the tensile strength and the elongation ratio are stagnant, and conversely, the cutting strength is lowered and the noodles are easily cut. For these reasons, a proper addition amount of NaCl is 2 to 3%. The amount of NaCl added was reduced to about half from the normal NaCl level of about 4 to 6%, resulting in salt reduction.
In addition, the proper amount of salt water at that time was 45% when no addition was made, 47.5% when 10% was added, 50% when 20% was added, and 52.5% when 30% was added. .
Next, with respect to boiled noodles with a mixing rate of flour heated brown rice flour of 0%, 10%, and 30%, the hardness, stiffness, smoothness and comprehensive evaluation were sensory evaluated by 30 evaluators using a 7-point evaluation method. . This evaluation method is a method in which the criterion is 0 point, a negative point is given if it is not good, and a + point is given if it is good, and evaluation is performed in the range of -3 to +3.

表8に茹で麺の官能評価の結果を示す。粉加熱玄米粉10%、30%添加の茹で直後の麺は、硬さ、コシ、滑らかさ、および総合評価とも無添加の麺に比べて上位で評価が良好であった。
しかし、4時間放置後ではいずれの評価項目とも評価は低くなった。
このように粉加熱玄米粉を添加した麺は、切断強度は低下するが、官能評価の結果でみると、茹で直後であれば、硬さ、コシともに評価は高く、乳白色を呈する点を除けば、小麦粉のみの無添加麺よりも評価は高いので、普及の可能性は高いと思われる。
また、食塩添加量は無添加麺よりも減塩となっており、更には、玄米がもつ栄養効果を併せればヘルシーの効果が期待できる。
Table 8 shows the results of sensory evaluation of boiled noodles. Noodles immediately after boiling with 10% powdered brown rice flour and 30% added had higher evaluations in terms of hardness, stiffness, smoothness, and overall evaluation than those without additives.
However, the evaluation was low for all evaluation items after being left for 4 hours.
Noodles added with powdered brown rice flour in this way have reduced cutting strength, but the results of sensory evaluation show that if it is immediately after boiling, both the hardness and stiffness are highly evaluated, except that it exhibits a milky white color. Since the evaluation is higher than the additive-free noodles containing only flour, the spread is likely to be high.
Moreover, the amount of salt added is lower than that of the additive-free noodles. Furthermore, if the nutritional effect of brown rice is combined, a healthy effect can be expected.

Figure 2005034147
Figure 2005034147

実施例2の低加熱玄米粉を用い、玄米粉の添加率を変えて玄米粉ブレンド食パンを試作し、対象者782名のアンケート調査を実施した。
玄米粉の試料は、玄米デンプンの糊化を極力避けるため、糊化開始温度と云われる62℃の温度よりも低い、玄米粒の加熱温度が58℃となるように本発明の連続式加熱装置1を用いて、比較例と同様に粒加熱し、冷却後に粉砕した。なお、加熱時間は約3分であった。
玄米粉ブレンド食パンは、この低加熱玄米粉の添加率を小麦粉に対し0%、20%、40%と変えて小麦粉に混入し、更にこの低加熱玄米粉と小麦粉の混合粉250gに対し、砂糖15g、食塩4.5g、スキムミルク5.5g、無塩バター10g、水200mlを加え、更にドライイースト3gを加えた割合で材料をつくり、4時間かけて練り・焼成した。
Using the low-heated brown rice flour of Example 2, the brown rice flour blend bread was made by changing the addition rate of the brown rice flour, and a questionnaire survey of 782 subjects was conducted.
In order to avoid gelatinization of the brown rice starch as much as possible, the brown rice flour sample has a continuous heating device of the present invention so that the heating temperature of the brown rice grains is 58 ° C., which is lower than the temperature of 62 ° C., which is called the gelatinization start temperature. 1 was used to heat the particles in the same manner as in the comparative example, and pulverized after cooling. The heating time was about 3 minutes.
The brown rice flour blend bread is mixed with wheat flour by changing the addition rate of this low-heated brown rice flour to 0%, 20% and 40% with respect to the wheat flour. 15 g of salt, 4.5 g of salt, 5.5 g of skim milk, 10 g of unsalted butter, and 200 ml of water were added, and a material was prepared at a ratio of 3 g of dry yeast, and kneaded and calcined for 4 hours.

表9に、低加熱玄米粉を用いたブレンド食パンのアンケート調査結果を示す。
玄米粉の添加率別では、いずれも60%〜70%の者が「大変おいしい」または「おいしい」と答え、小麦粉食パンと大差はなかった。
なかでも、玄米粉添加率が20%の食パンは、「おいしく感じる」者が69%と無添加食パンの66%よりも少し高かった。また、玄米粉添加率が40%の食パンは、「おいしく感じる」者が62%と低下した。
また、そのとき「おいしさ」を選んだ理由について回答を求めた結果は、44%の者が「もちもち感のある食感」を選択し、次に「味」が20%、「健康」が17%、「香り」が9%の順であった。
以上の結果から、低加熱玄米粉のブレンド食パンは、玄米粉添加率が40%までは、もちもち感が生じておいしく、むしろ玄米粉添加率が20%では玄米粉無添加食パンよりもおいしく食することができることが明らかになった。
Table 9 shows the results of a questionnaire survey of blended bread using low-heated brown rice flour.
According to the addition rate of brown rice flour, 60% to 70% of the respondents answered “very delicious” or “delicious”, which was not much different from wheat flour bread.
Among them, the bread with 20% brown rice flour addition rate was 69% for “feeling delicious”, slightly higher than 66% for the additive-free bread. In addition, the bread that had a brown rice flour addition rate of 40% had a 62% drop in “feeling delicious”.
At the same time, 44% of the respondents asked for the reason why they chose “taste”, and “taste” had a “feeling of being motivated”, followed by “taste” of 20% and “health” The order of 17% and “scent” was 9%.
From the above results, the blended bread of low-heated brown rice flour has a glutinous sensation when the brown rice flour addition rate is up to 40%, but rather than the brown rice flour additive-free bread when the brown rice flour addition rate is 20%. It became clear that it was possible.

Figure 2005034147
Figure 2005034147

また、食パンの他にこの低加熱玄米粉を用いて、低加熱玄米粉の使用が20%の豆パン、低加熱玄米粉の使用が100%のパウンドケーキ、クッキーなどを試作し、アンケート調査の結果を表10に示す。この結果、いずれも食パンよりもおいしいとの高い回答が得られた。 In addition to bread, this low-heated brown rice flour is used to make 20% bean bread that uses low-heat brown rice flour, 100% pound cake and cookies that use low-heat brown rice flour, The results are shown in Table 10. As a result, a high response was obtained that both were delicious than bread.

Figure 2005034147
Figure 2005034147

本発明は、玄米粒を加熱したのち粉砕する従来の製造方法から、玄米粒を粉砕したのちに加熱する製造方法に換えるものである。そのことから、本発明による新しい連続式加熱装置を製作・運転することによって新しい玄米粉の製造が技術的には可能となる。
一方、本発明の利用範囲はパン、麺、菓子などへの適用が主であるが、玄米粉の保存性が長期となり栄養性が高まることから、国内の消費の拡大にとどまらず、今まで出来なかった海外へ向けて輸送も可能となり、海外への玄米粉を使った輸出食品および難民への玄米粉食糧援助も可能となるので、従来の利用範囲よりも大きな拡大が期待される。
The present invention replaces the conventional manufacturing method in which brown rice grains are heated and then pulverized, to a manufacturing method in which brown rice grains are pulverized and then heated. Therefore, it is technically possible to produce new brown rice flour by producing and operating a new continuous heating apparatus according to the present invention.
On the other hand, the scope of use of the present invention is mainly applicable to bread, noodles, confectionery, etc., but since the preservation of brown rice flour has become long-term and nutritional, it has not been limited to the expansion of domestic consumption. It can be transported overseas, and exports using brown rice flour overseas and brown rice flour food assistance to refugees are also possible.

また、この技術は玄米粉の適用にとどまらず、穀物全般に適用可能である。   In addition, this technology is applicable not only to brown rice flour but also to all grains.

本発明の実施形態にかかる連続式加熱装置の概要図1 is a schematic diagram of a continuous heating device according to an embodiment of the present invention. 図1の加熱筒回転輪と回転モータの連結状態を示す機構図FIG. 1 is a mechanism diagram showing a connected state of the heating cylinder rotating wheel and the rotating motor of FIG. 図1の衝撃粉砕装置の取り付け状態を示す機構図FIG. 1 is a mechanism diagram showing the mounting state of the impact crushing device of FIG. 図3の衝撃粉砕装置内の衝撃粉砕機を示す機構図Mechanism diagram showing impact crusher in the impact crusher of FIG. 図1の定量供給装置を示す機構図FIG. 1 is a mechanism diagram showing the quantitative supply device of FIG. 図1の投入側開口調整扉の取り付けを示す機構図Fig. 1 is a mechanism diagram showing the installation of the closing opening adjustment door in Fig. 1 a;図1の排出側支持金物の脱着を示す機構の側面図b;図1の排出側支持金物の脱着を示す機構の正面図c;図1の排出側支持金物の脱着を示す機構の平面図1 is a side view of the mechanism showing the attachment / detachment of the discharge-side support metal in FIG. 1; b is a front view of the mechanism showing the attachment / detachment of the discharge-side support metal in FIG. Figure 玄米粉の製造工程図Production process diagram of brown rice flour

符号の説明Explanation of symbols

1 実施形態にかかる連続式加熱装置
2 加熱筒
3 加熱器
4 投入ホッパー
5 排出ホッパー
6 回転モータ
7 回転装置
8 ハウジング
9 架台
10 支持脚
11 回転輪
12 加熱筒軸受け
13 ベルト
14 投入筒
15 炉壁
16 排気筒
17 温度センサー
18 傾斜角調整脚
19 固定脚
20 油圧シリンダ
21 投入側支持金物
22 回転粉砕装置
23 回転粉砕機
24 カップリング
25 粉砕モータ
26 粉砕軸
27 粉砕アーム
28 回転粉砕バー
29 供給モータ
30 推進機構部
31 粉砕軸受け
32 開口遮蔽板
33 開口調整扉
34 排出側支持金物
35 調整扉軸
36 排出側支持金物取り付けボルト
37 ガイド
DESCRIPTION OF SYMBOLS 1 Continuous heating device 2 concerning embodiment Embodiment 2 Heating cylinder 3 Heater 4 Input hopper 5 Discharge hopper 6 Rotating motor 7 Rotating device 8 Housing 9 Base 10 Support leg
DESCRIPTION OF SYMBOLS 11 Rotating wheel 12 Heating cylinder bearing 13 Belt 14 Input cylinder 15 Furnace wall 16 Exhaust cylinder 17 Temperature sensor 18 Inclination angle adjusting leg 19 Fixed leg 20 Hydraulic cylinder 21 Input side support metal 22 Rotating crusher 23 Rotating crusher 24 Coupling 25 Crushing Motor 26 grinding shaft 27 grinding arm
28 Rotating Crushing Bar 29 Supply Motor 30 Propulsion Mechanism 31 Crushing Bearing 32 Opening Shielding Plate 33 Opening Adjustment Door 34 Discharge Side Support Metal 35 Adjustment Door Shaft 36 Discharge Side Support Metal Mounting Bolt 37 Guide

Claims (4)

玄米粉の製造において、玄米を粉砕工程の直後に加熱する、又は、分割された複数の粉砕工程がある場合、分割された先の粉砕工程が終了した直後に加熱し冷却後に再粉砕する、ただし、玄米粉の加熱条件は同加熱における製品温度が80℃〜160℃に到達することを特長とする玄米粉の製造方法 In the production of brown rice powder, brown rice is heated immediately after the pulverization step, or when there are a plurality of divided pulverization steps, heated immediately after completion of the divided pulverization step and then re-pulverized after cooling. The heating conditions for brown rice flour are characterized in that the product temperature in the heating reaches 80 ° C. to 160 ° C. 玄米粒を加熱板または加熱釜を用いて加熱した後に粉砕する、或いは玄米粒を湯の浸漬または湯の噴射によって加熱した後、同玄米粒を乾燥し粉砕する、ただし、同玄米粒の加熱条件は同加熱後の製品温度がいずれも55℃〜75℃に到達することを特長とする玄米粉の製造方法 The brown rice grains are pulverized after being heated using a heating plate or a heating kettle, or the brown rice grains are heated by dipping or spraying with hot water, and then the brown rice grains are dried and pulverized. Is a method for producing brown rice flour, characterized in that the product temperature after heating reaches 55 ° C to 75 ° C. 請求項1に記載する玄米粉をはじめとする穀物粉の製造方法において使用する、多角形断面形状を有し、一端は穀物粉を投入口とし他端は排出口とする中空の加熱筒と、同加熱筒の投入口内部まで挿入した推進機構付き投入筒を備えた投入ホッパーと、同加熱筒を加熱させるための加熱器と、同加熱筒を回転させるための回転装置と、同加熱筒の内部にて団粒化した穀物粉を衝撃粉砕させるための回転粉砕機を回転させる構造をもつ回転粉砕装置と、同加熱筒に投入された穀物粉を投入側から排出側に攪拌移動させるための傾斜調整器とを備えたことを特長とする連続式加熱装置 A hollow heating cylinder having a polygonal cross-sectional shape for use in a method for producing cereal flour including brown rice powder according to claim 1, wherein one end is a cereal flour inlet and the other end is an outlet. A charging hopper provided with a charging cylinder with a propulsion mechanism inserted into the charging cylinder, a heater for heating the heating cylinder, a rotating device for rotating the heating cylinder, A rotary pulverizer with a structure that rotates a rotary pulverizer for impact pulverizing the cereal powder that has been agglomerated inside, and for stirring and moving the cereal powder charged in the heating cylinder from the input side to the discharge side A continuous heating device characterized by comprising an inclination adjuster 請求項3に記載する穀物粉の連続式加熱装置において、脱着可能とした同回転粉砕機を取り除くことによって、請求項2に記載する玄米をはじめとする穀物粒の加熱が可能となることを特長とする連続式加熱装置
In the continuous heating apparatus for grain flour according to claim 3, it is possible to heat grain grains including brown rice according to claim 2 by removing the rotary pulverizer that can be detached. Continuous heating device
JP2004189528A 2003-06-30 2004-06-28 Method for producing unpolished rice powder and heating apparatus Pending JP2005034147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189528A JP2005034147A (en) 2003-06-30 2004-06-28 Method for producing unpolished rice powder and heating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003186897 2003-06-30
JP2004189528A JP2005034147A (en) 2003-06-30 2004-06-28 Method for producing unpolished rice powder and heating apparatus

Publications (1)

Publication Number Publication Date
JP2005034147A true JP2005034147A (en) 2005-02-10

Family

ID=34220455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189528A Pending JP2005034147A (en) 2003-06-30 2004-06-28 Method for producing unpolished rice powder and heating apparatus

Country Status (1)

Country Link
JP (1) JP2005034147A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543562A (en) * 2006-07-19 2009-12-10 グレイン フーズ シーアールシー リミテッド Spread food and manufacturing method thereof
JP2010172297A (en) * 2009-01-30 2010-08-12 Takefumi Yoneya Method for producing brown rice noodle
CN112871123A (en) * 2020-12-29 2021-06-01 罗兴佳 Chemical production uses high-efficient type reation kettle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543562A (en) * 2006-07-19 2009-12-10 グレイン フーズ シーアールシー リミテッド Spread food and manufacturing method thereof
JP2014014378A (en) * 2006-07-19 2014-01-30 Blue Ribbon Roasting Pty Ltd Manufacturing method of spread food product
JP2010172297A (en) * 2009-01-30 2010-08-12 Takefumi Yoneya Method for producing brown rice noodle
CN112871123A (en) * 2020-12-29 2021-06-01 罗兴佳 Chemical production uses high-efficient type reation kettle

Similar Documents

Publication Publication Date Title
Boukid et al. A compendium of wheat germ: Separation, stabilization and food applications
KR101814262B1 (en) Bran and germ flavor and texture improvement
CN104270959A (en) Cereal pieces containing alpha-linolenic acid
KR101641374B1 (en) Rice bran-powder manufacturing device
JP3656234B2 (en) Food material or food and production method thereof
KR101642353B1 (en) Rice bran-powder manufacturing method and rice bran-powder manufacturing device using the same
Wang et al. A comprehensive review of cereal germ and its lipids: Chemical composition, multi-objective process and functional application
KR101877418B1 (en) Manufacturing method of fermented rice cake using lactic acid bacteria
PT1733628E (en) Process for granulation of high lipid content processed foods and product thereof
KR101540996B1 (en) Method for mass producing the scorched rice mixed with black garlic
JP2005034147A (en) Method for producing unpolished rice powder and heating apparatus
KR20200016907A (en) Processing method of pasteurized nuts
JP4320293B2 (en) Food material or food and production method thereof
KR20030009827A (en) Method for preparing food composition comprising wheat bran and functional food using same
KR20090007000A (en) Method for producing sea alga powder having no bad smell, the sea alga powder produced therebay and cookie composition including the sea alga powder
Manikantan Virgin Coconut Oil–Hot and Fermentation Process.
JP5222362B2 (en) Method for producing deodorized soybean powder and food
JP4320723B2 (en) Dried germinated wheat and processed cereal food
CA2582376A1 (en) Methods for roasting oil seed, and roasted oil seed products
JP2007061007A (en) Popped germinated cereal and method for producing the same
JP6862256B2 (en) Manufacturing method of processed wheat products and processed wheat products
CN110973206A (en) Soft coarse grain new product and preparation method thereof
JP3797938B2 (en) Method for producing powdered rice bran
JP2006109801A (en) Processed bean and method for producing the same
CN109601863A (en) The preparation method of oil-free parched rice