JP2005034146A - Gene of new cell wall decomposing enzyme derived from aspergillus oryzae and method for producing the enzyme - Google Patents

Gene of new cell wall decomposing enzyme derived from aspergillus oryzae and method for producing the enzyme Download PDF

Info

Publication number
JP2005034146A
JP2005034146A JP2004188849A JP2004188849A JP2005034146A JP 2005034146 A JP2005034146 A JP 2005034146A JP 2004188849 A JP2004188849 A JP 2004188849A JP 2004188849 A JP2004188849 A JP 2004188849A JP 2005034146 A JP2005034146 A JP 2005034146A
Authority
JP
Japan
Prior art keywords
protein
amino acid
seq
acid sequence
glucanase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004188849A
Other languages
Japanese (ja)
Other versions
JP4574245B2 (en
Inventor
Masayuki Machida
雅之 町田
Motoaki Sano
元昭 佐野
Misao Sunakawa
美佐緒 砂川
Yu Nakajima
佑 中島
Takayoshi Abe
敬悦 阿部
Katsuya Gomi
勝也 五味
Kiyoshi Asai
潔 浅井
Taishin Kin
大心 金
Hideki Nagasaki
英樹 長崎
Satoru Hosoyama
哲 細山
Osamu Akita
修 秋田
Naoki Ogasawara
直毅 小笠原
Satoru Kuhara
哲 久原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
National Research Institute of Brewing
National Institute of Technology and Evaluation NITE
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
National Research Institute of Brewing
National Institute of Technology and Evaluation NITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, National Research Institute of Brewing, National Institute of Technology and Evaluation NITE filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004188849A priority Critical patent/JP4574245B2/en
Publication of JP2005034146A publication Critical patent/JP2005034146A/en
Priority to US11/085,185 priority patent/US7285407B2/en
Application granted granted Critical
Publication of JP4574245B2 publication Critical patent/JP4574245B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new gene encoding an exo- and endo-β-1,3-glucanase, to obtain a microorganism enhanced in expression of the gene, and to decrease a molecular weight of β-1,3-glucan by using a specified protein. <P>SOLUTION: This exo- and endo-β-1,3-glucanase encoding gene derived from Aspergillus oryzae, a recombinant vector containing the gene, a microorganism transformed by the vector (transformant), a method for decreasing the molecular weight of the β-1,3-glucan by acting the microorganism, a cultured product of the same, and/or the specified protein on the glucan, and a food containing the same are provided, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、β-1,3-グルカナーゼ活性を有する新規な酵素(エキソ及びエンド-β-1,3-グルカナーゼ)をコードする遺伝子又はDNA、これらを含む組換えベクター、該組換えベクターを含む微生物、並びに、β-1,3-グルカナーゼ活性を示す新規な酵素、及び、該酵素を生産する方法等に関わるものである。   The present invention includes a gene or DNA encoding a novel enzyme (exo and endo-β-1,3-glucanase) having β-1,3-glucanase activity, a recombinant vector containing these, and the recombinant vector The present invention relates to a microorganism, a novel enzyme exhibiting β-1,3-glucanase activity, a method for producing the enzyme, and the like.

β-1,3-グルカンは体内の免疫作用をつかさどる細胞の働きを活性化するとされ、注射型の抗がん剤に使われており、血管を巡って肝臓等の臓器で免疫担当細胞を刺激し、体の免疫力を高めることが確認されている(Sugawara等、Cancer. Immnnol. Immunother. 16:137 1984) 。しかしながら、高分子のβ-1,3-グルカンのままでは、その作用効果はほぼなく低分子化することにより、抗腫瘍活性を有するβ-1,3-グルカンに変換する(Kojima等、Agric. Biol. Chem. 50:231-232 1986) 。   β-1,3-glucan is said to activate the cells that control the body's immunity and is used as an injection-type anticancer agent. It stimulates immune cells in the organs such as the liver through blood vessels. It has been confirmed that the body's immunity is enhanced (Sugawara et al., Cancer. Immnnol. Immunother. 16: 137 1984). However, if the polymer β-1,3-glucan remains as it is, it has almost no effect and is converted to β-1,3-glucan having antitumor activity by reducing its molecular weight (Kojima et al., Agric. Biol. Chem. 50: 231-232 1986).

従来、β-1,3-グルカンを低分子化するための技術としては、酸、熱、超音波処理方法がある。部分酸加水分解による低分子化は、ギ酸等の人体に好ましくない物質を使用するため必ずしも安全とは言えず、しかも分子量を均一化するためには厳密な処理を必要とするなどの問題を抱えている。一方、医薬品として販売されているソニフィランが使用している超音波処理法は、コストがかかる問題を抱えている。   Conventional techniques for reducing the molecular weight of β-1,3-glucan include acid, heat, and ultrasonic treatment methods. Lowering the molecular weight by partial acid hydrolysis is not necessarily safe because it uses substances that are undesirable for the human body, such as formic acid, and also has problems such as requiring strict treatment to make the molecular weight uniform. ing. On the other hand, the sonication method used by Sonifilan sold as a pharmaceutical has a problem of cost.

Sugawara等、Cancer.Immnnol. Immunother. 16:137 1984Sugawara et al., Cancer.Immnnol. Immunother. 16: 137 1984 Kojima等、Agric.Biol. Chem. 50:231-232 1986Kojima et al., Agric. Biol. Chem. 50: 231-232 1986

ところで、麹菌は米国Department of Agriculture (USDA)においてGenerally Recognized as Safe (GRAS)としてリストとされており、麹菌の生産する酵素は、食物に添加する場合の安全性が高い。その一種であるアスペルギルス・オリゼも長年発酵・醸造・酵素生産等に利用されており、人体に対して安全性の高い微生物である。   By the way, aspergillus is listed as Generally Recognized as Safe (GRAS) in the US Department of Agriculture (USDA), and the enzyme produced by Aspergillus is highly safe when added to food. A kind of Aspergillus oryzae has been used for many years for fermentation, brewing, enzyme production, etc., and is a highly safe microorganism for the human body.

そこで、本発明において、このように安全性の高いアスペルギルス・オリゼから、β-1,3-グルカン分解能を有する新規な酵素(エキソ及びエンド-β-1,3-グルカナーゼ)を探索することを試みた。   Therefore, in the present invention, an attempt is made to search for a novel enzyme (exo and endo-β-1,3-glucanase) having β-1,3-glucan resolution from Aspergillus oryzae having such a high safety. It was.

即ち、本発明は、新規なエキソ及びエンド-β-1,3-グルカナーゼをコードする遺伝子を単離することを目的とする。また、該遺伝子を含む組換えベクター、該ベクターによって形質転換された微生物(形質転換体)、及び、該遺伝子の発現を増強した微生物を得ることを目的とする。さらには、該蛋白質を用いたβ-1,3-グルカンの低分子化を目的とする。   That is, an object of the present invention is to isolate a gene encoding a novel exo and endo-β-1,3-glucanase. Another object of the present invention is to obtain a recombinant vector containing the gene, a microorganism (transformant) transformed with the vector, and a microorganism with enhanced expression of the gene. Furthermore, the purpose is to reduce the molecular weight of β-1,3-glucan using the protein.

本発明者はこれまでに述べたアスペルギルス・オリゼの優れた点に着目し、この菌体からβ-1,3-グルカナーゼをコードする遺伝子を取得し、該遺伝子がコードする酵素反応により、安全にかつ簡便にβ-1,3-グルカンの低分子化システムを構築すべく研究し、本発明の完成に至った。
即ち、本発明者は、アスペルギルス・オリゼ由来のエキソ及びエンド-β-1,3-グルカナーゼ遺伝子の探索に成功し、該アミノ酸配列に対応する塩基配列を決定した。さらに該遺伝子を導入した形質転換株を作製し、新規エキソ及びエンド-β-1,3-グルカナーゼの発現に成功した。
The present inventor pays attention to the excellent points of Aspergillus oryzae described so far, acquires a gene encoding β-1,3-glucanase from this bacterial cell, and safely performs the enzyme reaction encoded by the gene. Furthermore, the present invention was completed by conducting research in order to construct a β-1,3-glucan molecular weight reduction system in a simple manner.
That is, the present inventor succeeded in searching for exo and endo-β-1,3-glucanase genes derived from Aspergillus oryzae and determined a base sequence corresponding to the amino acid sequence. Furthermore, a transformed strain into which the gene was introduced was prepared, and a novel exo and endo-β-1,3-glucanase were successfully expressed.

本発明は第一に、以下の(1)及び(2)の遺伝子に係る。
(1)下記のいずれか一つに示す蛋白質をコードする遺伝子。
(a)アスペルギルス・オリゼ由来の分子量62kDを有するβ−1,3−グルカナーゼ、
(b)配列番号2で示されるアミノ酸配列からなる蛋白質、
(c)配列番号2で示されるアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列からなり、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質、及び
(d)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を示すアミノ酸配列を含む蛋白質またはその部分断片であり、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質。
(2)下記のいずれか一つに示すDNAを含む遺伝子。
(a)配列番号1に示される塩基配列からなるDNA、
(b)配列番号1に示される塩基配列またはその相補鎖を含む核酸とストリンジェントな条件下でハイブリダイズし、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質をコードするDNA、及び
(c)配列番号1に示される塩基配列のDNAと80%以上の配列同一性を示すDNAまたはその部分断片であり、かつエキソ−β-1,3-グルカナーゼ活性の機能を有する蛋白質をコードするDNA。
以上の遺伝子は、エキソ−β-1,3-グルカナーゼ活性を有する蛋白質をコードすることを特徴とする。
The present invention primarily relates to the following genes (1) and (2).
(1) A gene encoding the protein shown in any one of the following.
(A) β-1,3-glucanase having a molecular weight of 62 kD derived from Aspergillus oryzae,
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2,
(C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing substitution, deletion, insertion or transfer of one or several amino acid residues, and having exo-β-1,3-glucanase activity And (d) a protein comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 2 or a partial fragment thereof, and having exo-β-1,3-glucanase activity protein.
(2) A gene containing DNA shown in any one of the following.
(A) DNA consisting of the base sequence represented by SEQ ID NO: 1,
(B) a DNA that hybridizes with a nucleic acid comprising the base sequence shown in SEQ ID NO: 1 or a complementary strand thereof under a stringent condition and encodes a protein having exo-β-1,3-glucanase activity; c) DNA encoding a protein having a function of exo-β-1,3-glucanase, which is a DNA having a sequence identity of 80% or more with the DNA of the base sequence shown in SEQ ID NO: 1 or a partial fragment thereof .
The above gene is characterized by encoding a protein having exo-β-1,3-glucanase activity.

本発明は、第二に、以下の(3)及び(4)の遺伝子に係る。
(3)下記のいずれか一つに示す蛋白質をコードする遺伝子。
(a)アスペルギルス・オリゼ由来の分子量80kDを有するβ−1,3−グルカナーゼ、
(b)配列番号4で示されるアミノ酸配列からなる蛋白質、
(c)配列番号4で示されるアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列からなり、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質、及び
(d)配列番号4で示されるアミノ酸配列と80%以上の配列同一性を示すアミノ酸配列を含む蛋白質またはその部分断片であり、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質。
(4)下記のいずれか一つに示すDNAを含む遺伝子。
(a)配列番号3に示される塩基配列からなるDNA、
(b)配列番号3に示される塩基配列またはその相補鎖を含む核酸とストリンジェントな条件下でハイブリダイズし、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質をコードするDNA、及び
(c)配列番号3に示される塩基配列のDNAと80%以上の配列同一性を示すDNAまたはその部分断片であり、かつエンド−β-1,3-グルカナーゼ活性の機能を有する蛋白質をコードするDNA。
以上の遺伝子は、エンド−β-1,3-グルカナーゼ活性を有する蛋白質をコードすることを特徴とする。
Secondly, the present invention relates to the following genes (3) and (4).
(3) A gene encoding the protein shown in any one of the following.
(A) β-1,3-glucanase having a molecular weight of 80 kD derived from Aspergillus oryzae,
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 4,
(C) the amino acid sequence represented by SEQ ID NO: 4, consisting of an amino acid sequence containing substitution, deletion, insertion or transfer of one or several amino acid residues, and having endo-β-1,3-glucanase activity And (d) a protein comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 4 or a partial fragment thereof, and having endo-β-1,3-glucanase activity protein.
(4) A gene containing DNA shown in any one of the following.
(A) DNA comprising the base sequence represented by SEQ ID NO: 3,
(B) DNA encoding a protein that hybridizes under stringent conditions with a nucleic acid comprising the base sequence shown in SEQ ID NO: 3 or a complementary strand thereof, and has endo-β-1,3-glucanase activity; c) DNA encoding a protein having a function of endo-β-1,3-glucanase activity, which is a DNA having a sequence identity of 80% or more with the DNA of the base sequence shown in SEQ ID NO: 3 or a partial fragment thereof .
The above gene is characterized by encoding a protein having endo-β-1,3-glucanase activity.

本発明は、第三に、以上のいずれかの遺伝子を含有してなる組換えベクター、該組換えベクターを含む微生物、及び、。該微生物を最適な培地で培養し、その培養物からエキソ又はエンド-β-1,3-グルカナーゼを採取することを特徴とするエキソ又はエンド-β-1,3-グルカナーゼの製造方法に係る。   A third aspect of the present invention is a recombinant vector containing any of the above genes, a microorganism containing the recombinant vector, and The present invention relates to a method for producing exo or endo-β-1,3-glucanase, which comprises culturing the microorganism in an optimal medium and collecting exo or endo-β-1,3-glucanase from the culture.

更に、本発明は、下記のいずれか一つに示す蛋白質に係る。
(a)アスペルギルス・オリゼ由来の分子量62kDを有するβ−1,3−グルカナーゼ、
(b)配列番号2で示されるアミノ酸配列からなる蛋白質、
(c)配列番号2で示されるアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列からなり、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質、及び
(d)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を示すアミノ酸配列を含む蛋白質またはその部分断片であり、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質。
以上の蛋白質はエキソ−β-1,3-グルカナーゼ活性を有することを特徴とする。
Furthermore, this invention relates to the protein shown in any one of the following.
(A) β-1,3-glucanase having a molecular weight of 62 kD derived from Aspergillus oryzae,
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2,
(C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing substitution, deletion, insertion or transfer of one or several amino acid residues, and having exo-β-1,3-glucanase activity And (d) a protein comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 2 or a partial fragment thereof, and having exo-β-1,3-glucanase activity protein.
The above protein is characterized by having exo-β-1,3-glucanase activity.

更に、本発明は、下記のいずれか一つに示す蛋白質に係る。
(a)アスペルギルス・オリゼ由来の分子量80kDを有するβ−1,3−グルカナーゼ、
(b)配列番号4で示されるアミノ酸配列からなる蛋白質、
(c)配列番号4で示されるアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列からなり、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質、及び
(d)配列番号4で示されるアミノ酸配列と80%以上の配列同一性を示すアミノ酸配列を含む蛋白質またはその部分断片であり、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質。
以上の蛋白質はエンド−β-1,3-グルカナーゼ活性を有することを特徴とする。これらの蛋白質はアスペルギルス・オリエから当業者に公知の任意の方法によって精製したり、又は、上記の製造方法により、組換え蛋白質として得ること出来る。
Furthermore, this invention relates to the protein shown in any one of the following.
(A) β-1,3-glucanase having a molecular weight of 80 kD derived from Aspergillus oryzae,
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 4,
(C) the amino acid sequence represented by SEQ ID NO: 4, consisting of an amino acid sequence containing substitution, deletion, insertion or transfer of one or several amino acid residues, and having endo-β-1,3-glucanase activity And (d) a protein comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 4 or a partial fragment thereof, and having endo-β-1,3-glucanase activity protein.
The above protein is characterized by having endo-β-1,3-glucanase activity. These proteins can be purified from Aspergillus orii by any method known to those skilled in the art, or can be obtained as recombinant proteins by the above-described production methods.

本発明は更に、上記組換え発現ベクターを含む微生物、その培養物、及び/又は本発明の組換え蛋白質を含む食品にも係る。このような食品においては、本発明の蛋白質が有するβ-1,3-グルカナーゼ活性により、食品に含まれるβ-1,3-グルカンの低分子化が促進される。
従って、本発明は、これら微生物、その培養物、及び/又は蛋白質をβ-1,3-グルカンに作用させることによって、低分子化β-1,3-グルカンを製造する方法にも係る。このような作用は、β-1,3-グルカンが含まれる食品、又は、β-1,3-グルカンが含まれる適当な反応系において上記各物質を共存させ、酵素反応を行わせることによって容易に達成することが出来る。
The present invention further relates to a microorganism containing the above recombinant expression vector, a culture thereof, and / or a food containing the recombinant protein of the present invention. In such foods, the β-1,3-glucanase activity of the protein of the present invention promotes the reduction of the molecular weight of β-1,3-glucan contained in the food.
Therefore, the present invention also relates to a method for producing low molecular weight β-1,3-glucan by allowing these microorganisms, cultures thereof and / or proteins to act on β-1,3-glucan. Such an action is facilitated by causing the above-mentioned substances to coexist in a food containing β-1,3-glucan or an appropriate reaction system containing β-1,3-glucan and performing an enzyme reaction. Can be achieved.

本発明によって、アスペルギルス・オリゼ由来の新規なエキソ及びエンド-β-1,3-グルカナーゼをコードする遺伝子及びアミノ酸配列を明らかにした。さらに、該遺伝子を含む組換えベクターによって形質転換された形質転換体微生物はβ-1,3-グルカナーゼ活性を有していた。   According to the present invention, genes and amino acid sequences encoding novel exo and endo-β-1,3-glucanases derived from Aspergillus oryzae have been clarified. Further, the transformant microorganism transformed with the recombinant vector containing the gene had β-1,3-glucanase activity.

更に、大腸菌形質転換体からの新規エンド−β−1,3−グルカナーゼの精製し、その組み換え蛋白質の基質特異性、至適pH、pH安定性、至適温度、温度安定性、及び比活性等の諸特性を検討し、更に、該酵素が確かにエンド型酵素であることをHPLC分析によって確認した。   Furthermore, purification of novel endo-β-1,3-glucanase from E. coli transformants, substrate specificity, optimum pH, pH stability, optimum temperature, temperature stability, specific activity, etc. of the recombinant protein Furthermore, it was confirmed by HPLC analysis that the enzyme is indeed an endo-type enzyme.

本発明の遺伝子
ゲノム解析により得られた配列情報を、BLASTサーチにかけることにより新規エキソ-β-1,3-グルカナーゼ遺伝子およびエンド-β-1,3-グルカナーゼ遺伝子の情報を取得する。この情報に基づきアスペルギルス・オリゼRIB40株(ATCC42149)よりtotal
RNAを抽出し、mRNAに精製を行った後RT-PCRに供することによりcDNAを増幅する。得られたDNA断片をベクターにクローニングした後塩基配列の決定し、蛋白質としての翻訳領域を決定する。
Information on novel exo-β-1,3-glucanase genes and endo-β-1,3-glucanase genes is obtained by subjecting the sequence information obtained by the gene genome analysis of the present invention to a BLAST search. Based on this information, Aspergillus oryzae RIB40 strain (ATCC42149) total
RNA is extracted, mRNA is purified, and then subjected to RT-PCR to amplify cDNA. After cloning the obtained DNA fragment into a vector, the base sequence is determined, and the translation region as a protein is determined.

更に、本発明遺伝子は当業者に公知の方法で調製することが出来る。
例えば、本明細書に記載された本発明DNAの塩基配列又はアミノ酸配列の情報に基づき適当なプライマーを合成し、これらを用いて、アスペルギルス・オリゼのtotal RNAから当業者に公知の任意の方法で調製した適当なcDNAライブラリーに対して、PCRにより増幅して調製することも出来る。
PCRは当業者に周知の条件及び手段を用いて、本発明の増幅用プライマーセットを使用して行うことが出来る。
例えば、94℃で2分の後、94℃で10秒、55℃で20秒、72℃で2分を30サイクル行い、最後に72℃で5分を行う。なお、サーマルサイクラーとしては、Perkin Elmer社製9600など一般のサーマルサイクラーを用いることができる。耐熱性 DNAポリメラーゼとしては、ExTaq DNA Polymerase(宝酒造製)などの一般の市販品を用い、反応液の組成はポリメラーゼに添付の説明書に従って実施する。
或いは、上記塩基配列に基づいて作成した適当なプローブでcDNAライブラリーに対してハイブリダイゼーションによりスクリーニングすることによって得ることが出来る。
更に、当業者に周知の化学合成によって、本発明の各遺伝子を調製することも出来る。
Furthermore, the gene of the present invention can be prepared by methods known to those skilled in the art.
For example, appropriate primers are synthesized based on the information on the base sequence or amino acid sequence of the DNA of the present invention described in the present specification, and using these primers, any method known to those skilled in the art from the total RNA of Aspergillus oryzae is used. The prepared appropriate cDNA library can also be prepared by amplification by PCR.
PCR can be performed using the amplification primer set of the present invention using conditions and means well known to those skilled in the art.
For example, after 30 minutes at 94 ° C., 30 cycles of 94 ° C. for 10 seconds, 55 ° C. for 20 seconds, 72 ° C. for 2 minutes, and finally 72 ° C. for 5 minutes. As the thermal cycler, a general thermal cycler such as 9600 manufactured by Perkin Elmer can be used. As the thermostable DNA polymerase, a general commercial product such as ExTaq DNA Polymerase (Takara Shuzo) is used, and the composition of the reaction solution is carried out according to the instructions attached to the polymerase.
Alternatively, it can be obtained by screening a cDNA library by hybridization with an appropriate probe prepared based on the above base sequence.
Furthermore, each gene of the present invention can be prepared by chemical synthesis well known to those skilled in the art.

本明細書において、「ストリンジェントな条件下」とは、例えば、温度60℃〜68℃において、ナトリウム濃度150〜900mM、好ましくは600〜900mM、pH 6〜8であるような条件を挙げることが出来る。
従って、このようなストリンジェントな条件下でハブリダイズするDNAの代表的な例として、各塩基配列間の同一性の程度が、例えば、全体の平均で約80%以上、好ましくは約90%以上、より好ましくは約95%以上であるような、高い配列同一性を有するDNA又はその断片であって、所定のβ-1,3-グルカナーゼ活性を有する蛋白質をコードするDNAを挙げることができる。
尚、塩基配列間の同一性は、当業者に公知のアルゴリズム、例えば、実施例で使用されているBlast を用いて決定することができる。
In the present specification, “under stringent conditions” includes, for example, conditions in which the sodium concentration is 150 to 900 mM, preferably 600 to 900 mM, pH 6 to 8 at a temperature of 60 ° C. to 68 ° C. I can do it.
Therefore, as a typical example of DNA that is hybridized under such stringent conditions, the degree of identity between each base sequence is, for example, about 80% or more, preferably about 90% or more on the average on the whole, A DNA having a high sequence identity, such as about 95% or more, or a fragment thereof, which encodes a protein having a predetermined β-1,3-glucanase activity, can be mentioned.
The identity between base sequences can be determined using algorithms known to those skilled in the art, for example, Blast used in the Examples.

ハイブリダイゼーションは、例えば、カレント・プロトコールズ・イン・モレキュラー・バイオロジー(Current protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987))に記載の方法等、当業界で公知の方法あるいはそれに準じる方法に従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。   Hybridization may be performed by a method known in the art such as, for example, the method described in Current protocols in molecular biology (edited by Frederick M. Ausubel et al., 1987). It can carry out according to the method according to it. Moreover, when using a commercially available library, it can carry out according to the method as described in an attached instruction manual.

本発明の蛋白質
本発明の蛋白質のアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列を有する蛋白質であって、所定のβ-1,3-グルカナーゼ活性を有するものは、当業者に公知の任意の方法、例えば、部位特異的変異導入法、遺伝子相同組換え法、プライマー伸長法、及びPCR法等の当業者に周知の方法を適宜組み合わせて、容易に作成することが可能である。
Protein of the present invention A protein having an amino acid sequence comprising substitution, deletion, insertion or transfer of one or several amino acid residues in the amino acid sequence of the protein of the present invention, which comprises a predetermined β-1,3- Those having glucanase activity are appropriately combined with any method known to those skilled in the art, for example, site-directed mutagenesis, gene homologous recombination, primer extension, and PCR. It is possible to create easily.

尚、その際に、実質的に同等の機能を有するためには、当該ポリペプチドを構成するアミノ酸のうち、同族アミノ酸(極性・非極性アミノ酸、疎水性・親水性アミノ酸、陽性・陰性荷電アミノ酸、芳香族アミノ酸など)同士の置換が可能性として考えられる。又、実質的に同等の機能の維持のためには、本発明の各ポリペプチドに含まれる機能ドメイン内のアミノ酸は保持されることが望ましい。   In this case, in order to have substantially the same function, among the amino acids constituting the polypeptide, homologous amino acids (polar / nonpolar amino acids, hydrophobic / hydrophilic amino acids, positive / negative charged amino acids, Aromatic amino acids, etc.) are considered as possible substitutions. In order to maintain a substantially equivalent function, it is desirable to retain amino acids in the functional domain included in each polypeptide of the present invention.

更に、本発明の蛋白質として、本明細書に記載の特定のアミノ酸配列と、全体の平均で約80%以上、好ましくは約90%以上、より好ましくは約95%以上であるような、高い配列同一性を有するアミノ酸配列を含む蛋白質又はその断片であって、所定のβ-1,3-グルカナーゼ活性を有するものを挙げることができる。
尚、アミノ酸配列間の同一性も、当業者に公知のアルゴリズム、例えば、実施例で使用されているBlast を用いて決定することができる。
尚、β-1,3-グルカナーゼ活性は、本明細書の実施例に記載さえている方法で測定することが出来る。
Further, the protein of the present invention includes a specific amino acid sequence described herein and a high sequence such that the average of the whole is about 80% or more, preferably about 90% or more, more preferably about 95% or more. Examples thereof include a protein or a fragment thereof containing an amino acid sequence having identity, and having a predetermined β-1,3-glucanase activity.
The identity between amino acid sequences can also be determined using algorithms known to those skilled in the art, for example, Blast used in the Examples.
In addition, β-1,3-glucanase activity can be measured by the method even described in the examples of the present specification.

本発明の遺伝子の発現
上記で得られた本発明遺伝子を当業者に公知の任意の方法によって組換えベクターに組み込み、本発明の組換え発現ベクターを作成することが出来る。
例えば、(1)本発明の遺伝子を含有するDNA断片を切り出し、(2)該DNA断片を適当な組換えベクター中の制限酵素部位又はマルチクローニングサイトに挿入して該ベクターに連結する挿入することにより製造することができる。組換えベクターに特に制限はなく、例えば、麹菌由来のプラスミド(例えば、pSal23, pTAex3, pNGU113, pRBG1, pGM32, pSE52, pNAGL142等)、大腸菌由来のプラスミド(例、pT7Blue T−Vector、pRSET、pBR322、pBR325、pUC18、pUC118)、枯草菌由来のプラスミド(例、pUB110、pTP5、pC194)、及び、酵母由来プラスミド(例、pSH19、pSH15)、等の組換えベクター等を利用することが出来る。
Expression of the gene of the present invention The gene of the present invention obtained above can be incorporated into a recombinant vector by any method known to those skilled in the art to prepare the recombinant expression vector of the present invention.
For example, (1) cutting out a DNA fragment containing the gene of the present invention, and (2) inserting the DNA fragment into a restriction enzyme site or a multicloning site in an appropriate recombinant vector and ligating it to the vector. Can be manufactured. There are no particular limitations on the recombinant vector. pBR325, pUC18, pUC118), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5, pC194), yeast-derived plasmids (eg, pSH19, pSH15), and the like can be used.

上記組換えベクターには、以上の他に、本発明の転写調節配列の活性を損なわない限り、所望により当該技術分野で公知のプロモーター等の各種転写調節要素、シャイン・ダルガルノ配列、選択マーカー、転写終結シグナル等を付加することができる。また、必要に応じて、本発明の外来遺伝子にコードされた所望の蛋白質を他の蛋白質又はペプチド(例えば、グルタチオンSトランスフェラーゼ、ヒスチジンタグ、カルモデュリンバインディング蛋白質、及びプロテインA等)との融合蛋白質として発現させることも可能である。このような融合蛋白質は、適当なプロテアーゼを使用して切断し、それぞれの蛋白質に分離することが出来る。   In addition to the above, the above recombinant vector includes, as desired, various transcription regulatory elements such as a promoter known in the art, Shine-Dalgarno sequence, selection marker, transcription, as long as the activity of the transcriptional regulatory sequence of the present invention is not impaired. A termination signal or the like can be added. If necessary, the desired protein encoded by the foreign gene of the present invention is expressed as a fusion protein with another protein or peptide (for example, glutathione S-transferase, histidine tag, calmodulin binding protein, protein A, etc.) It is also possible to make it. Such a fusion protein can be cleaved using an appropriate protease and separated into each protein.

本発明の遺伝子が有効に発現される限り、本発明の組換え発現ベクターを有する微生物(形質転換体)を調製するために使用する宿主の種類及び由来等に特に制限はないが、特に、本発明の換え発現ベクターを含む微生物、その培養物、及び/又は本発明の蛋白質を食品に添加する場合には、麹菌、サッカロマイセス・セレビシエ(パン酵母)、及びバシラス・サブチリス(納豆菌)のような、当業者に公知の人体に対して安全性の高い微生物を宿主として使用する。その他、具体的には、GRASにはリストされている以下のような微生物を挙げることが出来る。
Pseudomonas fluorescens、Laminaria japonica、Fusarium oxysporum、Streptoverticillium mobaraense、Kluyveromyces marxianus、Candida rugosa、Streptoverticillium mobaraense、Thermomyces lanuginosus、Aspergillus sojae、及び、Aspergillus aculeatus 等。
As long as the gene of the present invention is effectively expressed, the type and origin of the host used for preparing the microorganism (transformant) having the recombinant expression vector of the present invention is not particularly limited. When adding a microorganism containing the modified expression vector of the invention, a culture thereof, and / or a protein of the present invention to food, such as koji mold, Saccharomyces cerevisiae (baking yeast), and Bacillus subtilis (natto) A microorganism known to those skilled in the art and having high safety for the human body is used as a host. Other specific examples include the following microorganisms listed in GRAS.
Pseudomonas fluorescens, Laminaria japonica, Fusarium oxysporum, Streptoverticillium mobaraense, Kluyveromyces marxianus, Candida rugosa, Streptoverticillium mobaraense, Thermomyces lanuginosus, Aspergillus sojae, and Aspergillus aculus

これら宿主細胞の形質転換は、例えば、塩化カルシウム法、パーティクルガン、エレクトロポレーション法等の、当該技術分野で公知の方法に従って行うことが出来る。例えば、以下に記載の文献を参照することが出来る。Proc. Natl. Acad. Sci. USA, 69巻、2110(1972); Gene, 17巻、107(1982);Molecular & General Genetics,168巻, 111(1979);Methods in Enzymology,194巻、182−187(1991);Proc. Natl. Acad. Sci. USA)、75巻、1929(1978);細胞工学別冊8 新細胞工学実験プロトコール。263−267(1995)(秀潤社発行);及びVirology、52巻、456(1973)。   Transformation of these host cells can be performed according to methods known in the art such as calcium chloride method, particle gun, electroporation method and the like. For example, the following documents can be referred to. Proc. Natl. Acad. Sci. USA, 69, 2110 (1972); Gene, 17, 107 (1982); Molecular & General Genetics, 168, 111 (1979); Methods in Enzymology, 194, 182- 187 (1991); Proc. Natl. Acad. Sci. USA), 75, 1929 (1978); 263-267 (1995) (published by Shujunsha); and Virology, 52, 456 (1973).

このようにして得られた、本発明の形質転換体は、当該技術分野で公知の方法に従って培養することが出来る。   The transformant of the present invention thus obtained can be cultured according to a method known in the art.

本発明における蛋白質の製造に際しては、当業者に公知の方法を適宜選択することができる。例えば、該蛋白質を含む培養液から、例えば、各種クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等の当業者に公知の方法を適宜選択、組み合わせることによって、実質的に純粋で均一な蛋白質として分離、精製することができる。   In producing the protein in the present invention, a method known to those skilled in the art can be appropriately selected. For example, from the culture solution containing the protein, for example, various chromatography columns, filters, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing By appropriately selecting and combining methods known to those skilled in the art, such as method, dialysis, and recrystallization, the protein can be separated and purified as a substantially pure and homogeneous protein.

更に、蛋白質をグルタチオン S-トランスフェラーゼ蛋白質との融合蛋白質、又はヒスチジンを複数付加させた組換え蛋白質として発現させた場合には、発現させた組換え蛋白質はグルタチオンカラムあるいはニッケルカラムを用いて精製することができる。融合蛋白質の精製後、必要に応じて、目的の蛋白質以外の領域を、トロンビンまたはファクターXaなどにより切断し、除去することも可能である。或いは、トリプシン、キモトリプシン、リシルエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼ等の適当な蛋白質修飾酵素で、精製前又は精製後に蛋白質を処理することにより、任意に修飾を加えたり部分的にペプチドを除去することもできる。   Furthermore, if the protein is expressed as a fusion protein with glutathione S-transferase protein or a recombinant protein to which multiple histidines are added, the expressed recombinant protein must be purified using a glutathione column or a nickel column. Can do. After purification of the fusion protein, the region other than the target protein can be cleaved and removed with thrombin or factor Xa as necessary. Alternatively, the protein may be optionally modified or partially removed by treating the protein with a suitable protein modifying enzyme such as trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, glucosidase, etc. before or after purification. it can.

以下の実施例を示し、本発明をより具体的に説明するが、本説明はこれらによって制限されるものではない。   The present invention will be described more specifically with reference to the following examples, but the present description is not limited thereto.

黄麹菌アスペルギルス・オリゼの新規エキソ-β-1,3-グルカナーゼcDNAの増幅と塩基配列の決定
本遺伝子のcDNAの塩基配列を決定するためにRT-PCRによるcDNAの増幅を試みた。アスペルギルス・オリゼ RIB40株の胞子をYPD培地(1%イーストエキストラクト、2%バクトペプトン、2%グルコース、0.5%リン酸1カリウム、0.05%硫酸マグネシウム)100mlで30℃、20時間振とう培養した後、菌体を貧栄養培地(0.3%硝酸ナトリウム、0.1%リン酸1カリウム、0.2%塩化カリウム、0.05%硫酸マグネシウム、4%塩化ナトリウム)に移し、30℃、6時間さらに培養した。その後、菌体を回収し、Chigwinらの方法(Biochemistry 18 5294-5299, (1979))に従ってtotal RNAを得、その後オリゴ(dT)セルロースカラム(アマシャム社)を使用してmRNAを取得した。その後、逆転写反応のプライマーにオリゴ(dT)12-18プライマー(インビトロジェン社)、逆転写酵素にSuperScriptII RNaseH- Reverse Transcriptase(インビトロジェン社)使用し、ファーストストランドcDNAの合成を行った。続いて、ファーストストランドcDNAを鋳型にし、PCR反応を行い完全長cDNAの取得を行った。
Amplification of new exo-β-1,3-glucanase cDNA of Aspergillus oryzae and determination of nucleotide sequence In order to determine the nucleotide sequence of the cDNA of this gene, an attempt was made to amplify the cDNA by RT-PCR. After spore culture of Aspergillus oryzae RIB40 strain in 100 ml of YPD medium (1% yeast extract, 2% bactopeptone, 2% glucose, 0.5% monopotassium phosphate, 0.05% magnesium sulfate) at 30 ° C for 20 hours The cells were transferred to an oligotrophic medium (0.3% sodium nitrate, 0.1% potassium phosphate, 0.2% potassium chloride, 0.05% magnesium sulfate, 4% sodium chloride) and further cultured at 30 ° C. for 6 hours. Thereafter, the cells were collected and total RNA was obtained according to the method of Chigwin et al. (Biochemistry 18 5294-5299, (1979)), and then mRNA was obtained using an oligo (dT) cellulose column (Amersham). Thereafter, oligo (dT) 12-18 primer (Invitrogen) was used as a primer for reverse transcription reaction and SuperScriptII RNaseH - Reverse Transcriptase (Invitrogen) was used as a reverse transcriptase to synthesize a first strand cDNA. Subsequently, a full-length cDNA was obtained by performing a PCR reaction using the first strand cDNA as a template.

次に、アスペルギルス・オリゼRIB40株(ATCC42149)のゲノム解析により得られたDNA配列情報を、NCBI blastx(http://www.ncbi.nlm.nih.gov/BLASX/)にかけることによりアスペルギルス・オリゼのエキソ-β-1,3-グルカナーゼ遺伝子であると推定される塩基配列の情報に基づき、以下の塩基配列からなる2つのプライマーを作成した。
5’-ATGGAGGGCTCCGATGCACAACCGCCGTTC-3’(配列番号5)
5’-TTAATAATATTCCGGTAAATCCCCGAAACT-3’(配列番号6)
PCR反応はExpand HF (ロシュ.ダイアグノスティックス社)を使用し、DNA Thermal Cycler (宝酒造社)により行った。反応液の組成は以下の通りである。
Next, DNA sequence information obtained by genome analysis of Aspergillus oryzae RIB40 strain (ATCC42149) is applied to NCBI blastx (http://www.ncbi.nlm.nih.gov/BLASX/) to obtain Aspergillus oryzae. Based on the information on the base sequence presumed to be the exo-β-1,3-glucanase gene, two primers having the following base sequences were prepared.
5'-ATGGAGGGCTCCGATGCACAACCGCCGTTC-3 '(SEQ ID NO: 5)
5'-TTAATAATATTCCGGTAAATCCCCGAAACT-3 '(SEQ ID NO: 6)
PCR reaction was performed using Expand HF (Roche Diagnostics) and DNA Thermal Cycler (Takara Shuzo). The composition of the reaction solution is as follows.

Figure 2005034146
Figure 2005034146

上記の反応液50 μlを0.2 ml反応チューブ中で混合してDNA Thermal Cyclerにセットし、以下の様な温度設定によりPCRを行った。
94℃、3分 1サイクル
94℃、1分 55℃、2分 72℃、2分 30サイクル
72℃、7分 1サイクル
50 μl of the above reaction mixture was mixed in a 0.2 ml reaction tube and set in the DNA Thermal Cycler, and PCR was performed with the following temperature settings.
94 ° C, 3 minutes, 1 cycle
94 ° C, 1 minute 55 ° C, 2 minutes 72 ° C, 2 minutes 30 cycles
72 ° C, 7 minutes, 1 cycle

増幅産物を1.0%アガロースゲル電気泳動で確認し、DNA断片を電気泳動によって単離、精製しTAクローニングベクターpT7Blue T-Vector(ノバジェン社)に連結して大腸菌JM109(ニッポンジーン社)にクローニングした。このクローンからプラスミドを調製してクローニングしたDNA断片の塩基配列を解析した。麹菌ゲノム解析で決定した染色体DNA由来の塩基配列と比較して抜けている部分をイントロンとして決定した。   The amplified product was confirmed by 1.0% agarose gel electrophoresis, the DNA fragment was isolated and purified by electrophoresis, ligated to TA cloning vector pT7Blue T-Vector (Novagen) and cloned into E. coli JM109 (Nippon Gene). A plasmid was prepared from this clone, and the base sequence of the cloned DNA fragment was analyzed. The missing part was determined as an intron in comparison with the base sequence derived from chromosomal DNA determined by gonococcal genome analysis.

このcDNAの塩基配列を解析した結果、1650 bpからなるオープンリーディングフレームの存在が明らかとなった。この塩基配列は配列番号1に示す。 麹菌ゲノム解析により得られた染色体DNA由来の本蛋白質遺伝子及びcDNAを比較した結果、染色体DNA上には52 bpと74 bpからなるイントロンが2つ存在することが確認された。上記塩基配列から推定されるアミノ酸配列を配列表2に記載した。このアミノ酸配列を公知のアミノ酸配列データベースに対して配列同一性の高い配列を検索した。その結果、一致する配列は無く、最も高い配列同一性を示したのは、シゾサッカロマイセス・ポンベのExgH蛋白質(ACCESSION Q10444)と約42.4%のホモロジーを有していることを確認し、本遺伝子AoexgH遺伝子であると結論付けた。   Analysis of the cDNA base sequence revealed the existence of an open reading frame consisting of 1650 bp. This base sequence is shown in SEQ ID NO: 1. As a result of comparison of the chromosomal DNA-derived protein gene and cDNA obtained by genome analysis of Aspergillus oryzae, it was confirmed that there are two introns of 52 bp and 74 bp on the chromosomal DNA. The amino acid sequence deduced from the above base sequence is shown in Sequence Listing 2. This amino acid sequence was searched for a sequence having high sequence identity with a known amino acid sequence database. As a result, it was confirmed that there was no matching sequence and the highest sequence identity was found to have about 42.4% homology with the Schizo Saccharomyces pombe ExgH protein (ACCESSION Q10444). It was concluded that it was AoexgH gene.

黄麹菌アスペルギルス・オリゼの新規エンド-β-1,3-グルカナーゼcDNAの増幅と塩基配列の決定
本遺伝子のcDNAの塩基配列を決定するためにRT-PCRによるcDNAの増幅を試みた。アスペルギルス・オリゼ RIB40株の胞子をYPD培地100mlで30℃、20時間振とう培養した後、菌体を貧栄養培地に移し、30℃、6時間さらに培養した。その後、菌体を回収し、Chigwinらの方法(Biochemistry 18 5294-5299, (1979))に従ってtotal RNAを得、その後オリゴ(dT)セルロースカラムを使用してmRNAを取得した。その後、逆転写反応のプライマーにオリゴ(dT)12-18プライマー、逆転写酵素にSuperScriptII RNaseH- Reverse Transcriptase使用し、ファーストストランドcDNAの合成を行った。続いて、ファーストストランドcDNAを鋳型にし、PCR反応を行い完全長cDNAの取得を行った。
Amplification of new endo-β-1,3-glucanase cDNA of Aspergillus oryzae and determination of nucleotide sequence In order to determine the nucleotide sequence of the cDNA of this gene, an attempt was made to amplify the cDNA by RT-PCR. After spore culture of Aspergillus oryzae RIB40 strain in 30 ml of YPD medium at 30 ° C. for 20 hours, the cells were transferred to an oligotrophic medium and further cultured at 30 ° C. for 6 hours. Thereafter, the cells were collected and total RNA was obtained according to the method of Chigwin et al. (Biochemistry 18 5294-5299, (1979)), and then mRNA was obtained using an oligo (dT) cellulose column. Thereafter, oligo (dT) 12-18 primer was used as a primer for reverse transcription reaction, and SuperScriptII RNaseH - Reverse Transcriptase was used as a reverse transcriptase to synthesize a first strand cDNA. Subsequently, a full-length cDNA was obtained by performing a PCR reaction using the first strand cDNA as a template.

次に、実施例1と同様に、アスペルギルス・オリゼのエンド-β-1,3-グルカナーゼ遺伝子であると推定される塩基配列の情報に基づき、以下の塩基配列からなる2つのプライマーを作成した。
5’-ATGGCGACAATGGCAAACGGTCAAGATGTG-3’ (配列番号7)
5’-CTATATATTGTTAGTGGTGCTAATGAACCC-3’ (配列番号8)
PCR反応はExpand HFを使用し、DNA Thermal Cyclerにより行った。反応液の組成は以下の通りである。
Next, in the same manner as in Example 1, two primers having the following base sequences were prepared based on the information on the base sequence presumed to be an Aspergillus oryzae endo-β-1,3-glucanase gene.
5'-ATGGCGACAATGGCAAACGGTCAAGATGTG-3 '(SEQ ID NO: 7)
5'-CTATATATTGTTAGTGGTGCTAATGAACCC-3 '(SEQ ID NO: 8)
PCR reaction was performed using Expand HF and DNA Thermal Cycler. The composition of the reaction solution is as follows.

Figure 2005034146
Figure 2005034146

上記の反応液50 μlを0.2 ml反応チューブ中で混合してDNA Thermal Cyclerにセットし、以下の様な温度設定によりPCRを行った。
94℃、3分 1サイクル
94℃、1分 50℃、2分 72℃、2分 35サイクル
72℃、7分 1サイクル
50 μl of the above reaction mixture was mixed in a 0.2 ml reaction tube and set in the DNA Thermal Cycler, and PCR was performed with the following temperature settings.
94 ° C, 3 minutes, 1 cycle
94 ° C, 1 minute 50 ° C, 2 minutes 72 ° C, 2 minutes 35 cycles
72 ° C, 7 minutes, 1 cycle

増幅産物を1.0%アガロースゲル電気泳動で確認し、DNA断片を電気泳動によって単離、精製しTAクローニングベクターpT7Blue T-Vectorに連結して大腸菌JM109にクローニングした。このクローンからプラスミドを調製してクローニングしたDNA断片の塩基配列を解析した。麹菌ゲノム解析で決定した染色体DNA由来の塩基配列と比較して抜けている部分をイントロとして決定した。   The amplified product was confirmed by 1.0% agarose gel electrophoresis, the DNA fragment was isolated and purified by electrophoresis, ligated to TA cloning vector pT7Blue T-Vector and cloned into E. coli JM109. A plasmid was prepared from this clone, and the base sequence of the cloned DNA fragment was analyzed. The missing portion was determined as an intro in comparison with the chromosomal DNA-derived nucleotide sequence determined by the koji mold genome analysis.

このcDNAの塩基配列を解析した結果、2211 bpからなるオープンリーディングフレームの存在が明らかとなった。この塩基配列は配列番号3に示す。 麹菌ゲノム解析により得られた染色体DNA由来の本蛋白質遺伝子及びcDNAを比較した結果、染色体DNA上には50 bp、50 bp、79 bpからなるイントロンが3つ存在することが確認された。上記塩基配列から推定されるアミノ酸配列を配列表4に記載した。このアミノ酸配列を公知のアミノ酸配列データベースに対して配列同一性の高い配列を検索した。その結果、一致する配列は無く、最も高い配列同一性を示したのは、アスペルギルス・フミガタスのEngL1蛋白質(ACCESSION AF121133)と約74%のホモロジーを有していることを確認し、本遺伝子AoengL遺伝子であると結論付けた。   Analysis of the cDNA base sequence revealed the presence of an open reading frame consisting of 2211 bp. This base sequence is shown in SEQ ID NO: 3. As a result of comparing the chromosomal DNA-derived protein gene and cDNA obtained by gonococcal genome analysis, it was confirmed that there are three introns of 50 bp, 50 bp and 79 bp on the chromosomal DNA. The amino acid sequence deduced from the above base sequence is shown in Sequence Listing 4. This amino acid sequence was searched for a sequence having high sequence identity with a known amino acid sequence database. As a result, it was confirmed that it had about 74% homology with the Aspergillus fumigatus EngL1 protein (ACCESSION AF121133). It was concluded that

新規エキソ-β-1,3-グルカナーゼ遺伝子の大腸菌での発現
上記で取得したcDNAを鋳型としてPCRを行い、新規エキソ-β-1,3-グルカナーゼ遺伝子のORFを含むDNA断片を取得した。プライマーには該遺伝子の塩基配列に基づき作成した次の2つの塩基配列のものを用いた。
5’-CTAGCTAGCATGGAGGGCTCCGATGCACA-3’(配列番号9)
5’-CCGCTCGAGATAATATTCCGGTAAATCCC-3’(配列番号10)
各プライマーには5’側にNheI,3’側にXhoIの制限酵素認識配列を含むような改変を加えてある。PCR反応はExpand HFを使用し、DNA Thermal Cyclerにより行った。反応液の組成は以下の通りである。
Expression of a novel exo-β-1,3-glucanase gene in Escherichia coli PCR was performed using the cDNA obtained above as a template to obtain a DNA fragment containing the ORF of the novel exo-β-1,3-glucanase gene. Primers having the following two base sequences prepared based on the base sequence of the gene were used.
5'-CTAGCTAGCATGGAGGGCTCCGATGCACA-3 '(SEQ ID NO: 9)
5'-CCGCTCGAGATAATATTCCGGTAAATCCC-3 '(SEQ ID NO: 10)
Each primer is modified to include a restriction enzyme recognition sequence of NheI on the 5 ′ side and XhoI on the 3 ′ side. PCR reaction was performed using Expand HF and DNA Thermal Cycler. The composition of the reaction solution is as follows.

Figure 2005034146
Figure 2005034146

上記の反応液50 μlを0.2 ml反応チューブ中で混合してDNA Thermal Cyclerにセットし、以下の様な温度設定によりPCRを行った。
94℃、3分 1サイクル
94℃、1分 50℃、2分 72℃、2分 25サイクル
72℃、7分 1サイクル
50 μl of the above reaction mixture was mixed in a 0.2 ml reaction tube and set in the DNA Thermal Cycler, and PCR was performed with the following temperature settings.
94 ° C, 3 minutes, 1 cycle
94 ° C, 1 minute 50 ° C, 2 minutes 72 ° C, 2 minutes 25 cycles
72 ° C, 7 minutes, 1 cycle

増幅産物を1.0%アガロースゲル電気泳動で確認し、DNA断片を電気泳動によって単離、精製しTAクローニングベクターpT7Blue T-Vectorに連結して大腸菌JM109にクローニングした。このクローンからプラスミドを調製してクローニングしたDNA断片の塩基配列を確認し、PCRによるエラーを含まない1クローンを取得した。このプラスミドをNheIおよびXhoIで消化し、1.0%アガロースゲル電気泳動で確認し、DNA断片を回収した。この断片をNheIおよびXhoIで消化したpET-21b(+)(ノバジェン社)とライゲーションし(図1)、大腸菌BL21-CodonPlus(DE3)-RIL株(ストラテジーン社)で形質転換を行った。形質転換体16クローンよりプラスミドを調整し、インサート断片の有無の確認を行ったところ、4クローンで挿入断片が確認された。
上記で取得した大腸菌形質転換体を、培地を入れた試験管に一晩培養した培養液を1/10量加え、20℃で20時間振盪培養した。培地成分は1%トリプトン、0.5%酵母エキス、1% 塩化ナトリウム、50 μg/mlアンピシリン、0.1 mM IPTGであった。菌体を集菌した後、超音波破砕機(コスモバイオ社)で破砕し、SDS-ポリアクリルアミドゲル電気泳動に供した。その結果、62 kDaの分子量を示す蛋白質が存在した(図2−A)。
The amplified product was confirmed by 1.0% agarose gel electrophoresis, the DNA fragment was isolated and purified by electrophoresis, ligated to TA cloning vector pT7Blue T-Vector and cloned into E. coli JM109. A plasmid was prepared from this clone, the nucleotide sequence of the cloned DNA fragment was confirmed, and one clone containing no error due to PCR was obtained. This plasmid was digested with NheI and XhoI, confirmed by 1.0% agarose gel electrophoresis, and the DNA fragment was recovered. This fragment was ligated with pET-21b (+) (Novagen) digested with NheI and XhoI (FIG. 1), and transformed with E. coli BL21-CodonPlus (DE3) -RIL strain (Stratagene). When plasmids were prepared from 16 clones of the transformant and the presence or absence of the insert fragment was confirmed, the insert fragment was confirmed in 4 clones.
1/10 volume of the culture solution obtained by culturing the E. coli transformant obtained above in a test tube containing the medium overnight was added, and the mixture was cultured with shaking at 20 ° C. for 20 hours. Medium components were 1% tryptone, 0.5% yeast extract, 1% sodium chloride, 50 μg / ml ampicillin, 0.1 mM IPTG. After collecting the cells, they were crushed with an ultrasonic crusher (Cosmo Bio) and subjected to SDS-polyacrylamide gel electrophoresis. As a result, a protein having a molecular weight of 62 kDa was present (FIG. 2-A).

上記破砕物を遠心し、上清をHis MicroSpin Purification Module(アマシャムファルマシア社)で精製を行った後、β-1,3-グルカナーゼの活性測定を行った。
β-1,3-グルカナーゼの活性測定は、基質にラミナリン(シグマ社)を使用してRachelらの方法(Gene 226 147-154, (1999))に従い、反応時間を1時間で活性測定を行った。測定結果は表1に示す。ベクターpET-21b(+)のみでは検出できなかったβ-1,3-グルカナーゼ活性が認められ、組換え大腸菌によるβ-1,3-グルカナーゼの生産が確認された。
尚、pExgHは独立行政法人産業技術総合研究所 特許生物寄託センターに平成16年6月24日付で寄託し、受領番号FERM AP−20100が付されている。
The crushed material was centrifuged, and the supernatant was purified by His MicroSpin Purification Module (Amersham Pharmacia), and the activity of β-1,3-glucanase was measured.
β-1,3-glucanase activity was measured using Laminarin (Sigma) as a substrate according to the method of Rachel et al. (Gene 226 147-154, (1999)) and the reaction time was measured for 1 hour. It was. The measurement results are shown in Table 1. Β-1,3-glucanase activity that could not be detected by vector pET-21b (+) alone was observed, confirming the production of β-1,3-glucanase by recombinant Escherichia coli.
PExgH has been deposited with the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology on June 24, 2004, and is given the receipt number FERM AP-20100.

新規エンド-β-1,3-グルカナーゼ遺伝子の大腸菌での発現
上記で取得したcDNAを鋳型としてPCRを行い、新規エンド-β-1,3-グルカナーゼ遺伝子のORFを含むDNA断片を取得した。プライマーには該遺伝子の塩基配列に基づき作成した次の2つの塩基配列のものを用いた。
5’-CTAGCTAGCATGGCGACAATGGCAAACGG-3’ (配列番号11)
5’-CCGCTCGAGGTTAGTGGTGCTAATGAACCC-3’ (配列番号12)
各プライマーには5’側にNheI,3’側にXhoIの制限酵素認識配列を含むような改変を加えてある。PCR反応はExpand HFを使用し、DNA Thermal Cyclerにより行った。反応液の組成は以下の通りである。
Expression of a novel endo-β-1,3-glucanase gene in E. coli PCR was performed using the cDNA obtained above as a template to obtain a DNA fragment containing the ORF of the novel endo-β-1,3-glucanase gene. Primers having the following two base sequences prepared based on the base sequence of the gene were used.
5'-CTAGCTAGCATGGCGACAATGGCAAACGG-3 '(SEQ ID NO: 11)
5'-CCGCTCGAGGTTAGTGGTGCTAATGAACCC-3 '(SEQ ID NO: 12)
Each primer is modified to include a restriction enzyme recognition sequence of NheI on the 5 ′ side and XhoI on the 3 ′ side. PCR reaction was performed using Expand HF and DNA Thermal Cycler. The composition of the reaction solution is as follows.

Figure 2005034146
Figure 2005034146

上記の反応液50 μlを0.2 ml反応チューブ中で混合してDNA Thermal Cyclerにセットし、以下の様な温度設定によりPCRを行った。
94℃、3分 1サイクル
94℃、1分 50℃、2分 72℃、2分 25サイクル
72℃、7分 1サイクル
50 μl of the above reaction mixture was mixed in a 0.2 ml reaction tube and set in the DNA Thermal Cycler, and PCR was performed with the following temperature settings.
94 ° C, 3 minutes, 1 cycle
94 ° C, 1 minute 50 ° C, 2 minutes 72 ° C, 2 minutes 25 cycles
72 ° C, 7 minutes, 1 cycle

増幅産物を1.0%アガロースゲル電気泳動で確認し、DNA断片を電気泳動によって単離、精製しTAクローニングベクターpT7Blue T-Vectorに連結して大腸菌JM109にクローニングした。このクローンからプラスミドを調製してクローニングしたDNA断片の塩基配列を確認し、PCRによるエラーを含まない1クローンを取得した。このプラスミドをNheIおよびXhoIで消化し、1.0%アガロースゲル電気泳動で確認し,DNA断片を回収した。この断片をNheIおよびXhoIで消化したpET-21b(+)とライゲーションし(図1)、大腸菌BL21-CodonPlus(DE3)-RIL株で形質転換を行った。形質転換体16クローンよりプラスミドを調整し、インサート断片の有無の確認を行ったところ、6クローンで挿入断片が確認された。
上記で取得した大腸菌形質転換体を、培地を入れた試験管に一晩培養した培養液を1/10量加え、20℃で20時間振盪培養した。培地成分は1%トリプトン、0.5%酵母エキス、1% 塩化ナトリウム、50 μg/mlアンピシリン、0.1 mM IPTGであった。菌体を集菌した後、超音波破砕機で破砕し、SDS-ポリアクリルアミドゲル電気泳動に供した。その結果、80 kDaの分子量を示す蛋白質が存在した(図2−B)。
The amplified product was confirmed by 1.0% agarose gel electrophoresis, the DNA fragment was isolated and purified by electrophoresis, ligated to TA cloning vector pT7Blue T-Vector and cloned into E. coli JM109. A plasmid was prepared from this clone, the nucleotide sequence of the cloned DNA fragment was confirmed, and one clone containing no error due to PCR was obtained. This plasmid was digested with NheI and XhoI, confirmed by 1.0% agarose gel electrophoresis, and the DNA fragment was recovered. This fragment was ligated with pET-21b (+) digested with NheI and XhoI (FIG. 1), and transformed with E. coli BL21-CodonPlus (DE3) -RIL strain. A plasmid was prepared from 16 clones of the transformant, and the presence or absence of the insert fragment was confirmed. As a result, the insert fragment was confirmed in 6 clones.
1/10 volume of the culture solution obtained by culturing the E. coli transformant obtained above in a test tube containing the medium overnight was added, and the mixture was cultured with shaking at 20 ° C. for 20 hours. Medium components were 1% tryptone, 0.5% yeast extract, 1% sodium chloride, 50 μg / ml ampicillin, 0.1 mM IPTG. After collecting the cells, they were crushed with an ultrasonic crusher and subjected to SDS-polyacrylamide gel electrophoresis. As a result, a protein having a molecular weight of 80 kDa was present (FIG. 2-B).

β-1,3-グルカナーゼの活性測定は、基質にラミナリン(シグマ社)を使用してRachelらの方法(Gene 226 147-154, (1999))に従い、反応時間を1時間で測定を行った。測定結果は表5に示す。ベクターpET-21b(+)のみでは検出できなかったβ-1,3-グルカナーゼ活性が認められ、組換え大腸菌によるβ-1,3-グルカナーゼの生産が確認された。
尚、pEngLは独立行政法人産業技術総合研究所 特許生物寄託センターに平成16年6月24日付で寄託し、受領番号FERM AP−20099が付されている。
β-1,3-glucanase activity was measured by using laminarin (Sigma) as a substrate according to the method of Rachel et al. (Gene 226 147-154, (1999)) with a reaction time of 1 hour. . The measurement results are shown in Table 5. Β-1,3-glucanase activity that could not be detected by vector pET-21b (+) alone was observed, confirming the production of β-1,3-glucanase by recombinant Escherichia coli.
PEngL has been deposited with the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology as of June 24, 2004, and has a receipt number of FERM AP-20099.

Figure 2005034146
Figure 2005034146

大腸菌形質転換体からの新規エンド−β−1,3−グルカナーゼの精製
実施例4と同様に、新規エンド−β−1,3−グルカナーゼ遺伝子を発現させた大腸菌を液体培地で一晩振とう培養し、菌体を集菌した後、超音波破砕機(コスモバイオ社)で破砕し、遠心上清をHis MicroSpin Purification Module (アマシャムファルマシア社) で精製した。精製されたエンド−β−1,3−グルカナーゼをSDS-ポリアクリルアミドゲル電気泳動に供した結果、80kDaの分子量を示した。
Purification of novel endo-β-1,3-glucanase from E. coli transformant As in Example 4, E. coli expressing a novel endo-β-1,3-glucanase gene was cultured overnight in a liquid medium by shaking. After collecting the cells, the cells were crushed with an ultrasonic crusher (Cosmo Bio), and the centrifugal supernatant was purified with a His MicroSpin Purification Module (Amersham Pharmacia). The purified endo-β-1,3-glucanase was subjected to SDS-polyacrylamide gel electrophoresis, and showed a molecular weight of 80 kDa.

新規エンド−β−1,3−グルカナーゼの基質特異性
新規エンド−β−1,3−グルカナーゼ遺伝子を含む組換えベクターにより形質転換した大腸菌から精製された酵素溶液を用いて、β−1,3−グルカナーゼの基質特異性を調べた。新規エンド−β−1,3−グルカナーゼの基質特異性は、基質にラミナリン、キトサン、セロビオース、ゲンチビオース(Sigma社)、デキストラン、プスツラン、β-1,6-グルカン、カードラン(和光純薬工業株式会社)、を使用して実施例4と同様にRachel らの方法 (Gene,226,147-154, 1999) に従い、反応時間1時間で測定を行った。測定結果は表6に示す。β-1,3を主鎖とするラミナリン及びカードランにβ−1,3−グルカナーゼ活性が得られたことから、β−1,3−グルカナーゼの生産能をもつ組換え大腸菌であることが確認された。
Substrate specificity of novel endo-β-1,3-glucanase β-1,3 using an enzyme solution purified from E. coli transformed with a recombinant vector containing the novel endo-β-1,3-glucanase gene -The substrate specificity of glucanase was examined. The substrate specificity of the novel endo-β-1,3-glucanase is determined by using laminarin, chitosan, cellobiose, gentibiose (Sigma), dextran, pustulan, β-1,6-glucan, curdlan (Wako Pure Chemical Industries, Ltd.) In the same manner as in Example 4, the measurement was performed with a reaction time of 1 hour according to the method of Rachel et al. (Gene, 226, 147-154, 1999). The measurement results are shown in Table 6. β-1,3-glucanase activity was obtained in laminarin and curdlan with β-1,3 as the main chain, confirming that it is a recombinant Escherichia coli capable of producing β-1,3-glucanase It was done.

Figure 2005034146
Figure 2005034146

尚、以上の各実施例における酵素活性の測定は具体的には以下の方法に従った。酵素溶液30μL に3mg/mL、ラミナリン(Sigma社)等の基質を含む50mM酢酸ナトリウム緩衝液(pH5.5)を37℃で30分間反応した。その後、沸騰水中で5分間加熱して酵素を失活させた。この溶液にグルコース測定用キット(C-II−テストワコー、和光純薬工業株式会社)の発色剤を添加し、37℃で5分間加温させた後、505nmでの吸光度を測定した。   In addition, the measurement of the enzyme activity in each of the above examples specifically followed the following method. 30 mM of the enzyme solution was reacted with 50 mM sodium acetate buffer (pH 5.5) containing 3 mg / mL of a substrate such as laminarin (Sigma) at 37 ° C. for 30 minutes. Thereafter, the enzyme was inactivated by heating in boiling water for 5 minutes. To this solution was added a color former of a glucose measurement kit (C-II-Test Wako, Wako Pure Chemical Industries, Ltd.), and the mixture was heated at 37 ° C. for 5 minutes, and then the absorbance at 505 nm was measured.

至適pH
3mg/mL、ラミナリン(Sigma社)を基質として50mMの酢酸ナトリウム緩衝液(pH2.0-10.0)に溶解し、上記酵素活性測定法に従い、相対活性を測定した。その結果、酵素活性のpHは5.0付近で最大となった。結果は表7に示す。
PH optimum
3 mg / mL, laminarin (Sigma) was used as a substrate and dissolved in 50 mM sodium acetate buffer (pH 2.0-10.0), and the relative activity was measured according to the above enzyme activity measurement method. As a result, the pH of the enzyme activity reached a maximum around 5.0. The results are shown in Table 7.

pH安定性
pH安定性を調べるために3mg/mLラミナリン(Sigma社)を含む50mMの酢酸ナトリウム緩衝液(pH2.0-10.0) を反応液として用いて37℃、1時間保持した後、上記の酵素活性測定法に従い、残存活性を測定した。その結果は、pH5.0-7.0の範囲でpH安定性を示した。結果は表7に示す。
pH stability
To examine pH stability, 50 mM sodium acetate buffer solution (pH 2.0-10.0) containing 3 mg / mL laminarin (Sigma) was used as a reaction solution, maintained at 37 ° C for 1 hour, and then measured for the above enzyme activity. Residual activity was measured according to the method. The results showed pH stability in the range of pH 5.0-7.0. The results are shown in Table 7.

至適温度
上記酵素活性測定法に従い、各温度(20-75℃) において相対活性を測定した。その結果、酵素活性は45℃で最大となった。結果は表7に示す。
Optimum temperature Relative activity was measured at each temperature (20-75 ° C) according to the above enzyme activity measurement method. As a result, the enzyme activity reached its maximum at 45 ° C. The results are shown in Table 7.

温度安定性
3mg/mLラミナリン(Sigma社)を含む50mMの酢酸ナトリウム緩衝液(pH5.5)中で
20-75℃、1時間の保持した後、上記酵素活性測定法に従い、残存活性を測定した。その結果、55℃までは90%以上安定性を示し、75℃までは約75%に残存率が低下し、それを超えると失活した。結果は表7に示す。
Temperature stability
In 50 mM sodium acetate buffer (pH 5.5) containing 3 mg / mL laminarin (Sigma)
After maintaining at 20-75 ° C. for 1 hour, the residual activity was measured according to the above enzyme activity measurement method. As a result, the stability was more than 90% up to 55 ° C, the residual rate decreased to about 75% up to 75 ° C, and it was deactivated when it exceeded. The results are shown in Table 7.

酵素活性の算出
新規エンド−β−1,3−グルカナーゼ活性は上記活性測定法に従い、酵素活性(U/mg)を算出した。1Uは、1分間当たり1μmoleの生成物を生成する酵素量と定義した。この酵素活性を算出するにあたり、あらかじめブラッドフォード法・プロテインアッセイ(BioRad社)を用いて酵素中に含まれるタンパク質量を求めた。酵素溶液800μLに対して200μL染色試薬を添加混合し、室温で5分後に静置した後595nmでの吸光度を測定した。総タンパク量、総活性、比活性を算出した結果を表7に示す。
Calculation of enzyme activity For the new endo-β-1,3-glucanase activity, the enzyme activity (U / mg) was calculated according to the above activity assay. 1 U was defined as the amount of enzyme that produced 1 μmole of product per minute. In calculating the enzyme activity, the amount of protein contained in the enzyme was determined in advance using the Bradford method / protein assay (BioRad). 200 μL staining reagent was added to and mixed with 800 μL of the enzyme solution, and after 5 minutes at room temperature, the absorbance at 595 nm was measured. Table 7 shows the results of calculating the total protein amount, total activity, and specific activity.

酵素反応速度の解析
ラミナリン(Sigma社)を基質として、新規エンド−β−1,3−グルカナーゼの酵素反応のミカエリス定数(Km値)及び最大速度(Vmax値)を測定した。上記酵素活性測定法に従い、各基質濃度(0.1-10mg/mL)を加え反応させ、この反応液の505nmにおける吸光度を連続的に測定することにより ラミナリン分解活性を測定した。得られた結果より、ラインウィーバー・バークプロットを作成した結果、Km値は3.62mg/mLであり、Vmax値は75.02μmol/minであった。結果は表7に示す。
Analysis of enzyme reaction rate Using laminarin (Sigma) as a substrate, the Michaelis constant (Km value) and maximum rate (Vmax value) of the enzyme reaction of novel endo-β-1,3-glucanase were measured. According to the enzyme activity measurement method, each substrate concentration (0.1-10 mg / mL) was added and reacted, and the absorbance at 505 nm of this reaction solution was continuously measured to measure laminarin degrading activity. From the results obtained, a line weaver bark plot was created. As a result, the Km value was 3.62 mg / mL, and the Vmax value was 75.02 μmol / min. The results are shown in Table 7.

Figure 2005034146
Figure 2005034146

エンド−β−1,3−グルカナーゼ処理による13糖ラミナリオリゴ糖のHPLC分析
上記により精製されたエンド−β−1,3−グルカナーゼ活性を有する新規な酵素を用いて、PA化13糖ラミナリオリゴ糖(生化学工業社)を基質として反応させて、その分解産物をHPLCにより検出した。その結果を図3及び図4に示す。PA化ラミナリオリゴ糖は10mM
酢酸ナトリウム緩衝液(pH5.5)に200pmol/mLとなるように溶解した。1・3・10分間の0.1μg/mL酵素処理をした13糖ラミナリオリゴ糖における初期中間産物には3糖から10糖が検出され、その中で主要分解産物は7糖から10糖であることが確認された(図3)。また、1・3・10・60分間の10mg/mL酵素処理をしたラミナリオリゴ糖についての中期中間産物として2糖から9糖が確認され、さらに主要最終分解産物として2糖及び3糖が検出された(図4)。以上のHPLC分析の結果より、β−1,3−グルカナーゼはエンド型酵素であることが確認された。
HPLC analysis of 13-saccharide laminari-oligosaccharide by treatment with endo-β-1,3-glucanase Using the novel enzyme having endo-β-1,3-glucanase activity purified as described above, The degradation product was detected by HPLC. The results are shown in FIGS. PA-modified laminary oligosaccharide is 10 mM
It was dissolved in sodium acetate buffer (pH 5.5) to 200 pmol / mL. The initial intermediate products in 13-sugar laminari-oligosaccharides treated with 0.1 µg / mL enzyme for 1, 3, 10 minutes are detected from 3 sugars to 10 sugars, and the main degradation products are 7 sugars to 10 sugars. It was confirmed (FIG. 3). In addition, 9 to 9 sugars were confirmed as intermediate intermediate products for laminary oligosaccharides treated with 10 mg / mL enzyme for 1, 3, 10, and 60 minutes, and disaccharides and trisaccharides were detected as major final degradation products. (FIG. 4). From the results of the above HPLC analysis, it was confirmed that β-1,3-glucanase is an endo-type enzyme.

麹菌発現ベクターの構築
アスペルギルス・オリゼのアミラーゼプロモーターを持つ発現ベクタープラスミドpMAR5(Biosci. Biotech. Biochem., 56:1674-1675, 1992)のマーカー遺伝子であるargB遺伝子を、アスペルギルス・オリゼのniaD遺伝子に交換したプラスミド(pAPTL)を作成した。このプラスミドは、niaD遺伝子を選択マーカーとして持ち、アミラーゼ遺伝子のプロモーターとターミネーターの間に7種類の制限酵素サイト(EcoRI, ClaI, NheI, NotI, SpeI, SmaI HindIII)もつ発現ベクターであり、制限酵素サイトにプロモーターと同じ方向で遺伝子のORFを組込み、麹菌を形質転換することにより、アミラーゼ遺伝子プロモーターの制御下で目的の遺伝子を発現することが出来る。
Construction of Aspergillus oryzae argB gene, the marker gene of expression vector plasmid pMAR5 (Biosci. Biotech. Biochem., 56: 1674-1675, 1992) with Aspergillus oryzae amylase promoter was replaced with niaD gene of Aspergillus oryzae A plasmid (pAPTL) was prepared. This plasmid is an expression vector that has the niaD gene as a selectable marker and has seven restriction enzyme sites (EcoRI, ClaI, NheI, NotI, SpeI, SmaI HindIII) between the promoter and terminator of the amylase gene. The gene of interest can be expressed under the control of the amylase gene promoter by incorporating the ORF of the gene in the same direction as the promoter and transforming gonococci.

染色体DNAを鋳型としてPCRを行い、新規エンド-β-1,3-グルカナーゼ遺伝子のORFを含むDNA断片を取得した。プライマーには該遺伝子の塩基配列に基づき作成した次の2つの塩基配列のものを用いた。
5’-CTAGCTAGCATGGCGACAATGGCAAACGG-3’ (配列番号13)
5’-GGACTAGTCTATATATTGTTAGTGGTGCTA-3’ (配列番号14)
各プライマーには5’側にNheI,3’側にSpeIの制限酵素認識配列を含むような改変を加えてある。PCR反応はKOD-Plus-DNA polymerase(TOYOBO)を使用し、DNA Thermal Cyclerにより行った。反応液の組成は以下の通りである。
PCR was performed using chromosomal DNA as a template to obtain a DNA fragment containing the ORF of a novel endo-β-1,3-glucanase gene. Primers having the following two base sequences prepared based on the base sequence of the gene were used.
5'-CTAGCTAGCATGGCGACAATGGCAAACGG-3 '(SEQ ID NO: 13)
5'-GGACTAGTCTATATATTGTTAGTGGTGCTA-3 '(SEQ ID NO: 14)
Each primer is modified to include a restriction enzyme recognition sequence of NheI on the 5 ′ side and SpeI on the 3 ′ side. PCR reaction was performed by using DNA Thermal Cycler using KOD-Plus-DNA polymerase (TOYOBO). The composition of the reaction solution is as follows.

Figure 2005034146
Figure 2005034146

上記の反応液50 μlを0.2 ml反応チューブ中で混合してDNA Thermal Cyclerにセットし、以下の様な温度設定によりPCRを行った。
95℃、2分 1サイクル
95℃、0.5分 58℃、0.5分 72℃、4分 30サイクル
72℃、4分 1サイクル
増幅産物をNheIおよびSpeIで消化し1.0%アガロースゲル電気泳動し、DNA断片を単離、回収を行なった。同一の酵素で消化を行なったpAPTLとライゲーションし、大腸菌JM109(ニッポンジーン社)に形質転換した。大腸菌形質転換体よりプラスミドを調整し、pEGOとした。pEGOは独立行政法人産業技術総合研究所 特許生物寄託センターに平成16年6月24日付で寄託し、受領番号FERM AP−20101が付されている。
50 μl of the above reaction mixture was mixed in a 0.2 ml reaction tube and set in the DNA Thermal Cycler, and PCR was performed with the following temperature settings.
95 ° C, 2 minutes, 1 cycle
95 ° C, 0.5 minutes 58 ° C, 0.5 minutes 72 ° C, 4 minutes 30 cycles
72 ° C., 4 minutes, 1 cycle Amplification product was digested with NheI and SpeI and subjected to 1.0% agarose gel electrophoresis to isolate and recover the DNA fragment. Ligated with pAPTL digested with the same enzymes, and transformed into E. coli JM109 (Nippon Gene). A plasmid was prepared from the E. coli transformant and designated pEGO. pEGO has been deposited at the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology on June 24, 2004, and is given the receipt number FERM AP-20101.

麹菌形質転換体の取得
pEGOを用いて、アスペルギルス・オリゼRIB326-15株(niaD欠損株)に形質転換を行なった。形質転換法は、プロトプラスト化した後ポリエチレングリコール及び塩化カルシウムを用いる方法(Mol. Gen. Genet., 218:99-104, 1989)によって行った。pEGOを20μg用いて形質転換し、CZ培地(DIFCO)で形質転換体を選択したところ、約50個のコロニーが得られた。このうち、12コロニーについて最少培地で単分生子分離を行い、形質の安定化を行った。これらの株の分生子を寒天培地上よりかき取り、YPD液体培地に植菌し30℃で24時間振とう培養した後、菌体を回収し、Wizard Genomic DNA Purification Kit (Promega)を使用して染色体DNAを取得した。取得した染色体DNAを用いて、サザンハイブリダイゼーションを行い目的の遺伝子が組み込まれたか確認を行なった。その結果、9株で遺伝子の導入が確認された。このうち1株をENG1とした。
Acquisition of gonococcal transformants
Using pEGO, Aspergillus oryzae RIB326-15 strain (niaD-deficient strain) was transformed. The transformation method was performed by a method using polyethylene glycol and calcium chloride after protoplastization (Mol. Gen. Genet., 218: 99-104, 1989). When transforming with 20 μg of pEGO and selecting transformants with CZ medium (DIFCO), about 50 colonies were obtained. Of these, twelve colonies were isolated from single conidia in a minimal medium to stabilize the character. The conidia of these strains are scraped from an agar medium, inoculated into a YPD liquid medium, cultured at 30 ° C for 24 hours with shaking, and then the cells are collected and used with the Wizard Genomic DNA Purification Kit (Promega). Chromosomal DNA was obtained. Using the obtained chromosomal DNA, Southern hybridization was performed to confirm whether the target gene was integrated. As a result, gene introduction was confirmed in 9 strains. One of these was designated ENG1.

新規エンド-β-1,3-グルカナーゼ遺伝子の麹菌での発現
ENG1株及び親株(エンド-β-1,3-グルカナーゼ関しては野生型)のアスペルギルス・オリゼRIB326-15株の分生子をYPD培地に接種し、30℃で24時間、振盪培養したのち、菌体を貧栄養培地に1%マルトースを加えた培地に移し、30℃で24時間さらに振盪培養した。菌体を集菌した後、液体窒素の入った乳鉢に移し、乳棒で粉砕した。粉砕された菌体の約半量を、5 mlの抽出バッファー(50 mMリン酸カリウムバッファー pH7.0, 10 mM エチレンジアミン4酢酸3ナトリウム, 0.1%トリトンX-100, 0.1% N-ラウロイルサルコシンナトリウム, 10 mM 2-メルカプトエタノール)に入れ、充分攪拌した後、10,000 rpm、10分間の遠心分離により、不溶物を沈殿させ、菌体破砕上清を回収した。この菌体破砕上清を用いてβ-1,3-グルカナーゼ活性測定を行なった。酵素活性測定方法等は上記記載に従った。その測定結果を表9にしめす。
Expression of a novel endo-β-1,3-glucanase gene in Aspergillus oryzae
ENG1 strain and parental strain (wild-type for endo-β-1,3-glucanase) Aspergillus oryzae RIB326-15 conidia were inoculated into YPD medium and cultured at 30 ° C for 24 hours with shaking. The body was transferred to a nutrient medium supplemented with 1% maltose and further cultured with shaking at 30 ° C. for 24 hours. After collecting the cells, they were transferred to a mortar containing liquid nitrogen and crushed with a pestle. About half of the pulverized cells were added to 5 ml of extraction buffer (50 mM potassium phosphate buffer pH 7.0, 10 mM ethylenediaminetetraacetic acid trisodium, 0.1% Triton X-100, 0.1% N-lauroyl sarcosine sodium, 10 (Mm 2-mercaptoethanol), and after sufficient agitation, the insoluble matter was precipitated by centrifugation at 10,000 rpm for 10 minutes, and the cell disruption supernatant was collected. Using this cell disruption supernatant, β-1,3-glucanase activity was measured. The enzyme activity measurement method and the like were as described above. The measurement results are shown in Table 9.

Figure 2005034146
Figure 2005034146

親株に比べENG1株では約2倍のβ-1,3-グルカナーゼ活性上昇が認められた。ENG1株においては、菌体内エンド-β-1,3-グルカナーゼの生産能が向上している事が明らかとなった。ENG1株は独立行政法人産業技術総合研究所 特許生物寄託センターに平成16年6月24日付で寄託し、受領番号FERM AP−20098が付されている。   The ENG1 strain showed an approximately 2-fold increase in β-1,3-glucanase activity compared to the parent strain. In ENG1 strain, it was clarified that the ability to produce intracellular endo-β-1,3-glucanase was improved. The ENG1 strain has been deposited with the Patent Organism Depositary at the National Institute of Advanced Industrial Science and Technology on June 24, 2004, and is given the receipt number FERM AP-20098.

これらの遺伝子あるいは酵素該蛋白質を用いることにより、β-1,3-グルカンの安全かつ効率的な低分子化を達成し、抗腫瘍活性などで注目される水溶性β-1,3-グルカンおよびこれを含む食品の生産性を向上することが期待できる。   By using these genes or enzymes and these proteins, β-1,3-glucan can be safely and efficiently reduced in molecular weight, and water-soluble β-1,3-glucan attracting attention for its antitumor activity and the like It can be expected to improve the productivity of foods containing this.

プラスミドの簡単な構築法を示す。A simple construction method of a plasmid is shown. IPTGでインダクションをかけたもの、かけなかったものを集菌して超音波破砕した後のサンプルを用いて実施した、発現させた本発明蛋白質の10%のSDS-PAGEの結果を示す。The results of SDS-PAGE of 10% of the expressed protein of the present invention carried out using a sample after collecting and ultrasonically crushing those that were induced with IPTG and those that were not applied are shown. エンド−β−1,3−グルカナーゼ処理(0.1μg/mL)による13糖ラミナリオリゴ糖のHPLC分析の結果を示すチャートである。It is a chart which shows the result of the HPLC analysis of 13 sugar | laminary oligosaccharide by endo- (beta) -1, 3- glucanase treatment (0.1 microgram / mL). エンド−β−1,3−グルカナーゼ処理(10mg/mL)による13糖ラミナリオリゴ糖のHPLC分析の結果を示すチャートである。It is a chart which shows the result of the HPLC analysis of 13 saccharide | sugar laminari oligosaccharide by endo- (beta) -1, 3- glucanase treatment (10 mg / mL).

Claims (12)

下記のいずれか一つに示す蛋白質をコードする遺伝子。
(a)アスペルギルス・オリゼ由来の分子量62kDを有するβ−1,3−グルカナーゼ、
(b)配列番号2で示されるアミノ酸配列からなる蛋白質、
(c)配列番号2で示されるアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列からなり、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質、及び
(d)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を示すアミノ酸配列を含む蛋白質またはその部分断片であり、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質。
A gene encoding the protein shown in any one of the following.
(A) β-1,3-glucanase having a molecular weight of 62 kD derived from Aspergillus oryzae,
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2,
(C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing substitution, deletion, insertion or transfer of one or several amino acid residues, and having exo-β-1,3-glucanase activity And (d) a protein comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 2 or a partial fragment thereof, and having exo-β-1,3-glucanase activity protein.
下記のいずれか一つに示すDNAを含む遺伝子。
(a)配列番号1に示される塩基配列からなるDNA、
(b)配列番号1に示される塩基配列またはその相補鎖を含む核酸とストリンジェントな条件下でハイブリダイズし、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質をコードするDNA、及び
(c)配列番号1に示される塩基配列のDNAと80%以上の配列同一性を示すDNAまたはその部分断片であり、かつエキソ−β-1,3-グルカナーゼ活性の機能を有する蛋白質をコードするDNA。
A gene containing the DNA shown in any one of the following.
(A) DNA consisting of the base sequence represented by SEQ ID NO: 1,
(B) a DNA that hybridizes with a nucleic acid comprising the base sequence shown in SEQ ID NO: 1 or a complementary strand thereof under a stringent condition and encodes a protein having exo-β-1,3-glucanase activity; c) DNA encoding a protein having a function of exo-β-1,3-glucanase, which is a DNA having a sequence identity of 80% or more with the DNA of the base sequence shown in SEQ ID NO: 1 or a partial fragment thereof .
下記のいずれか一つに示す蛋白質をコードする遺伝子。
(a)アスペルギルス・オリゼ由来の分子量80kDを有するβ−1,3−グルカナーゼ、
(b)配列番号4で示されるアミノ酸配列からなる蛋白質、
(c)配列番号4で示されるアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列からなり、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質、及び
(d)配列番号4で示されるアミノ酸配列と80%以上の配列同一性を示すアミノ酸配列を含む蛋白質またはその部分断片であり、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質。
A gene encoding the protein shown in any one of the following.
(A) β-1,3-glucanase having a molecular weight of 80 kD derived from Aspergillus oryzae,
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 4,
(C) the amino acid sequence represented by SEQ ID NO: 4, consisting of an amino acid sequence containing substitution, deletion, insertion or transfer of one or several amino acid residues, and having endo-β-1,3-glucanase activity And (d) a protein comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 4 or a partial fragment thereof, and having endo-β-1,3-glucanase activity protein.
下記のいずれか一つに示すDNAを含む遺伝子。
(a)配列番号3に示される塩基配列からなるDNA、
(b)配列番号3に示される塩基配列またはその相補鎖を含む核酸とストリンジェントな条件下でハイブリダイズし、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質をコードするDNA、及び
(c)配列番号3に示される塩基配列のDNAと80%以上の配列同一性を示すDNAまたはその部分断片であり、かつエンド−β-1,3-グルカナーゼ活性の機能を有する蛋白質をコードするDNA。
A gene containing the DNA shown in any one of the following.
(A) DNA comprising the base sequence represented by SEQ ID NO: 3,
(B) DNA encoding a protein that hybridizes under stringent conditions with a nucleic acid comprising the base sequence shown in SEQ ID NO: 3 or a complementary strand thereof, and has endo-β-1,3-glucanase activity; c) DNA encoding a protein having a function of endo-β-1,3-glucanase activity, which is a DNA having a sequence identity of 80% or more with the DNA of the base sequence shown in SEQ ID NO: 3 or a partial fragment thereof .
請求項1ないし4記載の遺伝子を含有してなる組換え発現ベクター。 A recombinant expression vector comprising the gene according to claim 1. 請求項5記載の組換え発現ベクターを含む微生物。 A microorganism comprising the recombinant expression vector according to claim 5. 請求項6記載の微生物を培地で培養し、その培養物からエキソ又はエンド-β-1,3-グルカナーゼを採取することを特徴とするエキソ又はエンド-β-1,3-グルカナーゼの製造方法。 A method for producing exo or endo-β-1,3-glucanase, comprising culturing the microorganism according to claim 6 in a medium and collecting exo or endo-β-1,3-glucanase from the culture. 下記のいずれか一つに示す蛋白質。
(a)アスペルギルス・オリゼ由来の分子量62kDを有するβ−1,3−グルカナーゼ、
(b)配列番号2で示されるアミノ酸配列からなる蛋白質、
(c)配列番号2で示されるアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列からなり、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質、及び
(d)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を示すアミノ酸配列を含む蛋白質またはその部分断片であり、かつエキソ−β-1,3-グルカナーゼ活性を有する蛋白質。
Protein shown in any one of the following.
(A) β-1,3-glucanase having a molecular weight of 62 kD derived from Aspergillus oryzae,
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2,
(C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing substitution, deletion, insertion or transfer of one or several amino acid residues, and having exo-β-1,3-glucanase activity And (d) a protein comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 2 or a partial fragment thereof, and having exo-β-1,3-glucanase activity protein.
下記のいずれか一つに示す蛋白質。
(a)アスペルギルス・オリゼ由来の分子量80kDを有するβ−1,3−グルカナーゼ、
(b)配列番号4で示されるアミノ酸配列からなる蛋白質、
(c)配列番号4で示されるアミノ酸配列において、1個若しくは数個のアミノ酸残基の置換、欠失、挿入または転移を含むアミノ酸配列からなり、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質、及び
(d)配列番号4で示されるアミノ酸配列と80%以上の配列同一性を示すアミノ酸配列を含む蛋白質またはその部分断片であり、かつエンド−β-1,3-グルカナーゼ活性を有する蛋白質。
Protein shown in any one of the following.
(A) β-1,3-glucanase having a molecular weight of 80 kD derived from Aspergillus oryzae,
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 4,
(C) the amino acid sequence represented by SEQ ID NO: 4, consisting of an amino acid sequence containing substitution, deletion, insertion or transfer of one or several amino acid residues, and having endo-β-1,3-glucanase activity And (d) a protein comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 4 or a partial fragment thereof, and having endo-β-1,3-glucanase activity protein.
請求項7記載の方法で得られた組換え蛋白質である、請求項8又は9記載の蛋白質。 The protein according to claim 8 or 9, which is a recombinant protein obtained by the method according to claim 7. 請求項6記載の微生物、その培養物、及び/又は請求項10記載の蛋白質を含む食品。 A food comprising the microorganism according to claim 6, a culture thereof, and / or the protein according to claim 10. 請求項6記載の微生物、その培養物、及び/又は請求項8、9又は10記載の蛋白質をβ-1,3-グルカンに作用させることによって、低分子化β-1,3-グルカンを製造する方法。 A low molecular weight β-1,3-glucan is produced by allowing the microorganism according to claim 6, its culture, and / or the protein according to claim 8, 9 or 10 to act on β-1,3-glucan. how to.
JP2004188849A 2003-06-27 2004-06-25 Cell wall degrading novel enzyme gene derived from Aspergillus oryzae and method for producing the enzyme Active JP4574245B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004188849A JP4574245B2 (en) 2003-06-27 2004-06-25 Cell wall degrading novel enzyme gene derived from Aspergillus oryzae and method for producing the enzyme
US11/085,185 US7285407B2 (en) 2004-06-25 2005-03-22 Genes of cell wall-degrading enzymes derived from aspergillus, and method for the production the enzymes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003183661 2003-06-27
JP2004188849A JP4574245B2 (en) 2003-06-27 2004-06-25 Cell wall degrading novel enzyme gene derived from Aspergillus oryzae and method for producing the enzyme

Publications (2)

Publication Number Publication Date
JP2005034146A true JP2005034146A (en) 2005-02-10
JP4574245B2 JP4574245B2 (en) 2010-11-04

Family

ID=34220331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188849A Active JP4574245B2 (en) 2003-06-27 2004-06-25 Cell wall degrading novel enzyme gene derived from Aspergillus oryzae and method for producing the enzyme

Country Status (1)

Country Link
JP (1) JP4574245B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644193B2 (en) 2013-08-02 2017-05-09 Euglena Co., Ltd. B-1,3-glucanase, polynucleotide, recombinant vector, transformant, production method for B-1,3- glucanase, enzyme preparation, and production method for paramylon having reduced molecular weight
CN114606138A (en) * 2022-03-21 2022-06-10 黄河三角洲京博化工研究院有限公司 Application of strain and enzyme in preparation of health-care soy sauce and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6010018461, J. Bacteriol., 1997, vol.179, no.10, p.3154−3163 *
JPN6010018463, Biosci. Biotechnol. Biochem., 2002, vol.66, no.7, p.1587−1590 *
JPN6010018464, J. Biosci. Bioeng., 2002, vol.93, no.5, p.479−484 *
JPN6010018465, Biosci. Biotechnol. Biochem., 2002, vol.66, no.10, p.2168−2175 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644193B2 (en) 2013-08-02 2017-05-09 Euglena Co., Ltd. B-1,3-glucanase, polynucleotide, recombinant vector, transformant, production method for B-1,3- glucanase, enzyme preparation, and production method for paramylon having reduced molecular weight
DE112014003580B4 (en) 2013-08-02 2018-04-26 Euglena Co., Ltd. Endo-β-1,3-glucanase, polynucleotide, recombinant vector, transformant, production method for endo-β-1,3-glucanase, enzyme production and production of reduced molecular weight paramylon
CN114606138A (en) * 2022-03-21 2022-06-10 黄河三角洲京博化工研究院有限公司 Application of strain and enzyme in preparation of health-care soy sauce and preparation method thereof
CN114606138B (en) * 2022-03-21 2024-01-26 黄河三角洲京博化工研究院有限公司 Application of strain and enzyme in preparation of health soy sauce and preparation method thereof

Also Published As

Publication number Publication date
JP4574245B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
KR101473918B1 (en) D-psicose 3-epimerase, manufacturing method thereof and manufacturing method of D-psicose using the same
JP6115921B2 (en) Maltotriosyltransferase, production method thereof and use
DK2295563T3 (en) BETA-AMYLASE, GENES CODING THEREOF AND THE PREPARATION OF THEM.
US10167453B2 (en) Saccharide oxidase, and production method for same and use of same
KR101919713B1 (en) A Novel D-Psicose 3-Epimerase and Methods for Preparing D-Psicose Using The Same
KR102011718B1 (en) Novel β-glucosidase for producing glucose and laminarioligosaccharides from macroalgae
JP7130554B2 (en) Method for producing nucleic acid-based seasoning
JPH10508475A (en) Tripeptidyl aminopeptidase
JP4663631B2 (en) AMP deaminase derived from actinomycetes and use thereof
DK2363466T3 (en) TANNASE, GENERATING CODES OF THE SAME, AND PROCEDURE FOR PRODUCING THE SAME
KR20100107591A (en) Glucansucrase derived from leuconostoc lactis and method for preparing the same
JP5094461B2 (en) Gene encoding hyaluronic acid hydrolase
JP4574245B2 (en) Cell wall degrading novel enzyme gene derived from Aspergillus oryzae and method for producing the enzyme
Kanai et al. Recombinant thermostable cycloinulo-oligosaccharide fructanotransferase produced by Saccharomyces cerevisiae
JP7071265B2 (en) Nuclesidase
JP2007189905A (en) Dna containing alkaliphilic cyclodextran synthase gene, recombinant dna and method for producing the alkaliphilic cyclodextran synthase
US7285407B2 (en) Genes of cell wall-degrading enzymes derived from aspergillus, and method for the production the enzymes
JP6186927B2 (en) Novel glucose oxidase and polypeptide sequence encoding it
KR101796060B1 (en) Agarase generating neoagarooligosaccharide by hydrolyzing agar
JP2003250588A (en) Tannase, gene of the same and method for producing tannase
JP2003164284A (en) New endoglucanase and endoglucanase gene
JP4021123B2 (en) New production method of raffinose
KR101796059B1 (en) Agarase having high generating ability of tetrose by hydrolyzing agar and the gene which codes it
KR102141174B1 (en) Expression system for producing amylosucrase and method of producing turanose using the same
WO2016063331A1 (en) NOVEL α-GLUCOSIDASE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250