JP2005032669A - Electrode terminal for sealing plate - Google Patents

Electrode terminal for sealing plate Download PDF

Info

Publication number
JP2005032669A
JP2005032669A JP2003272974A JP2003272974A JP2005032669A JP 2005032669 A JP2005032669 A JP 2005032669A JP 2003272974 A JP2003272974 A JP 2003272974A JP 2003272974 A JP2003272974 A JP 2003272974A JP 2005032669 A JP2005032669 A JP 2005032669A
Authority
JP
Japan
Prior art keywords
electrode terminal
sealing plate
sealing
plate body
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003272974A
Other languages
Japanese (ja)
Inventor
Akihiro Mukoda
明博 向田
Chikako Takei
千香子 竹井
Katsumi Yonekura
克己 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTALITO KK
Nok Corp
Original Assignee
OTALITO KK
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTALITO KK, Nok Corp filed Critical OTALITO KK
Priority to JP2003272974A priority Critical patent/JP2005032669A/en
Publication of JP2005032669A publication Critical patent/JP2005032669A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode terminal 3 for a sealing plate equipped with a surface state with an improved jointing property so as to exert an excellent sealing performance, by concretely defining the surface state of the electrode terminal 3 effective in improving a jointing property as well as a sealing property between a sealing plate main body 2 and the electrode terminal 3. <P>SOLUTION: Of the electrode terminal 3 for the sealing plate integrated with the sealing plate main body made of a polymer material by insertion molding with a chemical treatment given on a whole or a part of at least a position out of its surface in contact with the sealing plate main body 2, a size of surface roughness on the electrode terminal 3 surface where the chemical treatment is applied is to be Ra 0.05 μm or more, or preferably, Ra 0.1 μm or more, and a diameter of a concave part formed on the electrode terminal 3 surface by the chemical treatment is to be ψ 4μm or more at the maximum and ψ 1 μm or more in the average. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電池(一次電池および二次電池を含む)やコンデンサ(電解コンデンサおよび電気二重層コンデンサ、キャパシタを含む)等の電子部品において、電池素子や電解液等の収容物を収容する圧力容器の開口部を閉塞するために用いられる封口板における電極端子に関するものであって、高分子材料よりなる封口板における電極端子に関するものである。本発明の封口板は例えば、車載用の補助電源としてのコンデンサやキャパシタ、定置式の燃料電池、インバーター用コンデンサ、風力発電用等の蓄電器、等に用いられる。   The present invention relates to a pressure vessel that accommodates a battery element, an electrolyte, or the like in an electronic component such as a battery (including a primary battery and a secondary battery) and a capacitor (including an electrolytic capacitor, an electric double layer capacitor, and a capacitor). The present invention relates to an electrode terminal in a sealing plate used for closing the opening of the sealing member, and relates to an electrode terminal in a sealing plate made of a polymer material. The sealing plate of the present invention is used for, for example, a capacitor or a capacitor as an in-vehicle auxiliary power source, a stationary fuel cell, an inverter capacitor, a condenser for wind power generation, or the like.

従来から、電池またはコンデンサ等の圧力容器の開口部を閉塞する蓋として用いられる封口板であって、フェノール樹脂よりなる封口板本体にアルミニウムよりなる電極端子をインサート成形により一体化してなる封口板が知られている。この種の封口板においては、開口部閉塞後、圧力容器内部の収容物や発生ガス等が外部へ漏洩することがないように、圧力容器の開口部のみならず、封口板本体と電極端子との間にも十分な接合性ないしシール性が求められる。   Conventionally, a sealing plate used as a lid for closing an opening of a pressure vessel such as a battery or a capacitor, wherein a sealing plate is formed by integrating an electrode terminal made of aluminum with a sealing plate body made of phenol resin by insert molding. Are known. In this kind of sealing plate, not only the opening of the pressure vessel but also the sealing plate main body and the electrode terminal so that the contents and generated gas inside the pressure vessel do not leak outside after the opening is closed. A sufficient bonding property or sealing property is also required between the two.

そこで、本願出願人は先に、図8に示すように、封口板本体2に対して上下方向に貫通して取り付けられる円筒状の電極端子3の外周面3aに環状の鍔部4を一体成形し、この鍔部4の上面および下面の少なくとも一方に環状の係合溝5を形成し、鍔部4を封口板本体2に埋設してなる構造の封口板1を提案した(特許文献1参照)。この封口板1によれば、係合溝5を形成した鍔部4が封口板本体2の高分子材料の厚さ内に埋設されてこの鍔部4に対して高分子材料が密着することから、封口板本体2と電極端子3との接合性を高めることが可能とされており、これにより封口板本体2と電極端子3との間の隙間から電解液や発生ガス等が漏洩するのを有効に防止することが可能とされている。   Therefore, the applicant of the present application previously integrally formed the annular flange 4 on the outer peripheral surface 3a of the cylindrical electrode terminal 3 that is vertically attached to the sealing plate body 2 as shown in FIG. Then, a sealing plate 1 having a structure in which an annular engagement groove 5 is formed on at least one of the upper surface and the lower surface of the flange portion 4 and the flange portion 4 is embedded in the sealing plate body 2 has been proposed (see Patent Document 1). ). According to the sealing plate 1, the flange portion 4 in which the engagement groove 5 is formed is embedded in the thickness of the polymer material of the sealing plate body 2, and the polymer material is in close contact with the flange portion 4. In addition, it is possible to improve the bondability between the sealing plate body 2 and the electrode terminal 3, and thereby, the electrolyte solution, the generated gas, etc. leak from the gap between the sealing plate body 2 and the electrode terminal 3. It can be effectively prevented.

しかしながら近年、例えばコンデンサは車載用としてもその用途が検討されており、これに伴って上記封口板本体2と電極端子3との接合性ないしシール性についても今まで以上に過酷な熱的環境への対応が要求されて来ている。したがって上記特許文献1記載の発明はこの新たなニーズに応えるべく、これを更に改良する必要がある。   However, in recent years, for example, the use of capacitors has been studied for use in vehicles, and accordingly, the bonding property or sealing property between the sealing plate main body 2 and the electrode terminal 3 has become more severe than ever. The correspondence of is coming. Therefore, the invention described in Patent Document 1 needs to be further improved to meet this new need.

金属端子を樹脂モールドしてなるコンデンサ用端子板において、前記金属端子は少なくともその樹脂モールドされる部分の外周面に化学的処理によって形成された粗面化部を有するコンデンサ用端子板に係る発明が開示されているが(特許文献2参照)、この特許文献2には封口板本体と電極端子との接合性ないしシール性を向上させるべく金属端子の表面を粗面化することだけが記載されているのみで、接合性ないしシール性がどの程度向上したかを示す具体データはなく、更に、その目的を実現すべく粗面化部の状態をどのように規定したかは具体的には全く記載されていない。したがってこの発明によると、具体的にどのような粗面化部の状態が上記接合性ないしシール性の向上に有効であるかが一切不明のままであることから、このような意味合いにおいてこの発明は技術的に初歩的なアイデアを提示する域を出ていない。またこの特許文献2記載の発明の詳細は、金属端子の表面処理工程が、金属端子をアルカリ水溶液に浸漬することにより脱脂と酸化被膜除去を行なうステップと、続いて電極端子を酸水溶液に浸漬することにより粗面化するステップとに分かれており、よって工程数(ステップ数)が多いと云う不都合もある。   In the capacitor terminal plate formed by resin-molding a metal terminal, the invention relates to a capacitor terminal plate having a roughened portion formed by chemical treatment on the outer peripheral surface of at least the resin-molded portion of the metal terminal. Although disclosed (see Patent Document 2), this Patent Document 2 only describes that the surface of the metal terminal is roughened in order to improve the bonding property or sealing property between the sealing plate body and the electrode terminal. However, there is no specific data indicating how much the bondability or sealability has improved, and there is no specific description of how the condition of the roughened surface is defined to achieve that purpose. It has not been. Therefore, according to the present invention, it is still unclear what the state of the roughened portion is effective for improving the joining property or the sealing property. There is no place to present technically rudimentary ideas. Further, the details of the invention described in Patent Document 2 are that the surface treatment process of the metal terminal is performed by degreasing and removing the oxide film by immersing the metal terminal in an alkaline aqueous solution, and then immersing the electrode terminal in the acid aqueous solution. Therefore, there is an inconvenience that the number of steps (number of steps) is large.

実公平6−21222号公報Japanese Utility Model Publication No. 6-21222 特開2001−237143号公報JP 2001-237143 A

本発明は以上の点に鑑みて、上記特許文献1記載の発明に対して、封口板本体と電極端子との接合性ないし両者間のシール性を今まで以上に過酷な熱的環境においても向上させることができる封口板用電極端子を提供することを目的とする。また、上記特許文献2記載の発明に対しては、封口板本体と電極端子との接合性ないし両者間のシール性を向上させるのに有効な粗面化部の状態を具体的に規定し、もって優れた接合性ないしシール性を発揮することができる粗面化部を備えた封口板用電極端子を提供することを目的とする。   In view of the above points, the present invention improves the bonding property between the sealing plate body and the electrode terminal or the sealing property between them even in a harsh thermal environment than ever, in comparison with the invention described in Patent Document 1. It aims at providing the electrode terminal for sealing boards which can be made to be made. In addition, for the invention described in Patent Document 2, the state of the roughened portion effective for improving the bonding property between the sealing plate body and the electrode terminal or the sealing property between the two is specifically defined, Therefore, it aims at providing the electrode terminal for sealing plates provided with the roughening part which can exhibit the outstanding joining property thru | or sealing performance.

上記目的を達成するため、本発明の請求項1による封口板用電極端子は、高分子材料よりなる封口板本体にインサート成形により一体化される電極端子であって、その表面のうち少なくとも前記封口板本体と接触する部位の全部または一部に化学的処理を施した封口板用電極端子において、前記化学的処理が施された電極端子表面の面粗さの大きさをRa0.05μm以上にするとともに、前記化学的処理により電極端子表面に形成された凹部の径寸法を最大でφ4μm以上、平均でφ1μm以上にしたことを特徴とするものである。   In order to achieve the above object, an electrode terminal for a sealing plate according to claim 1 of the present invention is an electrode terminal integrated by insert molding into a sealing plate body made of a polymer material, and at least the sealing member on the surface thereof In the electrode terminal for a sealing plate in which all or part of the portion in contact with the plate body is chemically treated, the surface roughness of the surface of the electrode terminal subjected to the chemical treatment is set to Ra 0.05 μm or more. In addition, the diameter dimension of the recess formed on the surface of the electrode terminal by the chemical treatment is at most φ4 μm or more and on average φ1 μm or more.

また、本発明の請求項2による封口板用電極端子は、上記した請求項1の封口板用電極端子において、前記化学的処理が施された電極端子表面の面粗さの大きさを好ましくはRa0.1μm以上にしたことを特徴とするものである。   The electrode terminal for a sealing plate according to claim 2 of the present invention is preferably the surface roughness of the surface of the electrode terminal subjected to the chemical treatment in the electrode terminal for a sealing plate according to claim 1 described above. Ra is set to 0.1 μm or more.

このような電極端子の表面状態によれば、表面粗面化処理により形成された凹部により、所謂アンカー効果が発揮されるため、もって封口板本体と電極端子とをより強固に接合させる一因とすることができる。   According to such a surface state of the electrode terminal, since the so-called anchor effect is exhibited by the concave portion formed by the surface roughening treatment, this is a cause of more firmly joining the sealing plate body and the electrode terminal. can do.

本発明は、以下の効果を奏する。   The present invention has the following effects.

すなわち、上記構成を備えた本発明の請求項1による封口板用電極端子によれば、電極端子表面の面粗さの大きさをRa0.05μm以上にするとともに、表面粗面化処理により形成された凹部の径寸法を最大でφ4μm以上、平均でφ1μm以上にしたために、当該電極端子ないし封口板の実用領域で実際に求められる封口板本体と電極端子との接合性が向上することから、もって両者間のシール性を十分に確保することができる。   That is, according to the electrode terminal for a sealing plate according to the first aspect of the present invention having the above-described configuration, the surface roughness of the surface of the electrode terminal is set to Ra 0.05 μm or more and formed by surface roughening treatment. Since the diameter dimension of the concave portion is at least φ4 μm or more and on average φ1 μm or more, the bondability between the sealing plate body and the electrode terminal actually required in the practical area of the electrode terminal or sealing plate is improved. A sufficient sealing property between the two can be ensured.

また、上記したように特許文献1記載の発明では、電極端子をインサート成形した封口板において、外周面に環状の鍔部を有する電極端子を採用することにより優れたシール性を有する封口板を提供可能としていたが、昨今の過酷な使用条件に照らすと更なる改良が求められることになる。そこで本発明の請求項2による封口板用電極端子では、封口板成形前の電極端子表面を表面粗面化処理し、更には表面粗面化処理後の電極端子表面の面粗さの大きさを好ましくはRa0.1μm以上にしたことにより、上記請求項1による効果の他に、封口板本体材質との接着性のばらつきを小さくすることができる優れた電極端子の表面状態を見出すことができた。したがって、従来によれば過酷な使用条件に対して使用前の初期状態では問題ないものの、過酷な条件による長期使用においては電解液漏れの虞があったところ、本発明により信頼性を得ることが十分に可能となった。   In addition, as described above, the invention described in Patent Document 1 provides a sealing plate having excellent sealing performance by adopting an electrode terminal having an annular flange on the outer peripheral surface in the sealing plate in which the electrode terminal is insert-molded. Although it was possible, further improvements would be required in light of the recent severe conditions of use. Accordingly, in the electrode terminal for a sealing plate according to claim 2 of the present invention, the surface of the electrode terminal before molding the sealing plate is subjected to a surface roughening treatment, and further the size of the surface roughness of the electrode terminal surface after the surface roughening treatment. By making Ra preferably 0.1 μm or more, in addition to the effect of the first aspect, it is possible to find an excellent surface state of the electrode terminal capable of reducing the variation in adhesiveness with the sealing plate body material. It was. Therefore, according to the prior art, there is no problem in the initial state before use with respect to harsh use conditions, but there was a risk of electrolyte leakage in long-term use under harsh conditions. Fully possible.

つぎに本発明の実施例を図面にしたがって説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例に係る電極端子3を備えた封口板1の平面図を示しており、図2は図1におけるA−A線拡大断面図であって電極端子3の縦断面図を示している。   FIG. 1 shows a plan view of a sealing plate 1 provided with an electrode terminal 3 according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view taken along line AA in FIG. The figure is shown.

当該実施例に係る封口板1は、封口板本体2、電極端子3を有しており、以下のように構成されている。   The sealing plate 1 according to this embodiment has a sealing plate body 2 and an electrode terminal 3 and is configured as follows.

すなわち先ず、金属材料よりなる電極端子3をインサートし、高分子材料によってプレート状に成形された封口板本体2であって、この封口板本体2に、電極端子3が厚さ方向に貫通するように埋設されている。また、封口板本体2の平面上一箇所には、圧力容器内部の圧力を開放するための圧力開放構造として例えばブリーザ部6が設けられていてもよい。   That is, first, an electrode terminal 3 made of a metal material is inserted, and the sealing plate body 2 is formed into a plate shape by a polymer material. The electrode terminal 3 penetrates the sealing plate body 2 in the thickness direction. It is buried in. Moreover, the breather part 6 may be provided in one place on the plane of the sealing board main body 2 as a pressure release structure for releasing the pressure inside a pressure vessel, for example.

(1)封口板本体2
封口板本体2は、高分子材料によってプレート状に成形された、例えば円板状、楕円状、或いは、略方形に成形されており、その材料としては、樹脂材料、例えば、ポリオレフィン系樹脂、メタロセン触媒にて重合したポリオレフィン系樹脂、ポリフェニレンスルフィド、シンジオタクチックポリスチレン、ポリアミド系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、液晶性樹脂等の熱可塑性樹脂、フェノール系樹脂、エポキシ系樹脂、イミド系樹脂等の熱硬化性樹脂が挙げられ、ガラス繊維、炭素繊維またはウィスカー等の繊維状充填剤、炭素粒子、マイカ、ガラスビーズ等の粒子状充填剤等の充填剤・補強材、金属酸化物または加工助剤等が適宜配合される。尚、本実施例では、高分子材料としてフェノール樹脂組成物を用いた。
(1) Sealing plate body 2
The sealing plate main body 2 is formed into a plate shape by a polymer material, for example, a disk shape, an ellipse shape, or a substantially square shape. Examples of the material include a resin material such as a polyolefin resin, a metallocene. Polyolefin resin polymerized by catalyst, polyphenylene sulfide, syndiotactic polystyrene, polyamide resin, polyester resin, polyimide resin, polyamideimide resin, thermoplastic resin such as liquid crystalline resin, phenolic resin, epoxy resin And thermosetting resins such as imide resins, fillers / reinforcing materials such as fibrous fillers such as glass fibers, carbon fibers or whiskers, particulate fillers such as carbon particles, mica and glass beads, metal Oxides or processing aids are appropriately blended. In this example, a phenol resin composition was used as the polymer material.

(2)電極端子3
円筒状を呈する電極端子3の外周面3aには、環状の鍔部4が一体成形されており、この鍔部4の軸方向端面であって図上上面および下面の何れか一方または双方(図では双方)には、環状の係合溝5が所要数同心状に形成されている(図では上面に二本、下面に一本形成されている)。また、電極端子3の外側端面3bには、ここに外部端子(図示せず)を接続するための雌ネジ等よりなる外部端子接続部7が設けられており、電極端面3の内側端面3cには、ここに内部配線(図示せず)を接続するためのカシメ突起等よりなる内部配線接続部8が設けられている。尚、電極端子3は一般に、二本が一対として封口板本体2に一体化されているが、電極端子3は封口板本体2にいくつあっても構わない。
(2) Electrode terminal 3
An annular flange 4 is integrally formed on the outer peripheral surface 3a of the cylindrical electrode terminal 3. An axial end face of the flange 4 is one or both of the upper and lower surfaces in the figure (see FIG. In both cases, the required number of annular engaging grooves 5 are formed concentrically (two on the upper surface and one on the lower surface in the figure). Further, an external terminal connection portion 7 made of a female screw or the like for connecting an external terminal (not shown) is provided on the outer end surface 3 b of the electrode terminal 3. Is provided with an internal wiring connecting portion 8 made of a caulking projection or the like for connecting an internal wiring (not shown). In general, two electrode terminals 3 are integrated into the sealing plate body 2 as a pair, but any number of electrode terminals 3 may be provided in the sealing plate body 2.

電極端子3の材質は、アルミニウム電解コンデンサでは、純アルミニウムまたはアルミニウム合金等の成形材料であるが、電池では亜鉛、鉄、ニッケル等の金属の成形材料によって成形されている。尚、本実施例では、電極端子3の材質として、99.0%以上の高純度アルミニウムを用いた。   The material of the electrode terminal 3 is a molding material such as pure aluminum or an aluminum alloy in the case of an aluminum electrolytic capacitor, but is formed of a metal molding material such as zinc, iron, or nickel in a battery. In the present embodiment, 99.0% or more of high-purity aluminum was used as the material of the electrode terminal 3.

また、電極端子3は、機械加工により作製するが、加工手段は問わず、例えば切削加工など何れであっても可とする。   Moreover, although the electrode terminal 3 is produced by machining, any processing means may be used, for example, any cutting process may be used.

以上までの構成は、基本的に上記特許文献1記載の先行技術と同じであり、以上の構成によれば、封口板本体2と電極端子3との間の隙間から電解液や発生ガス等が漏洩するのを有効に防止することが可能とされている。但し、コンデンサが車載用途等に使用されて過酷な熱的環境への対応が要求されると、状況によっては封口板本体2と電極端子3との接合性ないしシール性に不足の懸念があるため、当該実施例に係る電極端子3には以下の点で改良が加えられている。   The configuration described above is basically the same as the prior art described in Patent Document 1 described above. According to the above configuration, the electrolyte, generated gas, and the like are generated from the gap between the sealing plate body 2 and the electrode terminal 3. It is possible to effectively prevent leakage. However, if a capacitor is used for in-vehicle applications or the like and is required to cope with a severe thermal environment, there is a concern that the bonding property or sealing property between the sealing plate body 2 and the electrode terminal 3 may be insufficient depending on the situation. The electrode terminal 3 according to the embodiment has been improved in the following points.

すなわち、当該電極端子3の表面のうち少なくとも封口板本体2と接触する部位の全面すなわち当該電極端子3の外周面3aならびに鍔部4表面および係合溝5内面に化学的処理を施して、その面粗さの大きさをRa0.05μm以上、好ましくはRa0.1μm以上に規定し、また、その処理により形成された凹部の径寸法を最大でφ4μm以上、平均でφ1μm以上の大きさに規定した。これは、本願発明者らの鋭意研究の結果として、以下の試験の結果からこれらを見出したものである。   That is, the entire surface of the electrode terminal 3 in contact with the sealing plate body 2, that is, the outer peripheral surface 3a of the electrode terminal 3, the surface of the flange 4 and the inner surface of the engagement groove 5 is subjected to chemical treatment, The surface roughness is specified to be Ra 0.05 μm or more, preferably Ra 0.1 μm or more, and the diameter of the recess formed by the treatment is specified to be a maximum of 4 μm or more and an average of 1 μm or more. . This has been found from the results of the following tests as a result of diligent research by the present inventors.

試験工程
(1) 表面粗面化処理条件(処理時間、水溶液温度、水溶液濃度、添加剤等)を種々変更した電極端子を多数用意する。
(2) 上記(1)で用意した電極端子を用いて、実際と同様の成形法式(成形型によるインサート成形)により封口板のテストピースを多数作製する。
(3) 上記(2)で作製した各テストピースを用いて、その引張り試験を実施し、封口板本体および電極端子の接合面における破断応力ないし破断面樹脂残率を測定または算出する。ここに樹脂とは封口板本体の成形材質のことを云い、その破断面樹脂残率とは測定領域内における電極端子表面に対する付着残率を測定・算出した値を示す。
(4) 上記(3)の引張り試験に供した各テストピースにおける電極端子の表面状態(面粗さの大きさ、粗面化処理により形成された凹部の径寸法)を測定・算出する。
(5) 上記(3)における引張り試験結果と上記(4)における電極端子表面状態との関係を確認する。
Test process (1) A large number of electrode terminals with variously modified surface roughening treatment conditions (treatment time, aqueous solution temperature, aqueous solution concentration, additives, etc.) are prepared.
(2) Using the electrode terminals prepared in (1) above, a large number of test pieces of the sealing plate are produced by the same molding method (insert molding with a molding die) as in practice.
(3) Using each test piece produced in the above (2), the tensile test is carried out, and the breaking stress or the fracture surface resin residual ratio at the joint surface of the sealing plate body and the electrode terminal is measured or calculated. Here, the resin refers to the molding material of the sealing plate body, and the fracture surface resin residual ratio indicates a value obtained by measuring and calculating the residual ratio of adhesion to the electrode terminal surface in the measurement region.
(4) The surface state of the electrode terminal (the size of the surface roughness, the diameter of the recess formed by the surface roughening treatment) in each test piece subjected to the tensile test of (3) above is measured and calculated.
(5) The relationship between the tensile test result in (3) and the electrode terminal surface state in (4) is confirmed.

尚、本願明細書にて用いられている用語の定義は、以下のとおりである。
a.面粗さ
レーザ顕微鏡により電極端子表面を拡大し、測定領域内の粗さを線ではなく面で3次元的に値を求めた。また、Raは面粗度を示し、JIS規格で定められたものであり、先に求めた値のうち算術平均粗さを示したものである(測定領域≒200×300μm)。
b.表面粗面化処理により形成された凹部径:最大
レーザ顕微鏡により電極端子表面を拡大し、測定領域内に確認された表面粗面化処理により形成された凹部の径を全数確認し、最大のものの径を示したものである(測定領域≒200×300μm)。
c.表面粗面化処理により形成された凹部径:平均
レーザ顕微鏡により電極端子表面を拡大し、測定領域内に確認された表面粗面化処理により形成された凹部の径を全数確認し、その平均径を求めたものである(測定領域≒200×300μm)。
d.破断面樹脂残率
上記引張り試験後、試験後品の破断面を光学顕微鏡により拡大し、電極端子の破断面に残存している封口板本体の材質(樹脂)の面積を求め、電極端子の破断面の全体面積に対する比率を計算して求めたものである。
In addition, the definition of the term used by this-application specification is as follows.
a. Surface Roughness The surface of the electrode terminal was magnified with a laser microscope, and the roughness in the measurement region was determined three-dimensionally using a surface instead of a line. Ra represents the surface roughness and is defined by JIS standards, and represents the arithmetic average roughness of the previously obtained values (measurement area≈200 × 300 μm).
b. Diameter of recesses formed by surface roughening treatment: Maximum Enlarge the surface of the electrode terminal with a laser microscope and check all the diameters of recesses formed by surface roughening treatment confirmed in the measurement area. The diameter is shown (measurement area≈200 × 300 μm).
c. Concave diameter formed by surface roughening treatment: average The surface of the electrode terminal was enlarged by a laser microscope, and the diameters of all concave portions formed by surface roughening treatment confirmed in the measurement region were confirmed. (Measurement area≈200 × 300 μm).
d. Residual ratio of fracture surface resin After the above tensile test, the fracture surface of the product after the test is enlarged with an optical microscope, and the area of the material (resin) of the sealing plate body remaining on the fracture surface of the electrode terminal is obtained. It is obtained by calculating a ratio to the entire area of the cross section.

上記引張り試験の結果を破断応力と破断面樹脂残率との関係でまとめると、図3のグラフ図に示すように、破断応力がある大きさ以上では破断面樹脂残率が一定の領域に達することが判った。またこれにより、強固な接合性(接着性)を示す破断面樹脂残率の領域は80%以上が目安となることが判った。   When the results of the tensile test are summarized by the relationship between the breaking stress and the fracture surface resin residual ratio, as shown in the graph of FIG. 3, the fracture surface resin residual ratio reaches a certain region when the fracture stress exceeds a certain level. I found out. In addition, it was found that 80% or more is a standard for the area of the fracture surface residual resin ratio showing strong bondability (adhesiveness).

また、破断面樹脂残率が80%以上の試料は、破断面全体でほぼ良好な接着性を持っていたものと想定できるが、破断面樹脂残率が80%未満の試料は、明らかに破断面の一部に接着性の低い箇所が存在していたものと考えられる。このような接着性の低い状態を封口板に置き換えると、初期状態でシール性は確保されても、接着性の低い箇所では過酷な熱的条件による長期の使用により、封口板本体および電極端子間の界面に電解液のしみ込みが発生し、その範囲が徐々に広がり、電解液の漏れを来たすものもあると考えられる。   Samples with a fracture surface residual resin ratio of 80% or more can be assumed to have almost good adhesion across the entire fracture surface, but samples with a fracture surface resin residual ratio of less than 80% are clearly broken. It is considered that a part with low adhesiveness was present in a part of the cross section. If such a low adhesive state is replaced with a sealing plate, even if the sealing property is ensured in the initial state, a long period of use under severe thermal conditions will cause the sealing plate body and the electrode terminal to be It is considered that some electrolytes permeate at the interface and the range gradually widens, causing leakage of the electrolyte.

そこで、このような接着性の低い状態と封口板のシール性との関係を確認するため、表面粗面化処理を施して図5−2に示すような種々の表面粗さRaをもつ電極端子を用いて実際に封口板を作製し、以下のとおりシール性確認試験を実施した。尚、供試試料数は図5−2に示すように各面粗度範囲の表面粗さのものを10個とし、シール性確認試験は各熱刺激条件の下で以下に示すA:ヘリウムリーク試験、B:カラーチェック法の順序で行った。   Therefore, in order to confirm the relationship between such a low adhesive state and the sealing property of the sealing plate, electrode terminals having various surface roughness Ra as shown in FIG. A sealing plate was actually produced using and a sealing property confirmation test was performed as follows. As shown in Fig. 5-2, the number of test samples is 10 with the surface roughness in each surface roughness range, and the sealability confirmation test is as follows: A: Helium leak under each thermal stimulation condition Test, B: Performed in the order of the color check method.

シール性確認試験・・・
熱刺激条件
高温長時間:180℃×1000Hr
冷熱サイクル:−40℃×1Hr+150℃×1Hr 100サイクル
シール性確認方法
A:ヘリウムリーク試験
試験方法:封口板本体2および電極端子3間の界面からの液漏れの有無を確認する。
試験治具:図4に示す試験治具21を用いる。図上符合1は供試試料としての封口板を示しており、この封口板1を試験治具21のケーシング22内にセットし、ヘリウムガス供給側からケーシング内一方の空間23へヘリウムガスを所定の圧力で供給する。一方、ケーシング内他方の空間24側を真空ポンプで真空引きし、一方の空間23から他方の空間24へとヘリウムガスが漏洩したときにこれをリークディテクター25で検出する。
治具内圧:0.4MPa
加圧時間:3min
判定方法:ヘリウムが検知されると液漏れ有りと判断
B:カラーチェック法
試験方法:封口板本体2および電極端子3間の界面の隙間の有無を確認する。具体的には、封口板本体2および電極端子3間の界面に浸透液を塗布して数分保持した後、浸透液を拭き取り、浸透液を塗布した箇所に現像液を塗布する。
判定方法:発色が確認されると隙間有りと判断
Sealability confirmation test ...
Thermal stimulation condition High temperature and long time: 180 ° C x 1000Hr
Cooling cycle: −40 ° C. × 1 Hr + 150 ° C. × 1 Hr 100 cycle sealing property confirmation method A: Helium leak test Test method: Check for liquid leakage from the interface between the sealing plate body 2 and the electrode terminal 3.
Test jig: A test jig 21 shown in FIG. 4 is used. Reference numeral 1 in the figure indicates a sealing plate as a test sample. This sealing plate 1 is set in the casing 22 of the test jig 21, and helium gas is supplied from the helium gas supply side to one space 23 in the casing. Supply at a pressure of. On the other hand, the other space 24 side in the casing is evacuated by a vacuum pump, and when the helium gas leaks from the one space 23 to the other space 24, this is detected by the leak detector 25.
Jig internal pressure: 0.4 MPa
Pressurization time: 3 min
Determination method: When helium is detected, it is determined that there is a liquid leak. B: Color check method Test method: Check whether there is a gap at the interface between the sealing plate body 2 and the electrode terminal 3. Specifically, after applying an osmotic solution to the interface between the sealing plate body 2 and the electrode terminal 3 and holding it for several minutes, the osmotic solution is wiped off and a developer is applied to the location where the osmotic solution is applied.
Judgment method: When color development is confirmed, it is judged that there is a gap.

試験結果は、図5−1の表図に示すとおりであり、破断面樹脂残存率80%以上に相当する電極端子面粗度Ra0.05μm以上、好ましくは0.1μm以上の電極端子を用いれば、熱刺激を加えた後でも封口板のシール性が良好であることを確認することができた。また、この試験結果から見ても判るように、破断面樹脂残存率80%未満(電極端子面粗度Ra0.05μm未満)であると、初期状態でシール性は確保されても、接着性の低い箇所では過酷な熱的条件による長期の使用により、封口板本体および電極端子間の界面に電解液のしみ込みが発生することから、この場合にはその範囲が徐々に広がり、電解液の漏れを来たすものもあると考えられる。   The test results are as shown in the table of FIG. 5-1, and the electrode terminal surface roughness Ra corresponding to a fracture surface resin residual ratio of 80% or more is 0.05 μm or more, preferably 0.1 μm or more. It was confirmed that the sealing plate had good sealing properties even after heat stimulation. Further, as can be seen from this test result, when the fracture surface residual resin ratio is less than 80% (electrode terminal surface roughness Ra is less than 0.05 μm), even if the sealing property is secured in the initial state, the adhesive property At low locations, electrolyte penetration may occur at the interface between the sealing plate body and the electrode terminals due to long-term use due to severe thermal conditions.In this case, the range gradually increases and electrolyte leakage occurs. It is thought that there are things that have come.

一方、表面粗面化処理後の電極端子表面を観察したところ、図6のグラフ図に示すように、電極端子の表面粗面化処理条件次第で、電極端子表面の面粗さの大きさ(Ra)および形成される凹部の大きさも異なることが判った。尚、凹部には、単独形成された穴状のものもあれば、複数の穴がつながって縞状を形成しているものもあり、ここで言う凹部には、この穴状の場合と縞状の場合とが両方含まれる。尚、縞状の凹部は、その形状が複雑・不規則なため、上記用語の定義の項のbおよびcにて定義しているような凹部径の適切な寸法規定は困難なため、本発明では規定していない。   On the other hand, when the surface of the electrode terminal after the surface roughening treatment was observed, as shown in the graph of FIG. 6, depending on the surface roughening treatment conditions of the electrode terminal, the surface roughness ( It was found that Ra) and the size of the recesses formed were also different. In addition, some of the recesses have a hole shape formed independently, and some have a plurality of holes connected to form a stripe shape, and the recess here refers to the case of this hole shape and the stripe shape. And both cases are included. In addition, since the shape of the striped recess is complicated and irregular, it is difficult to appropriately define the size of the recess as defined in the terms b and c in the definition section of the above term. Does not stipulate.

以上の事項を電極端子の表面粗さと破断面樹脂残率との関係でまとめると、図7のグラフ図に示すように、表面粗面化処理により電極端子の表面粗さをRa0.05μm以上にすると、破断面樹脂残率はばらつきが小さく安定して80%以上を確保できることを見出すことができた。更に、電極端子の表面粗さをRa0.1μm以上にすると、破断面樹脂残率のばらつきが更に小さくなるので、より安定して80%以上の破断面樹脂残率が確保できた。また、この際の形成される凹部の大きさは、最大φ4μm以上、平均φ1μm以上であることを見出すことができた。   Summarizing the above matters by the relationship between the surface roughness of the electrode terminal and the residual ratio of the fracture surface resin, as shown in the graph of FIG. 7, the surface roughness of the electrode terminal is set to Ra 0.05 μm or more by the surface roughening treatment. As a result, it was found that the fracture surface resin residual ratio had a small variation and could be stably secured at 80% or more. Furthermore, when the surface roughness of the electrode terminal is Ra 0.1 μm or more, the variation in the fracture surface resin residual ratio is further reduced, so that the fracture surface resin residual ratio of 80% or more can be secured more stably. It was also found that the size of the recesses formed at this time was a maximum φ4 μm or more and an average φ1 μm or more.

尚、本実施例における表面粗面化処理の手順は、以下のとおりである。   In addition, the procedure of the surface roughening process in a present Example is as follows.

電極端子3をアルカリ水溶液により化学的に粗面化処理し、その表面に凹部を形成する。尚、アルカリ水溶液については、例えば水酸化ナトリウムの固体状態のものまたは水溶液状態のものを純水または一定の温度に調節した純水により希釈し、一定濃度に調節したものを用い、粗面化処理は、例えばアルカリ水溶液中に電極端子3を撹拌しながら一定時間浸漬することにより実施する。   The electrode terminal 3 is chemically roughened with an alkaline aqueous solution to form a recess on the surface. As for the alkaline aqueous solution, for example, a solution of sodium hydroxide in a solid state or an aqueous solution state is diluted with pure water or pure water adjusted to a constant temperature, and adjusted to a constant concentration, and then roughened. Is carried out, for example, by immersing the electrode terminal 3 in an alkaline aqueous solution for a predetermined time while stirring.

粗面化の程度は下記(A)および(B)のとおりとし、この粗面化の程度を実現することができれば、表面粗面化処理の条件は処理時間、水溶液温度、水溶液濃度、添加剤の追加等の何れの組み合わせも可とする。また、電極端子3の各部寸法とくにネジ部(外部端子接続部7)の寸法精度を維持するため、粗面化の程度は電極端子3の仕様毎に決定する。更には、表面粗面化処理をし過ぎてもアンカー効果の向上が期待できず、処理時間が長くなり加工コストが高くなること等があるため、表面粗面化処理の程度は適宜決定する。
(A) 面粗さ:Ra0.05μm以上、好ましくは0.1μm以上
(B) 表面粗面化処理により形成された凹部径:最大φ4μm以上、平均φ1μm以上
The degree of roughening is as shown in the following (A) and (B). If this degree of roughening can be realized, the conditions for the surface roughening treatment are treatment time, aqueous solution temperature, aqueous solution concentration, additive. Any combination such as addition of the above is allowed. Further, the degree of roughening is determined for each specification of the electrode terminal 3 in order to maintain the dimensional accuracy of each part of the electrode terminal 3, particularly the screw part (external terminal connection part 7). Furthermore, since the anchor effect cannot be expected even if the surface roughening treatment is performed excessively, the processing time is increased and the processing cost is increased. Therefore, the degree of the surface roughening treatment is appropriately determined.
(A) Surface roughness: Ra 0.05 μm or more, preferably 0.1 μm or more (B) Concave diameter formed by surface roughening treatment: maximum φ4 μm or more, average φ1 μm or more

以上の処理の後、当該電極端子3を水で十分に洗浄し、更には十分に乾燥させる。そして、以上の表面粗面化処理を施した当該電極端子3を成形型のキャビティ内にインサートし固定した後、トランスファまたは射出等の成形手段により、封口板本体2の成形材料を型内に流し込み、封口板本体2を成形する。   After the above processing, the electrode terminal 3 is sufficiently washed with water and further sufficiently dried. Then, after the electrode terminal 3 having been subjected to the above surface roughening treatment is inserted and fixed in the cavity of the molding die, the molding material of the sealing plate body 2 is poured into the die by molding means such as transfer or injection. Then, the sealing plate body 2 is formed.

尚、表面粗面化処理方法について、上記実施例ではアルカリ水溶液を用いたが、電極端子3の表面を所定の粗さにできれば、この限りではない。   In addition, about the surface roughening processing method, although alkaline aqueous solution was used in the said Example, if the surface of the electrode terminal 3 can be made into predetermined | prescribed roughness, it will not be this limitation.

本発明の実施例に係る電極端子を備えた封口板の平面図The top view of the sealing board provided with the electrode terminal which concerns on the Example of this invention 図1におけるA−A線拡大断面図であって電極端子の縦断面図It is an AA line expanded sectional view in Drawing 1, and is a longitudinal cross-sectional view of an electrode terminal 本発明における面粗さの大きさおよび粗面化による凹部の径寸法を規定する際に行なった試験の結果を示す図で、破断応力と破断面樹脂残率の関係を示すグラフ図The figure which shows the result of the test done when prescribing | regulating the magnitude | size of the surface roughness in this invention, and the diameter dimension of the recessed part by roughening, and is a graph which shows the relationship between a breaking stress and a fracture surface resin residual ratio 試験治具の説明図Illustration of test jig 封口板のシール性試験結果を示す表図Table showing the sealing performance test results of the sealing plate 供試試料の表面粗さデータを示す表図Table showing sample surface roughness data 本発明における面粗さの大きさおよび粗面化による凹部の径寸法を規定する際に行なった試験の結果を示す図で、図6(A)は粗面化処理条件の変更による面粗さの変化を示すグラフ図、図6(B)は粗面化処理条件の変更による凹部の大きさの変化を示すグラフ図FIG. 6A is a diagram showing the results of a test performed when defining the size of the surface roughness and the diameter of the concave portion by the surface roughening in the present invention, and FIG. 6A shows the surface roughness by changing the surface roughening treatment conditions. FIG. 6B is a graph showing the change in the size of the recess due to the change in the roughening treatment condition. 本発明における面粗さの大きさおよび粗面化による凹部の径寸法を規定する際に行なった試験の結果を示す図で、図7(A)は表面粗さと破断面樹脂残率の関係を示すグラフ図、図7(B)は図7(A)におけるB部詳細図FIG. 7A is a diagram showing the results of a test conducted when defining the size of the surface roughness and the diameter of the recesses by roughening in the present invention. FIG. 7A shows the relationship between the surface roughness and the residual ratio of the fracture surface resin. FIG. 7 (B) is a detailed view of part B in FIG. 7 (A). 従来例に係る封口板の要部縦断面図Longitudinal longitudinal sectional view of a sealing plate according to a conventional example

符号の説明Explanation of symbols

1 封口板
2 封口板本体
3 電極端子
3a 外周面
3b 外側端面
3c 内側端面
4 鍔部
5 係合溝
6 ブリーザ部
7 外部端子接続部
8 内部配線接続部
21 試験治具
22 ケーシング
23,24 空間
25 リークディテクター
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Sealing plate main body 3 Electrode terminal 3a Outer peripheral surface 3b Outer end surface 3c Inner end surface 4 Gutter part 5 Engaging groove 6 Breather part 7 External terminal connection part 8 Internal wiring connection part 21 Test jig 22 Casing 23, 24 Space 25 Leak detector

Claims (2)

高分子材料よりなる封口板本体(2)にインサート成形により一体化される電極端子(3)であって、その表面のうち少なくとも前記封口板本体(2)と接触する部位の全部または一部に化学的処理を施した封口板用電極端子(3)において、
前記化学的処理が施された電極端子(3)表面の面粗さの大きさをRa0.05μm以上にするとともに、前記化学的処理により電極端子(3)表面に形成された凹部の径寸法を最大でφ4μm以上、平均でφ1μm以上にしたことを特徴とする封口板用電極端子。
An electrode terminal (3) integrated with a sealing plate body (2) made of a polymer material by insert molding, and at least a part of the surface thereof contacting the sealing plate body (2) In the electrode terminal (3) for the sealing plate subjected to chemical treatment,
The surface roughness of the surface of the electrode terminal (3) subjected to the chemical treatment is set to Ra 0.05 μm or more, and the diameter dimension of the recess formed on the surface of the electrode terminal (3) by the chemical treatment is increased. An electrode terminal for a sealing plate, characterized in that the maximum is φ4 μm or more, and the average is φ1 μm or more.
請求項1の封口板用電極端子において、
前記化学的処理が施された電極端子(3)表面の面粗さの大きさを好ましくはRa0.1μm以上にしたことを特徴とする封口板用電極端子。
The electrode terminal for a sealing plate according to claim 1,
An electrode terminal for a sealing plate, characterized in that the surface roughness of the surface of the electrode terminal (3) subjected to the chemical treatment is preferably Ra 0.1 μm or more.
JP2003272974A 2003-07-10 2003-07-10 Electrode terminal for sealing plate Pending JP2005032669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272974A JP2005032669A (en) 2003-07-10 2003-07-10 Electrode terminal for sealing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272974A JP2005032669A (en) 2003-07-10 2003-07-10 Electrode terminal for sealing plate

Publications (1)

Publication Number Publication Date
JP2005032669A true JP2005032669A (en) 2005-02-03

Family

ID=34210361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272974A Pending JP2005032669A (en) 2003-07-10 2003-07-10 Electrode terminal for sealing plate

Country Status (1)

Country Link
JP (1) JP2005032669A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670431B1 (en) 2005-03-09 2007-01-16 삼성에스디아이 주식회사 Li Secondary Battery
JP2011243944A (en) * 2010-05-20 2011-12-01 Samsung Electro-Mechanics Co Ltd Electric double layer capacitor package and method for manufacturing same
JP2015117423A (en) * 2013-12-19 2015-06-25 住友電気工業株式会社 Aluminum alloy wire material, capacitor and manufacturing method of aluminum alloy wire material
JP2016046197A (en) * 2014-08-26 2016-04-04 株式会社豊田自動織機 Power storage device
JP2017139136A (en) * 2016-02-03 2017-08-10 株式会社Gsユアサ Power storage element
JP2018104822A (en) * 2018-01-24 2018-07-05 住友電気工業株式会社 Aluminum alloy wire material, capacitor and manufacturing method of aluminum alloy wire material
JP2018166075A (en) * 2017-03-28 2018-10-25 日立化成株式会社 Terminal block and manufacturing method thereof, and resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670431B1 (en) 2005-03-09 2007-01-16 삼성에스디아이 주식회사 Li Secondary Battery
JP2011243944A (en) * 2010-05-20 2011-12-01 Samsung Electro-Mechanics Co Ltd Electric double layer capacitor package and method for manufacturing same
JP2015117423A (en) * 2013-12-19 2015-06-25 住友電気工業株式会社 Aluminum alloy wire material, capacitor and manufacturing method of aluminum alloy wire material
JP2016046197A (en) * 2014-08-26 2016-04-04 株式会社豊田自動織機 Power storage device
JP2017139136A (en) * 2016-02-03 2017-08-10 株式会社Gsユアサ Power storage element
JP2018166075A (en) * 2017-03-28 2018-10-25 日立化成株式会社 Terminal block and manufacturing method thereof, and resin composition
JP2018104822A (en) * 2018-01-24 2018-07-05 住友電気工業株式会社 Aluminum alloy wire material, capacitor and manufacturing method of aluminum alloy wire material

Similar Documents

Publication Publication Date Title
JP5012511B2 (en) Capacitor
CN107076586B (en) Sensor shell
US8693167B2 (en) Electronic component and lead-wire for the same
WO2016117711A1 (en) Composite of metal member and resin mold, and metal member for forming composite with resin mold
JP2013111881A (en) Method of manufacturing metal component, and composite molding
JP2011076731A (en) Battery cover member
KR20090018858A (en) Accumulator and its manufacturing method
JP2005249595A (en) Pressure sensor
JPH10208708A (en) Flat cell
WO2008155616A1 (en) Battery and method for manufacturing battery
JP2005032669A (en) Electrode terminal for sealing plate
JP2008131005A (en) Structure for electrical and electronic components having terminals, and method of manufacturing the same
TW201241850A (en) Electronic component and method of manufacturing the same
KR20030040136A (en) Sealed battery
CN103000387A (en) Electrochemical device
CN102074672A (en) Explosion-proof device for power battery
CN103878925A (en) Manufacture method of composite formed article and method for improving heat dissipation
JP3890675B2 (en) Square electrochemical device and method for producing the same
KR20200096674A (en) Case member with terminal and manufacturing method thereof
JP2019160746A (en) Sealing body for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP2007305306A (en) Coin type electrochemical element and its manufacturing method
JP2016046388A (en) Capacitor and method of manufacturing the same
JP4388310B2 (en) Manufacturing method of sealing plate
JP2005123017A (en) Gasket for electrochemical cell, and electrochemical cell
CN114583343B (en) Cover and sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090722