JP2005032124A - Confidential symbol, authentication means, article using the same, authentication method and authentication device - Google Patents

Confidential symbol, authentication means, article using the same, authentication method and authentication device Download PDF

Info

Publication number
JP2005032124A
JP2005032124A JP2003272744A JP2003272744A JP2005032124A JP 2005032124 A JP2005032124 A JP 2005032124A JP 2003272744 A JP2003272744 A JP 2003272744A JP 2003272744 A JP2003272744 A JP 2003272744A JP 2005032124 A JP2005032124 A JP 2005032124A
Authority
JP
Japan
Prior art keywords
light
light emitting
authentication
authentication means
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003272744A
Other languages
Japanese (ja)
Other versions
JP4085032B2 (en
Inventor
Seiji Umemoto
清司 梅本
Takahisa Konishi
貴久 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003272744A priority Critical patent/JP4085032B2/en
Publication of JP2005032124A publication Critical patent/JP2005032124A/en
Application granted granted Critical
Publication of JP4085032B2 publication Critical patent/JP4085032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a symbol difficult to copy and excellent in confidentiality, thereby obtaining an authentication means difficult be forged. <P>SOLUTION: There are provided a confidential symbol in which a plurality of light emitting parts (1) which emit light upon irradiation of an electromagnetic wave are arranged to form a cipher, and the light emitting parts are constituted of a bar-like body having a long side (a) which is longer than the light emission wave length and a short side (b) which is shorter than the light emission wave length; an authentication means having an authentication region in which a light emitting region having the plurality of the light emitting parts arranged in parallel are arranged in one or more places; an article having the authentication means; an authentication method which detects the light emission of the light emitting parts via a straight polarizer by irradiating the authentication means with a non-polarized electromagnetic wave or detects the light emission of the light emitting parts by irradiating the authentication means with the electromagnetic wave as straight polarized light; and an authentication device comprising a light source which irradiates the authentication means with a non-polarized electromagnetic wave and a light receiving part which detects the light emission of the light emitting parts via a straight polarizer, or a light source which irradiates the authentication means with the electromagnetic wave as straight polarized light and a light receiving part which detects the light emission of the light emitting parts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、偽造が困難でカード類等の各種物品に好適な隠密記号、認証手段、その使用物品、及びその認証方法、認証装置に関する。   The present invention relates to a covert sign, authentication means, an article used therefor, an authentication method thereof, and an authentication apparatus that are difficult to forge and are suitable for various articles such as cards.

クレジットカード等では偽造カードによる被害の増大が報告されており、偽造が困難な認証手段が求められている。従来、クレジットカードやIDカード等の真贋を確認する認証手段としては、磁気記録やホログラム画像、反射層上の位相差フィルムに潜像を形成したものや、位相差層の光学軸の方位角を変えて潜像を形成したものが知られていた。位相差層に設けた潜像は、偏光を照射して偏光子を介し観察される。
米国特許明細書第5393099号 米国特許明細書第5574790号 特開2001−232978号公報 特表2001−525080号公報
Credit cards and the like have been reported to increase damage caused by counterfeit cards, and authentication means that are difficult to counterfeit are required. Conventionally, as an authentication means for confirming the authenticity of a credit card or an ID card, a magnetic recording, a hologram image, a latent image formed on a retardation film on a reflection layer, or an azimuth angle of an optical axis of a retardation layer is used. What changed and formed a latent image was known. The latent image provided on the retardation layer is irradiated with polarized light and observed through a polarizer.
US Pat. No. 5,393,099 US Pat. No. 5,547,790 JP 2001-232978 A Special table 2001-525080 gazette

しかしながら、ミクロンオーダーの凹凸にアルミニウム等からなる高反射率の金属薄膜を設けて形成されるホログラム画像では、その凹凸パターンを目視できて切削装置による模造品の製造が容易であり、偽造されやすい問題点があった。   However, in hologram images formed by providing a highly reflective metal thin film made of aluminum or the like on the micron-order unevenness, the uneven pattern can be visually observed, and it is easy to manufacture a counterfeit product with a cutting device, and is easily forged There was a point.

また位相差フィルムに潜像を設ける方法においても、フィルムの位相差が高分子の配向の偏りに基づくため歪の境界を急峻にすることや微細なパターンとすることが困難で、潜像を熱加工等にて容易に形成でき、偽造されやすい問題点があった。   Also, in the method of providing a latent image on a retardation film, it is difficult to make a sharp boundary of a strain or to form a fine pattern because the retardation of the film is based on a deviation in the orientation of the polymer. There is a problem that it can be easily formed by processing or the like and easily forged.

さらに位相差層の光学軸の方位角を変化させた潜像においても、それを観察する偏光板を回転させて光強度の変化を調べるだけで偏光状態を容易に解析でき、位相差膜に偏光紫外線を照射するだけの操作で容易に複製できて偽造されやすい問題点があった。   Furthermore, even in a latent image in which the azimuth angle of the optical axis of the retardation layer is changed, the polarization state can be easily analyzed simply by examining the change in light intensity by rotating the polarizing plate that observes it. There was a problem that it could be easily duplicated and easily counterfeited simply by irradiating with ultraviolet rays.

一方、ミリメートルオーダーのバーの配列で光の吸収/非吸収のパターンを形成してなるバーコードは、そのパターンを目視で容易に認識できてセキュリティを必要とする用途には不向きであるが、この場合には現在の一次元型のバーコードでは会杜数や品種等の記録情報の増大に対処できない問題点があった。   On the other hand, a barcode formed by forming an absorption / non-absorption pattern of light with an array of millimeter-order bars is not suitable for applications requiring security because the pattern can be easily recognized visually. In some cases, the current one-dimensional bar code has a problem that it cannot cope with an increase in the number of recorded information such as the number of conferences and varieties.

上記に鑑みて本発明は、模造が困難で隠密性に優れる記号を得て、偽造されにくい認証手段を得ることを課題とする。   In view of the above, an object of the present invention is to obtain a sign that is difficult to counterfeit and has excellent concealment, and that is difficult to forge.

本発明は、外部からの電磁波の照射で発光する発光部の複数を配置して暗号を形成してなり、その発光部が平面形状に基づいて発光波長よりも長い長辺と発光波長よりも短い短辺を有する棒状体からなる隠密記号、及び前記の発光部の複数がその長辺に基づいて平行に配列した発光領域を1箇所又は2箇所以上に配置してなる認証領域を有する認証手段、並びにその認証手段を有する物品を提供するものである。   In the present invention, a plurality of light emitting portions that emit light upon irradiation with electromagnetic waves from the outside are arranged to form a code, and the light emitting portions are longer than the light emission wavelength and shorter than the light emission wavelength based on the planar shape. An authentication unit having a secret symbol formed of a rod-like body having a short side, and an authentication region in which a plurality of the light emitting units are arranged in parallel on the long side and arranged in one place or two or more places; An article having the authentication means is also provided.

また本発明は、前記の認証手段に非偏光の電磁波を照射して、認証手段を形成する発光部の発光を直線偏光子を介して検知する、又は前記認証手段に電磁波を直線偏光として照射して前記発光部の発光を検知する認証方法、並びに前記の認証手段に非偏光の電磁波を照射する光源と、認証手段を形成する発光部の発光を直線偏光子を介して検知する受光部とを少なくとも具備する認証装置、及び前記の認証手段に電磁波を直線偏光として照射する光源と、認証手段を形成する発光部の発光を検知する受光部とを少なくとも具備する認証装置を提供するものである。   Further, the present invention irradiates the authentication means with a non-polarized electromagnetic wave and detects the light emission of the light emitting part forming the authentication means via a linear polarizer, or irradiates the authentication means with the electromagnetic wave as linearly polarized light. An authentication method for detecting light emission of the light emitting unit, a light source for irradiating the authentication unit with non-polarized electromagnetic waves, and a light receiving unit for detecting light emission of the light emitting unit forming the authentication unit via a linear polarizer There is provided an authentication device including at least an authentication device, and a light source that irradiates the authentication unit with electromagnetic waves as linearly polarized light, and a light receiving unit that detects light emitted from a light emitting unit forming the authentication unit.

紫外線や可視光等の電磁波の照射で発光部が発光し、その発光は、発光部の形状特性に基づいて、非偏光の電磁波を照射した場合でも長辺方向の振動面を有する直線偏光であり、その直線偏光は、偏光子なしで観察すると一様な発光として視覚され、偏光子を介した観察で偏光の方向により明暗差が視覚される。   The light emitting part emits light when irradiated with electromagnetic waves such as ultraviolet rays and visible light, and the light emission is linearly polarized light having a vibration surface in the long side direction even when irradiated with non-polarized electromagnetic waves based on the shape characteristics of the light emitting part. When observed without a polarizer, the linearly polarized light is visually recognized as uniform light emission, and when observed through the polarizer, a difference in brightness is visually recognized depending on the direction of polarization.

また電磁波を直線偏光として照射した場合にもその偏光の方向により視覚される発光強度(明るさ)が変化し、電磁波の振動方向と発光体の長辺方向がなす交差角によっては、例えば交差角が0度と90度の組合せでは発光/非発光の状態を創出することができる。   In addition, when the electromagnetic wave is irradiated as linearly polarized light, the light emission intensity (brightness) visually changes depending on the direction of the polarized light. Depending on the crossing angle formed by the vibration direction of the electromagnetic wave and the long side direction of the light emitter, for example, the crossing angle A combination of 0 degrees and 90 degrees can create a light emission / non-light emission state.

前記の発光部によればその複数を長辺方向を相違させて配置することにより、偏光の振動方向が異なる組合せを形成できて偏光発光の明暗差によるパターンを形成することができる。その場合、発光部は、その短辺が発光波長よりも短いことから、その形成にサブミクロンオーダーの極微細なパターニングを要して偽造を制約し、肉眼では個々の発光部の認識も困難で全体が均質な発光体として認識されて、発光パターンも認識されにくくパターンが解析されにくくて模造が困難である。   According to the light emitting section, by arranging a plurality of the light emitting portions with different long side directions, combinations having different polarization vibration directions can be formed, and a pattern based on a difference in brightness of polarized light emission can be formed. In that case, since the short side of the light emitting part is shorter than the emission wavelength, the formation of the light emitting element requires submicron-order fine patterning to limit counterfeiting, and it is difficult to recognize individual light emitting parts with the naked eye. The whole is recognized as a homogeneous light emitter, and the light emission pattern is also difficult to recognize and the pattern is difficult to analyze, making it difficult to imitate.

また前記の発光部によれば、その形成材料や照射電磁波の選択で波長の異なる発光とすることができて照射電磁波と発光波長とに隠密性があり、吸収波長と発光波長とが相違する発光部を積層して波長の相違に基づく暗号なども形成でき、発光部の配置や発光パターンの工夫でより機密性の高い記号を形成できて模造ないし複製が困難である。   Further, according to the above-described light emitting portion, light having different wavelengths can be selected by selecting the forming material and the irradiation electromagnetic wave, the irradiation electromagnetic wave and the emission wavelength are concealed, and the emission wavelength and the emission wavelength are different. It is possible to form a code or the like based on the difference in wavelength by laminating the portions, and to form a highly confidential symbol by devising the arrangement of the light emitting portion and the light emitting pattern, and it is difficult to imitate or duplicate.

さらに前記の積層方式では同じ平面内に情報を多層に記録でき、情報の記録量に優れている。加えてバーコード方式においても偏光方向の変化も情報として利用でき、従来の二値記録式バーコードに比べて情報の記録容量を大幅に増大させることができる。   Furthermore, in the above-described lamination method, information can be recorded in multiple layers in the same plane, and the information recording amount is excellent. In addition, the change in polarization direction can also be used as information in the bar code system, and the information recording capacity can be greatly increased compared to the conventional binary recording bar code.

本発明による隠密記号は、外部からの電磁波の照射で発光する発光部の複数を配置して暗号を形成したものである。その例を図1に示した。図1は、認証手段を形成する発光領域10を例とした平面拡大図であり、1が発光部、2が非発光部である。図例より明らかな如く前記の発光部1は、平面形状に基づいて発光波長よりも長い長辺aと発光波長よりも短い短辺bを有する棒状体1にて形成される。これにより長辺方向の振動面を有する直線偏光として発光させることができる。   The covert sign according to the present invention is a code formed by arranging a plurality of light emitting portions that emit light upon irradiation with electromagnetic waves from the outside. An example thereof is shown in FIG. FIG. 1 is an enlarged plan view of an example of a light emitting region 10 that forms an authentication means, where 1 is a light emitting portion and 2 is a non-light emitting portion. As is apparent from the figure, the light emitting section 1 is formed of a rod-like body 1 having a long side a longer than the emission wavelength and a short side b shorter than the emission wavelength based on the planar shape. As a result, light can be emitted as linearly polarized light having a vibration surface in the long side direction.

発光部は、外部からの電磁波の照射で発光する適宜な発光性材料の1種又は2種以上を用いて形成でき、その材料について特に限定はない。就中、紫外線又は可視光線の照射で励起されて蛍光や燐光等の光エネルギーを発するもの、特に可視光域、殊に中心波長が390〜700nmの範囲にある光を発する材料が好ましく用いられる。   The light-emitting portion can be formed using one or two or more suitable light-emitting materials that emit light when irradiated with electromagnetic waves from the outside, and the material is not particularly limited. In particular, a material that emits light energy such as fluorescence or phosphorescence when excited by irradiation with ultraviolet rays or visible light, particularly a material that emits light having a visible light region, particularly a central wavelength in the range of 390 to 700 nm, is preferably used.

ちなみに前記発光性材料の例としては、テルフェニルやクアテルフェニル、ポリフェニル1,7H−ベンズイミダゾ(2,1−ア)ベンズ(デ)イソキノリン−7−オン(BBQ)の如きオリゴフェニレン類、2−(4−ビフェニルイル)−5−フェニル−1,3,4−オキサジアゾール(PBD)や1,4−ビス(5−フェニルオキサゾール−2−イル)ベンゼン(POPOP)の如きオキサゾール及びオキサジアゾール誘導体があげられる。   Incidentally, examples of the light-emitting material include terphenyl, quaterphenyl, polyphenylene 1,7H-benzimidazo (2,1-a) benz (de) isoquinolin-7-one (BBQ), Oxazoles and oxalates such as 2- (4-biphenylyl) -5-phenyl-1,3,4-oxadiazole (PBD) and 1,4-bis (5-phenyloxazol-2-yl) benzene (POPOP) And diazole derivatives.

また7−ヒドロキシクマリンや7−ヒドロキシ−4−メチルクマリン(4−MC)、7−ジエチルアミノ−4−メチルクマリン(DAMC)やクマリン120の如きクマリン誘導体、キノリノール誘導体、フタロシアニン誘導体、フルオレン及びその誘導体、アントラセン及びその誘導体も前記発光性材料の例としてあげられる。   Further, 7-hydroxycoumarin, 7-hydroxy-4-methylcoumarin (4-MC), 7-diethylamino-4-methylcoumarin (DAMC), coumarin derivatives such as coumarin 120, quinolinol derivatives, phthalocyanine derivatives, fluorene and derivatives thereof, Anthracene and derivatives thereof are also examples of the light-emitting material.

さらにローダミン6Gやローダミン110の如きキサンテン系(ピロニン系、ローダミン系、フロレセイン系)色素、クレシルバイオレットやオキサジン1の如きオキサジン系色素、トランス−4,4'−ジフェニルスチルベンの如きスチルベン系色素、シアニン系色素、ポリアセチレン系化合物、フェニレンビニレン系化合物、フェニレンエチニレン系化合物、五員環及び六員環の複素環化合物なども前記発光性材料の例としてあげられる。   Furthermore, xanthene (pyronine, rhodamine, and fluorescein) dyes such as rhodamine 6G and rhodamine 110, oxazine dyes such as cresyl violet and oxazine 1, stilbene dyes such as trans-4,4′-diphenylstilbene, cyanine Examples of the light-emitting material include dyes, polyacetylene compounds, phenylene vinylene compounds, phenylene ethynylene compounds, five-membered and six-membered heterocyclic compounds, and the like.

前記の発光性材料は、例えばポリマーからなるマトリックス中に分散させてカード類や貼付シール等の支持基材に塗工する方法などにて好ましく用いうる。発光性材料の使用量は、適宜に決定しうるが、一般にはマトリックスポリマー100重量部あたり、1〜500重量部、就中5〜250重量部、特に10〜100重量部とされる。発光性材料を高濃度で用いると濃度消光の起きることがあり、必要に応じて発光性材料をコアとしたデンドリマーとしてマトリックスポリマーに分散させてもよい。   The above-mentioned luminescent material can be preferably used in a method of dispersing in a matrix made of a polymer, for example, and applying it to a supporting substrate such as cards or a sticker. The amount of the luminescent material used can be appropriately determined, but is generally 1 to 500 parts by weight, especially 5 to 250 parts by weight, especially 10 to 100 parts by weight per 100 parts by weight of the matrix polymer. When the luminescent material is used at a high concentration, concentration quenching may occur, and if necessary, it may be dispersed in the matrix polymer as a dendrimer having the luminescent material as a core.

前記のマトリックスポリマーとしては適宜なものを1種又は2種以上用いることができ、そのポリマーの種類について特に限定はない。就中、照射する電磁波に対して透明性に優れるものが好ましい。ちなみにその例としては、ポリメチルメタクリレートやポリアクリレート、ポリカーボネートやポリビニルアルコール、ポリビニルピロリドンやヒドロキシエチルセルロース、セルロースアセテートブチレートやセルロースプロピオネートがあげられる。   As the matrix polymer, one or more suitable ones can be used, and the type of the polymer is not particularly limited. In particular, those that are excellent in transparency to electromagnetic waves to be irradiated are preferable. Examples thereof include polymethyl methacrylate and polyacrylate, polycarbonate and polyvinyl alcohol, polyvinyl pyrrolidone and hydroxyethyl cellulose, cellulose acetate butyrate and cellulose propionate.

またポリビニルクロライドやポリエチレンテレフタレート、ポリα−ナフタレンメタクリレートやポリビニルナフタレン、ポリn−ブチルメタクリレートやポリシクロヘキシルメタクリレート、ポリ(4−メチルペンテン)やエポキシ系樹脂、ポリスルホンやポリエーテルスルホン、ポリエーテルケトンやポリアリレート、ポリアミドやポリイミド、ポリエーテルイミドやポリエーテルスルホン、ポリアクリロニトリルやポリエチレンも前記マトリックスポリマーの例としてあげられる。   Polyvinyl chloride, polyethylene terephthalate, poly α-naphthalene methacrylate, polyvinyl naphthalene, poly n-butyl methacrylate, polycyclohexyl methacrylate, poly (4-methylpentene), epoxy resin, polysulfone, polyethersulfone, polyetherketone, polyarylate Polyamide, polyimide, polyetherimide, polyethersulfone, polyacrylonitrile, and polyethylene are also examples of the matrix polymer.

さらにポリシクロペンタジエンの水添物及び共重合体やポリシクロヘキサジエンの水添物及び共重合体、スチレン・無水マレイン酸共重合体やスチレン・アクリロニトリル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体やベンゾシクロブタン共重合体、それらの誘導体なども前記マトリックスポリマーの例としてあげられる。   Further, hydrogenated products and copolymers of polycyclopentadiene, hydrogenated products and copolymers of polycyclohexadiene, styrene / maleic anhydride copolymers, styrene / acrylonitrile copolymers, tetrafluoroethylene / hexafluoropropylene copolymers Polymers, benzocyclobutane copolymers, derivatives thereof, and the like are also examples of the matrix polymer.

一方、上記の発光性材料は、高分子からなるものであってもよい。ちなみにその例としては、ポリパラフェニレン誘導体やポリチオフェン誘導体、ポリアセチレン誘導体やポリビニルカルバゾール誘導体、ポリフルオレン誘導体やポリシラン誘導体などがあげられる。高分子からなる発光性材料は、例えば溶剤による溶液等としてカード類や貼付シール等の支持基材に塗工する方法などにて好ましく用いうる。   On the other hand, the light emitting material may be made of a polymer. Incidentally, examples include polyparaphenylene derivatives, polythiophene derivatives, polyacetylene derivatives, polyvinylcarbazole derivatives, polyfluorene derivatives, polysilane derivatives, and the like. The light-emitting material made of a polymer can be preferably used, for example, by a method of coating a support substrate such as a card or a sticker seal as a solution in a solvent.

また上記の発光性材料は、無機物質からなるものであってもよい。ちなみにその例としては、Ca10(PO(F,Cl):Sb,MnやBaMgAl1627:Eu、CeMgAl1119:TbやY:Eu、Y(V,P)O:EuやZnSiO:Mnなどがあげれられる。無機物質からなる発光性材料は、例えば真空蒸着法やスパッタリング法等の薄膜形成法にて無機物質をカード類や貼付シール等の支持基材にコーティングする方法などにて好ましく用いうる。 The light emitting material may be made of an inorganic substance. By the way, as an example, Ca 10 (PO 4 ) 6 (F, Cl) 2 : Sb, Mn, BaMg 2 Al 16 O 27 : Eu, CeMgAl 11 O 19 : Tb, Y 2 O 3 : Eu, Y (V , P) O 4 : Eu and Zn 2 SiO 4 : Mn. A luminescent material made of an inorganic substance can be preferably used in a method of coating an inorganic substance on a support substrate such as a card or a sticking seal by a thin film forming method such as a vacuum deposition method or a sputtering method.

発光部の形成は、例えば支持基材上に設けた発光性材料からなる塗工膜やコーティング膜を、レーザー光によるアブレーション加工法やフォトリソグラフィー法等で部分的に除去して、発光波長よりも長い長辺と発光波長よりも短い短辺を有する棒状体からなる状態に加工してパターニングする方法などにより行うことができる。そのパターニングに際しては、必要に応じ加工パターンを形成したマスクなども用いうる。またレーザー光の照射やフォトリソグラフィーの露光に際しては、必要に応じレンズ等を介して照射光の照射幅の微細化を図ることができる。   For example, the light emitting part is formed by partially removing a coating film or a coating film made of a light emitting material provided on a support substrate by an ablation processing method using a laser beam or a photolithography method, so that the light emitting portion is longer than the emission wavelength. It can be performed by a method of patterning by processing into a state of a rod-like body having a long long side and a short side shorter than the emission wavelength. For the patterning, a mask on which a processing pattern is formed may be used as necessary. In laser light irradiation and photolithography exposure, the irradiation width of the irradiation light can be reduced through a lens or the like as necessary.

前記のパターニングにて形成される棒状体からなる発光部の長辺長は、電磁波の照射で発光する波長λの2倍以上、就中3倍以上、特に5倍以上とすることが加工性等の点より好ましい。長辺長の上限は、任意でありカード類等の適用対象の大きさなどにより適宜に決定でき1〜20mm程度の長さであってもよいが、一般には単位面積当たりの情報量の増大を図る点などより500μm以下、就中100μm以下、特に10μm以下とされる。   The long side length of the light emitting portion formed of the rod-shaped body formed by the patterning is set to be 2 times or more, particularly 3 times or more, particularly 5 times or more of the wavelength λ emitted by irradiation with electromagnetic waves. It is more preferable than this point. The upper limit of the long side length is arbitrary and can be appropriately determined depending on the size of the application target such as cards and the like, and may be a length of about 1 to 20 mm. In general, an increase in the amount of information per unit area is increased. For example, it is 500 μm or less, in particular 100 μm or less, particularly 10 μm or less.

また発光部の短辺長は、直線偏光からなる発光を得る点より前記発光波長λの0.05〜0.8倍、就中0.1〜0.6倍、特に0.2〜0.4倍とすることが好ましい。発光部の厚さは、10nm〜10μm、就中30nm〜5μm、特に60nm〜1μmが一般的である。   The short side length of the light emitting part is 0.05 to 0.8 times, particularly 0.1 to 0.6 times, especially 0.2 to 0. It is preferable to make it 4 times. The thickness of the light emitting part is generally 10 nm to 10 μm, in particular 30 nm to 5 μm, particularly 60 nm to 1 μm.

隠密記号は、複数の発光部を任意に配置してなる暗号として形成することができる。ちなみに図1の例では、発光部1が短辺方向の横方向に平行に配列されており、また長辺方向の縦方向にも配列されて発光領域10が形成されている。従って発光部は、不連続な状態で配列されている。   The covert sign can be formed as a code formed by arbitrarily arranging a plurality of light emitting portions. Incidentally, in the example of FIG. 1, the light emitting portions 1 are arranged in parallel in the horizontal direction of the short side direction, and are also arranged in the vertical direction of the long side direction to form the light emitting region 10. Accordingly, the light emitting units are arranged in a discontinuous state.

同じ電磁波の照射で同じ発光波長を示す同種の発光部の配置に際しては、その各発光部の区切りを明確にして発光される直線偏光の偏光特性等の相違を明確化する点より、最寄りの発光部間において発光波長以上、就中、発光波長の1.5倍以上、特に2倍以上の間隔を設けることが好ましい。その間隔、特に発光部短辺方向の間隔が狭すぎると発光部の境界を明確に形成することが困難になり、発光の偏光度が低下する場合がある。   When arranging light emitting parts of the same type that exhibit the same emission wavelength under the same electromagnetic wave irradiation, the nearest light emission is used in order to clarify the difference in the polarization characteristics etc. of linearly polarized light emitted by clarifying the separation of each light emitting part. It is preferable to provide an interval of more than the emission wavelength, especially 1.5 times or more of the emission wavelength, especially 2 times or more of the intervals. If the interval, particularly the interval in the short side direction of the light emitting part is too narrow, it becomes difficult to clearly form the boundary of the light emitting part, and the polarization degree of light emission may be lowered.

一方、複数の発光部を同じ方向に配列させて各発光部が同じ振動方向の直線偏光を発光する領域(発光領域)を形成する場合、その領域での一様な発光の達成性、すなわち発光部の間隔が広すぎて疎らな発光となることを防止する点より同じ発光領域における発光部の間隔は、100μm以下、就中10μm以下、特に5μm以下であることが好ましい。発光領域の形成は、直線偏光の偏光度と発光強度を高めて発光特性の検知精度の向上に有利である。   On the other hand, when a plurality of light emitting portions are arranged in the same direction and each light emitting portion forms a region (light emitting region) that emits linearly polarized light in the same vibration direction, uniform light emission in that region, that is, light emission The distance between the light emitting portions in the same light emitting region is preferably 100 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less, in order to prevent the light emission from being sparse due to the interval between the portions being too wide. The formation of the light emitting region is advantageous for improving the detection accuracy of the light emission characteristics by increasing the polarization degree and light emission intensity of linearly polarized light.

複数の発光部の配置形態、従って暗号の形態は、上記のように任意であり、発光部を縦、横、斜め又は厚さの1又は2以上の方向に配置してなる適宜な暗号とすることができる。ちなみにその配置の例としては複数の発光部1がその長辺に基づいて、図1の如く発光部の短辺方向又は/及び長辺方向に平行に配列された形態、ある方向を基準に角度を相違させた配列形態、リング形態や多角形形態、波形形態やその他の図形形態、各種の文字形態やその他の記号形態などがあげられ、2種以上の配列形態が複合したものであってもよい。   The arrangement form of the plurality of light emitting sections, and thus the encryption form, is arbitrary as described above, and is an appropriate encryption formed by arranging the light emitting sections in one or more directions of vertical, horizontal, diagonal or thickness. be able to. Incidentally, as an example of the arrangement, a plurality of light emitting units 1 are arranged in parallel with the short side direction and / or the long side direction of the light emitting unit as shown in FIG. , Different ring shapes, ring shapes, polygonal shapes, waveform shapes, other graphic forms, various character forms, other symbol forms, etc. Good.

また発光部は、2層又は3層以上が積層された配置形態、すなわち同種又は異種の発光部を厚さ方向に同じ又は異なる寸法で2層又は3層以上を重畳させた配置形態にあってもよい。その重畳は、下層の発光部の全体を上層が被覆する状態にあってもよいし、上下層が部分的に重複する状態にあってもよく、下層の発光部の長辺に対して上層の発光部の長辺が平行にあってもよいし、交差していてもよい。   Further, the light emitting part is in an arrangement form in which two layers or three or more layers are laminated, that is, an arrangement form in which two or more layers of the same or different kinds of light emitting parts are overlapped with the same or different dimensions in the thickness direction. Also good. The superimposition may be in a state where the upper layer covers the entire lower-layer light-emitting portion, or in a state where the upper and lower layers partially overlap, and the upper layer may be in a state of being overlapped with the long side of the lower-layer light-emitting portion. The long sides of the light emitting units may be parallel or may intersect.

隠密記号は、発光波長が相違する複数の発光部の組合せによる配置にて形成されていてもよい。その配置形態は、前記に準じうる。特に発光させるための照射波長とそれによる発光波長が相違する発光部の組合せ、すなわちそれらの波長を明確に区別できる発光部の組合せとしたときには、前記した積層配置の場合にあっても上下等における各発光部の発光/非発光を制御でき、多層記録による情報記録量の増大を図ることができて、複製の困難性や情報の機密性を高めることができる。   The covert sign may be formed by an arrangement of a plurality of light emitting portions having different light emission wavelengths. The arrangement form may conform to the above. In particular, when the combination of the light emitting portions for emitting light and the light emitting portions that differ from each other, that is, the combination of the light emitting portions that can clearly distinguish these wavelengths, even in the case of the above-described stacked arrangement, The light emission / non-light emission of each light emitting unit can be controlled, the amount of information recorded by multilayer recording can be increased, and the difficulty of copying and the confidentiality of information can be enhanced.

波長相違の発光は、例えば波長の選択透過性を示すフィルタやダイクロイックミラーなどで分離できて区別が可能である。照射波長と発光波長が相違する発光部の組合せは、発光性材料の選択で達成でき、この場合には発光波長の相違も情報の形成に利用することができる。照射波長と発光波長が相違する発光部の組合せでは、照射(吸収)波長領域と発光波長領域とが可及的に狭い発光部の組合せとすることが情報記録量の増大に有利である。   Light emission having different wavelengths can be distinguished by being separated by, for example, a filter or a dichroic mirror showing selective transmission of wavelengths. A combination of light emitting portions having different irradiation wavelengths and emission wavelengths can be achieved by selecting a light emitting material. In this case, the difference in emission wavelengths can also be used for forming information. In a combination of light emitting portions having different irradiation wavelengths and emission wavelengths, it is advantageous for increasing the amount of information recording to have a combination of light emitting portions in which the irradiation (absorption) wavelength region and the light emission wavelength region are as narrow as possible.

上記した配置形態は、発光部を単位として達成されていてもよいし、上記した発光領域を単位としてその複数の配置において達成されていてもよい。すなわち発光領域は、複数の発光部を同じ方向に配列させて各発光部が同じ振動方向の直線偏光を発光する領域であり、その発光領域を単位とした縦、横、斜め又は厚さの1又は2以上の方向の配置に基づいて上記した配置形態が達成されていてもよい。   The above-described arrangement form may be achieved in units of light emitting units, or may be achieved in a plurality of arrangements in units of the above-described light emitting regions. That is, the light emitting region is a region in which a plurality of light emitting units are arranged in the same direction and each light emitting unit emits linearly polarized light having the same vibration direction, and the vertical, horizontal, diagonal, or thickness of the light emitting region is a unit. Or the arrangement | positioning form mentioned above may be achieved based on arrangement | positioning of two or more directions.

発光領域を単位とした隠密記号は、領域内の各発光部による同じ振動方向の直線偏光による発光が総和して輝度が向上し、明るい発光が得られて記号の検知精度が向上する。発光領域の大きさは任意であり、カード類等の適用対象の大きさなどにより適宜に決定することができる。一般には2体〜1万体、就中5体〜1千体、特に10体〜100体の発光部が存在する発光領域の大きさとされる。   The covert symbol with the light emitting region as a unit improves the luminance by summing up the light emitted by the linearly polarized light in the same vibration direction by the light emitting units in the region, and obtains bright light emission to improve the symbol detection accuracy. The size of the light emitting area is arbitrary, and can be appropriately determined depending on the size of the application target such as cards. In general, the size of the light emitting region in which light emitting portions of 2 to 10,000, especially 5 to 1,000, particularly 10 to 100, are present.

従って隠密記号は、発光部又は発光領域を縦、横、斜め又は厚さの1又は2以上の方向に配列させてなるバーコードとして形成することができる。そのバーコードは、発光部又は発光領域が縦、横、斜め又は厚さの一方向に配列した形態のもの、発光部又は発光領域が縦、横、斜め又は厚さの内の二方向以上に配列した形態のものなどとすることができる。   Therefore, the covert symbol can be formed as a bar code in which the light emitting portions or light emitting regions are arranged in one or more directions of vertical, horizontal, diagonal, or thickness. The barcode has a light emitting part or light emitting area arranged in one direction of length, width, diagonal or thickness, and the light emitting part or light emitting area is in two or more directions of vertical, horizontal, diagonal or thickness. It can be in the form of an array.

ちなみに図1の例では発光部の横配列を単位として、それが多段に配列(縦配列)してなり、発光部が縦と横の二方向に配列した形態のものとして形成されている。なお厚さ方向の配列は、上記した積層配置の如く発光部又は発光領域が部分的に又は全体として重畳していることを意味し、その重畳形態の発光部又は発光領域が縦、横又は斜めの一方向又は二方向以上に配列した形態のバーコードなども形成することができる。   Incidentally, in the example of FIG. 1, the light emitting units are arranged in multiple stages (vertical arrangement) with the horizontal arrangement of the light emitting units as a unit, and the light emitting units are formed in a form in which they are arranged in two directions, vertical and horizontal. Note that the arrangement in the thickness direction means that the light emitting portions or light emitting regions are partially or entirely overlapped as in the above-described stacked arrangement, and the light emitting portions or light emitting regions in the overlapping form are vertically, horizontally, or obliquely arranged. A barcode or the like arranged in one direction or two or more directions can also be formed.

隠密記号は、認証手段などの機密性ないし隠密性が求められる記号の形成に好ましく用いうる。認証手段の形成にはその認証精度の点より上記した発光領域を単位としてそれを1箇所又は2箇所以上に配置して認証領域を形成することが好ましい。   The covert sign can be preferably used to form a sign that requires confidentiality or covertness such as an authentication means. For the formation of the authentication means, it is preferable to form the authentication area by arranging the light emitting area as a unit at one place or two or more places in view of the authentication accuracy.

認証領域は、上記した発光領域の配置例の如く、例えば発光部長辺の配列方向が相違する2種又は3種以上の発光領域を組合せる方式などにて形成することができる。これにより発光部長辺の方向の相違に基づいて振動方向が異なる直線偏光の発光パターンを形成することができる。認証手段は、2カ所又は3カ所以上に配置された同種又は異種の認証領域にて形成されていてもよい。   The authentication area can be formed, for example, by combining two or more kinds of light emitting areas having different arrangement directions of the light emitting portion long sides, as in the arrangement example of the light emitting areas described above. Accordingly, it is possible to form a linearly polarized light emission pattern having a different vibration direction based on the difference in the direction of the long side of the light emitting unit. The authentication means may be formed of the same kind or different kind of authentication areas arranged at two or three or more places.

認証領域を形成する複数の発光領域の組合せを、一の発光領域における発光部長辺の任意に選択できる方向を基準にして、発光領域における発光部の配列方向が例えば平行関係(0度)又は直交関係(90度)あるいは45度又は135度の交差関係にある発光領域の2種以上の組合せとした場合の如く、予め各発光領域における発光部長辺の方向を規格化することで、直線偏光の方向をより容易に検知することができる。   The arrangement direction of the light emitting portions in the light emitting region is, for example, a parallel relationship (0 degree) or orthogonal with respect to a direction in which the long side of the light emitting portion in one light emitting region can be arbitrarily selected as a combination of a plurality of light emitting regions forming the authentication region By normalizing the direction of the long side of the light emitting part in each light emitting region in advance, as in the case of a combination of two or more types of light emitting regions having a relationship (90 degrees) or 45 degrees or 135 degrees, The direction can be detected more easily.

前記の規格化をせずに任意な発光部長辺の方向の組合せとし、その組合せを暗号化して発光部や発光領域として記録しておいてもよい。これによれば認証手段の機密性ないし隠密性を向上でき、かつ偏光方向の検知性も向上させることができる。   It is also possible to use any combination of the directions of the long side of the light emitting unit without the above-mentioned normalization, encrypt the combination, and record it as a light emitting unit or a light emitting region. According to this, the confidentiality or concealment of the authentication means can be improved, and the detectability of the polarization direction can also be improved.

また前記の如く認証領域を形成する複数の発光領域における発光部長辺の配列方向の相違にて明暗差からなる認証パターンを形成することができる。ちなみに前記の0度と45度と90度の組合せによる発光領域からなる認証領域の発光を、吸収軸を0度方向とした偏光子を介して観察した場合、偏光子を透過する光強度が理想的には0%、50%、100%となり、明るさが暗、中間、明の3値からなる明暗パターンを形成することができる。   Further, as described above, it is possible to form an authentication pattern consisting of a light / dark difference due to the difference in the arrangement direction of the light emitting portion long sides in the plurality of light emitting regions forming the authentication region. By the way, when the light emission in the authentication region composed of the light emission region by the combination of 0 degree, 45 degrees, and 90 degrees is observed through a polarizer having the absorption axis as the 0 degree direction, the light intensity transmitted through the polarizer is ideal. Specifically, it becomes 0%, 50%, and 100%, and a light / dark pattern having three values of darkness, medium, and light can be formed.

従って前記の例にては明るさの相違に基づく3値の記録とその読み出しを達成することできる。なお前記の0度や45度などとして特定される発光領域における発光部長辺の方向は、明暗差の明確化による検知精度などの点より5度以内の誤差範囲にあることが好ましい。   Therefore, in the above example, ternary recording and reading based on the difference in brightness can be achieved. Note that the direction of the long side of the light emitting portion in the light emitting region specified as 0 degree or 45 degrees is preferably within an error range of 5 degrees or less from the viewpoint of detection accuracy by clarifying the difference in brightness.

前記した発光部長辺の配列方向が相違する2種以上の発光領域による明暗差のある発光パターンは、発光領域からなるバーコードの認証パターンとして利用することができる。そのバーコードは、上記したように発光領域が縦、横、斜め又は厚さの1又は2以上の方向に配列して認証パターンを形成するものであってよい。   The above-described light emission pattern having a light and dark difference by two or more light emitting areas having different arrangement directions of the light emitting portion long sides can be used as an authentication pattern for a barcode formed of the light emitting areas. As described above, the barcode may be one in which the light emitting areas are arranged in one or more directions of vertical, horizontal, diagonal, or thickness to form an authentication pattern.

上記した明暗差による認証パターンの例を図2に示した。これは、横方向を0度として、発光部の長辺方向が0度にある発光領域10aと、45度にある発光領域10bと、90度にある発光領域10cを10a・10b・10c・10b・10aの順序で配列して認証領域を形成し、0度の方向に透過軸を有する偏光子を介して発光パターンを観察したものである。   An example of the authentication pattern based on the above-described difference in brightness is shown in FIG. This means that the lateral direction is 0 degree, the light emitting area 10a whose long side direction is 0 degree, the light emitting area 10b that is 45 degrees, and the light emitting area 10c that is 90 degrees are 10a, 10b, 10c, and 10b. An authentication region is formed by arranging in the order of 10a, and a light emission pattern is observed through a polarizer having a transmission axis in the direction of 0 degrees.

図から明らかなように前記発光領域10a〜cの配置順序に対応して光の透過率が変化し、明・中間・暗・中間・明の発光パターンが形成される。なお偏光子を介さないで観察したときは、10a、10b、10cに明暗差は現れずそれぞれの発光領域で一様な明るさの発光を示す。パターン検出用の偏光子の透過軸方向を変化させるか、透過軸方向の異なるものを複数用意することにより、より複雑な偏光軸の検出と多値記録を行うことができる。   As is apparent from the figure, the light transmittance changes in accordance with the arrangement order of the light emitting regions 10a to 10c, and light, intermediate, dark, intermediate and bright light emission patterns are formed. When observed without using a polarizer, no difference in brightness appears in 10a, 10b, and 10c, and light emission of uniform brightness is exhibited in each light emitting region. By changing the transmission axis direction of the polarizer for pattern detection or preparing a plurality of ones having different transmission axis directions, it is possible to detect a more complicated polarization axis and perform multi-value recording.

上記のように発光パターンにおける直線偏光の振動面の向きは、発光体の長辺方向を変えることで容易かつ自由に制御することができる。また発光体の長辺方向が異なる発光領域の組合せで偏光方向を情報として利用する認証パターンを形成することができる。   As described above, the direction of the vibration plane of the linearly polarized light in the light emission pattern can be easily and freely controlled by changing the long side direction of the light emitter. In addition, an authentication pattern using the polarization direction as information can be formed by a combination of light emitting regions having different long side directions of the light emitter.

さらに発光体の長辺方向が異なる発光領域の組合せでバーコードを形成した場合には、従来の2値記録によるバーコード情報に加えて前記した偏光方向に基づく情報も記録でき、斯かる多値情報記録の達成で記録容量を飛躍的に増大させることができる。その上に上記した発光波長の異なる発光部を重畳する積層方式も適用することで、一定の区画内における情報の多層記録が達成されて、情報の記録容量がより増大する。   Further, when a barcode is formed by a combination of light emitting regions having different long side directions of the light emitter, information based on the polarization direction can be recorded in addition to the barcode information by the conventional binary recording, and such multi-values can be recorded. By achieving information recording, the recording capacity can be dramatically increased. In addition, by applying the above-described lamination method in which the light emitting portions having different emission wavelengths are superimposed, information multi-layer recording within a certain section is achieved, and the information recording capacity is further increased.

発光部は、その短辺方向では光が振動できずその振動は長辺方向でのみ可能である結果、電磁波の照射で長辺方向の振動面を有する直線偏光を放射する発光特性を示す。その発光は、非偏光の照射でかつ偏光子を通さない普通の観察では一様な明るさの発光に見えるが、偏光子を介した観察や直線偏光の照射で偏光発光の特性を顕在させることができる。   The light-emitting portion exhibits light emission characteristics that emits linearly polarized light having a vibration surface in the long side direction when irradiated with electromagnetic waves, as a result of the fact that light cannot vibrate in the short side direction and can vibrate only in the long side direction. The emitted light appears to be light with uniform brightness in normal observations that do not pass through the polarizer with non-polarized light, but the characteristics of polarized light emission are manifested through observation through the polarizer and irradiation with linearly polarized light. Can do.

前記において発光物質に偏光子を積層して偏光発光の仕組みを形成しても、その偏光方向を制御できなければ認証手段としては不向きである。ちなみに位相差層を介した楕円偏光では、偏光子の透過軸を変化させても明るさに変化が現れにくい。認証手段には本発明による発光部の如く直線偏光を発光してその長辺と短辺の各方向での偏光のコントラストの大きいことが必要である。それにより精度の高い情報の書き込みと読み取りを行うことができて認証が容易となる。   Even if a polarizer is laminated on a light emitting material to form a mechanism of polarized light emission, it is not suitable as an authentication means unless the polarization direction can be controlled. Incidentally, in the elliptically polarized light via the retardation layer, the brightness hardly changes even if the transmission axis of the polarizer is changed. The authentication means is required to emit linearly polarized light as in the light emitting unit according to the present invention and to have a large polarization contrast in each of the long side and the short side. This makes it possible to write and read information with high accuracy and facilitate authentication.

前記の偏光子を介した発光の観察では、偏光子の透過軸方向と発光部の長辺方向が平行なときに光の最大透過率を示し、その透過軸方向と発光部の短辺方向が平行なときに光の最小透過率を示す。またそれらの間の配置角度では、偏光子の透過軸の角度をθp、発光部の長辺方向の角度をθ1、偏光子を介さない発光部の発光強度をI0としたとき、透過強度Iは、I=I0・{cos(θp−θ1)}で表すことができる。従って発光に対して相対的に偏光子を回転することで、発光部ないし発光領域における偏光方向を容易に判定することができる。 In the observation of light emission through the polarizer, the maximum transmittance of light is shown when the transmission axis direction of the polarizer and the long side direction of the light emitting part are parallel, and the transmission axis direction and the short side direction of the light emitting part are The minimum light transmittance is shown when parallel. Also, in the arrangement angle between them, when the angle of the transmission axis of the polarizer is θp, the angle of the long side direction of the light emitting part is θ1, and the light emission intensity of the light emitting part not passing through the polarizer is I0, the transmission intensity I is , I = I0 · {cos (θp−θ1)} 2 . Therefore, by rotating the polarizer relative to the emitted light, the polarization direction in the light emitting part or the light emitting region can be easily determined.

本発明による認証方法は、上記の発光部ないし発光領域からなる認証手段に非偏光の電磁波を照射して、認証手段を形成する発光部の発光を直線偏光子を介して検知するもの、又は前記の認証手段に電磁波を直線偏光として照射して前記発光部の発光を検知するものである。   An authentication method according to the present invention is to irradiate an authentication means comprising the light emitting part or light emitting region with a non-polarized electromagnetic wave and detect light emitted from the light emitting part forming the authentication means via a linear polarizer, or The authentication means is irradiated with electromagnetic waves as linearly polarized light to detect the light emission of the light emitting section.

前記の認証方法は、例えば認証手段に非偏光の電磁波を照射する光源と、認証手段を形成する発光部の発光を直線偏光子を介して検知する受光部とを少なくとも具備する認証装置や、認証手段に電磁波を直線偏光として照射する光源と、認証手段を形成する発光部の発光を検知する受光部とを少なくとも具備する認証装置などにより実施することができる。   The authentication method includes, for example, an authentication device including at least a light source that irradiates non-polarized electromagnetic waves to the authentication unit and a light receiving unit that detects light emitted from a light emitting unit forming the authentication unit via a linear polarizer, It can be implemented by an authentication device or the like that includes at least a light source that irradiates the means with electromagnetic waves as linearly polarized light and a light receiving unit that detects light emission of the light emitting unit forming the authentication unit.

前記において非偏光の電磁波を照射する光源としては、高圧水銀灯やキセノンランプの如く紫外線を照射するもの、白熱灯や陰極管の如く可視光線を照射するものなどの適宜なものを用いうる。発光ダイオードなども用いうる。また電磁波を直線偏光として照射する光源としては、前記の非偏光系光源に直線偏光子を組み合わせたものや紫外線や可視光線等からなる直線偏光を出射するレーザーなどの適宜なものを用いうる。   As the light source for irradiating non-polarized electromagnetic waves, an appropriate light source such as a light source that irradiates ultraviolet rays such as a high-pressure mercury lamp or a xenon lamp, or a light source that emits visible light such as an incandescent lamp or a cathode tube can be used. A light emitting diode or the like can also be used. As the light source for irradiating the electromagnetic wave as linearly polarized light, an appropriate light source such as a combination of the non-polarized light source and a linear polarizer, or a laser emitting linearly polarized light composed of ultraviolet rays, visible light, or the like can be used.

発光部の発光を必要に応じ直線偏光子を介して検知する受光部としては、例えば輝度計や光電子倍増管、CCDの如く明暗差を検知できるもの、就中、定量できるものなどの適宜なものを用いうる。認証手段を形成する発光部の発光パターンを識別できる受光部が好ましい。   As a light-receiving unit that detects light emitted from the light-emitting unit through a linear polarizer as necessary, for example, a luminance meter, a photomultiplier tube, a device that can detect a light-dark difference, such as a CCD, and in particular, a device that can quantitate Can be used. A light receiving portion that can identify the light emission pattern of the light emitting portion forming the authentication means is preferable.

直線偏光子としては、ヨウ素等の二色性物質を染色したポリビニルアルコール系延伸フィルムの如き吸収型偏光子や反射型偏光子、例えば延伸フィルムの多層積層物や1/4波長板と組合せたコレステリック液晶層などの適宜なものを用いうる。   Linear polarizers include absorbing polarizers such as polyvinyl alcohol stretched films dyed with dichroic substances such as iodine, and reflective polarizers such as multilayer laminates of stretched films and quarter-wave plates An appropriate material such as a liquid crystal layer can be used.

認証手段における発光パターンないし認証パターンの検知に際しては、受光部と認証手段の間に配置されるピンホール又はスリットとその操作手段を有する認証装置を用いて、そのピンホール又はスリットを操作手段を介し受光部と認証手段の間に配置して、認証手段を形成する発光部の発光をピンホール又はスリットを介して受光部で検知する方式なども採ることができる。ピンホールやスリットは、隣接又は近傍の発光部又は発光領域からの光の混入を防止して検知精度を向上させることを目的とする。   When detecting the light emission pattern or the authentication pattern in the authentication means, an authentication device having a pinhole or slit disposed between the light receiving unit and the authentication means and the operation means is used to pass the pinhole or slit through the operation means. It is also possible to adopt a method in which the light emitting unit that is disposed between the light receiving unit and the authentication unit detects light emitted from the light emitting unit forming the authentication unit through the pinhole or slit. The purpose of the pinholes and slits is to improve detection accuracy by preventing light from adjoining or nearby light emitting portions or light emitting regions.

本発明による認証手段は、偏光子を介してのみ読み取り可能なバーコードなどとすることができ、認証を要する各種の物品に好ましく適用することができる。その場合、認証手段は、物品の表面等の適宜な位置に直接形成してもよいし、支持基材に認証手段を設けてなる貼付シールとして付設してもよい。   The authentication means according to the present invention can be a bar code that can be read only through a polarizer, and can be preferably applied to various articles that require authentication. In that case, the authentication means may be directly formed at an appropriate position such as the surface of the article, or may be attached as a sticker seal in which the authentication means is provided on the support base material.

貼付シールの支持基材には、上記したマトリックスポリマーで例示したもの等の各種のポリマー類や紙類、セラミック類や金属類などからなるフィルムやシート等の薄葉体、板体や棒体などの適宜な形態のものを用いうる。支持基材は、透明体又は不透明体のいずれであってもよく、光反射性のものであってもよい。貼付シールは、必要に応じ粘着剤や接着剤等の接着手段を介して物品に接着することもできる。   The supporting base material of the sticker seal includes various polymers such as those exemplified in the matrix polymer, papers, thin leaves such as films and sheets made of ceramics and metals, plates and rods, etc. An appropriate form can be used. The support substrate may be either a transparent body or an opaque body, and may be light reflective. The sticker seal can be adhered to the article through an adhesive means such as a pressure-sensitive adhesive or an adhesive as necessary.

認証手段を設ける物品としては、例えばクレジットカードやプリペイドカードの如き金融系カード、IDカードの如き身分証明系カードなどの各種のカード類、ソフトウエアないしプログラム記録媒体やLCD、CVDやDVDなどの電子部品や電気製品、あるいは貼付シール用の支持基材、認証を要する書面や送付品などがあげられる。   As an article provided with an authentication means, for example, various cards such as a financial card such as a credit card or a prepaid card, an identification card such as an ID card, an electronic such as software or a program recording medium, LCD, CVD, DVD, etc. Examples include parts, electrical products, support base materials for sticking seals, documents that require authentication, and sent items.

ちなみに図3に、本発明による認証手段を用いたクレジットカードを例示した。100がクレジットカードの一領域に直接形成した認証手段である。これは、普通の観察では格子状に示した発光領域からなる認証領域の形状に応じた一様な明るさの発光を視覚されるが、矢印で抜き出した如く偏光子を介して観察すると発光領域における発光部の長辺方向で特定された像が視覚される。斯かる認証手段は、カード毎にパターンを変更できて個人の認証手段としても用いることができる。   Incidentally, FIG. 3 illustrates a credit card using the authentication means according to the present invention. Reference numeral 100 denotes an authentication means directly formed in one area of the credit card. In normal observation, light emission of uniform brightness according to the shape of the authentication area consisting of the light emission areas shown in a lattice shape is visually observed, but when viewed through a polarizer as extracted by an arrow, the light emission area The image specified in the long side direction of the light emitting part is visually observed. Such an authentication means can change the pattern for each card and can also be used as an individual authentication means.

また図4に、本発明による認証手段を貼付シール110として形成し、それを接着層を介して電気製品に接着した例を示した。図例は、DVDプレーヤーを示している。貼付シールではそれを剥離する際に、その一部又は全部が被着体としての物品に残留するようにして、事前に剥離を受けたものであるか否かを判定できるようにすることもできる。またその場合、剥離側又は残留側のシールに特定のメッセージないし情報が残るようにすることもできる。   FIG. 4 shows an example in which the authentication means according to the present invention is formed as a sticker seal 110 and bonded to an electrical product through an adhesive layer. The example shows a DVD player. When the sticker is peeled off, part or all of it remains on the article as an adherend so that it can be determined whether or not it has been peeled off in advance. . In that case, a specific message or information can be left on the seal on the peeling side or the remaining side.

前記した貼付シールの形成は、例えばシールにおける発光領域ないし認証手段の形成面に物品(被着体)に対する接着手段を設け、その接着手段の接着力を部分的に相違させて、発光領域ないし認証手段に対応する一部又は全部の位置の接着力を、発光領域ないし認証手段とそれを支持する透明基材との密着力よりも高くして、シールを剥離すると当該高接着力の発光領域部分ないし認証手段部分と透明基材とが分離して物品に残留する方式などにより行うことができる。   The above-mentioned sticker seal is formed by, for example, providing a light emitting region or authentication means on the surface of the seal with an adhesive means for an article (adhered body), and partially changing the adhesive force of the adhesive means to obtain the light emitting region or authentication. If the adhesive strength at a part or all of the position corresponding to the means is made higher than the adhesion strength between the light emitting area or the authentication means and the transparent base material supporting the light emitting area, and the seal is peeled off, the light emitting area portion of the high adhesive strength Or the method by which an authentication means part and a transparent base material isolate | separate and remain in articles | goods etc. can be performed.

以下に実施例と比較例をあげて本発明を説明するが、本発明はこれらによって限定されるものではない。   Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited thereto.

ガラス基板上に発光性の高分子であるMEH−PPV(ポリ(2−メトキシ,5−(2'−エチル・ヘキシロキシ)−1,4−フェニレンビニレン)の0.6重量%テトラクロロエタン溶液をスピンコートして加熱乾燥させ、厚さ150nmの薄膜を形成した。   Spin a 0.6% by weight tetrachloroethane solution of MEH-PPV (poly (2-methoxy, 5- (2'-ethylhexyloxy) -1,4-phenylenevinylene)), a light-emitting polymer, on a glass substrate. It was coated and dried by heating to form a thin film having a thickness of 150 nm.

次に前記の薄膜に対し、予め準備した図5の如き0度、90度、45度、135度の方向に長辺が形成される光の透過部と遮蔽部とからなるa〜dのストライプを15μmの周期で有するマスクを介して波長248nmのKrFエキシマーレーザー光を照射し、その照射像をレンズを介し1/30に縮小投影してアブレーション加工し、短辺長が発光波長よりも小さい0.12μmの発光部を長辺が平行な状態で0.5μmの周期で有する縦横2mmの発光領域を形成した。   Next, for the thin film, stripes a to d each having a light transmitting portion and a shielding portion having long sides formed in directions of 0 °, 90 °, 45 °, and 135 ° as shown in FIG. Is irradiated with a KrF excimer laser beam having a wavelength of 248 nm through a mask having a period of 15 μm, and the irradiated image is reduced and projected to 1/30 through a lens and ablated, and the short side length is smaller than the emission wavelength. A 2 mm vertical and horizontal light emitting region having a 12 μm light emitting portion with a period of 0.5 μm in a state where the long sides are parallel to each other was formed.

前記の発行領域をガラス基板を2mmずつ送りながマスクを替えて露光を繰り返す方式で形成し、マスクに基づいてa,b,c,d,a,b,c,dの順序で発光領域が配置された認証領域からなる認証手段をガラス基板上に形成した。なお各発行領域における発光部の周期や短辺長は電子顕微鏡観察にて確認した。   The issuance area is formed in such a manner that the glass substrate is fed 2 mm at a time, but the mask is changed and the exposure is repeated, and the light emitting area is formed in the order of a, b, c, d, a, b, c, d based on the mask. An authentication means composed of an authentication area arranged was formed on a glass substrate. In addition, the period and short side length of the light emission part in each issue area | region were confirmed by electron microscope observation.

実施例1に準じてマスクに基づいてa,c,b,d,a,c,b,dの順序で発光領域が配置された認証領域からなる認証手段をガラス基板上に形成した。   In accordance with the first embodiment, an authentication means including an authentication area in which light emitting areas are arranged in the order of a, c, b, d, a, c, b, and d based on a mask was formed on a glass substrate.

比較例1
実施例1に準じてガラス基板上に設けたMEH−PPVの薄膜に対してマスクとアブレーション加工によるパターン化を行わない認証領域からなる認証手段を形成した。
Comparative Example 1
In accordance with Example 1, an authentication means comprising an authentication region in which the MEH-PPV thin film provided on the glass substrate was not patterned by ablation processing with a mask was formed.

比較例2
ストライプの周期が60μmのマスクを用いて短辺長が発光波長よりも大きい1μmの発光部を長辺が平行な状態で2μmの周期で有する発光領域をマスクに基づいてa,b,c,d,a,b,c,dの順序で配置した認証領域からなる認証手段を実施例1に準じて形成した。
Comparative Example 2
Using a mask having a stripe period of 60 μm, a light emitting region having a light emitting part having a short side length of 1 μm larger than the light emission wavelength and a long side in parallel with a period of 2 μm is set to a, b, c, d based on the mask. , A, b, c, and d, authentication means including authentication areas arranged in the order is formed according to the first embodiment.

評価試験
実施例及び比較例の認証領域に対してガラス基板の下面から紫外線を照射し、発生した蛍光をそのまま目視観察したところ、全ての例において一様な明るさの発光が視覚され、偏光による発光パターンの相違は確認できなかった。
Evaluation test When irradiated with ultraviolet rays from the lower surface of the glass substrate to the authentication areas of the examples and comparative examples, the generated fluorescence was visually observed as it was. The difference in the light emission pattern could not be confirmed.

次に実施例1について前記の紫外線照射による蛍光を偏光子を介して目視観察したところ、偏光子の透過軸と当該aの発光部の長辺方向が平行な関係では当該aの領域で明るい光を視覚でき、当該bの領域では光を視覚できなかった。また当該c,dの領域では当該aとbの領域の中間の明るさの(暗い)光が視覚された。   Next, when the fluorescence by ultraviolet irradiation was visually observed in Example 1 through a polarizer, bright light in the region a was obtained when the transmission axis of the polarizer and the long side direction of the light emitting portion of a were parallel. And light was not visible in the region b. In addition, in the areas c and d, light (dark) having an intermediate brightness between the areas a and b was visually observed.

一方、偏光子の透過軸を当該aの発光部の長辺方向に対して垂直とした観察では、当該bの領域で明るい光を視覚でき、当該aの領域では光を視覚できなかった。また当該c,dの領域では暗い光が視覚された。さらに偏光子の透過軸を当該aの発光部の長辺方向に対して45度の交差角とした観察では、当該cの領域で明るい光を視覚でき、当該dの領域では光を視覚できなかった。また当該a,bの領域では暗い光が視覚された。   On the other hand, in the observation in which the transmission axis of the polarizer is perpendicular to the long side direction of the light emitting portion a, bright light can be seen in the region b, and light cannot be seen in the region a. Further, dark light was visually perceived in the areas c and d. Furthermore, when the transmission axis of the polarizer is set to a crossing angle of 45 degrees with respect to the long side direction of the light emitting part a, bright light can be seen in the area c and light cannot be seen in the area d. It was. Further, dark light was visually perceived in the areas a and b.

ついで偏光子の透過軸を当該aの発光部の長辺方向に対して135度の交差角とした観察では、当該dの領域で明るい光を視覚でき、当該cの領域では光を視覚できなかった。また当該a,bの領域では暗い光が視覚された。前記より実施例1では、発光部の長辺方向に応じて一の発光領域あたり4値の記録ができており、偏光子を介した観察で偏光方向の相違による発光パターンを明確に判別できることが判る。   Next, in an observation in which the transmission axis of the polarizer is set to a crossing angle of 135 degrees with respect to the long side direction of the light emitting part a, bright light can be seen in the area d and light cannot be seen in the area c. It was. Further, dark light was visually perceived in the areas a and b. As described above, in Example 1, four values can be recorded per one light emitting region according to the long side direction of the light emitting part, and the light emission pattern due to the difference in the polarization direction can be clearly discriminated by observation through the polarizer. I understand.

実施例2でも前記と同様の観察結果が得られ、偏光子を介した観察で実施例1とは異なる発光パターンであることが確認でき、実施例の1と2では異なる情報が記録されていることが確認できた。これに対し比較例1、2では前記と同様にして観察すると、偏光子の透過軸と発光部の長辺方向との角度に関係なく、全ての場合に同程度の光を視覚でき、発光パターンの相違を得ることができなかった。これより比較例による発光は直線偏光でないことが判る。   The observation result similar to the above is obtained also in Example 2, and it can be confirmed that the light emission pattern is different from that in Example 1 by observation through a polarizer, and different information is recorded in Examples 1 and 2. I was able to confirm. On the other hand, in Comparative Examples 1 and 2, when observing in the same manner as described above, the same level of light can be seen in all cases regardless of the angle between the transmission axis of the polarizer and the long side direction of the light emitting portion, and the light emission pattern. Could not get the difference. From this, it can be seen that the light emission by the comparative example is not linearly polarized light.

他方、実施例1の認証領域にガラス基板の下面より非偏光の紫外線レーザー光を照射し、ガラス基板を動かしながら偏光子を介して発光領域による蛍光の強度を観察したところ、明、暗、中間、中間、明、暗、中間、中間の発光パターンが観察され、そのパターンの順序を読み取ることができた。また実施例2による同様の観察では明、中間、暗、中間、明、中間、暗、中間の発光パターンが観察され、実施例1とは異なるパターンの順序であることを読み取ることができた。しかし比較例を用いた同様の観察では、発光の明るさは変化せず発光にパターンのあることが視覚できなかった。   On the other hand, when the authentication region of Example 1 was irradiated with non-polarized ultraviolet laser light from the lower surface of the glass substrate, and the fluorescence intensity by the light emitting region was observed through the polarizer while moving the glass substrate, the light, dark, intermediate Intermediate, bright, dark, intermediate, and intermediate emission patterns were observed, and the pattern order could be read. In the same observation according to Example 2, bright, intermediate, dark, intermediate, bright, intermediate, dark, and intermediate light emission patterns were observed, and it was possible to read that the pattern order was different from that of Example 1. However, in the same observation using the comparative example, the brightness of the light emission did not change, and it was impossible to visually recognize that there was a pattern in the light emission.

また実施例1の認証領域にガラス基板の下面より発振方向が0度(マスクaの領域に対応)の直線偏光からなる紫外線レーザー光を照射し、ガラス基板を動かしながら発光領域による蛍光の強度を観察したところ、明、暗、中間、中間、明、暗、中間、中間の発光パターンが観察され、そのパターンの順序を読み取ることができた。実施例2による同様の観察では明、中間、暗、中間、明、中間、暗、中間の発光パターンが観察され、実施例1とは異なるパターンの順序であることを読み取ることができた。しかし比較例を用いた同様の観察では、発光の明るさは変化せず発光にパターンのあることが視覚できなかった。   In addition, an ultraviolet laser beam consisting of linearly polarized light whose oscillation direction is 0 degrees (corresponding to the mask a region) is irradiated from the lower surface of the glass substrate to the authentication region of Example 1, and the intensity of fluorescence by the light emitting region is moved while moving the glass substrate. When observed, bright, dark, intermediate, intermediate, bright, dark, intermediate, and intermediate emission patterns were observed, and the order of the patterns could be read. In the same observation according to Example 2, bright, intermediate, dark, intermediate, bright, intermediate, dark, and intermediate light emission patterns were observed, and it was possible to read that the pattern order was different from that of Example 1. However, in the same observation using the comparative example, the brightness of the light emission did not change, and it was impossible to visually recognize that there was a pattern in the light emission.

以上より、本発明による実施例では直線偏光による発光が得られて、発光部の長辺方向による偏光方向の制御でその偏光方向の相違による発光パターンが得られ、その発光パターンの相違も明確に区別できて認証手段として有効であることが判る。しかし比較例では発光パターンを形成できず、認証手段として利用できないことが判る。   As described above, in the embodiment according to the present invention, light emission by linearly polarized light is obtained, and the light emission pattern by the difference in the polarization direction is obtained by controlling the polarization direction by the long side direction of the light emitting unit, and the difference in the light emission pattern is also clear. It can be distinguished that it is effective as an authentication means. However, it can be seen that the light emission pattern cannot be formed in the comparative example and cannot be used as an authentication means.

実施例1に準じてマスクbによる発光領域を形成した後、その領域中にマスクaを介しN字を重畳形成して認証領域を形成し、その認証領域にガラス基板の下面から紫外線を照射して、その蛍光を偏光子を介し目視観察したところ、偏光子の透過軸と当該aの発光部の長辺方向が平行な関係では、黒地の中にN字の発光領域が観察された。また偏光子の透過軸と当該aの発光部の長辺方向が直交する関係では、明るい発光領域中にN字が黒で観察された。また偏光子の透過軸と当該aの発光部の長辺方向が45度で交差する関係では、一様な明るさの発光が観察されてN字は視覚されなかった。   After forming the light emitting region by the mask b according to the first embodiment, an N region is superimposed on the region through the mask a to form an authentication region, and the authentication region is irradiated with ultraviolet rays from the lower surface of the glass substrate. Then, when the fluorescence was visually observed through a polarizer, an N-shaped light emitting region was observed in a black background when the transmission axis of the polarizer and the long side direction of the light emitting part a were parallel. Further, in the relationship in which the transmission axis of the polarizer and the long side direction of the light emitting part a are orthogonal, an N character was observed in black in a bright light emitting region. Further, in the relationship where the transmission axis of the polarizer and the long side direction of the light emitting part a crossed at 45 degrees, light emission with uniform brightness was observed and the N-character was not visually recognized.

以上より本発明による認証手段は、クレジット等のカード類の表面にも容易に付設でき、これは発光波長以下のパターニングにて直線偏光の発光を実現すると共に、その直線偏光の振動面の相違を利用して発光パターン自体に暗号情報を記録できるので、偽造が困難であり、また偏光子や直線偏光を介し発光パターンの読み取りができるので各種次元のバーコードも容易に形成することができる。   As described above, the authentication means according to the present invention can be easily attached to the surface of cards such as credits, etc., which realizes linearly polarized light emission by patterning of the emission wavelength or less and the difference in vibration plane of the linearly polarized light. Since encryption information can be recorded in the light emission pattern itself by using it, forgery is difficult, and since the light emission pattern can be read through a polarizer or linearly polarized light, various dimensions of barcodes can be easily formed.

発光部からなる発光領域の拡大説明平面図An enlarged explanatory plan view of a light emitting area comprising a light emitting portion 発光領域からなる認証領域の拡大説明平面図Expansion explanation plan view of authentication area consisting of light emitting area クレジットカードの説明平面図Credit card explanation top view 貼付シール適用例の説明斜視図Description perspective view of application example of sticker seal マスクの説明平面図Description plan view of the mask

符号の説明Explanation of symbols

1:発光部
a:長辺 b:短辺
2:非発光部
10、10a、10b、10c:発光領域
100:認証領域(認証手段)
110:貼付シール

特許出願人 日東電工株式会社
代理人 藤本 勉
1: Light emitting part a: Long side b: Short side 2: Non-light emitting part 10, 10a, 10b, 10c: Light emitting area 100: Authentication area (authentication means)
110: Affixed sticker

Patent applicant Nitto Denko Corporation
Agent Tsutomu Fujimoto

Claims (15)

外部からの電磁波の照射で発光する発光部の複数を配置して暗号を形成してなり、その発光部が平面形状に基づいて発光波長よりも長い長辺と発光波長よりも短い短辺を有する棒状体からなる隠密記号。   A plurality of light emitting portions that emit light by external electromagnetic wave irradiation are arranged to form a code, and the light emitting portion has a long side longer than the emission wavelength and a shorter side shorter than the emission wavelength based on the planar shape. A covert sign made of sticks. 請求項1に記載の発光部の複数がその長辺に基づいて平行に配列した発光領域を1箇所又は2箇所以上に配置してなる認証領域を有する認証手段。   The authentication means which has an authentication area | region formed by arrange | positioning the light emission area | region which the some of the light emission part of Claim 1 arranged in parallel based on the long side in one place or two places or more. 請求項2において、発光部長辺の配列方向が相違する2種以上の発光領域の組合せにて認証領域が形成されてなる認証手段。   3. The authentication unit according to claim 2, wherein the authentication area is formed by a combination of two or more types of light emitting areas having different arrangement directions of the light emitting section long sides. 請求項2又は3において、認証領域が複数の発光領域からなり、それら発光領域における発光部の配列方向が、一の発光領域における発光部長辺の任意に選択できる方向を基準にして、平行関係又は直交関係あるいは45度又は135度の交差関係にある認証手段。   4. The authentication area according to claim 2 or 3, wherein the authentication area includes a plurality of light emitting areas, and the arrangement direction of the light emitting parts in the light emitting areas is based on a direction in which the long sides of the light emitting parts in one light emitting area can be arbitrarily selected, or Authentication means in an orthogonal relationship or a 45 or 135 degree cross relationship. 上記2〜4の各請求項の一において、発光部長辺の配列方向が相違する2種以上の発光領域がその発光部長辺の配列方向の相違にて認証パターンを形成してなる認証手段。   The authentication means according to any one of claims 2 to 4, wherein two or more types of light emitting areas having different arrangement directions of the light emitting portion long sides form an authentication pattern by the difference in the arrangement direction of the light emitting portion long sides. 請求項5において、認証パターンが発光領域を縦、横、斜め又は厚さの1又は2以上の方向に配列させてなるバーコードである認証手段。   6. The authentication means according to claim 5, wherein the authentication pattern is a bar code in which the light emitting areas are arranged in one or more directions of vertical, horizontal, diagonal, or thickness. 上記2〜6の各請求項の一に記載の認証手段を有する物品。   An article comprising the authentication means according to one of claims 2 to 6. 請求項7において、認証手段が貼付シールとして接着されてなる、又は認証手段が表面に形成されてなる物品。   The article according to claim 7, wherein the authentication means is adhered as a sticking seal, or the authentication means is formed on the surface. 請求項7又は8において、クレジットカード、IDカード、プリペイドカード、貼付シール、電子部品又は電気製品からなる物品。   The product according to claim 7 or 8, comprising a credit card, an ID card, a prepaid card, a sticker, an electronic component, or an electrical product. 上記2〜6の各請求項の一に記載の認証手段に非偏光の電磁波を照射して、認証手段を形成する発光部の発光を直線偏光子を介して検知する、又は前記認証手段に電磁波を直線偏光として照射して前記発光部の発光を検知する認証方法。   The authentication means according to one of claims 2 to 6 is irradiated with non-polarized electromagnetic waves, and the light emitted from the light-emitting portion forming the authentication means is detected through a linear polarizer, or the authentication means has electromagnetic waves. The authentication method which detects light emission of the said light emission part by irradiating as a linearly polarized light. 上記2〜6の各請求項の一に記載の認証手段に非偏光の電磁波を照射する光源と、認証手段を形成する発光部の発光を直線偏光子を介して検知する受光部とを少なくとも具備する認証装置。   The authentication unit according to any one of claims 2 to 6 includes at least a light source that irradiates a non-polarized electromagnetic wave and a light receiving unit that detects light emitted from a light emitting unit forming the authentication unit via a linear polarizer. Authentication device to perform. 上記2〜6の各請求項の一に記載の認証手段に電磁波を直線偏光として照射する光源と、認証手段を形成する発光部の発光を検知する受光部とを少なくとも具備する認証装置。   7. An authentication apparatus comprising at least a light source that irradiates the authentication means according to one of claims 2 to 6 with electromagnetic waves as linearly polarized light, and a light receiving part that detects light emission of a light emitting part forming the authentication means. 請求項12において、光源が直線偏光を出射するレーザー、又は直線偏光子を具備するものである認証装置。   The authentication device according to claim 12, wherein the light source includes a laser that emits linearly polarized light or a linear polarizer. 上記11〜13の各請求項の一において、受光部が認証手段を形成する発光部の発光パターンを識別するものである認証装置。   14. The authentication device according to claim 11, wherein the light receiving unit identifies the light emission pattern of the light emitting unit forming the authentication unit. 上記11〜14の各請求項の一において、受光部と認証手段の間に配置されるピンホール又はスリットとその操作手段を有して、そのピンホール又はスリットを介して認証手段を形成する発光部の発光を受光部で検知する認証装置。
The light emission which has a pinhole or slit arranged between the light receiving part and the authentication means and its operation means, and forms the authentication means through the pinhole or slit in each of claims 11 to 14 Authentication device that detects light emission of the light at the light receiving part.
JP2003272744A 2003-07-10 2003-07-10 Confidential sign, authentication means, article used, authentication method and authentication apparatus Expired - Fee Related JP4085032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272744A JP4085032B2 (en) 2003-07-10 2003-07-10 Confidential sign, authentication means, article used, authentication method and authentication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272744A JP4085032B2 (en) 2003-07-10 2003-07-10 Confidential sign, authentication means, article used, authentication method and authentication apparatus

Publications (2)

Publication Number Publication Date
JP2005032124A true JP2005032124A (en) 2005-02-03
JP4085032B2 JP4085032B2 (en) 2008-04-30

Family

ID=34210204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272744A Expired - Fee Related JP4085032B2 (en) 2003-07-10 2003-07-10 Confidential sign, authentication means, article used, authentication method and authentication apparatus

Country Status (1)

Country Link
JP (1) JP4085032B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001130A (en) * 2005-06-23 2007-01-11 Nitto Denko Corp Laminated reflector, certification card, bar code label, certification system, and certification domain forming system
JP2007206940A (en) * 2006-02-01 2007-08-16 Dainippon Printing Co Ltd Sheet group having groove pattern and information discrimination system using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001130A (en) * 2005-06-23 2007-01-11 Nitto Denko Corp Laminated reflector, certification card, bar code label, certification system, and certification domain forming system
US8297522B2 (en) 2005-06-23 2012-10-30 Nitto Denko Corporation Multilayer reflector, authentication card, bar code label, authentication system, and authentication region forming system
JP2007206940A (en) * 2006-02-01 2007-08-16 Dainippon Printing Co Ltd Sheet group having groove pattern and information discrimination system using it

Also Published As

Publication number Publication date
JP4085032B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
TWI478068B (en) Forgery prevention ic label
JP7375285B2 (en) Process and device for producing optical effect layers
TWI422498B (en) Identification and authentication using liquid crystal material markings
US9443180B2 (en) Security label using printed LEDs
EP1008099B1 (en) Optically-based methods and apparatus for performing document authentication
JP4257903B2 (en) Identification medium, identification medium identification method, identification target article, and identification apparatus
KR20010101808A (en) Optically-based methods and apparatus for sorting, coding, and authentication using a narrowband emission gain medium
JP2001518414A (en) Commodity authentication system and method
US20060097514A1 (en) Object identification structure and object provided with the same
CN106133566B (en) Optical device with patterned anisotropy incorporating parallax optics
JP5617238B2 (en) Anti-counterfeit medium and anti-counterfeit label, printed matter, transfer foil and method for determining authenticity of anti-counterfeit medium using the same
RU96269U1 (en) COMBINED BRAND
JP2010134333A (en) Identification medium, identification method, and identification unit
JP2001506191A (en) Secret mark and authenticity marking system
JPH1142875A (en) Identification structure of object and object with the structure
JP4085032B2 (en) Confidential sign, authentication means, article used, authentication method and authentication apparatus
RU2431193C2 (en) Composite mark
EP4136625A1 (en) Machine-readable polymer security threads
JP5516065B2 (en) Authenticity judgment method
JP6482556B2 (en) Method and apparatus for verifying security elements of a security document
WO2016081152A1 (en) Security label using printed leds
EA011116B1 (en) Safety element, method for producing thereof, protecting mark containing it and method of identification article genuineness marked by the protecting mark
EA014999B1 (en) Method for producing photoluminiscent polarisation protective element, a protective element produced by said method, a valuable document comprising said protective element and a method for verifying authenticity of the document comprising protective element
WO2021113349A1 (en) Coded polymer substrates for banknote authentication
JP2015158612A (en) hologram sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees