JP2005031574A - High-frequency electromagnetic wave generating device - Google Patents

High-frequency electromagnetic wave generating device Download PDF

Info

Publication number
JP2005031574A
JP2005031574A JP2003273481A JP2003273481A JP2005031574A JP 2005031574 A JP2005031574 A JP 2005031574A JP 2003273481 A JP2003273481 A JP 2003273481A JP 2003273481 A JP2003273481 A JP 2003273481A JP 2005031574 A JP2005031574 A JP 2005031574A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
frequency electromagnetic
core portion
frequency
wave generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003273481A
Other languages
Japanese (ja)
Inventor
Koji Yamada
浩治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003273481A priority Critical patent/JP2005031574A/en
Publication of JP2005031574A publication Critical patent/JP2005031574A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and high output high-frequency electromagnetic wave generating device. <P>SOLUTION: In the high-frequency electromagnetic wave generating device which introduces a first electromagnetic wave W1 and a second electromagnetic wave W2 with different frequencies into a nonlinear dielectric with second order nonlinearity and propagates them and consequently generates a third electromagnetic wave W3 with a frequency equal to a difference between the two frequencies, a unimodal dielectric waveguide 1 is equipped with a core part 2 composed of the nonlinear dielectric and a cladding part 3 formed so as to cover a circumference of the core part 2 and composed of a material with a refractive index less than that of the core part 2. Quality of materials of the core part 2 and the cladding part 3 and a cross-sectional dimension of the core part 2 are selected so as to make phase velocity of an electromagnetic beat generated by a synthesis of the electromagnetic waves W1 and W2 nearly coincide with that of the electromagnetic wave W3 propagated through a composite dielectric structure consisting of the core part 2 and the cladding part 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主に0.1〜10THz程度の周波数帯域における小型、高出力の高周波電磁波発生装置の構造に関するものである。   The present invention relates to the structure of a small-sized, high-output high-frequency electromagnetic wave generator mainly in a frequency band of about 0.1 to 10 THz.

従来、0.1〜10THz帯における小型の高周波電磁波発生装置として、2次の非線形効果を持つ誘電体に2つの異なる周波数のレーザーからの電磁波を同時に導入し、導入した電磁波の周波数の差に対応する電磁波を発生させる装置が提案されている(例えば、非特許文献1)。この高周波電磁波発生装置による高周波電磁波発生の概念を図3に示す。図3に示した高周波電磁波発生装置では、レーザー(不図示)からの2つの異なる周波数f1,f2の電磁波W1,W2をレンズなどのバルク光学系5で集光してバルク状非線形誘電体4に導入すると、電磁波W1,W2の差の周波数f2−f1の電磁波W3が発生する。なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
カワセ(K.Kawase)他,「ワイドリーチューナブルテラヘルツウエーブパラメトリックジェネレータフォアイメージングシステム(Widely tunable THz-wave parametric generator for imaging system)」,リケンレビュー(RIKEN Review ),理化学研究所,2002年7月,No.47,p.48−51
Conventionally, as a small high-frequency electromagnetic wave generator in the 0.1 to 10 THz band, electromagnetic waves from two different frequency lasers are simultaneously introduced into a dielectric having a second-order nonlinear effect, and the difference in frequency of the introduced electromagnetic waves is supported. An apparatus that generates an electromagnetic wave is proposed (for example, Non-Patent Document 1). The concept of high frequency electromagnetic wave generation by this high frequency electromagnetic wave generator is shown in FIG. In the high-frequency electromagnetic wave generator shown in FIG. 3, the electromagnetic waves W1 and W2 having two different frequencies f 1 and f 2 from a laser (not shown) are condensed by a bulk optical system 5 such as a lens and then a bulk nonlinear dielectric. 4, an electromagnetic wave W3 having a frequency f 2 −f 1 of a difference between the electromagnetic waves W1 and W2 is generated. The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.
K.Kawase et al., “Widely tunable THz-wave parametric generator for imaging system”, RIKEN Review, RIKEN, July 2002, No. 47, p. 48-51

しかしながら、非特許文献1の高周波電磁波発生装置では、電磁波W1,W2のスポットサイズをせいぜい0.1ミリメートル程度にしか集光することができず、さらに伝搬するに従い電磁波W1,W2のスポットサイズ径が急激に拡大するため、エネルギー密度が高くならず、その結果としてレーザーから電磁波W3へのパワー変換効率が非常に低いという問題点があった。非特許文献1の高周波電磁波発生装置では、レーザーの短パルス化によるピークパワーの増大により、変換効率を向上させているが、パルス化しているために平均パワーはマイクロワットレベルと非常に低くなってしまう。また、パルス運転であるため、無線通信用のキャリア電磁波としては使用不可能であるなど、使用範囲が大きく制限される。   However, in the high-frequency electromagnetic wave generator of Non-Patent Document 1, the spot size of the electromagnetic waves W1 and W2 can be focused only to about 0.1 millimeters at most, and the spot size diameter of the electromagnetic waves W1 and W2 increases as it further propagates. Since it expands rapidly, the energy density does not increase, and as a result, there is a problem that the power conversion efficiency from the laser to the electromagnetic wave W3 is very low. In the high-frequency electromagnetic wave generator of Non-Patent Document 1, the conversion efficiency is improved by increasing the peak power by shortening the pulse of the laser, but the average power becomes very low at the microwatt level because it is pulsed. End up. Moreover, since it is a pulse driving | operation, the use range is restrict | limited largely, such as being unusable as a carrier electromagnetic wave for wireless communications.

また、非特許文献1の高周波電磁波発生装置においては、導入した2つの周波数の電磁波W1,W2によるビートが非線形誘電体4内を進行する位相速度と、同じ体系内を伝搬する高周波電磁波W3の位相速度とが一致する、いわゆる位相整合条件が成立する必要があるが、通常のバルク材料では、非常に特殊な条件でしかこの位相整合条件が成立しない。具体的には、導入する2つの電磁波W1,W2のビームを微小な角度で交差させて、位相整合条件を成立させるが、お互いのビームが斜めに交差するため、高効率の高周波発生を期待して有効相互作用長を長くするにはビームスポット径を大きくしなければならず、このビームスポット径の拡大は前述のエネルギー密度の問題とは相反する条件である。すなわち、このような高周波電磁波発生装置は、エネルギー密度と位相整合の問題により、本質的に高周波電磁波発生効率を大きくできず、小型で高出力の装置とはなり得ない。   Further, in the high-frequency electromagnetic wave generator of Non-Patent Document 1, the phase velocity of the beat caused by the introduced electromagnetic waves W1 and W2 of two frequencies travels in the nonlinear dielectric 4 and the phase of the high-frequency electromagnetic wave W3 propagating in the same system. A so-called phase matching condition that matches the speed needs to be satisfied. However, in a normal bulk material, the phase matching condition is satisfied only under very special conditions. Specifically, the two electromagnetic waves W1 and W2 to be introduced intersect at a minute angle to establish the phase matching condition. However, since the beams intersect each other diagonally, high-efficiency high-frequency generation is expected. In order to increase the effective interaction length, the beam spot diameter must be increased, and the expansion of the beam spot diameter is a condition contrary to the above-described energy density problem. That is, such a high-frequency electromagnetic wave generator cannot essentially increase the high-frequency electromagnetic wave generation efficiency due to problems of energy density and phase matching, and cannot be a small and high-power device.

本発明は、上記課題を解決するためになされたもので、小型かつ高出力な高周波電磁波発生装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a small-sized and high-output high-frequency electromagnetic wave generator.

本発明は、2次の非線形性を有する非線形誘電体に2つの異なる周波数の第1電磁波と第2電磁波とを導入してこれらを伝搬させることにより、前記2つの周波数の差の周波数の第3電磁波を発生させる高周波電磁波発生装置において、前記第1電磁波と前記第2電磁波とが導入される前記非線形誘電体からなるコア部と、このコア部の周囲を覆うように形成された、前記コア部より小さい屈折率の材質からなるクラッド部とを備えた単一モード誘電体導波路を有し、前記第1電磁波と前記第2電磁波との合成により発生する電磁波ビートの位相速度が、前記第3電磁波が前記コア部と前記クラッド部とからなる複合誘電体構造を伝搬する位相速度と略一致するように、前記コア部および前記クラッド部の材質と前記コア部の断面寸法とが選択されたものである。
また、本発明の高周波電磁波発生装置の1構成例は、前記第1電磁波と前記第2電磁波との合成により発生する電磁波ビートの位相速度と、前記第3電磁波が前記複合誘電体構造を伝搬する位相速度とが2.5%以下の精度で略一致するようにしたものである。
また、本発明の高周波電磁波発生装置の1構成例において、前記コア部は、無機非線形材料または有機非線形材料からなり、前記クラッド部は、Al23、SiO2 、MgO、ダイヤモンド状炭素、エポキシ系ポリマーおよびポリイミド系ポリマーのいずれかからなるものである。
また、本発明の高周波電磁波発生装置の1構成例において、前記コア部の断面形状は方形である。
また、本発明の高周波電磁波発生装置の1構成例において、前記コア部は、その断面寸法が幅および高さ共に1.0マイクロメートル以下で、0.2マイクロメートルより大きいものである。
The present invention introduces a first electromagnetic wave and a second electromagnetic wave having two different frequencies into a nonlinear dielectric having a second-order nonlinearity, and propagates them to obtain a third frequency difference between the two frequencies. In the high-frequency electromagnetic wave generating device for generating an electromagnetic wave, the core part made of the nonlinear dielectric material into which the first electromagnetic wave and the second electromagnetic wave are introduced, and the core part formed to cover the periphery of the core part A single-mode dielectric waveguide having a cladding portion made of a material having a lower refractive index, and a phase velocity of an electromagnetic wave beat generated by the synthesis of the first electromagnetic wave and the second electromagnetic wave is The material of the core part and the clad part and the cross-sectional dimension of the core part are selected so that the electromagnetic wave substantially matches the phase velocity propagating through the composite dielectric structure composed of the core part and the clad part. It is those that have been.
Also, one configuration example of the high-frequency electromagnetic wave generation device of the present invention is that the phase velocity of the electromagnetic wave beat generated by the synthesis of the first electromagnetic wave and the second electromagnetic wave, and the third electromagnetic wave propagates through the composite dielectric structure. The phase velocity is substantially matched with an accuracy of 2.5% or less.
In one configuration example of the high-frequency electromagnetic wave generator of the present invention, the core portion is made of an inorganic nonlinear material or an organic nonlinear material, and the cladding portion is made of Al 2 O 3 , SiO 2 , MgO, diamond-like carbon, epoxy It consists of either a polymer or a polyimide polymer.
Moreover, in one structural example of the high frequency electromagnetic wave generator of this invention, the cross-sectional shape of the said core part is a square.
Moreover, in one structural example of the high frequency electromagnetic wave generator of this invention, the said core part has a cross-sectional dimension which is 1.0 micrometer or less in both width and height, and larger than 0.2 micrometer.

本発明によれば、微小なコア部に第1電磁波と第2電磁波を導入することにより、高エネルギー密度状態を実現することができる。また、第1電磁波と第2電磁波との合成により発生する電磁波ビートの位相速度が、第3電磁波がコア部とクラッド部とからなる複合誘電体構造を伝搬する位相速度と略一致するように、コア部およびクラッド部の材質とコア部の断面寸法とを選択しておくことにより、位相整合条件を成立させることができる。その結果、2次の非線形性を有する非線形誘電体に2つの異なる周波数の第1電磁波と第2電磁波とを導入し2つの周波数の差の周波数の第3電磁波を発生させる高周波電磁波発生装置における高周波電磁波発生効率を劇的に向上させることができる。これにより、0.1〜10THz領域における高周波電磁波発生装置の小型化、高出力化を可能にし、小型で運用が簡便な高周波電磁波発生装置を提供することができる。   According to the present invention, a high energy density state can be realized by introducing the first electromagnetic wave and the second electromagnetic wave into the minute core portion. Further, the phase velocity of the electromagnetic wave beat generated by the synthesis of the first electromagnetic wave and the second electromagnetic wave substantially coincides with the phase velocity at which the third electromagnetic wave propagates through the composite dielectric structure composed of the core portion and the cladding portion. By selecting the material of the core part and the clad part and the cross-sectional dimensions of the core part, the phase matching condition can be established. As a result, the high frequency in the high frequency electromagnetic wave generator which introduce | transduces the 1st electromagnetic wave and 2nd electromagnetic wave of two different frequencies into the nonlinear dielectric material which has a 2nd order nonlinearity, and generate | occur | produces the 3rd electromagnetic wave of the frequency of the difference of two frequencies. Electromagnetic wave generation efficiency can be dramatically improved. As a result, the high-frequency electromagnetic wave generator in the 0.1 to 10 THz region can be reduced in size and increased in output, and the high-frequency electromagnetic wave generator that is small and easy to operate can be provided.

以下、本発明の実施の形態について図面を参照して詳細に説明する。図1(a)は本発明の実施の形態となる高周波電磁波発生装置に用いる単一モード誘電体導波路を電磁波の伝搬方向と垂直な平面で切断した横断面図、図1(b)は単一モード誘電体導波路を電磁波の伝搬方向と平行な平面で切断した縦断面図、図2は本実施の形態の高周波電磁波発生装置による高周波電磁波発生の概念を示す図である。本実施の形態の高周波電磁波発生装置は、単一モード誘電体導波路1と、2つの異なる周波数のレーザー(不図示)とから構成される。単一モード誘電体導波路1は、2次の非線形性を有する非線形誘電体からなるコア部2と、コア部2の周囲を覆うように形成された、コア部2より小さい屈折率の材質からなるクラッド部3とから構成される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a cross-sectional view of a single-mode dielectric waveguide used in a high-frequency electromagnetic wave generator according to an embodiment of the present invention, cut along a plane perpendicular to the propagation direction of the electromagnetic wave, and FIG. FIG. 2 is a view showing a concept of high-frequency electromagnetic wave generation by the high-frequency electromagnetic wave generator of the present embodiment, in which the one-mode dielectric waveguide is cut along a plane parallel to the propagation direction of the electromagnetic wave. The high-frequency electromagnetic wave generator of the present embodiment is composed of a single mode dielectric waveguide 1 and two lasers (not shown) having different frequencies. The single mode dielectric waveguide 1 is made of a core portion 2 made of a nonlinear dielectric material having second-order nonlinearity, and a material having a refractive index smaller than that of the core portion 2 formed so as to cover the periphery of the core portion 2. It is comprised from the cladding part 3 which becomes.

本実施の形態では、単一モード誘電体導波路1の微小なコア部2により高いエネルギー密度を実現し、またコア部2に導入する2つの異なる周波数f1,f2の第1電磁波W1と第2電磁波W2との合成により発生する電磁波ビートの位相速度VpBEAT が、2つの周波数f1,f2の差に対応する周波数fout (=f2−f1)の第3電磁波W3がコア部2とクラッド部3とからなる複合誘電体構造を伝搬する位相速度VpOUTと略一致するように、コア部2およびクラッド部3の材質とコア部2の断面寸法とを選択するようにしている。 In the present embodiment, a high energy density is realized by the small core portion 2 of the single-mode dielectric waveguide 1, and the first electromagnetic wave W1 having two different frequencies f 1 and f 2 introduced into the core portion 2 The third electromagnetic wave W3 having the frequency f out (= f 2 −f 1 ) corresponding to the difference between the two frequencies f 1 and f 2 is the core of the phase velocity V pBEAT of the electromagnetic wave beat generated by the synthesis with the second electromagnetic wave W2. The material of the core part 2 and the clad part 3 and the cross-sectional dimension of the core part 2 are selected so as to substantially coincide with the phase velocity V pOUT propagating through the composite dielectric structure composed of the part 2 and the clad part 3. Yes.

なお、コア部2に導入する2つの電磁波W1,W2の周波数の差が、電磁波W1,W2の周波数に比べて十分小さい場合には、電磁波W1,W2の合成により発生する電磁波ビートの位相速度VpBEAT は、電磁波W1,W2の群速度VglN と一致する。したがって、このような条件下における「電磁波ビートの位相速度VpBEAT 」を、「電磁波W1,W2の群速度VglN 」と言い換えてもよい。 When the difference between the frequencies of the two electromagnetic waves W1 and W2 introduced into the core portion 2 is sufficiently smaller than the frequencies of the electromagnetic waves W1 and W2, the phase velocity V of the electromagnetic wave beat generated by the synthesis of the electromagnetic waves W1 and W2 pBEAT is consistent with group velocity V GLN electromagnetic W1, W2. Therefore, “the phase velocity V pBEAT of the electromagnetic wave beat” under such conditions may be rephrased as “the group velocity V glN of the electromagnetic waves W1 and W2”.

また同様に、コア部2に導入する2つの電磁波W1,W2の周波数の差が、電磁波W1,W2の周波数に比べて十分小さい場合には、コア部2の大きさは発生する高周波電磁波W3の波長に対して十分小さいため、発生する高周波電磁波W3に関してはクラッド部3の材質だけを考慮すればよい。したがって、このような条件下における「高周波電磁波W3がコア部2とクラッド部3とからなる複合誘電体構造を伝搬する位相速度VpOUT」は、「高周波電磁波W3がクラッド部3を伝搬する位相速度VpOUT」と言い換えてもよい。なお、単一モード誘電体導波路1は、電磁波W1,W2に対しては単一モード条件を満たしているが、発生する高周波電磁波W3に対しては単一モード条件を満たしていない可能性がある。したがって、高周波電磁波W3については伝搬する構造体を単一モード誘電体導波路ではなく、コア部2とクラッド部3とからなる複合誘電体構造と記している。 Similarly, when the frequency difference between the two electromagnetic waves W1 and W2 introduced into the core portion 2 is sufficiently smaller than the frequencies of the electromagnetic waves W1 and W2, the size of the core portion 2 is the size of the generated high-frequency electromagnetic wave W3. Since it is sufficiently small with respect to the wavelength, it is only necessary to consider the material of the cladding part 3 for the generated high-frequency electromagnetic wave W3. Therefore, under such conditions, “the phase velocity V pOUT at which the high-frequency electromagnetic wave W3 propagates through the composite dielectric structure including the core portion 2 and the cladding portion 3” is “the phase velocity at which the high-frequency electromagnetic wave W3 propagates through the cladding portion 3”. In other words, “V pOUT ”. The single-mode dielectric waveguide 1 satisfies the single-mode condition for the electromagnetic waves W1 and W2, but may not satisfy the single-mode condition for the generated high-frequency electromagnetic wave W3. is there. Therefore, for the high-frequency electromagnetic wave W3, the propagating structure is not a single-mode dielectric waveguide but a composite dielectric structure including the core portion 2 and the cladding portion 3.

コア部2の材質は、2次の非線形性の大きな物質が好ましく、具体的には、LiNbO3 、LiTaO3 、KTiOPO4 、KNbO3 、BaB23等の無機非線形材料や、MMONS、DIVA、DMNP、APDA、ABSA、NPNa、DAST、LAP等と呼ばれる有機非線形材料を用いる。コア部2に導入する電磁波W1,W2は、一般に赤外領域から可視光領域までのレーザーからの電磁波であるが、この電磁波W1,W2の周波数帯域におけるこれら非線形物質の屈折率は1.6〜2.3程度の値である。 The material of the core part 2 is preferably a substance having a large second-order nonlinearity, specifically, an inorganic nonlinear material such as LiNbO 3 , LiTaO 3 , KTiOPO 4 , KNbO 3 , BaB 2 O 3 , MMONS, DIVA, An organic nonlinear material called DMNP, APDA, ABSA, NPNa, DAST, LAP or the like is used. The electromagnetic waves W1 and W2 introduced into the core part 2 are generally electromagnetic waves from a laser from the infrared region to the visible light region, and the refractive index of these nonlinear substances in the frequency band of the electromagnetic waves W1 and W2 is 1.6 to. The value is about 2.3.

クラッド部3の材質は、コア部2に導入する電磁波W1,W2の周波数帯域における屈折率が同周波数帯域におけるコア部2の屈折率より低く、かつ電磁波W1,W2の周波数帯域と発生させる電磁波W3の周波数帯域とにおいて低損失な材料を用いる必要がある。具体的には、Al23、SiO2 、ダイヤモンド状炭素、エポキシ系ポリマー、ポリイミド系ポリマー等が挙げられる。コア部2に導入する電磁波W1,W2の周波数帯域におけるクラッド部3の屈折率は1.5〜1.8程度の値である。 The material of the clad part 3 is an electromagnetic wave W3 to be generated with the refractive index in the frequency band of the electromagnetic waves W1 and W2 introduced into the core part 2 being lower than the refractive index of the core part 2 in the same frequency band and the frequency bands of the electromagnetic waves W1 and W2. It is necessary to use a material with a low loss in the frequency band. Specifically, Al 2 O 3 , SiO 2 , diamond-like carbon, epoxy polymer, polyimide polymer and the like can be mentioned. The refractive index of the cladding part 3 in the frequency band of the electromagnetic waves W1 and W2 introduced into the core part 2 is about 1.5 to 1.8.

ここで、LiNbO3 からなるコア部2と、結晶性SiO2 からなるクラッド部3とで構成する方形の単一モード誘電体導波路1に、200THz近傍の赤外線を導入する場合を考える。この場合、200THz近傍の電磁波W1,W2に対するコア部2の屈折率は約2.2、クラッド部3の屈折率は約1.5である。このような材料の組み合わせにおいて、単一モード条件を満たす方形の単一モード誘電体導波路1のコア部2の寸法は、例えば正方形断面のコア部2の場合、正方形の1辺が0.8マイクロメートル以下である。 Here, let us consider a case where infrared light in the vicinity of 200 THz is introduced into a rectangular single-mode dielectric waveguide 1 composed of a core portion 2 made of LiNbO 3 and a cladding portion 3 made of crystalline SiO 2 . In this case, the refractive index of the core part 2 with respect to the electromagnetic waves W1 and W2 near 200 THz is about 2.2, and the refractive index of the cladding part 3 is about 1.5. In such a combination of materials, the dimension of the core portion 2 of the rectangular single-mode dielectric waveguide 1 that satisfies the single-mode condition is, for example, in the case of the core portion 2 having a square cross section, one side of the square is 0.8. It is below micrometer.

導波路1の断面形状や材料の組み合わせにより、単一モード条件を満たす導波路寸法の最大値は変化する。例えば、前記正方形断面のコア部2を有する導波路1と同じ材料系において、長辺と短辺の比が2対1の長方形断面のコア部2の場合には、単一モード条件を満たす長辺の長さは1.0マイクロメートル以下となる。単一モード条件を満たす形状寸法は、コア部2に導入する電磁波W1,W2の周波数に反比例するので、数百THzの周波数を持つ可視光を導入する場合は、上記寸法より更に小さくなる。   Depending on the cross-sectional shape of the waveguide 1 and the combination of materials, the maximum value of the waveguide dimension that satisfies the single mode condition changes. For example, in the same material system as the waveguide 1 having the core section 2 having the square cross section, in the case of the core section 2 having a rectangular section having a ratio of the long side to the short side of 2: 1, the length satisfying the single mode condition is satisfied. The length of the side is 1.0 micrometer or less. The shape dimension that satisfies the single mode condition is inversely proportional to the frequency of the electromagnetic waves W1 and W2 introduced into the core portion 2, and therefore, when visible light having a frequency of several hundred THz is introduced, it is further smaller than the above dimension.

導波路構造が単一モード条件を満たさねばならない理由は、多モード導波路を用いると、高周波電磁波の発生効率が著しく低下するからである。つまり、多モード導波路ではコア部に導入した電磁波により発生するビートのモードも多数になるのであるが、位相整合できるのはそれらのうちたかだか1つのモードであり、他のモードは高周波電磁波発生に寄与しないからである。   The reason why the waveguide structure must satisfy the single mode condition is that the generation efficiency of the high frequency electromagnetic wave is remarkably lowered when the multimode waveguide is used. In other words, in the multimode waveguide, there are many beat modes generated by the electromagnetic wave introduced into the core portion, but only one of the modes can be phase-matched, and the other modes generate high-frequency electromagnetic waves. It does not contribute.

本実施の形態において、コア部2に導入した電磁波W1,W2のパワーのほとんどは、1辺が1マイクロメートル程度の断面のコア部2に閉じ込められるが、このコア部2の断面積は従来のバルク光学系5を用いて集光した電磁波ビームスポットの1/10000程度の寸法である。したがって、図3に示した従来の高周波電磁波発生装置ではレーザーをパルス化しなければ得ることができなかったTW/m2 程度のエネルギー密度も、本実施の形態では、100mW以下の連続発振型のレーザーを用いて容易に実現することができ、高効率、高平均出力の高周波発生が期待される。 In the present embodiment, most of the power of the electromagnetic waves W1 and W2 introduced into the core part 2 is confined in the core part 2 having a cross section with a side of about 1 micrometer. The size is about 1/10000 of the electromagnetic wave beam spot condensed using the bulk optical system 5. Therefore, in the present embodiment, an energy density of about TW / m 2 that could not be obtained without pulsing the laser in the conventional high-frequency electromagnetic wave generator shown in FIG. It is possible to easily realize the high frequency generation with high efficiency and high average output.

ただし、コア部2の断面寸法が小さくなりすぎると、導入した電磁波W1,W2の閉じ込め状態が逆に悪化し、そのパワーのほとんどがクラッド部3に漏洩してしまう。このような状態では、高エネルギー密度状態が保たれなくなる。上述したLiNbO3 からなるコア部2と結晶性SiO2 からなるクラッド部3とで構成した単一モード誘電体導波路1に200THz近傍の電磁波W1,W2を導入する場合、例えば正方形断面のコア部2の1辺の寸法が0.2マイクロメートルでは、電磁波パワーの90%以上がクラッド部3に漏洩してしまい、高周波発生が困難になる。 However, if the cross-sectional dimension of the core part 2 becomes too small, the confinement state of the introduced electromagnetic waves W1 and W2 deteriorates on the contrary, and most of the power leaks to the cladding part 3. In such a state, a high energy density state cannot be maintained. When the electromagnetic waves W1 and W2 near 200 THz are introduced into the single-mode dielectric waveguide 1 composed of the above-described core portion 2 made of LiNbO 3 and the clad portion 3 made of crystalline SiO 2 , for example, a core portion having a square cross section When the size of one side of 2 is 0.2 micrometers, 90% or more of the electromagnetic wave power leaks to the clad part 3 and it becomes difficult to generate a high frequency.

例えば、断面寸法が0.8×0.4マイクロメートルのLiNbO3 からなるコア部2と結晶性SiO2 からなるクラッド部3とで構成した単一モード誘電体導波路1に、200THz近傍の近接した2つの周波数の電磁波W1,W2を導入し、1THzの高周波電磁波W3を発生させる場合について位相整合条件を詳しく計算すると、導入した200THz近傍の電磁波W1,W2の群速度VglN は光速の0.43倍である。2つの電磁波W1,W2の周波数は0.5%程度の差で近接しているので、この群速度VglN は電磁波W1,W2の合成により発生するビート波の位相速度VpBEAT と一致する。このビート波を源に発生する1THzの電磁波W3に対するコア部2の材質LiNbO3 の屈折率は、200THzのときとは異なり6前後となり、クラッド部3の材質SiO2 の屈折率は、約2.1となる。そして、1THzの電磁波W3がコア部2とクラッド部3とからなる複合誘電体構造を伝搬する位相速度VpOUTは、詳しい計算によると光速の0.42倍となり、これはビート波の位相速度VpBEAT に対し約2%の誤差にて略一致している。 For example, a single mode dielectric waveguide 1 composed of a core portion 2 made of LiNbO 3 having a cross-sectional dimension of 0.8 × 0.4 micrometers and a clad portion 3 made of crystalline SiO 2 is close to 200 THz. When the phase matching condition is calculated in detail when the electromagnetic waves W1 and W2 having the two frequencies are introduced and the high frequency electromagnetic wave W3 of 1 THz is generated, the group velocity V glN of the introduced electromagnetic waves W1 and W2 near 200 THz is 0. 43 times. Since the frequencies of the two electromagnetic waves W1 and W2 are close to each other with a difference of about 0.5%, the group velocity V glN coincides with the phase velocity V pBEAT of the beat wave generated by the synthesis of the electromagnetic waves W1 and W2. The refractive index of the material LiNbO 3 of the core 2 with respect to the 1 THz electromagnetic wave W3 generated from the beat wave is about 6, unlike the case of 200 THz, and the refractive index of the material SiO 2 of the cladding 3 is about 2. 1 The phase velocity V pOUT at which the 1 THz electromagnetic wave W3 propagates through the composite dielectric structure composed of the core portion 2 and the cladding portion 3 is 0.42 times the speed of light according to detailed calculation. This is the phase velocity V of the beat wave. It almost agrees with pBEAT with an error of about 2%.

ここで、本実施の形態が高周波電磁波発生装置として充分に機能するのに必要な単一モード誘電体導波路1の長さ、すなわち相互作用長は、本実施の形態と同様な位相整合型高周波電磁波発生装置である進行波管を参考にして決定できるであろう。通常の進行波管の相互作用長は、発生する高周波電磁波の管内波長の10〜100倍の長さである。同様に、本実施の形態でも、最低10波長分の相互作用長が必要であるとすれば、この10波長の間にビート波と発生する電磁波W3との位相差は1/4波長以内であることが要求される。したがって、必要な位相整合の精度は(1/4波長)/(10波長)=0.025、すなわち2.5%以下である。この位相整合の精度は、導入する電磁波W1,W2の波長やその伝搬損失、発生する高周波電磁波W3の波長やその伝搬損失などにより変化するが、おおむね上述の誤差2.5%が許容範囲と推測される。   Here, the length of the single-mode dielectric waveguide 1 necessary for the present embodiment to sufficiently function as a high-frequency electromagnetic wave generator, that is, the interaction length is the same as the phase matching type high-frequency as in the present embodiment. It can be determined with reference to a traveling wave tube that is an electromagnetic wave generator. The interaction length of a normal traveling wave tube is 10 to 100 times the in-tube wavelength of the generated high-frequency electromagnetic wave. Similarly, also in this embodiment, if an interaction length for at least 10 wavelengths is required, the phase difference between the beat wave and the electromagnetic wave W3 generated between these 10 wavelengths is within ¼ wavelength. Is required. Therefore, the required phase matching accuracy is (1/4 wavelength) / (10 wavelengths) = 0.025, that is, 2.5% or less. The accuracy of this phase matching varies depending on the wavelengths of the electromagnetic waves W1 and W2 to be introduced and the propagation loss thereof, the wavelength of the generated high-frequency electromagnetic wave W3 and the propagation loss thereof, etc. Is done.

断面寸法が0.8×0.4マイクロメートルのLiNbO3 からなるコア部2と結晶性SiO2 からなるクラッド部3とで構成した単一モード誘電体導波路1に、200THz近傍の電磁波W1,W2を導入した前述の計算では、ビート波の位相速度VpBEAT (電磁波W1,W2の群速度VglN )と発生電磁波W3がコア部2とクラッド部3とからなる複合誘電体構造を伝搬する位相速度VpOUTとの誤差が2%である。したがって、許容範囲2.5%を満たしているので、ここに位相整合条件が成立し、高効率な高周波電磁波発生が期待される。 A single mode dielectric waveguide 1 composed of a core portion 2 made of LiNbO 3 having a cross-sectional dimension of 0.8 × 0.4 micrometers and a clad portion 3 made of crystalline SiO 2 is provided with an electromagnetic wave W1, near 200 THz. In the above-described calculation with W2 introduced, the phase velocity V pBEAT of the beat wave (group velocity V glN of the electromagnetic waves W1 and W2) and the generated electromagnetic wave W3 propagate through the composite dielectric structure composed of the core portion 2 and the cladding portion 3. The error from the speed V pOUT is 2%. Therefore, since the allowable range is 2.5%, the phase matching condition is satisfied here, and high-efficiency high-frequency electromagnetic wave generation is expected.

また、より長い導波路構造が許されるのであれば、単一モード誘電体導波路1の材料選択や形状調整などにより位相整合条件の誤差を少なくすることにより、有効相互作用長を長くして、さらなる高効率な高周波電磁波発生が期待される。
なお、本発明の基本概念は、微小なコア部2による高エネルギー密度状態の実現と、単一モード誘電体導波路1の材質とその寸法による位相整合であるため、コア部2の形状は方形以外のいかなる形状でもかまわないことは明らかである。
If a longer waveguide structure is allowed, the effective interaction length can be increased by reducing the error in the phase matching condition by selecting the material or adjusting the shape of the single mode dielectric waveguide 1. Further high-efficiency high-frequency electromagnetic wave generation is expected.
The basic concept of the present invention is the realization of a high energy density state by the minute core portion 2 and the phase matching depending on the material and dimensions of the single mode dielectric waveguide 1, so that the shape of the core portion 2 is square. Obviously any shape other than can be used.

本発明は、主に0.1〜10THz程度の周波数帯域の電磁波の発生に適用できる。   The present invention is mainly applicable to generation of electromagnetic waves in a frequency band of about 0.1 to 10 THz.

本発明の実施の形態となる高周波電磁波発生装置に用いる単一モード誘電体導波路の構成を示す断面図である。It is sectional drawing which shows the structure of the single mode dielectric waveguide used for the high frequency electromagnetic wave generator which becomes embodiment of this invention. 本発明の実施の形態の高周波電磁波発生装置による高周波電磁波発生の概念を示す図である。It is a figure which shows the concept of the high frequency electromagnetic wave generation by the high frequency electromagnetic wave generator of embodiment of this invention. 従来の高周波電磁波発生装置による高周波電磁波発生の概念を示す図である。It is a figure which shows the concept of the high frequency electromagnetic wave generation by the conventional high frequency electromagnetic wave generator.

符号の説明Explanation of symbols

1…単一モード誘電体導波路、2…コア部、3…クラッド部、W1,W2…導入電磁波、W3…発生電磁波。
DESCRIPTION OF SYMBOLS 1 ... Single mode dielectric waveguide, 2 ... Core part, 3 ... Cladding part, W1, W2 ... Introduction electromagnetic wave, W3 ... Generated electromagnetic wave.

Claims (5)

2次の非線形性を有する非線形誘電体に2つの異なる周波数の第1電磁波と第2電磁波とを導入してこれらを伝搬させることにより、前記2つの周波数の差の周波数の第3電磁波を発生させる高周波電磁波発生装置において、
前記第1電磁波と前記第2電磁波とが導入される前記非線形誘電体からなるコア部と、このコア部の周囲を覆うように形成された、前記コア部より小さい屈折率の材質からなるクラッド部とを備えた単一モード誘電体導波路を有し、
前記第1電磁波と前記第2電磁波との合成により発生する電磁波ビートの位相速度が、前記第3電磁波が前記コア部と前記クラッド部とからなる複合誘電体構造を伝搬する位相速度と略一致するように、前記コア部および前記クラッド部の材質と前記コア部の断面寸法とが選択されていることを特徴とする高周波電磁波発生装置。
A first electromagnetic wave and a second electromagnetic wave having two different frequencies are introduced into a nonlinear dielectric having second-order nonlinearity and propagated to generate a third electromagnetic wave having a frequency that is the difference between the two frequencies. In high frequency electromagnetic wave generator,
A core portion made of the nonlinear dielectric material into which the first electromagnetic wave and the second electromagnetic wave are introduced, and a clad portion made of a material having a refractive index smaller than that of the core portion so as to cover the periphery of the core portion A single mode dielectric waveguide with
The phase velocity of the electromagnetic wave beat generated by the combination of the first electromagnetic wave and the second electromagnetic wave is substantially the same as the phase velocity at which the third electromagnetic wave propagates through the composite dielectric structure composed of the core portion and the cladding portion. Thus, the material of the core part and the clad part and the cross-sectional dimension of the core part are selected.
請求項1記載の高周波電磁波発生装置において、
前記第1電磁波と前記第2電磁波との合成により発生する電磁波ビートの位相速度と、前記第3電磁波が前記複合誘電体構造を伝搬する位相速度とが2.5%以下の精度で略一致していることを特徴とする高周波電磁波発生装置。
In the high frequency electromagnetic wave generator of Claim 1,
The phase velocity of the electromagnetic wave beat generated by the synthesis of the first electromagnetic wave and the second electromagnetic wave substantially coincides with the phase velocity at which the third electromagnetic wave propagates through the composite dielectric structure with an accuracy of 2.5% or less. The high frequency electromagnetic wave generator characterized by the above-mentioned.
請求項1または2記載の高周波電磁波発生装置において、
前記コア部は、無機非線形材料または有機非線形材料からなり、
前記クラッド部は、Al23、SiO2 、MgO、ダイヤモンド状炭素、エポキシ系ポリマーおよびポリイミド系ポリマーのいずれかからなることを特徴とする高周波電磁波発生装置。
In the high frequency electromagnetic wave generator of Claim 1 or 2,
The core portion is made of an inorganic nonlinear material or an organic nonlinear material,
The high-frequency electromagnetic wave generator according to claim 1, wherein the clad portion is made of any one of Al 2 O 3 , SiO 2 , MgO, diamond-like carbon, an epoxy polymer, and a polyimide polymer.
請求項1または2記載の高周波電磁波発生装置において、
前記コア部の断面形状が方形であることを特徴とする高周波電磁波発生装置。
In the high frequency electromagnetic wave generator of Claim 1 or 2,
The high-frequency electromagnetic wave generator according to claim 1, wherein a cross-sectional shape of the core portion is a square.
請求項1乃至4のいずれか1項に記載の高周波電磁波発生装置において、
前記コア部の断面寸法が幅および高さ共に1.0マイクロメートル以下で、0.2マイクロメートルより大きいことを特徴とする高周波電磁波発生装置。
In the high frequency electromagnetic wave generator of any one of Claims 1 thru | or 4,
The high-frequency electromagnetic wave generator according to claim 1, wherein both the width and the height of the cross section of the core portion are 1.0 micrometers or less and are larger than 0.2 micrometers.
JP2003273481A 2003-07-11 2003-07-11 High-frequency electromagnetic wave generating device Pending JP2005031574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273481A JP2005031574A (en) 2003-07-11 2003-07-11 High-frequency electromagnetic wave generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273481A JP2005031574A (en) 2003-07-11 2003-07-11 High-frequency electromagnetic wave generating device

Publications (1)

Publication Number Publication Date
JP2005031574A true JP2005031574A (en) 2005-02-03

Family

ID=34210706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273481A Pending JP2005031574A (en) 2003-07-11 2003-07-11 High-frequency electromagnetic wave generating device

Country Status (1)

Country Link
JP (1) JP2005031574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203718A (en) * 2010-03-04 2011-10-13 Canon Inc Terahertz-wave generating element, terahertz-wave detecting element, and terahertz time-domain spectroscopy device
JP2018508802A (en) * 2014-12-17 2018-03-29 タレス Optoelectronic components for generating and radiating microwave frequency signals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203718A (en) * 2010-03-04 2011-10-13 Canon Inc Terahertz-wave generating element, terahertz-wave detecting element, and terahertz time-domain spectroscopy device
US9152009B2 (en) 2010-03-04 2015-10-06 Canon Kabushiki Kaisha Terahertz-wave generating element, terahertz-wave detecting element, and terahertz time-domain spectroscopy device
US10331010B2 (en) 2010-03-04 2019-06-25 Canon Kabushiki Kaisha Terahertz-wave generating element terahertz-wave detecting element and terahertz time-domain spectroscopy device
JP2018508802A (en) * 2014-12-17 2018-03-29 タレス Optoelectronic components for generating and radiating microwave frequency signals

Similar Documents

Publication Publication Date Title
JP4271704B2 (en) Coherent light source and optical device
US10025123B1 (en) Guided wave opto-acoustic device
US7440477B2 (en) Solid-state laser generator
US9696492B1 (en) On-chip photonic-phononic emitter-receiver apparatus
US6856737B1 (en) Nonlinear optical device
JP5072045B2 (en) Electromagnetic oscillation element
JP3392931B2 (en) Optical wavelength converter
Gawali et al. Photonic crystal spatial filtering in broad aperture diode laser
JP2647190B2 (en) Optical wavelength converter
US20090041062A1 (en) Fiber-based tunable laser
US7330300B1 (en) Optical frequency mixer and method for the same
JP2005031574A (en) High-frequency electromagnetic wave generating device
EP1569031A1 (en) Stimulated brillouin scattering phase conjugate mirror utilizing photonic bandgap guide
Da Silva et al. Highly efficient compact acousto-optic modulator based on a hybrid-lattice hollow core fiber
JP4793311B2 (en) Laser amplifier
CN104854764A (en) Resonantly enhanced frequency converter
US5291568A (en) Optical wavelength conversion module
JPWO2006103850A1 (en) Waveguide element and laser generator
WO2022018845A1 (en) Wavelength conversion apparatus
KR20150083625A (en) Optical fiber laser
JP2004020588A (en) Wavelength transformation device
US20220102933A1 (en) Laser apparatus
JPH05224264A (en) Light wavelength conversion module
Weerasinghe Power scaling and mode quality of an acetylene mid-infrared hollow-core optical fiber gas laser
KR101075695B1 (en) Second harmonic generator and apparatus of laser light source using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408