JP2005030954A - Oxygen enriching apparatus - Google Patents

Oxygen enriching apparatus Download PDF

Info

Publication number
JP2005030954A
JP2005030954A JP2003271779A JP2003271779A JP2005030954A JP 2005030954 A JP2005030954 A JP 2005030954A JP 2003271779 A JP2003271779 A JP 2003271779A JP 2003271779 A JP2003271779 A JP 2003271779A JP 2005030954 A JP2005030954 A JP 2005030954A
Authority
JP
Japan
Prior art keywords
ultrasonic
oxygen
pipe
distance
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003271779A
Other languages
Japanese (ja)
Other versions
JP4473535B2 (en
Inventor
Naotoshi Fujimoto
直登志 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003271779A priority Critical patent/JP4473535B2/en
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to KR1020117007542A priority patent/KR101118945B1/en
Priority to EP11166173.2A priority patent/EP2366981B1/en
Priority to ES04728397.3T priority patent/ES2565635T3/en
Priority to EP04728397.3A priority patent/EP1616153B1/en
Priority to CA2520563A priority patent/CA2520563C/en
Priority to PCT/JP2004/005590 priority patent/WO2004094960A2/en
Priority to US10/550,687 priority patent/US7213468B2/en
Priority to AU2004233273A priority patent/AU2004233273C1/en
Priority to CA2776083A priority patent/CA2776083C/en
Priority to KR1020057019757A priority patent/KR101060541B1/en
Priority to ES11166173.2T priority patent/ES2600525T3/en
Priority to TW093111105A priority patent/TWI280363B/en
Priority to MYPI20041447A priority patent/MY142630A/en
Publication of JP2005030954A publication Critical patent/JP2005030954A/en
Priority to HK06104764.0A priority patent/HK1083364A1/en
Priority to HK06110110.8A priority patent/HK1089813A1/en
Priority to KR1020097012328A priority patent/KR101118949B1/en
Application granted granted Critical
Publication of JP4473535B2 publication Critical patent/JP4473535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen enriching apparatus provided with an ultrasonic oxygen concentration flow rate measuring means capable of minimizing the lowering of an ultrasonic reception signal voltage, and capable of restraining variation factors in the distance between ultrasonic oscillators to one factor, even when the inside radius of a pipe connecting between the ultrasonic oscillators gets smaller than the outside diameter of the ultrasonic oscillator. <P>SOLUTION: In this oxygen enriching apparatus provided with the ultrasonic oxygen concentration flow rate measuring means, is characterised in that an end face in each of the ultrasonic oscillators is installed to get parallel to an end face of the pipe opposed thereto, a distance d is set in the range of 0<d<D<SP>2</SP>/(4λ), and the ultrasonic oscillators, housings for covering the ultrasonic oscillators and the pipe for connecting a space between the housings are fixed to form one chamber unit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空気中から酸素を分離し濃縮する酸素濃縮装置に関する。更に詳細には、医療目的で使用される酸素濃縮装置から送り出される酸素濃縮ガスの酸素濃度および/または流量を測定する手段を備えた医療用酸素濃縮装置に関するものである。   The present invention relates to an oxygen concentrator that separates and concentrates oxygen from the air. More particularly, the present invention relates to a medical oxygen concentrating device having means for measuring the oxygen concentration and / or flow rate of an oxygen concentrating gas delivered from an oxygen concentrating device used for medical purposes.

サンプルガス中にて超音波の送受信を実施することにより得られる超音波の伝播時間、もしくは伝播速度を用いて、サンプルガスの濃度、或は流量を測定する方法及び装置に関しては、種々の提案が行われている。たとえば、特開平6-213877号公報には、サンプルガスが通る配管中に超音波振動子2つを対向させて配置し、該超音波振動子間を伝播する超音波の伝播時間を計測することによってサンプルガスの濃度及び流量を測定する装置が記載されている。また米国特許第5,060,506号公報には、超音波の音速変化を測定することにより、2種類の分子から構成されるサンプルガスの濃度を測定する装置が記載されている。
特開平6-213877号公報 米国特許第5,060,506号公報 特開2002-214012号公報
Various proposals have been made regarding methods and apparatus for measuring the concentration or flow rate of sample gas using the propagation time or propagation speed of ultrasonic waves obtained by transmitting and receiving ultrasonic waves in the sample gas. Has been done. For example, Japanese Patent Laid-Open No. 6-213877 discloses that two ultrasonic transducers are arranged facing each other in a pipe through which a sample gas passes, and the propagation time of ultrasonic waves propagating between the ultrasonic transducers is measured. Describes an apparatus for measuring the concentration and flow rate of a sample gas. U.S. Pat. No. 5,060,506 describes an apparatus for measuring the concentration of a sample gas composed of two types of molecules by measuring changes in the speed of ultrasonic waves.
Japanese Patent Laid-Open No. 6-213877 U.S. Pat.No. 5,060,506 JP 2002-214012 JP

このような超音波の送受信によって得られる信号を元にサンプルガスの濃度、流量を測定する方法においては、超音波の受信信号を元に超音波の伝播時間や音速を特定する必要がある。濃度を測定する際には、サンプルガスの流れに対して順逆双方向への超音波送受信を実施し、流量成分をキャンセルしたサンプルガス中における音速を測定し、さらに、該サンプルガスの温度を測定することで、音速と温度の関係から、該サンプルガスの濃度を算出する方法が各種提案されている。また、流量を測定する際には、サンプルガスの流れに対して順方向へ超音波送受信を実施した際に得られる音速、また、逆方向への超音波送受信を実施した際に得られる音速、それぞれの差を測定することで、該サンプルガスの流速を求め、サンプルガスの流れる配管の内面積を乗じることで流量を求める方法が各種提案されている。   In the method of measuring the concentration and flow rate of the sample gas based on such signals obtained by transmission / reception of ultrasonic waves, it is necessary to specify the ultrasonic propagation time and sound speed based on the ultrasonic reception signals. When measuring the concentration, ultrasonic wave transmission / reception is performed in both forward and reverse directions with respect to the flow of the sample gas, the speed of sound in the sample gas with the flow rate component canceled is measured, and the temperature of the sample gas is measured. Thus, various methods for calculating the concentration of the sample gas from the relationship between the speed of sound and temperature have been proposed. Also, when measuring the flow rate, the sound speed obtained when performing ultrasonic transmission / reception in the forward direction with respect to the flow of the sample gas, the sound speed obtained when performing ultrasonic transmission / reception in the reverse direction, Various methods have been proposed in which the flow rate of the sample gas is obtained by measuring each difference, and the flow rate is obtained by multiplying the inner area of the pipe through which the sample gas flows.

超音波の送受信によって直接得られる値は、超音波の伝播時間であり、音速ではない。音速を算出するためには、超音波振動子間の距離を使用して、“超音波振動子間距離/超音波伝播時間”という計算が必要になる。しかしながら、たとえば振動子間を結ぶ配管が外力に対して容易に変形してしまう場合には、振動子間距離が容易に変化してしまうことになり、正確な音速の測定には支障をきたしてしまうという課題がある。さらに、超音波振動子間を結ぶ材料自体の持つ特性により、温度変化によって超音波振動子間距離が変化してしまうことも知られており、単一の超音波振動子間距離を定数として使用することには無理があり、例えば特開2002-214012号公報等では、該配管材料の線膨張係数を利用して、超音波振動子間距離をサンプルガスの温度測定値に合わせて補正することで、温度特性を改善する方法が提案されている。しかしながら、超音波振動子間距離が変化する要因が、該配管材料の線膨張係数に従った温度変化に伴う距離変化のみであれば該方法を適用できるが、その他複数の要因が絡み合って超音波振動子間距離が変化してしまうような構造であれば、正確な超音波振動子間距離の予測が困難になってしまうという課題がある。   The value obtained directly by transmission / reception of ultrasonic waves is the propagation time of ultrasonic waves, not the speed of sound. In order to calculate the speed of sound, it is necessary to calculate “distance between ultrasonic transducers / ultrasonic propagation time” using the distance between ultrasonic transducers. However, for example, when the piping connecting the transducers is easily deformed by an external force, the distance between the transducers is easily changed, which hinders accurate sound speed measurement. There is a problem of end. In addition, it is also known that the distance between ultrasonic transducers changes due to temperature changes due to the characteristics of the material itself connecting the ultrasonic transducers, and a single ultrasonic transducer distance is used as a constant. For example, in Japanese Patent Application Laid-Open No. 2002-214012, etc., using the linear expansion coefficient of the piping material, the distance between the ultrasonic transducers is corrected according to the temperature measurement value of the sample gas. A method for improving the temperature characteristics has been proposed. However, this method can be applied if the only factor that changes the distance between the ultrasonic transducers is a change in distance due to a temperature change in accordance with the linear expansion coefficient of the piping material. If the structure changes the distance between the transducers, there is a problem that it is difficult to accurately predict the distance between the ultrasonic transducers.

さらに、流量を測定する際にはサンプルガスの流れに対して順逆双方向で得られる超音波の音速の差を求める必要がある。測定精度を向上させるためには、順逆双方向で得られる音速の差が大きければ大きい方が、時間測定分解能を向上させることができ、望ましい。順逆双方で得られる音速の差を大きくするためには、超音波振動子間距離を長くする、もしくは、超音波振動子間を結ぶ配管の内径を絞り、同じ流量であっても該配管中を流れるサンプルガスの流速を上げる、といった方法が考えられる。しかし、前者の方法では装置が大きくなってしまうという課題があり、後者の方法では配管の内径が超音波振動子の外径よりも小さくなってしまう場合には、送信される超音波の一部のみが配管内部を伝播することになり、受信超音波信号の電圧値が非常に小さくなり、S/N比が悪くなってしまうという課題がある。   Furthermore, when measuring the flow rate, it is necessary to obtain the difference in the sound velocity of the ultrasonic waves obtained in both forward and reverse directions with respect to the flow of the sample gas. In order to improve the measurement accuracy, it is desirable that the difference between the sound speeds obtained in the forward and reverse directions is large, because the time measurement resolution can be improved. In order to increase the difference in sound speed obtained in both the forward and reverse directions, the distance between the ultrasonic transducers is increased, or the inner diameter of the piping connecting the ultrasonic transducers is reduced, and even in the same flow rate, the inside of the piping is reduced. A method of increasing the flow rate of the flowing sample gas can be considered. However, in the former method, there is a problem that the apparatus becomes large, and in the latter method, when the inner diameter of the pipe becomes smaller than the outer diameter of the ultrasonic transducer, a part of the transmitted ultrasonic wave Only propagates through the inside of the pipe, resulting in a problem that the voltage value of the received ultrasonic signal becomes very small and the S / N ratio deteriorates.

本発明者らは、かかる目的を達成するために鋭意研究した結果、以下の酸素濃縮装置を見出した。すなわち本発明は、空気中から酸素を分離する酸素濃縮手段、酸素濃縮手段の下流に超音波によって酸素濃縮ガスの濃度および/または流量を測定する超音波測定手段を備えた酸素濃縮装置において、該超音波測定手段が、2つの超音波振動子と、該超音波振動子の各々を囲い込み、かつ酸素濃縮ガスの出入り口を具備したハウジング部と、ハウジング間を結ぶ配管とを備えた手段であり、該超音波振動子の端面と該配管の端面との距離dが、0<d<D2/(4λ)の範囲に設定されていることを特徴とする酸素濃縮装置を提供するものである。
ただし、
d: 超音波振動子の端面と配管の端面との間の距離[m]
D: 超音波振動子の超音波有効照射面の直径[m]
λ: 超音波の波長の最大値[m]
As a result of intensive studies to achieve the above object, the present inventors have found the following oxygen concentrator. That is, the present invention relates to an oxygen concentrator provided with an oxygen concentration means for separating oxygen from the air, and an ultrasonic measurement means for measuring the concentration and / or flow rate of the oxygen-enriched gas by ultrasonic waves downstream of the oxygen concentration means. The ultrasonic measurement means is a means including two ultrasonic vibrators, a housing portion that surrounds each of the ultrasonic vibrators and includes an inlet / outlet of oxygen-enriched gas, and a pipe that connects the housings, A distance d between the end face of the ultrasonic transducer and the end face of the pipe is set in a range of 0 <d <D 2 / (4λ).
However,
d: Distance [m] between the end face of the ultrasonic transducer and the end face of the pipe
D: Diameter of effective ultrasonic irradiation surface of ultrasonic transducer [m]
λ: Maximum wavelength of ultrasonic wave [m]

また本発明は、かかる該配管の内径が該超音波振動子の外径よりも小さいことを特徴とする酸素濃縮装置を提供するものである。   The present invention also provides an oxygen concentrator characterized in that the inner diameter of the pipe is smaller than the outer diameter of the ultrasonic transducer.

また本発明は、かかる超音波測定手段の長軸方向への伸縮を許容する固定手段により超音波測定手段が酸素濃縮装置に固定されていることを特徴とし、特に該固定手段が、超音波測定手段の両端に位置するハウジングの片方と酸素濃縮装置内の固定用基板とを固定する手段、或いは、該固定手段が、超音波測定手段の配管の一箇所と、酸素濃縮装置内の固定用基板とを固定する手段であることを特徴とする酸素濃縮装置を提供するものである。   Further, the present invention is characterized in that the ultrasonic measurement means is fixed to the oxygen concentrator by a fixing means that allows expansion and contraction of the ultrasonic measurement means in the major axis direction. Means for fixing one of the housings located at both ends of the means and the fixing substrate in the oxygen concentrator, or the fixing means is provided at one place of the piping of the ultrasonic measuring means and the fixing substrate in the oxygen concentrator. The oxygen concentrator is characterized in that it is a means for fixing the above.

本発明の酸素濃縮装置は、超音波振動子の端面と配管の端面との距離dを、0<d<D2/(4λ)の範囲にすることで、超音波受信電圧の低下を最小限にとどめることができ、すなわち、SN比の悪化を最小限にすることができる。さらに酸素濃縮装置の小型化を実現しつつサンプルガスの流れに対して順逆双方向での音速の差を大きくするため、超音波振動子間を結ぶ配管の内径を絞る方法を選択し、該配管の内半径が超音波振動子の外径よりも小さくなった場合に、上記振動子と配管端面の距離が重要となってくる。 The oxygen concentrator of the present invention minimizes the decrease in the ultrasonic reception voltage by setting the distance d between the end face of the ultrasonic transducer and the end face of the pipe within the range of 0 <d <D 2 / (4λ). In other words, the deterioration of the S / N ratio can be minimized. Furthermore, in order to increase the difference in sound speed between the forward and reverse directions with respect to the flow of the sample gas while realizing a reduction in the size of the oxygen concentrator, a method for reducing the inner diameter of the pipe connecting the ultrasonic transducers was selected and the pipe When the inner radius becomes smaller than the outer diameter of the ultrasonic transducer, the distance between the transducer and the pipe end face becomes important.

さらに、酸素濃縮器内に搭載される超音波式の酸素濃度流量測定手段における超音波振動子間距離を決める要因を、温度による線膨張係数に従った長さ変化だけに抑えることで、温度を測定するだけで厳密な超音波振動子間距離を予測することが可能となり、正確な音速測定が実現できる。   Furthermore, the temperature can be controlled by limiting the factor that determines the distance between the ultrasonic transducers in the ultrasonic oxygen concentration flow measurement means mounted in the oxygen concentrator to only the length change according to the linear expansion coefficient due to temperature. It is possible to predict a precise distance between ultrasonic transducers only by measuring, and an accurate sound speed measurement can be realized.

本実施例における酸素濃縮装置の構成は、図1に示す通りである。該酸素濃縮装置10は、原料ガスとして空気を吸い込み、フィルタ11を介して該空気を酸素濃縮手段13に送り込むコンプレッサ12、空気中から酸素を分離する酸素濃縮手段13、酸素濃縮手段13の下流に、以下に記載の超音波式酸素濃度流量測定手段15を備える。   The configuration of the oxygen concentrator in the present embodiment is as shown in FIG. The oxygen concentrator 10 sucks air as a raw material gas, and feeds the air to the oxygen concentrating means 13 through the filter 11, the oxygen concentrating means 13 for separating oxygen from the air, and downstream of the oxygen concentrating means 13. The ultrasonic oxygen concentration flow rate measuring means 15 described below is provided.

超音波式酸素濃度流量測定手段15の構造の概略断面図は、図2に示すとおりである。本実施例における該超音波式酸素濃度流量測定手段15は、中心周波数が40kHzである2つの超音波振動子20、21および、該超音波振動子の各々を囲い込むハウジング25、26、該ハウジングには酸素濃縮ガスの出入り口となる穴28、29を具備しており、該2つのハウジング間を結ぶ配管27を備えている。該超音波振動子20、21の外径は10mmであり、該配管27の内径は、本実施例に関して適した流速を得ることができるよう、5mmのものを採用した。該配管27の中心軸と、該超音波振動子20、21の中心軸は直線上に並ぶように配置されており、かつ、該超音波振動子20、21の端面と、向かい合う該配管27の端面が平行になるよう設置されている。該超音波振動子20、21は、それぞれ基板23、24に設置されており、該基板23、24には、酸素濃縮ガスの温度を測定するための温度センサ37、38も備えている。該基板23、24と該ハウジング25、26は、酸素濃縮ガスをシールするためOリング39、40を介してネジ43、44によって固定されている。また、該ハウジング25、26と、該配管27は、溶接で固定41、42されている。すなわち、該超音波振動子20、21と該ハウジング25、26と該配管27が、酸素濃縮ガスを流すことができる、1つのチャンバーユニットとなるよう固定されている。   A schematic cross-sectional view of the structure of the ultrasonic oxygen concentration flow rate measuring means 15 is as shown in FIG. The ultrasonic oxygen concentration flow rate measuring means 15 in this embodiment includes two ultrasonic transducers 20 and 21 having a center frequency of 40 kHz, and housings 25 and 26 that enclose each of the ultrasonic transducers. Are provided with holes 28 and 29 which serve as inlets and outlets for the oxygen-enriched gas, and a pipe 27 connecting the two housings. The outer diameter of the ultrasonic transducers 20 and 21 is 10 mm, and the inner diameter of the pipe 27 is 5 mm so that a flow rate suitable for this embodiment can be obtained. The central axis of the pipe 27 and the central axis of the ultrasonic vibrators 20 and 21 are arranged so as to be aligned on a straight line, and the end face of the ultrasonic vibrator 20, 21 faces the end face of the pipe 27. It is installed so that the end faces are parallel. The ultrasonic transducers 20 and 21 are installed on the substrates 23 and 24, respectively, and the substrates 23 and 24 are also provided with temperature sensors 37 and 38 for measuring the temperature of the oxygen-enriched gas. The substrates 23 and 24 and the housings 25 and 26 are fixed by screws 43 and 44 through O-rings 39 and 40 to seal the oxygen-enriched gas. The housings 25 and 26 and the pipe 27 are fixed 41 and 42 by welding. That is, the ultrasonic transducers 20 and 21, the housings 25 and 26, and the pipe 27 are fixed so as to form one chamber unit through which oxygen-enriched gas can flow.

また、超音波振動子20、21の間の距離は、温度20℃において150mmとなるように設計した。該ハウジング25、26と、該配管27の接続方法は、本実施例に示した溶接に限られるものではなく、例えば袋ナットのような他の固定手段で固定しても良いし、配管27の端部外側を雄ネジ、ハウジング25、26の端部内側を雌ネジに加工して、シール材を注入しながら接続しても良い。また、ハウジング25、26と配管27は別部品とせず、一体成形してもよい。   The distance between the ultrasonic transducers 20 and 21 was designed to be 150 mm at a temperature of 20 ° C. The connection method of the housings 25 and 26 and the pipe 27 is not limited to the welding shown in the present embodiment, and may be fixed by other fixing means such as a cap nut, The outer side of the end may be processed into a male screw and the inner side of the ends of the housings 25 and 26 may be processed into a female screw, and the sealing material may be injected while being connected. Further, the housings 25 and 26 and the pipe 27 may be integrally formed without being separate parts.

さらに、該チャンバーユニットの両端の基板23、24にはコネクタ31、34を備えており、超音波の送受信、酸素濃縮ガスの温度検出、および、信号処理等を実施するためのマイクロコンピュータ等の部品を搭載したチャンバーユニット固定用の基板30に備えられたコネクタ32、35と、ケーブル33、36によって電気的に接続されている。   Further, the substrates 23 and 24 at both ends of the chamber unit are provided with connectors 31 and 34, and components such as a microcomputer for performing transmission / reception of ultrasonic waves, temperature detection of oxygen-enriched gas, signal processing, etc. Are electrically connected to the connectors 32 and 35 provided on the substrate 30 for fixing the chamber unit and the cables 33 and 36.

該配管27と、該ハウジング25、26の材料は同一のアルミ合金であり、外力によって容易に変形しないよう作成されている。また、本実施例においては、ハウジングの片方25と基板30をネジ45によって固定しており、該チャンバーユニットは基板30に対して片持ち構造となるように固定されている(反対側のハウジング26は基板30に固定せず)。本構造にて該超音波式酸素濃度流量測定手段15を作成することにより、超音波振動子20、21の間の距離を変化させる要因は、温度変化に伴う配管27、およびハウジング25、26の熱膨張/収縮に起因する伸び縮みのみであり、実際に伸び縮みが発生した際には、ハウジング26側が基板30に対して固定されていないため、その変化分を逃がすことができる構造となっている。   The pipe 27 and the housings 25 and 26 are made of the same aluminum alloy so that they are not easily deformed by an external force. In this embodiment, one side 25 of the housing and the substrate 30 are fixed by screws 45, and the chamber unit is fixed to the substrate 30 so as to have a cantilever structure (the opposite housing 26). Is not fixed to the substrate 30). By creating the ultrasonic oxygen concentration flow rate measuring means 15 with this structure, the factors that change the distance between the ultrasonic transducers 20 and 21 are the pipe 27 and the housings 25 and 26 that accompany the temperature change. This is only expansion / contraction due to thermal expansion / contraction, and when the expansion / contraction actually occurs, the housing 26 side is not fixed to the substrate 30, so that the change can be released. Yes.

さらに、該配管27とハウジング25、26が同一のアルミ合金で作成されているため、該アルミ合金の線膨張係数を用いることで、現在の温度を測定すれば、該温度における超音波振動子間距離は、温度と線膨張係数の関係から、例えば特開2002-214012号公報に示した方法によって、容易に補正することが可能となる。該チャンバーユニットを基板30に固定する方法は、温度変化に伴うチャンバーユニットの長軸方向への伸び縮みを制限しない方法であれば、本実施例に示した方法に限定されない。例えば、配管27の中央部のみで基板30とネジ固定し、配管27の該固定部分を中心に左右に向かって伸び縮みの変化分を逃がすことのできる構造にしても良い。   Further, since the pipe 27 and the housings 25 and 26 are made of the same aluminum alloy, if the current temperature is measured by using the linear expansion coefficient of the aluminum alloy, the ultrasonic transducers at the temperature The distance can be easily corrected from the relationship between the temperature and the linear expansion coefficient, for example, by the method disclosed in Japanese Patent Application Laid-Open No. 2002-214012. The method of fixing the chamber unit to the substrate 30 is not limited to the method shown in the present embodiment as long as it does not limit the expansion and contraction of the chamber unit in the major axis direction due to the temperature change. For example, the structure may be such that only the central portion of the pipe 27 is fixed to the substrate 30 with screws, and the change in expansion and contraction can be released toward the left and right with the fixed portion of the pipe 27 as the center.

また、図2に示した超音波振動子20、21の端面と、配管27の端面との距離dは、非常に重要な設計事項である。一般的に、超音波振動子から放射される超音波は、近距離音場と呼ばれる区間においては直進する性質を持っており、近距離音場の区間を超えた領域(遠距離音場)においては、放射された超音波は球面波状に拡散していく性質を持つことが知られている(図3)。すなわち、超音波振動子20、21と、配管27の端面との間の距離dが常に近距離音場の区間内にあれば、照射された超音波を効率的に該配管27の中に投入することができ、逆に、その距離が遠距離音場の区間まで離れていれば、照射された超音波が球面波状に拡散しているため、配管27の中に投入される超音波が減少していくことになり、結果として得られる超音波受信波形の振幅値が小さくなり、SN比が悪化してしまうことになる。   The distance d between the end faces of the ultrasonic transducers 20 and 21 and the end face of the pipe 27 shown in FIG. 2 is a very important design item. In general, ultrasonic waves radiated from an ultrasonic transducer have a property of going straight in a section called a near field, and in a region beyond the near field (far field) It is known that the emitted ultrasonic wave has a property of diffusing in a spherical wave shape (FIG. 3). That is, if the distance d between the ultrasonic transducers 20 and 21 and the end face of the pipe 27 is always within the short-distance sound field section, the irradiated ultrasonic waves are efficiently input into the pipe 27. On the contrary, if the distance is far to the far field, the irradiated ultrasonic wave is diffused in a spherical wave shape, so the ultrasonic wave injected into the pipe 27 decreases. As a result, the amplitude value of the ultrasonic reception waveform obtained as a result becomes small, and the SN ratio becomes worse.

該近距離音場と遠距離音場を分ける距離Z0[m]は、超音波振動子の有効照射面の直径をD[m]、超音波の伝播する雰囲気中の波長をλ[m]とすると、次式(1)にて示されることが知られている。
Z0= D2/(4λ) ---------- 式(1)
さらに、雰囲気中の波長λ[m]と音速C[m/sec]、超音波の中心周波数f[Hz]の間には、次式(2)の関係があることが知られている。
C = fλ ---------- 式(2)
したがって、式(1)は式(2)を用いて次式(3)のように書き直すことができる。
Z0= fD2/(4C) ---------- 式(3)
The distance Z 0 [m] separating the near field and the far field is D [m] as the effective irradiation surface diameter of the ultrasonic transducer, and λ [m] as the wavelength in the atmosphere in which the ultrasonic wave propagates. Then, it is known that it is represented by the following formula (1).
Z 0 = D 2 / (4λ) ---------- Formula (1)
Further, it is known that there is a relationship of the following equation (2) between the wavelength λ [m] in the atmosphere, the sound velocity C [m / sec], and the ultrasonic center frequency f [Hz].
C = fλ ---------- Formula (2)
Therefore, equation (1) can be rewritten as equation (3) below using equation (2).
Z 0 = fD 2 / (4C) ---------- Formula (3)

本実施例における超音波振動子20、21の中心周波数fは40kHzであり、その有効照射面の直径Dは7mmである。また、雰囲気中を伝播する超音波の音速Cは、雰囲気ガスの濃度、および、温度によって変化する値である。超音波振動子20、21の端面と、配管27の端面との間の距離dを、常に近距離音場の区間内にするためには、式(3)におけるZ0が最小になる状態を考慮する必要がある。すなわち、音速Cを最大にする条件が必要になる。気体中の音速Cは、気体の温度T、気体の平均分子量M、気体の比熱比k、気体定数Rを用いて、次式(4)にて表されることが知られている。 The center frequency f of the ultrasonic transducers 20 and 21 in this embodiment is 40 kHz, and the diameter D of the effective irradiation surface is 7 mm. Also, the sound velocity C of the ultrasonic wave propagating in the atmosphere is a value that varies depending on the concentration of the atmospheric gas and the temperature. In order to always keep the distance d between the end faces of the ultrasonic transducers 20 and 21 and the end face of the pipe 27 within the section of the short-distance sound field, the state where Z 0 in Equation (3) is minimized It is necessary to consider. That is, a condition for maximizing the sound speed C is required. It is known that the sound velocity C in a gas is expressed by the following equation (4) using the gas temperature T, the gas average molecular weight M, the gas specific heat ratio k, and the gas constant R.

Figure 2005030954
したがって、音速Cは、温度が高いほど、また、平均分子量が小さいほど大きい値となる。
Figure 2005030954
Therefore, the sound velocity C becomes larger as the temperature is higher and the average molecular weight is smaller.

本実施例における酸素濃縮装置内を伝わる酸素濃縮ガスの温度は、最大40℃となることが分かっており、超音波式酸素濃度流量測定手段にて測定する酸素濃度範囲は、大気〜酸素100%までの範囲としていることから、平均分子量を最小にする条件は、大気を測定する場合である。すなわち、40℃の大気中を伝播する超音波の音速が本実施例における音速最大値であり、その値はおよそ355[m/sec]となり、式(3)におけるZ0は次式のように計算できる。
Z0 ≒ (40000×0.0072)/(4×355) ≒ 0.0014[m] ---- 式(5)
It has been found that the temperature of the oxygen-enriched gas transmitted through the oxygen concentrator in this example is a maximum of 40 ° C., and the oxygen concentration range measured by the ultrasonic oxygen concentration flow rate measuring means is from atmospheric to 100% oxygen. Therefore, the condition for minimizing the average molecular weight is when measuring the atmosphere. That is, the sound speed of the ultrasonic wave propagating in the atmosphere at 40 ° C. is the maximum sound speed value in the present embodiment, and the value is about 355 [m / sec], and Z 0 in Expression (3) is as follows: Can be calculated.
Z 0 ≒ (40000 × 0.007 2 ) / (4 × 355) ≒ 0.0014 [m] ---- Formula (5)

したがって、超音波振動子20、21の端面と、配管27の端面との間の距離dは、1.4mm未満に設計することが望ましい。ここで、本実施例における超音波式酸素濃度流量測定手段の超音波振動子20、21の端面と、配管27の端面との間の距離dを、0.3mm、1.0mm、1.8mmと変化させた場合に得られる超音波受信波形の例をそれぞれ図4、図5、図6に示す。図5、6にて明らかなように、超音波振動子の端面と配管の端面との間の距離が1.5mmを超えると、急激に超音波受信波形の振幅値が低下することが示されている。本実施例においては、該距離dとして、0.7mmを採用することで、必要なS/N比の超音波受信波形の獲得を実現することができた。   Therefore, it is desirable that the distance d between the end faces of the ultrasonic transducers 20 and 21 and the end face of the pipe 27 is designed to be less than 1.4 mm. Here, the distance d between the end faces of the ultrasonic transducers 20 and 21 of the ultrasonic oxygen concentration flow rate measuring means and the end face of the pipe 27 in this embodiment is changed to 0.3 mm, 1.0 mm, and 1.8 mm. Examples of ultrasonic reception waveforms obtained in this case are shown in FIGS. 4, 5, and 6, respectively. As is apparent from FIGS. 5 and 6, when the distance between the end face of the ultrasonic transducer and the end face of the pipe exceeds 1.5 mm, the amplitude value of the ultrasonic reception waveform rapidly decreases. Yes. In this example, by adopting 0.7 mm as the distance d, it was possible to obtain an ultrasonic wave reception waveform having a necessary S / N ratio.

本発明の酸素濃縮装置の構成を示す概略図。Schematic which shows the structure of the oxygen concentration apparatus of this invention. 本発明の超音波式酸素濃度流量測定手段の構造を示す概略断面図。The schematic sectional drawing which shows the structure of the ultrasonic type oxygen concentration flow measurement means of this invention. 近距離音場と遠距離音場の関係。The relationship between the near field and the far field. 超音波振動子端面と配管の端面の間の距離を0.3mmとした時の超音波受信波形の一例。An example of an ultrasonic reception waveform when the distance between the end face of the ultrasonic transducer and the end face of the pipe is 0.3 mm. 超音波振動子端面と配管の端面の間の距離を1.0mmとした時の超音波受信波形の一例。An example of an ultrasonic reception waveform when the distance between the end face of the ultrasonic transducer and the end face of the pipe is 1.0 mm. 超音波振動子端面と配管の端面の間の距離を1.8mmとした時の超音波受信波形の一例。An example of an ultrasonic reception waveform when the distance between the end face of the ultrasonic transducer and the end face of the pipe is 1.8 mm.

符号の説明Explanation of symbols

10 酸素濃縮装置
11 フィルタ
12 コンプレッサ
13 酸素濃縮手段
14 流量設定手段
15 超音波式酸素濃度流量測定手段
16 製品フィルタ
20 超音波振動子
21 超音波振動子
23 基板
24 基板
25 ハウジング
26 ハウジング
27 配管
28 酸素濃縮ガス入口
29 酸素濃縮ガス出口
30 基板
31 コネクタ
32 コネクタ
33 ケーブル
34 コネクタ
35 コネクタ
36 ケーブル
37 温度センサ
38 温度センサ
39 Oリング
40 Oリング
41 溶接個所
42 溶接個所
43 ネジ
44 ネジ
45 ネジ
10 Oxygen concentrator
11 Filter
12 Compressor
13 Oxygen enrichment means
14 Flow rate setting method
15 Ultrasonic oxygen concentration flow measurement means
16 Product filters
20 Ultrasonic transducer
21 Ultrasonic transducer
23 Board
24 substrates
25 Housing
26 Housing
27 Piping
28 Oxygen enriched gas inlet
29 Oxygen enriched gas outlet
30 substrates
31 Connector
32 connectors
33 Cable
34 Connector
35 connector
36 cable
37 Temperature sensor
38 Temperature sensor
39 O-ring
40 O-ring
41 Welding points
42 Welding points
43 screws
44 screws
45 screws

Claims (5)

空気中から酸素を分離する酸素濃縮手段、酸素濃縮手段の下流に超音波によって酸素濃縮ガスの濃度および/または流量を測定する超音波測定手段を備えた酸素濃縮装置において、該超音波測定手段が、2つの超音波振動子と、該超音波振動子の各々を囲い込み、かつ酸素濃縮ガスの出入り口を具備したハウジング部と、ハウジング間を結ぶ配管とを備えた手段であり、該超音波振動子の端面と該配管の端面との距離dが、0<d<D2/(4λ)の範囲に設定されていることを特徴とする酸素濃縮装置。
ただし、
d: 超音波振動子の端面と配管の端面との間の距離[m]
D: 超音波振動子の超音波有効照射面の直径[m]
λ: 超音波の波長の最大値[m]
In the oxygen concentrating device comprising oxygen concentrating means for separating oxygen from the air, and ultrasonic measuring means for measuring the concentration and / or flow rate of the oxygen-enriched gas by ultrasonic wave downstream of the oxygen concentrating means, the ultrasonic measuring means comprises The ultrasonic transducer includes: two ultrasonic transducers; a housing portion that surrounds each of the ultrasonic transducers and includes an inlet / outlet of an oxygen-enriched gas; and a pipe that connects the housings. An oxygen concentrator characterized in that a distance d between the end face of the pipe and the end face of the pipe is set in a range of 0 <d <D 2 / (4λ).
However,
d: Distance [m] between the end face of the ultrasonic transducer and the end face of the pipe
D: Diameter of effective ultrasonic irradiation surface of ultrasonic transducer [m]
λ: Maximum wavelength of ultrasonic wave [m]
該配管の内径が該超音波振動子の外径よりも小さいことを特徴とする請求項1記載の酸素濃縮装置。   The oxygen concentrator according to claim 1, wherein an inner diameter of the pipe is smaller than an outer diameter of the ultrasonic transducer. 該超音波測定手段の長軸方向への伸縮を許容する固定手段により超音波測定手段が酸素濃縮装置に固定されていることを特徴とする請求項1または請求項2に記載の酸素濃縮装置。   The oxygen concentrator according to claim 1 or 2, wherein the ultrasonic measuring means is fixed to the oxygen concentrator by a fixing means that allows expansion and contraction of the ultrasonic measuring means in the major axis direction. 該固定手段が、超音波測定手段の両端に位置するハウジングの片方と酸素濃縮装置内の固定用基板とを固定する手段であることを特徴とする請求項3記載の酸素濃縮装置。   4. The oxygen concentrator according to claim 3, wherein the fixing means is means for fixing one of the housings located at both ends of the ultrasonic measuring means and a fixing substrate in the oxygen concentrator. 該固定手段が、超音波測定手段の配管の一箇所と、酸素濃縮装置内の固定用基板とを固定する手段であることを特徴とする請求項3記載の酸素濃縮装置。   4. The oxygen concentrating apparatus according to claim 3, wherein the fixing means is means for fixing one portion of a pipe of the ultrasonic measuring means and a fixing substrate in the oxygen concentrating apparatus.
JP2003271779A 2003-04-21 2003-07-08 Oxygen concentrator Expired - Lifetime JP4473535B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2003271779A JP4473535B2 (en) 2003-07-08 2003-07-08 Oxygen concentrator
CA2776083A CA2776083C (en) 2003-04-21 2004-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
ES04728397.3T ES2565635T3 (en) 2003-04-21 2004-04-20 Ultrasonic device and method for measuring gas concentration and flow
EP04728397.3A EP1616153B1 (en) 2003-04-21 2004-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
CA2520563A CA2520563C (en) 2003-04-21 2004-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
PCT/JP2004/005590 WO2004094960A2 (en) 2003-04-21 2004-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
US10/550,687 US7213468B2 (en) 2003-04-21 2004-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
AU2004233273A AU2004233273C1 (en) 2003-04-21 2004-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
KR1020117007542A KR101118945B1 (en) 2003-04-21 2004-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
KR1020057019757A KR101060541B1 (en) 2003-04-21 2004-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
ES11166173.2T ES2600525T3 (en) 2003-04-21 2004-04-20 Oxygen concentration system to generate oxygen enriched gas
EP11166173.2A EP2366981B1 (en) 2003-04-21 2004-04-20 Oxygen concentration system for generating oxygen-enriched gas
TW093111105A TWI280363B (en) 2003-04-21 2004-04-21 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
MYPI20041447A MY142630A (en) 2003-04-21 2004-04-21 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
HK06104764.0A HK1083364A1 (en) 2003-04-21 2006-04-20 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
HK06110110.8A HK1089813A1 (en) 2003-04-21 2006-09-12 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
KR1020097012328A KR101118949B1 (en) 2003-04-21 2008-10-07 Formed article for vehicle body structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271779A JP4473535B2 (en) 2003-07-08 2003-07-08 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2005030954A true JP2005030954A (en) 2005-02-03
JP4473535B2 JP4473535B2 (en) 2010-06-02

Family

ID=34209539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271779A Expired - Lifetime JP4473535B2 (en) 2003-04-21 2003-07-08 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP4473535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275608A (en) * 2005-03-28 2006-10-12 Teijin Pharma Ltd Measuring apparatus for gas flow rate and gas concentration using measuring method for propagation time of ultrasonic wave

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275608A (en) * 2005-03-28 2006-10-12 Teijin Pharma Ltd Measuring apparatus for gas flow rate and gas concentration using measuring method for propagation time of ultrasonic wave
JP4588508B2 (en) * 2005-03-28 2010-12-01 帝人ファーマ株式会社 Gas flow rate and gas concentration measurement device using ultrasonic propagation time measurement method

Also Published As

Publication number Publication date
JP4473535B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
KR101118945B1 (en) Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
EP0666467B1 (en) Flow measuring apparatus
EP0100584B1 (en) Ultrasonic flowmeter
WO2002057770A1 (en) Equipment and method for measuring concentration and flow rate of gas ultrasonically
JP2011179940A (en) Ultrasonic flowmeter
JPH07270203A (en) Compatible vortex sensor for many kinds of measurements
US5159843A (en) Acoustic device and method for measuring gas densities
CN104457869A (en) Ultrasonic flow meter
US10451465B2 (en) Gas meter
US20120191382A1 (en) Ultrasonic flow meter device
JP4473535B2 (en) Oxygen concentrator
US20220170770A1 (en) Ultrasonic flowmeter
US5974858A (en) Single flange installation densimeter
CA2511748C (en) Flow measuring method and device
JP3194270B2 (en) Ultrasonic flow meter
KR920002274Y1 (en) Eddy water meter
JPH09133561A (en) Ultrasonic flowmeter
JP2012103040A (en) Anemometer device
KR100189166B1 (en) New liquid quantity measurement apparatus and measurement method
JP3322624B2 (en) Sound pressure measurement device
CA2301908A1 (en) Gas flow measurement device utilizing induced cyclic pressure wave
Shakkottai et al. Acoustic device and method for measuring gas densities
KR20000039377A (en) Method for measuring distance between sensors of ultrasonic flow meter
JP2002152889A (en) Ultrasonic wave sensor and electronic device using it
JPH02268229A (en) Pressure sensor and gas flowmeter using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4473535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

EXPY Cancellation because of completion of term