JP2005029888A - Superclean steel having excellent fatigue strength and cold workability - Google Patents

Superclean steel having excellent fatigue strength and cold workability Download PDF

Info

Publication number
JP2005029888A
JP2005029888A JP2004014693A JP2004014693A JP2005029888A JP 2005029888 A JP2005029888 A JP 2005029888A JP 2004014693 A JP2004014693 A JP 2004014693A JP 2004014693 A JP2004014693 A JP 2004014693A JP 2005029888 A JP2005029888 A JP 2005029888A
Authority
JP
Japan
Prior art keywords
steel
inclusions
sio
less
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004014693A
Other languages
Japanese (ja)
Other versions
JP4423050B2 (en
Inventor
Koichi Sakamoto
浩一 坂本
Tomoko Sugimura
朋子 杉村
Atsuhiko Yoshida
敦彦 吉田
Yoshio Fukuzaki
良雄 福▲崎▼
Sumie Suda
澄恵 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004014693A priority Critical patent/JP4423050B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to PCT/JP2004/018920 priority patent/WO2005071120A1/en
Priority to US10/564,061 priority patent/US7608130B2/en
Priority to KR1020067014779A priority patent/KR100825160B1/en
Priority to AT04807278T priority patent/ATE545716T1/en
Priority to CN2004800235139A priority patent/CN1836052B/en
Priority to EP04807278A priority patent/EP1707644B1/en
Publication of JP2005029888A publication Critical patent/JP2005029888A/en
Priority to US12/108,204 priority patent/US7615099B2/en
Application granted granted Critical
Publication of JP4423050B2 publication Critical patent/JP4423050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide superclean steel which is intended to be used for valve springs, suspension springs, fine steel wire or the like and exhibits performance exceeding that of the conventional material in cold workability and fatigue properties by controlling oxide inclusions in the steel. <P>SOLUTION: The superclean steel having excellent fatigue strength and cold workability contains by mass, 15 to 55% CaO, 20 to 70% SiO<SB>2</SB>, ≤35% Al<SB>2</SB>O<SB>3</SB>, ≤20% MgO, and 0.5 to 20% of one or more kinds selected from among Li<SB>2</SB>O, Na<SB>2</SB>O and K<SB>2</SB>O as oxide inclusions present in the steel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷間加工性と疲労特性に優れた高清浄度鋼に関し、特に高張力鋼線や極細鋼線、高強度弁ばね等としたときに優れた性能を発揮する高清浄度鋼に関するものである。   The present invention relates to a high cleanliness steel excellent in cold workability and fatigue characteristics, and particularly relates to a high cleanliness steel exhibiting excellent performance when used as a high-strength steel wire, ultrafine steel wire, high-strength valve spring, etc. Is.

冷間加工によって直径0.1〜0.5mm程度に伸線加工される鋼線や高い疲労特性が要求されるばね用鋼では、鋼材に含まれる硬質の非金属介在物は伸線性や疲労特性に顕著な悪影響を及ぼすので、可能な限り少なく抑えることが望ましい。こうした観点から上記の様な用途には、硬質の非金属介在物を極力低減した高清浄度鋼が用いられている。   In steel wires that are drawn to a diameter of about 0.1 to 0.5 mm by cold working and spring steels that require high fatigue properties, hard non-metallic inclusions contained in steel materials are drawn and fatigue properties. It is desirable to keep it as small as possible. From such a viewpoint, high cleanliness steel in which hard non-metallic inclusions are reduced as much as possible is used for the above-described applications.

他方、近年、排ガス低減や燃費向上を目的とする自動車の軽量化や高出力化の要望が高まってくるにつれて、エンジンやサスペンション等に用いられる弁ばねや懸架ばねは、ますます高応力設計が志向されている。そのため、ばね用鋼は更に高強度化・細径化していく傾向にあり、負荷応力はますます増大し、耐疲労特性や耐へたり性においても一段と優れたばね用鋼が求められている。特に、弁ばね用鋼にはより高い疲労特性が要求されている。   On the other hand, in recent years, as the demand for automobile weight reduction and higher output for the purpose of reducing exhaust gas and improving fuel consumption has increased, valve springs and suspension springs used in engines and suspensions are increasingly designed for high stress. Has been. For this reason, spring steel has a tendency to further increase in strength and diameter, load stress increases further, and spring steel having further improved fatigue resistance and sag resistance is demanded. In particular, higher fatigue properties are required for valve spring steel.

他方、タイヤコードに代表される極細鋼線についても、タイヤの軽量化を目的に更なる高強度化が求められており、最近では4000MPa級の強度を有するスチールコードも要求されている。それに伴って、冷間加工時に断線が発生し易くなるため、冷間加工性の向上も必要になってくる。   On the other hand, ultra-fine steel wires represented by tire cords are also required to have higher strength for the purpose of weight reduction of tires, and recently steel cords having a strength of 4000 MPa class are also required. Along with this, disconnection is likely to occur during cold working, and it is also necessary to improve cold workability.

一般に、これらの用途に用いられる鋼では、高強度化するにつれて非金属介在物に起因する断線や疲労折損が起こり易くなることから、その主原因となる硬質の非金属介在物量を極力低減すると共に、そのサイズを小形化する方向で多くの改良研究が進められている。例えば非特許文献1には、タイヤコード用鋼材に含まれるAl23やSiO2等の非延性介在物量を可及的に低減することが有効であること、また弁ばね鋼では、介在物を融点が1400〜1500℃程度以下のCaO−Al23−SiO2系低融点組成に制御すれば、疲労破壊の起点になり難いことが明らかにされている。 Generally, in steels used for these applications, wire breakage and fatigue breakage due to non-metallic inclusions are likely to occur as the strength is increased, and the amount of hard non-metallic inclusions that are the main cause is reduced as much as possible. Many improvements have been made in the direction of reducing the size. For example, in Non-Patent Document 1, it is effective to reduce the amount of non-ductile inclusions such as Al 2 O 3 and SiO 2 contained in the steel material for tire cords as much as possible. Is controlled to a CaO—Al 2 O 3 —SiO 2 low melting point composition having a melting point of about 1400 to 1500 ° C. or less, it has been clarified that it is difficult to become a starting point of fatigue fracture.

また特許文献1,2には、非金属介在物を冷間加工時に延伸または破壊され易くし、実質的に破断の原因とならない軟質なものにするための非金属介在物組成が開示されている。
(社)日本鉄鋼協会編「第126・127回西山記念技術講座」、社団法人日本鉄鋼協会出版、昭和63年11月14日、第145〜167頁 特公平6−74484号公報 特公平6−74485号公報
Patent Documents 1 and 2 disclose a non-metallic inclusion composition for making a non-metallic inclusion easy to be stretched or broken at the time of cold working and to be soft so as not to cause substantial breakage. .
The Japan Iron and Steel Institute edition, "126th and 127th Nishiyama Memorial Technology Course", Japan Iron and Steel Institute Publishing, November 14, 1988, pp. 145-167 Japanese Patent Publication No. 6-74484 Japanese Patent Publication No. 6-74485

しかし、前述した如く近年の弁ばねや懸架ばね、あるいは高性能タイヤコードに代表される極細鋼線などの分野では、従来の延長線上の改善手法で需要者の要望を満足させることはもはや困難となっており、従来手法を凌駕する性能向上対策を確立する必要に迫られている。   However, as mentioned above, in the fields of recent fine valve springs, suspension springs, and ultra-fine steel wires typified by high-performance tire cords, it is no longer possible to satisfy the demands of customers with the improvement methods on the conventional extension line. Therefore, there is an urgent need to establish performance improvement measures that surpass conventional methods.

本発明はこうした状況に着目してなされたものであって、その目的は、鋼中に含まれて疲労特性などに顕著な影響を及ぼす酸化物系介在物に注目し、熱延工程での延伸性を高め、介在物としてのサイズを可及的に小形化することにより、冷間加工性や疲労特性において従来材を凌駕する性能を発揮する高清浄度鋼を提供することにある。   The present invention has been made by paying attention to such a situation, and its purpose is to focus on oxide inclusions that are included in steel and have a remarkable effect on fatigue properties, etc., and stretch in the hot rolling process. It is an object of the present invention to provide a high cleanliness steel that exhibits performance superior to that of conventional materials in cold workability and fatigue characteristics by reducing the size of inclusions as much as possible.

上記課題を達成することのできた本発明に係る疲労強度および冷間加工性に優れた高清浄度鋼とは、鋼中に存在する酸化物系介在物が、CaO:15〜55%(質量%の意。以下、同じ)、SiO2:20〜70%、MgO:20%以下、Al23:35%以下であり、且つ、Li2O,Na2O,K2Oの1種以上:0.5〜20%を含有するところに特徴を有している。前記酸化物系介在物はLi2O/SiO2(質量比)が0.01〜0.5程度であることが推奨される。上記酸化物系介在物中に含まれるSiO2のより好ましい含有率は30%以上、45%未満、更に好ましくは40%以下である。 The high cleanliness steel excellent in fatigue strength and cold workability according to the present invention that has been able to achieve the above-mentioned problem is that oxide inclusions present in the steel are CaO: 15 to 55% (mass%) The same shall apply hereinafter), SiO 2 : 20 to 70%, MgO: 20% or less, Al 2 O 3 : 35% or less, and one or more of Li 2 O, Na 2 O, K 2 O : It is characterized by containing 0.5 to 20%. It is recommended that the oxide inclusions have a Li 2 O / SiO 2 (mass ratio) of about 0.01 to 0.5. More preferably the content of SiO 2 contained in the oxide inclusions is 30% or more and less than 45%, more preferably 40% or less.

また本発明は、上記の如く鋼内に存在する酸化物系介在物の成分組成を特定することによって、追って詳述する如く該介在物を軟質で高延性のものとし、熱延工程で分断して微細化させることにより、疲労破壊や伸線加工時に生じる折損の起点とならない様にしたところに最大の特徴を有するもので、鋼材自体の基本組成は特に制限されないが、弁ばねや懸架ばね、スチールコードなどの用途に適用して所望の強度特性を発揮させる上では、C:1.2%以下、Si:0.1〜4%、Mn:0.1〜2.0%、Al:0.005%以下を満たす鋼材が好ましい。該鋼材中には他の元素として、Cr,Ni,V,Nb,Mo,W,Cu,Tiよりなる群から選択される1種以上の元素を含むものであってもよく、残部はFeおよび不可避不純物であってもよい。   Further, the present invention specifies the component composition of oxide inclusions present in the steel as described above, thereby making the inclusions soft and highly ductile as will be described in detail later, and dividing them in the hot rolling step. By making them finer, they have the greatest feature in that they do not become the starting point of fatigue breakage or breakage that occurs during wire drawing. The basic composition of the steel material itself is not particularly limited, but valve springs and suspension springs, In order to exhibit desired strength characteristics by applying to uses such as steel cords, C: 1.2% or less, Si: 0.1 to 4%, Mn: 0.1 to 2.0%, Al: 0 A steel material satisfying 0.005% or less is preferable. The steel material may contain one or more elements selected from the group consisting of Cr, Ni, V, Nb, Mo, W, Cu, and Ti as other elements, with the balance being Fe and Inevitable impurities may be used.

酸化物系介在物を上記のようなものにすると、該酸化物系介在物を熱延工程でよく延伸し分断され易い軟質で低融点組成に制御することができ、酸化物系介在物を十分に微細・小形化することができる。そのため、疲労破壊や断線の起点となる粗大な硬質介在物を可及的に低減することにより、疲労特性や冷間加工性に優れた高清浄度鋼を提供できる。   When the oxide inclusions are as described above, the oxide inclusions can be controlled to a soft and low melting point composition that can be easily stretched and divided in the hot rolling step, and the oxide inclusions are sufficient. Can be miniaturized and miniaturized. Therefore, high cleanliness steel excellent in fatigue characteristics and cold workability can be provided by reducing as much as possible the coarse hard inclusions that are the starting points of fatigue failure and disconnection.

各種の鋼中に酸化物系介在物として存在するSiO2やAl23、CaO、MgOなどの個々の酸化物や複合酸化物が、疲労破壊や伸線加工時の折損を誘発する大きな原因になることは普く知られており、これら酸化物系介在物の成分組成を変えることで疲労特性などを改善する技術も、前掲の特許文献などを含めて多数提案されている。しかし、前述した如き従来の改質技術の延長線上の改善手法では、近年の需要者の要望を満足できなくなっていることも事実である。そこで本発明者らは、鋼中に不可避的に混入してくる酸化物系介在物組成の範疇で改質を試みるのではなく、鋼中に第三成分を積極添加することで上記酸化物系介在物を改質すべく、様々の添加材について研究を重ねた。 A major cause of individual oxides and complex oxides such as SiO 2 , Al 2 O 3 , CaO, and MgO existing as oxide inclusions in various steels, causing fatigue fracture and breakage during wire drawing It is well known that there are many techniques for improving fatigue characteristics and the like by changing the component composition of these oxide inclusions, including the above-mentioned patent documents. However, it is also a fact that the improvement method on the extension line of the conventional reforming technology as described above cannot satisfy the demands of the customers in recent years. Therefore, the present inventors do not attempt modification in the category of oxide-based inclusion composition inevitably mixed in the steel, but actively add a third component into the steel so that the above-mentioned oxide-based inclusions are added. In order to improve the inclusions, various additives were studied.

その結果、鋼中に殆ど不可避的といえるほどに存在するSiO2,Al23,CaO,MgOを有効に活用すると共に、これらに適量のLi2O,Na2O,K2Oの1種以上を積極的に含有させると、鋼中に生成する酸化物系介在物が従来の酸化物系介在物を凌駕する高延性のものになること、そして生成する高延性の酸化物系介在物は熱延工程で容易に引き伸ばされて微細に分断され、熱延鋼材としては酸化物系介在物が微細かつ均一に分散したものとなり、疲労特性や伸線加工性が飛躍的に改善されることを見出し、上記本発明に想到したものである。 As a result, SiO 2 , Al 2 O 3 , CaO, and MgO that are almost inevitable in the steel are effectively used, and an appropriate amount of Li 2 O, Na 2 O, and K 2 O is added to these. When the seeds or more are actively contained, the oxide inclusions generated in the steel become highly ductile that surpasses the conventional oxide inclusions, and the high ductility oxide inclusions generated Is easily stretched in the hot-rolling process and finely divided, and the oxide inclusions are finely and uniformly dispersed as hot-rolled steel, and the fatigue characteristics and wire drawing workability are dramatically improved. And the present invention has been conceived.

以下、本発明において酸化物系介在物を構成する各酸化物の含有率を定めた理由などを主体にして、詳細に説明していく。   Hereinafter, the present invention will be described in detail mainly on the reason for determining the content of each oxide constituting the oxide inclusions.

CaO:15〜55%
CaOは、酸化物系介在物を鋼材の熱延工程で微細化し易い軟質のものにするうえで必須の成分であり、CaO含量が不足すると高SiO2系やSiO2・Al23系の硬質介在物となって熱延工程で微細化し難く、疲労特性や伸線加工性を劣化させる大きな原因になる。従って、CaOは少なくとも15%以上含有させねばならず、好ましくは20%以上、より好ましくは25%以上含有させることが望ましい。しかし、酸化物系介在物中のCaO含量が多くなり過ぎると、該介在物の熱間変形能が低下すると共に、硬質の高CaO系介在物が生成して破壊の起点になる恐れが生じてくるので、好ましくは50%以下、より好ましくは45%以下に抑えることが望ましい。
CaO: 15-55%
CaO is an essential component for making oxide inclusions soft and easy to refine in the hot rolling process of steel materials. If the CaO content is insufficient, high SiO 2 type or SiO 2 · Al 2 O 3 type It becomes a hard inclusion and is difficult to be miniaturized in the hot rolling process, which is a major cause of deterioration of fatigue characteristics and wire drawing workability. Therefore, CaO must be contained at least 15%, preferably 20% or more, more preferably 25% or more. However, if the CaO content in the oxide inclusions increases too much, the hot deformability of the inclusions decreases, and hard high CaO inclusions may be generated and become the starting point of destruction. Therefore, it is preferable to keep it at 50% or less, more preferably 45% or less.

SiO2:20〜70%
SiO2は、CaOやAl23等と共に低融点で軟質の酸化物系介在物を生成させる上で必須の成分であり、20%未満では、酸化物系介在物がCaOやAl23を主体とする大形もしくは硬質の介在物となり、破壊の起点となる。従って20%以上含有させることが必須であり、より好ましくは30%以上含有させることが望ましい。但し、SiO2含量が多過ぎると、酸化物系介在物がSiO2を主体とする高融点で且つ硬質の介在物になり、断線や破壊の起点になる可能性が高まる。こうした傾向は、SiO2含量が70%を超えると極めて顕著に表われてくるので、SiO2含量は70%以下に抑えることが極めて重要となる。より好ましくは65%以下、更に好ましくは45%未満、特に好ましくは40%以下に抑えるのがよい。
SiO 2 : 20 to 70%
SiO 2 is an essential component for producing soft oxide inclusions having a low melting point together with CaO, Al 2 O 3 and the like, and if it is less than 20%, the oxide inclusions are CaO or Al 2 O 3. It becomes a large or hard inclusion mainly composed of and becomes the starting point of destruction. Therefore, it is essential to contain 20% or more, more preferably 30% or more. However, if the SiO 2 content is too large, the oxide inclusions become high melting point and hard inclusions mainly composed of SiO 2 , and the possibility of becoming a starting point of disconnection or destruction increases. Such a tendency appears remarkably when the SiO 2 content exceeds 70%. Therefore, it is extremely important to keep the SiO 2 content at 70% or less. More preferably, it is 65% or less, more preferably less than 45%, and particularly preferably 40% or less.

Al23:35%以下
Al23は、軟質介在物の形成に必須の成分という訳ではなく、CaOやSiO2、更には本発明でその含有を必須とするLi2O,Na2O,K2O含量などを含めて、酸化物系介在物の適正な組成制御によっては、実質的にAl23を含まないものであっても構わない。しかし適量のAl23を含有させると、酸化物系介在物はより低融点で且つ軟質のものになり易くなるので、好ましくは5%程度以上、より好ましくは10%以上含有させることが望ましい。しかし、酸化物系介在物中のAl23が多過ぎると、硬質で微細化し難いアルミナ系介在物となり、やはり熱延工程で微細化し難いものになって破壊や折損の起点となるので、多くとも35%以下に抑えるべきであり、好ましくは30%程度以下に抑えるのがよい。
Al 2 O 3 : 35% or less Al 2 O 3 is not an essential component for the formation of soft inclusions, but CaO and SiO 2 , and further Li 2 O and Na 2 that are essential in the present invention. Depending on the proper composition control of the oxide inclusions, including the O, K 2 O content, etc., it may be substantially free of Al 2 O 3 . However, if an appropriate amount of Al 2 O 3 is contained, the oxide inclusions tend to be softer with a lower melting point, and therefore it is preferable to contain about 5% or more, more preferably 10% or more. . However, if there is too much Al 2 O 3 in the oxide inclusions, it becomes hard and difficult to miniaturize alumina inclusions, which also becomes difficult to refine in the hot rolling process, and it becomes the starting point of destruction and breakage, At most, it should be suppressed to 35% or less, preferably about 30% or less.

MgO:20%以下
MgOは、MgO・SiO2系硬質介在物の生成源となって、破壊や折損の原因になり易く、こうした障害はMgO含量が20%を超えると顕著に表われてくる。よって、こうした障害を生じさせなくするには20%以下に抑えることが望ましい。より好ましくは15%以下である。
MgO: 20% or less MgO is a generation source of MgO.SiO 2 hard inclusions and easily causes breakage or breakage. Such an obstacle appears remarkably when the MgO content exceeds 20%. Therefore, it is desirable to suppress it to 20% or less in order not to cause such a failure. More preferably, it is 15% or less.

Li2O,Na2O,K2Oの1種以上の総和:0.5〜20%
Li2O,Na2O,K2Oは、本発明で最も特異的で且つ重要な成分であり、生成する複合酸化物系介在物の融点と粘性を低下させるうえで極めて重要な作用を発揮する。そして、酸化物系介在物の低融点化と低粘化を進めて介在物の微細化を増進し、本発明で意図するレベルの疲労特性向上効果を確保するには、Li2O,Na2O,K2Oの1種以上を、合計で少なくとも0.5%以上、より好ましくは1%以上、更に好ましくは2%以上含有させることが望ましい。しかし、Li2O,Na2O,K2Oの1種以上の合計が20%を超えると、酸化物系介在物が低融点化し過ぎて耐火物に耐する溶損性が顕著に高まり、使用されている内張り耐火物の溶出に由来する硬質介在物量が増大し、疲労特性や冷間加工性を却って低下させる。従って、酸化物系介在物中のLi2O,Na2O,K2Oの1種以上の総和は20%以下に抑えねばならず、好ましくは15%以下に抑えるのがよい。
Total of one or more of Li 2 O, Na 2 O, K 2 O: 0.5 to 20%
Li 2 O, Na 2 O, and K 2 O are the most specific and important components in the present invention, and exhibit extremely important actions for lowering the melting point and viscosity of the complex oxide inclusions to be produced. To do. In order to increase the refinement of inclusions by lowering the melting point and lowering the viscosity of oxide inclusions, and to ensure the fatigue property improvement effect at the level intended in the present invention, Li 2 O, Na 2 It is desirable to contain one or more of O and K 2 O in total at least 0.5% or more, more preferably 1% or more, and even more preferably 2% or more. However, when the total of one or more of Li 2 O, Na 2 O, and K 2 O exceeds 20%, the oxide inclusions are excessively lowered in melting point, and the resistance to refractories is significantly increased. The amount of hard inclusions derived from the elution of the lining refractories used increases, and the fatigue characteristics and cold workability are reduced. Therefore, the total of one or more of Li 2 O, Na 2 O, and K 2 O in the oxide inclusions must be suppressed to 20% or less, preferably 15% or less.

Li2O,Na2O,K2Oは、前述した如くどれも生成する複合酸化物系介在物の融点と粘性を低下させ、最終的に微細化する上で極めて重要な作用を発揮する。しかし、これらは等価ではなく、特に脱酸力の強いLiを酸化物系介在物生成起源として積極添加することにより、酸化物系介在物中に適量のLi2O含有させると効果が高められる。本発明者らが別途確認したところによると、Li2Oはガラス質の酸化物系介在物を結晶化させ易くする作用も有しており、この作用も酸化物系介在物の微細化を促進し、疲労特性の向上に顕著な影響を及ぼしていることが確認された。即ち、前記成分系の酸化物系介在物中に適量のLi2Oを含有させると、当該酸化物系介在物は結晶化し易くなり、ガラス質の酸化物系介在物中に微細な結晶を多数析出させる。その結果、熱延工程で酸化物系介在物に加わる負荷が、ガラス質と結晶質の境界部に集中して該介在物の分断が更に促進され、延いては、熱延後の鋼に含まれる酸化物系介在物は一段と小形化される。Li2O,Na2O,K2O単独添加でもその効果は大きいが、Na2O,K2Oの存在下で更にLi2Oが加わると、より一層その効果は向上する。こうしたことも相乗的に好結果をもたらし、疲労特性等の向上に寄与しているものと考えられる。 As described above, Li 2 O, Na 2 O, and K 2 O exhibit a very important effect in reducing the melting point and viscosity of the complex oxide inclusions that are all formed, and finally miniaturizing them. However, these are not equivalent, and the effect is enhanced when an appropriate amount of Li 2 O is contained in the oxide inclusions by positively adding Li having a strong deoxidizing power as an origin of oxide inclusions. According to a separate confirmation by the present inventors, Li 2 O also has an effect of facilitating crystallization of glassy oxide inclusions, which also promotes refinement of oxide inclusions. As a result, it was confirmed that the fatigue characteristics were significantly affected. That is, when an appropriate amount of Li 2 O is included in the component oxide inclusions, the oxide inclusions are easily crystallized, and a large number of fine crystals are formed in the glassy oxide inclusions. Precipitate. As a result, the load applied to the oxide inclusions in the hot rolling process is concentrated at the boundary between the vitreous and the crystalline, and the separation of the inclusions is further promoted. The oxide inclusions to be produced are further miniaturized. Even if Li 2 O, Na 2 O, or K 2 O alone is added, the effect is great. However, when Li 2 O is further added in the presence of Na 2 O, K 2 O, the effect is further improved. This is also considered to be synergistically positive and contribute to improving fatigue properties.

更に加えてLiは強い脱酸力を有しており、鋼中に存在する溶存酸素量の低減にも寄与するので、凝固時に析出する高SiO2系介在物の生成と粗大化を抑制する作用も発揮する。また、溶存するLi,Na,Kの作用によって凝固時にSiO2−Li2O,SiO2−Na2O,SiO2−K2Oおよびそれらの混合体として生成することで、高SiO2系介在物の生成を抑制する作用もある。 In addition, Li has a strong deoxidizing power and contributes to the reduction of the amount of dissolved oxygen present in the steel, so it suppresses the formation and coarsening of high SiO 2 inclusions that precipitate during solidification. Also demonstrates. Further, SiO 2 -Li 2 O during solidification by the action of dissolved to Li, Na, K, by generating a SiO 2 -Na 2 O, SiO 2 -K 2 O and mixtures thereof, high SiO 2 based inclusions It also has the effect of suppressing the production of objects.

Liを必須とする場合、酸化物系介在物中のLi2OとSiO2の質量比(Li2O/SiO2)を所定の範囲とすることが推奨される。Li2Oは複合酸化物の融点と粘性を低下させ、複合酸化物系介在物の微細化を促進する上で重要であり、特にネットワークを形成して粘性を上げてしまうSiO2との比で考えることが重要だからである。Li2OをSiO2に比べて十分に多くすることにより、複合酸化物系介在物の融点及び粘性の低下効果をより一層発揮することができ、介在物の微細化がより促進され、SiO2系の大型介在物を起点とする破壊をより確実に防止できる。なおLi2OをSiO2に比べて多くし過ぎても、却って複合酸化物系介在物の融点及び粘性が低下し、耐火物を溶損し、該耐火物に由来する硬質介在物が増大して疲労特性や冷間加工性が低下する。以上の観点から、Liを必須とする場合、Li2OとSiO2の質量比(Li2O/SiO2)は、例えば0.01以上程度(好ましくは0.02以上程度、さらに好ましくは0.03以上程度)、0.5以下程度(好ましくは0.4以下程度)とするのが望ましい。 When Li is essential, it is recommended that the mass ratio of Li 2 O to SiO 2 (Li 2 O / SiO 2 ) in the oxide inclusions be in a predetermined range. Li 2 O is important in reducing the melting point and viscosity of the complex oxide and promoting the refinement of complex oxide inclusions, especially in the ratio with SiO 2 that forms a network and increases the viscosity. Because it is important to think. By sufficiently large as compared with li 2 O to SiO 2, it is possible to further exhibit the effect of lowering the melting point and viscosity of the composite oxide inclusions, fine inclusions are promoted, SiO 2 Breakage starting from large inclusions in the system can be prevented more reliably. Even if Li 2 O is too much compared with SiO 2 , the melting point and viscosity of the composite oxide inclusions are lowered, the refractory is melted, and hard inclusions derived from the refractory increase. Fatigue properties and cold workability are reduced. From the above viewpoint, when Li is essential, the mass ratio of Li 2 O to SiO 2 (Li 2 O / SiO 2 ) is, for example, about 0.01 (preferably about 0.02 or more, more preferably 0). 0.03 or more) and 0.5 or less (preferably about 0.4 or less).

なお本発明では、酸化物系介在物中に他の酸化物としてMnOが混入してくることもあるが、MnOは、それ自身、疲労破壊や折損の原因になることは少なく、しかもCa,Al,Liの如き強脱酸性元素の添加により還元され、酸化物系介在物中の含有量としては減少するので、その含有量は特に制限されない。   In the present invention, MnO may be mixed in the oxide inclusions as other oxides. However, MnO itself is less likely to cause fatigue fracture or breakage, and Ca, Al , Li is reduced by the addition of a strong deacidifying element such as Li, and the content in the oxide inclusions is reduced, so the content is not particularly limited.

ところで特開2002−167647号公報には、Si脱酸鋼を対象とする疲労特性の改善技術が開示されており、この公報には、Si脱酸鋼に含まれる酸化物系介在物中のSiO2含量を45%以上に規定すると共に、アルカリ金属R(R=Na,K,Li)の酸化物(R2O)を0.5〜10%含有させることを定めている。 By the way, JP 2002-167647 A discloses a technique for improving fatigue properties for Si deoxidized steel, and this publication discloses SiO in oxide inclusions contained in Si deoxidized steel. 2 The content is specified to be 45% or more, and 0.5 to 10% of an oxide (R 2 O) of alkali metal R (R = Na, K, Li) is specified.

しかし該公報の段落0013には、「SiO2系介在物にR2O(R:Na,K,Li)が含まれている状態は、……SiO2にCaO,Al23およびMgOが含まれている状態に比較して溶鋼との反応性が高くなるため、界面エネルギーが低くなり、その効果により、R2Oが含まれているSiO2系介在物は微細化が可能となる」と明記され、また請求項1には、「45%以上のSiO2にアルカリ金属Rの酸化物を0.5〜10%含有させること」、更に実施例でも、「約50〜80%もの高SiO2系介在物にNa2Oを数%含有させること」が記載されていることからも明らかな様に、「高SiO2系介在物にアルカリ金属Rの酸化物を0.5〜10%含有させる」という基本思想である。またこの公報では、Li2O,K2O,Na2Oはほぼ等価であるとの前提に立って、実験では最も安価で入手の容易なNa2Oを用いた例を挙げているが、これらの中でも特に脱酸力の強いLi2Oについての具体的な作用は全く認識されていない。 However, paragraph 0013 of the publication states that “the state in which R 2 O (R: Na, K, Li) is contained in the SiO 2 -based inclusions is that ... SiO 2 contains CaO, Al 2 O 3 and MgO. Since the reactivity with molten steel is higher than in the contained state, the interfacial energy is lowered, and the effect enables the SiO 2 inclusions containing R 2 O to be refined. ” In addition, in claim 1, "addition of 0.5 to 10% of an oxide of an alkali metal R in 45% or more of SiO 2 ", and in an example, "as high as about 50 to 80%" as is apparent from the fact that it is contained several% of Na 2 O to SiO 2 inclusions "is described, an oxide of an alkali metal R to" high SiO 2 inclusions 0.5% to 10% It is the basic idea of “contain”. In this publication, on the premise that Li 2 O, K 2 O, and Na 2 O are almost equivalent, an example using Na 2 O that is the cheapest and easy to obtain in the experiment is given. Among these, the specific action of Li 2 O having particularly strong deoxidizing power is not recognized at all.

これに対し本発明では、前掲の如く高SiO2系介在物は断線や破断の主原因になるため極力排除すべきものと考えており、よって酸化物系介在物の基本組成を、CaO:15〜55%、SiO2:20〜70%(好ましくは45%未満、更に好ましくは40%以下)、Al23:35%以下、MgO:20%以下と定めた上で、且つLi2O,Na2O,K2Oを適量含有させ、前述した如くこれらの効果を相乗的に発揮させるものである。従って、本願発明と特開2002−167647号公報に開示された発明とは、技術思想が異なる。 On the other hand, in the present invention, as described above, high SiO 2 inclusions are considered to be excluded as much as possible because they are the main cause of disconnection and breakage. Therefore, the basic composition of oxide inclusions is CaO: 15 to 15 55%, SiO 2 : 20 to 70% (preferably less than 45%, more preferably 40% or less), Al 2 O 3 : 35% or less, MgO: 20% or less, and Li 2 O, An appropriate amount of Na 2 O and K 2 O is contained to synergistically exert these effects as described above. Therefore, the technical idea is different between the present invention and the invention disclosed in Japanese Patent Laid-Open No. 2002-167647.

また本出願人は、Liを用いた鋼中介在物の組成制御技術として、先に特許第2654099号や特開平2−15111号公報を提案している。このうち特許第2654099号は、「Si系脱酸剤とアルカリ金属化合物の混合物を使用することによって脱酸生成物をアルカリ金属含有組成にコントロールする」もので、アルカリ金属化合物としては、化学的ならびに熱的安定性の比較的高いケイ酸塩(Na2SiO3,K2SiO3)やフッ化物(LiF,NaF)の使用を推奨している。また上記特開平2−15111号公報では、「Li,NaおよびKよりなる群から選択される1種または2種以上を10〜1質量%含有すると共に(但し、全量合金化されているものとする)、Siを60〜99%含む精錬用脱酸材」を使用することによって介在物を変形容易なものに形態制御し、疲労特性を改善する技術を開示した。 The present applicant has previously proposed Japanese Patent No. 2654099 and Japanese Patent Laid-Open No. 2-15111 as a composition control technique for inclusions in steel using Li. Among them, Japanese Patent No. 2654099 “controls a deoxidation product to an alkali metal-containing composition by using a mixture of a Si-based deoxidizing agent and an alkali metal compound”. The use of silicates (Na 2 SiO 3 , K 2 SiO 3 ) and fluorides (LiF, NaF), which have relatively high thermal stability, is recommended. Further, in the above-mentioned Japanese Patent Application Laid-Open No. 2-15111, “contains 10 to 1% by mass of one or more selected from the group consisting of Li, Na and K (provided that all of them are alloyed) ), A technology for improving fatigue characteristics by controlling the form of inclusions to be easily deformable by using a deoxidizing material for refining containing 60 to 99% of Si.

ところが本発明に至る経緯の中で行ったラボ実験によると、上記特許第2654099号に開示したケイ酸塩やフッ化物+Fe・Si合金添加では、所望量のLiが溶鋼中に歩留りにくく、その結果として、本発明で意図する介在物組成に制御し難い。   However, according to laboratory experiments conducted in the course of the present invention, the addition of the silicate and fluoride + Fe · Si alloy disclosed in the above-mentioned Patent No. 2654099 makes it difficult for the desired amount of Li to be retained in the molten steel. As such, it is difficult to control the inclusion composition intended in the present invention.

また、特開平2−15111号公報に開示した10〜1%Li・Si合金は、前者に比べると溶鋼への歩留りは良好であったが、所定量のLi2Oを含む酸化物系介在物の全介在物に対する比率が少なく、本発明で意図する様な組成制御は行えなかった。しかも10〜1%Li・Si合金は、プリメルト法で製造する際の液相線温度が高いためLiが蒸発し易く、Li歩留りが悪いためコスト高になる。 Further, the 10-1% Li · Si alloy disclosed in Japanese Patent Laid-Open No. 2-15111 has a better yield to molten steel than the former, but an oxide inclusion containing a predetermined amount of Li 2 O. Therefore, the composition control as intended in the present invention could not be performed. Moreover, the 10% to 1% Li · Si alloy has a high liquidus temperature when produced by the premelt method, so that Li is liable to evaporate, and the Li yield is poor, resulting in high costs.

従って本発明でLiを活用するに当っては、Li−Si系状態図の組成域でプリメルトが比較的容易であり、しかも、Liが金属間化合物として存在するためLi活量が低く、溶鋼に添加したときにも爆発的な蒸発ロスを起こさない様にするため、液相線が比較的低く、その組成域にLi,Siからなる金属間化合物が多数存在する組成として「Li:11〜50%、残部Siと不可避不純物」のものを選択使用することが望ましい。この様な組成のプリメルト体を予め製造しておき、これを溶鋼に添加すれば、所定量のLiを鋼中に容易に歩留らせることができ、本発明で意図する所定の酸化物系介在物組成に制御することができる。また、上述したLi-Si合金「Li:11〜50%、残部Siと不可避不純物」に、必要に応じてCa,Mg,Na,Kなどを配合もしくはプリメルトしたものであっても良い。   Therefore, in utilizing Li in the present invention, pre-melting is relatively easy in the composition range of the Li—Si phase diagram, and since Li is present as an intermetallic compound, the Li activity is low, so In order to prevent explosive evaporation loss even when it is added, the liquidus is relatively low, and a composition in which a large number of intermetallic compounds composed of Li and Si exist in its composition range is “Li: 11 to 50 %, Balance Si and inevitable impurities "is preferably used. If a premelt body having such a composition is manufactured in advance and added to molten steel, a predetermined amount of Li can be easily produced in the steel, and a predetermined oxide system intended by the present invention is used. The inclusion composition can be controlled. Further, the above-described Li—Si alloy “Li: 11 to 50%, remaining Si and inevitable impurities” may be blended or premelted with Ca, Mg, Na, K or the like as necessary.

Li,Na,K源としては、炭酸塩、すなわちLi2CO3,Na2CO3,K2CO3を使用し、これにCaやMg合金を混合したものであっても所定の歩留りが得られるため、これらを用いても構わない。またスラグ中にこれらの酸化物を添加しておくと歩留りは更に向上する。 As the Li, Na, and K sources, carbonates, that is, Li 2 CO 3 , Na 2 CO 3 , and K 2 CO 3 are used, and a predetermined yield can be obtained even if these are mixed with Ca or Mg alloy. Therefore, these may be used. If these oxides are added to the slag, the yield is further improved.

上記の様に本発明では、鋼中に含まれる酸化物系介在物の組成を適切に制御することにより該介在物を低融点・低粘性のものとし、熱延工程で微細化し得る様にすることで疲労特性や伸線加工性を高めたところに特徴を有するもので、鋼自体の成分組成は特に制限されないが、前述した酸化物系介在物の組成を満足させるには、鋼中のSi含量を0.1%以上に、またLi,Na,K,Mg,Ca,Al含量をトータル(溶存濃度+介在物中の含量)で1〜100ppmレベルに制御することが望ましい。   As described above, in the present invention, by appropriately controlling the composition of oxide inclusions contained in the steel, the inclusions have a low melting point and low viscosity, and can be refined in a hot rolling process. This is characterized in that the fatigue characteristics and wire drawing workability are improved, and the component composition of the steel itself is not particularly limited, but in order to satisfy the composition of the oxide inclusions described above, It is desirable to control the content to 0.1% or more, and to control the Li, Na, K, Mg, Ca, Al content to a level of 1 to 100 ppm in total (dissolved concentration + content in inclusions).

また、本発明が意図する前掲の高張力鋼線や極細鋼線、高強度弁ばね等としての用途に適用するには、C:1.2%以下、Si:0.1〜4%、Mn:0.1〜2.0%、Al:0.005%以下となる鋼が好ましく、また必要により物性向上元素としてCr,Ni,V,Nb,Mo,W,Cu,Tiなどの1種以上を含むものであってもよく、残部はFeおよび不可避不純物であってもよい。これら追加の元素の好ましい含有率は、Cr:0.01〜3.0%,Ni:0.05〜1.0%,V:0.005〜0.5%,Nb:0.005〜0.10%,Mo:0.01〜1%,W:0.01〜1.0%,Cu:0.05〜2%,Ti:0.005〜0.06%である。   In addition, in order to apply to the use as the above-described high-tensile steel wire, ultrafine steel wire, high-strength valve spring and the like intended by the present invention, C: 1.2% or less, Si: 0.1-4%, Mn : 0.1 to 2.0%, Al: 0.005% or less steel is preferable, and if necessary, one or more of Cr, Ni, V, Nb, Mo, W, Cu, Ti, etc. as physical property improving elements The balance may be Fe and inevitable impurities. Preferable contents of these additional elements are Cr: 0.01 to 3.0%, Ni: 0.05 to 1.0%, V: 0.005 to 0.5%, Nb: 0.005 to 0 10%, Mo: 0.01 to 1%, W: 0.01 to 1.0%, Cu: 0.05 to 2%, Ti: 0.005 to 0.06%.

なお、好ましいC含量を1.2%以下としたのは、高強度鋼線(C含量:約1.1%レベル)から極細軟鋼線材(C含量:約0.01%レベル)までの応用を意図したもので、1.2%を超える高炭素鋼になると過度に硬質化すると共に加工性も低下し、実用的でなくなるからである。尚、本発明の特徴が特に高強度鋼線を対象として有効に発揮されることを考慮すると、C含量の好ましい下限は0.2%、より好ましくは0.3%、更に好ましくは0.4%以上である。   The preferable C content is set to 1.2% or less for applications from high-strength steel wire (C content: about 1.1% level) to extra fine mild steel wire (C content: about 0.01% level). The intention is that when the carbon content exceeds 1.2%, the steel is excessively hardened and the workability is lowered, which makes it impractical. In consideration of the fact that the characteristics of the present invention are effectively exhibited particularly for high-strength steel wires, the preferable lower limit of the C content is 0.2%, more preferably 0.3%, and still more preferably 0.4. % Or more.

また前述した組成の酸化物系介在物を確保するには、鋼中のSi,Mn含量を各々0.1%以上とすべきであるが、これらの含有量が多過ぎると鋼が脆化してくるので、Siは4.0%以下に、Mnは2.0%以下に夫々抑えるのがよい。Alは、前述した如く酸化物系介在物の組成制御を行うため積極的に含有させることも可能であるが、多過ぎると硬質のアルミナ系介在物量が増大して清浄度の低下に繋がるので、0.005%以下に抑えるべきである。なおCaは溶鋼中に殆ど溶解せず、溶製時に殆ど全てが酸化物や硫化物などとしてスラグに移行し、残部は複合酸化物として残存するだけであるので、鋼中の含有量としては殆ど無視できる。   Further, in order to secure the oxide inclusions having the above-described composition, the Si and Mn contents in the steel should be 0.1% or more, respectively, but if these contents are too large, the steel becomes brittle. Therefore, it is preferable to suppress Si to 4.0% or less and Mn to 2.0% or less. Al can be positively contained to control the composition of oxide inclusions as described above, but if too much, the amount of hard alumina inclusions increases, leading to a decrease in cleanliness. It should be kept below 0.005%. Since Ca hardly dissolves in molten steel, almost all of it moves to slag as oxides and sulfides at the time of melting, and the remainder only remains as a composite oxide. Can be ignored.

かくして得られる本発明の高清浄度鋼は、特に不純物として存在する酸化物系介在物が低融点・低粘性のものに組成制御されたもので、熱延工程で引き伸ばされて微細化されているので、これらが疲労破壊源や伸線加工時の折損源になることはなく、従ってこの清浄度鋼は卓越した伸線加工性と疲労特性を備えたものとなる。よってこの清浄度鋼は、高張力鋼線や極細鋼線、高強度弁ばね用鋼などして幅広く有効に活用できる。   The high cleanliness steel of the present invention thus obtained is a composition whose oxide inclusions present as impurities are controlled to have a low melting point and low viscosity, and are drawn and refined in the hot rolling process. Therefore, they do not become sources of fatigue failure or breakage during wire drawing, and therefore this clean steel has excellent wire drawing workability and fatigue characteristics. Therefore, this cleanliness steel can be used effectively in a wide range of applications such as high-tensile steel wire, ultrafine steel wire, and high-strength valve spring steel.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実験例
実験は、90トンおよび250トン実機(又は実験室レベル)で行った。すなわち、実機では転炉で溶製した溶鋼を取鍋に出鋼し(実験室では、転炉から出鋼される溶鋼を模擬した500kgの溶鋼を溶製し)、各種のフラックスを添加して成分調整、電極加熱、アルゴンバブリングを実施し、スラグ精錬を実施した。なおスラグ精錬(溶鋼処理)では、処理中に、30%Li−70%Si、Ca−Siワイヤ、およびLi2CO3,Na2CO3,K2CO3とCaワイヤ、Mgワイヤなどとの混合体などの添加も行った。精錬終了後、該溶鋼を鋳造した(実験室では、実機と同等の冷却速度が得られる鋳型に鋳造した)。得られた鋼塊を鍛造し、熱間圧延して直径5.5mmの鋼線材とした。また比較材として、同様のプロセスで従来品相当材を試作し評価した。また鋼成分としては、ばね鋼成分とスチールコード成分について実施した。
Experimental Examples Experiments were performed on 90 ton and 250 ton real machines (or laboratory level). That is, in the actual machine, the molten steel melted in the converter is put into a ladle (in the laboratory, 500 kg of molten steel simulating the molten steel discharged from the converter is melted), and various fluxes are added. Component adjustment, electrode heating, and argon bubbling were performed, and slag refining was performed. In the slag refining (molten steel treatment), during the treatment, 30% Li-70% Si, Ca—Si wire, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 and Ca wire, Mg wire, etc. Addition of a mixture and the like was also performed. After the refining, the molten steel was cast (in the laboratory, it was cast into a mold capable of obtaining a cooling rate equivalent to that of the actual machine). The obtained steel ingot was forged and hot-rolled to obtain a steel wire having a diameter of 5.5 mm. As a comparative material, a material equivalent to a conventional product was prototyped and evaluated in the same process. As steel components, spring steel components and steel cord components were used.

評価は、各鋼線材におけるL断面の介在物の顕微鏡観察と組成調査を行うと共に、各鋼線材を酸溶解して硬質介在物の組成、個数、サイズを調査する一方、ばね用鋼については回転曲げ疲労試験、スチールコード用鋼については伸線試験による評価試験を行った。   In the evaluation, the L-section inclusions in each steel wire are observed with a microscope and the composition is investigated, and each steel wire is acid-dissolved to investigate the composition, number and size of hard inclusions, while the spring steel is rotated. The bending fatigue test and steel cord steel were evaluated by a wire drawing test.

(鋼線材中の介在物)
長さ80mmの鋼線材(直径5.5mm)のL断面を研磨し、介在物の厚み、長さ、個数および介在物組成を求めた。
(Inclusions in steel wire)
The L section of a steel wire rod (diameter: 5.5 mm) having a length of 80 mm was polished, and the thickness, length, number, and composition of inclusions were determined.

(長さ20μm以上の硬質介在物個数)
対象となる熱延鋼線材1500gを約100g毎に切断し、表面のスケールを除去した後、約90℃の温硝酸溶液に入れて酸溶解する。この溶液を篩目20μmのフィルターで濾過し、濾紙上に抽出された介在物をEPMAで分析すると共に長さを測定することにより、最大長さが20μm以上となっている硬質介在物(酸化物系介在物、例えばアルミナ、ジルコニアなど)の個数を計測し、鋼50gあたりの個数を算出した。
(Number of hard inclusions with a length of 20 μm or more)
The target hot-rolled steel wire 1500 g is cut at intervals of about 100 g, and after removing the surface scale, it is placed in a warm nitric acid solution at about 90 ° C. and dissolved in acid. This solution is filtered through a filter having a mesh size of 20 μm, and the inclusions extracted on the filter paper are analyzed by EPMA and the length is measured to obtain a hard inclusion (oxide) having a maximum length of 20 μm or more. The number of system inclusions (for example, alumina, zirconia, etc.) was measured, and the number per 50 g of steel was calculated.

(疲労強度)
各熱延鋼線材(直径5.5mm)について、皮削り(SV)→低温焼鈍(LA)→冷間線引加工(直径4.0mm)→オイルテンパー[油焼入れと鉛浴(約450℃)焼戻し連続工程]→簡易歪取焼鈍(ブルーイング:約400℃)→ショットピーニング→歪取焼鈍を行った後、試験材として直径4.0mm×650mmのワイヤを採取し、中村式回転曲げ試験機を用いて、公称応力880MPa、回転数:4000〜5000rpm、中止回数:2×107回で試験を行う。そして、破断したもののうち介在物折損したものについて、下記式により破断率を求めた。また、破断面に現れた介在物の組成をEPMAによって調べると共に、最大の介在物のサイズ(幅)を測定した。
破断率=[介在物折損本数/(介在物折損+所定回数に達し中止した本数)]
×100(%)
(Fatigue strength)
For each hot-rolled steel wire (diameter 5.5 mm), skin cutting (SV) → low temperature annealing (LA) → cold drawing (diameter 4.0 mm) → oil temper [oil quenching and lead bath (about 450 ° C.) Continuous tempering process] → Simple strain relief annealing (Bluing: approx. 400 ° C.) → Shot peening → Strain relief annealing, then a 4.0mm x 650mm diameter wire is taken as a test material, and Nakamura rotary bending tester The test is performed at a nominal stress of 880 MPa, a rotational speed of 4000 to 5000 rpm, and a number of cancellations of 2 × 10 7 times. And the fracture | rupture rate was calculated | required by the following formula about what the inclusion broke among the fracture | ruptured. Further, the composition of inclusions appearing on the fracture surface was examined by EPMA, and the maximum inclusion size (width) was measured.
Fracture rate = [inclusion breakage number / (inclusion breakage + number of breaks after reaching a predetermined number of times)]
× 100 (%)

(伸線加工性)
伸線加工性の評価には試験伸線機を用いた。即ち、熱間圧延後の線材(直径5.5mm)を直径2.5mmまで1次伸線し、熱処理(空気パテンティング)した後、2次伸線して直径0.8mmとする。引き続いて熱処理(鉛パテンティング)およびブラスめっきを施した後、直径0.15mmまで湿式伸線し、鋼線10トン当りの断線回数に換算して評価した。また断線したものについては断面に現れた介在物について組成をEMPAによって調べると共に、最大の介在物のサイズ(幅)を測定した。
(Drawing workability)
A test wire drawing machine was used for evaluation of wire drawing workability. That is, the wire after hot rolling (diameter 5.5 mm) is first drawn to a diameter of 2.5 mm, heat-treated (air patenting), and then secondarily drawn to a diameter of 0.8 mm. Subsequently, heat treatment (lead patenting) and brass plating were performed, followed by wet drawing to a diameter of 0.15 mm, and evaluation was performed in terms of the number of breaks per 10 tons of steel wire. As for the broken one, the composition of the inclusions appearing in the cross section was examined by EMPA, and the maximum inclusion size (width) was measured.

(介在物組成分析)
介在物中のLi2O濃度は従来のEPMAでは測定できないため、SIMSによる分析法を独自に開発し、下記の手順で測定した。
(Inclusion composition analysis)
Since the concentration of Li 2 O in the inclusions cannot be measured by conventional EPMA, an analysis method by SIMS was independently developed and measured by the following procedure.

(1)1次標準試料
1)Li2Oを除く介在物組成をカバーする範囲の合成酸化物と、これらにLi2Oを加えた合成酸化物を多数作製し、それらのLi2O濃度を化学分析によって定量分析し、標準試料を作製する。
(1) Primary standard sample
1) a synthetic oxides range covering the inclusions composition excluding Li 2 O, to produce a large number of these synthetic oxides plus Li 2 O, and their Li 2 O concentration was quantitatively analyzed by chemical analysis, A standard sample is prepared.

2)作製した各合成酸化物のSiに対するLiの相対2次イオン強度を測定する。   2) Measure the relative secondary ion intensity of Li with respect to Si of each prepared synthetic oxide.

3)Siに対するLiの相対2次イオン強度と、上記1)で化学分析したLi2O濃度の検量線を引く。 3) Draw a calibration curve of the relative secondary ion intensity of Li with respect to Si and the Li 2 O concentration chemically analyzed in 1) above.

(2)2次標準試料(測定環境補正用)
4)測定時の環境補正用として、別途Siウェハー上にLiをイオン注入した標準試料を作製し、Siに対するLiの相対2次イオン強度を測定し、上記2)を実施する際に補正する。
(2) Secondary standard sample (for measurement environment correction)
4) For environmental correction at the time of measurement, separately prepare a standard sample in which Li is ion-implanted on a Si wafer, measure the relative secondary ion intensity of Li with respect to Si, and correct when performing the above 2).

(3)実際の測定
5)まず、鋼中介在物のCaO,MgO,Al23,MnO,SiO2,Na2O,K2Oなどの各濃度をEDX,EPMAなどによって分析する。
(3) Actual measurement
5) First, each concentration of inclusions in the steel, such as CaO, MgO, Al 2 O 3 , MnO, SiO 2 , Na 2 O, K 2 O, etc. is analyzed by EDX, EPMA or the like.

6)鋼中介在物のSiに対するLiの相対2次イオン強度を測定し、上記3)で求めた検量線のうち上記5)の分析結果に最も近い検量線を選択し、これによりLi2O濃度を求める。 6) The relative secondary ion strength of Li against Si of inclusions in steel is measured, selects the closest calibration curve analysis of the 5) of the calibration curve obtained in the above 3), thereby Li 2 O Determine the concentration.

結果を、スチールコード用鋼線については表1に、ばね用鋼線については表2に一括して示す。   The results are collectively shown in Table 1 for steel cord steel wires and in Table 2 for spring steel wires.

Figure 2005029888
Figure 2005029888

Figure 2005029888
Figure 2005029888

表1,2より次の様に考えることができる。   From Tables 1 and 2, the following can be considered.

表1はスチールコード用鋼線を対象とする例であり、符号1〜13は本発明の規定要件を満たしているため、20μm以上の粗大な硬質介在物の個数が少なくて且つ最大介在物サイズも相対的に小さく、伸線加工時の断線回数は少ない。そしてこの表から判断すると、特に20μm以上の粗大な硬質介在物の個数が鋼材50g当り0.3個以下であるものは、明らかに断線回数が減少している。   Table 1 is an example for steel cords for steel cords. Reference numerals 1 to 13 satisfy the requirements of the present invention, so the number of coarse hard inclusions of 20 μm or more is small and the maximum inclusion size is shown. Is relatively small, and the number of wire breaks during wire drawing is small. Judging from this table, when the number of coarse hard inclusions of 20 μm or more is 0.3 or less per 50 g of steel, the number of disconnections is clearly reduced.

これらに対し、符号14〜21は本発明で定める要件のいずれかを欠く比較例であり、断線回数が何れも鋼線10トン当りに換算すると20回を超えており、また、20μm以上の粗大な硬質介在物の個数も、鋼材50g当り0.4個を超えている。   On the other hand, reference numerals 14 to 21 are comparative examples lacking any of the requirements defined in the present invention, and the number of breaks exceeds 20 times per 10 tons of steel wire, and the coarseness is 20 μm or more. The number of hard inclusions exceeds 0.4 per 50 g of steel.

図1〜3は、上記表1の結果から、断線回数と20μm以上の硬質介在物個数の関係(図1)、断線回数と破断面最大介在物サイズとの関係(図2)、破断面最大介在物サイズと20μm以上の硬質介在物個数の関係(図3)をそれぞれ整理して示したグラフであり、これらの図からは概略次の傾向を確認できる。   1 to 3 show the relationship between the number of disconnections and the number of hard inclusions of 20 μm or more (FIG. 1), the relationship between the number of disconnections and the maximum inclusion size (FIG. 2), and the maximum fracture surface. FIG. 3 is a graph showing the relationship between the size of inclusions and the number of hard inclusions of 20 μm or more (FIG. 3), and the following tendency can be confirmed from these figures.

図1より、20μm以上の硬質介在物個数を鋼50g当り約0.4個程度以下に抑えれば、断線回数を鋼線10トン当り20回未満に抑えることができ、更には、20μm以上の硬質介在物個数を鋼50g当り約0.25個程度以下に抑えれば、断線回数を鋼線10トン当り10回以下に抑えることができる。   From FIG. 1, if the number of hard inclusions of 20 μm or more is suppressed to about 0.4 or less per 50 g of steel, the number of disconnections can be suppressed to less than 20 per 10 tons of steel wire, and more than 20 μm. If the number of hard inclusions is suppressed to about 0.25 or less per 50 g of steel, the number of disconnections can be suppressed to 10 or less per 10 tons of steel wire.

図2からは、破断面最大介在物サイズを30μmレベル以下に抑えれば、断線回数を鋼線10トン当り10回以下に抑えることができる。   From FIG. 2, if the fracture surface maximum inclusion size is suppressed to 30 μm level or less, the number of disconnections can be suppressed to 10 times or less per 10 tons of steel wire.

図3からは、介在物組成を適正に制御することによって硬質介在物の個数を少なくすれば、破断面最大介在物サイズも小さくなる傾向がみられる。   From FIG. 3, if the number of hard inclusions is decreased by appropriately controlling the inclusion composition, the fracture surface maximum inclusion size tends to be reduced.

また図4は、上記表1の結果から、Li2O/SiO2比と20μm以上の硬質介在物個数の関係を整理したグラフである。このグラフからLi2O/SiO2比を最適な範囲とすると、硬質介在物個数の抑制が容易となることがわかる。 FIG. 4 is a graph showing the relationship between the Li 2 O / SiO 2 ratio and the number of hard inclusions of 20 μm or more based on the results shown in Table 1 above. From this graph, it can be seen that when the Li 2 O / SiO 2 ratio is in the optimum range, the number of hard inclusions can be easily suppressed.

また表2は、ばね用鋼線を対象とする例であり、符号22〜35は本発明の規定要件を満たしているため相対的に破断率が小さく、最大破断介在物サイズも小さい。これらに対し符号36〜45は、本発明で定める何れかの規定要件を外れる比較例であり、相対的に破断率が高く、最大破断介在物サイズも大きい。   Table 2 is an example for a spring steel wire. Reference numerals 22 to 35 satisfy the prescribed requirements of the present invention, so the fracture rate is relatively small and the maximum fracture inclusion size is also small. On the other hand, reference numerals 36 to 45 are comparative examples that deviate from any of the prescribed requirements defined in the present invention, and have a relatively high fracture rate and a large maximum fracture inclusion size.

図5は、上記表2の結果を、破断率と最大破断介在物サイズの関係として整理したグラフであり、この図からは、介在物組成を制御することで最大介在物サイズを30μmレベル以下に抑えることができれば、破断率は20レベル以下に抑えられることが分る。また図6は、介在物組成中に占めるLi2O,Na2O,K2Oの合計含有率と最大破断介在物サイズの関係として整理したグラフであり、このグラフからは、介在物中のLi2O,Na2OおよびK2Oの合計含有率を0.5〜20%の範囲に制御すれば、最大破断介在物サイズは小さくなることを確認できる。 FIG. 5 is a graph in which the results of Table 2 above are arranged as a relationship between the fracture rate and the maximum fracture inclusion size. From this figure, the maximum inclusion size is reduced to a level of 30 μm or less by controlling the inclusion composition. If it can be suppressed, it can be seen that the fracture rate can be suppressed to 20 levels or less. FIG. 6 is a graph arranged as a relationship between the total content of Li 2 O, Na 2 O, and K 2 O in the inclusion composition and the maximum rupture inclusion size. If the total content of Li 2 O, Na 2 O and K 2 O is controlled within the range of 0.5 to 20%, it can be confirmed that the maximum fracture inclusion size is reduced.

図7は、上記表2の結果から、Li2O/SiO2比と破断面最大介在物サイズとの関係を整理したグラフである。このグラフからLi2O/SiO2比を適正な範囲とすると、介在物の微細化が容易となることがわかる。 FIG. 7 is a graph in which the relationship between the Li 2 O / SiO 2 ratio and the maximum inclusion size of the fracture surface is arranged based on the results of Table 2 above. It can be seen from this graph that inclusions can be easily miniaturized when the Li 2 O / SiO 2 ratio is within an appropriate range.

スチールコード用鋼の実験で得た、20μm以上の硬質介在物の個数と断線回数の関係を示すグラフである。It is a graph which shows the relationship between the number of the hard inclusions 20 micrometers or more obtained by experiment of steel for steel cords, and the frequency | count of a disconnection. スチールコード用鋼の実験で得た、破断面最大介在物サイズと断線回数の関係を示すグラフである。It is a graph which shows the relationship between the fracture surface maximum inclusion size obtained by experiment of steel for steel cords, and the frequency | count of a disconnection. スチールコード用鋼の実験で得た、破断面最大介在物サイズと20μm以上の硬質介在物個数の関係を示すグラフである。It is a graph which shows the relationship between the fracture surface maximum inclusion size obtained by experiment of steel for steel cords, and the number of hard inclusions of 20 micrometers or more. スチールコード用鋼の実験で得た、Li2O/SiO2比と20μm以上の硬質介在物個数の関係を示すグラフである。Was obtained in a steel cord for steel experiments is a graph showing the relationship between the Li 2 O / SiO 2 ratio and 20μm more hard inclusions number. ばね用鋼の実験で得た、破断面最大介在物サイズと破断率の関係を示すグラフである。It is a graph which shows the relationship between the fracture surface maximum inclusion size and the fracture | rupture rate obtained by experiment of the steel for springs. ばね用鋼の実験で得た、酸化物系介在物中のLi2O,Na2OおよびK2Oの合計含有率と破断面最大介在物サイズの関係を示すグラフである。Was obtained in a spring steel experiment is a graph showing an oxide Li 2 O in inclusions, the fracture surface maximum inclusion size relationship between the total content of Na 2 O and K 2 O. ばね用鋼の実験で得た、Li2O/SiO2比と破断面最大介在物サイズの関係を示すグラフである。Was obtained in a spring steel experiment is a graph showing the fracture surface maximum inclusion size relationship between Li 2 O / SiO 2 ratio.

Claims (5)

鋼中に存在する酸化物系介在物が、CaO:15〜55%(質量%を意味する、以下同じ)、SiO2:20〜70%、Al23:35%以下、MgO:20%以下であり、且つ、Li2O,Na2O,K2Oの1種以上:0.5〜20%を含有することを特徴とする疲労強度および冷間加工性に優れた高清浄度鋼。 Oxide inclusions present in the steel are CaO: 15 to 55% (meaning mass%, the same applies hereinafter), SiO 2 : 20 to 70%, Al 2 O 3 : 35% or less, MgO: 20% High cleanliness steel excellent in fatigue strength and cold workability, characterized by containing at least one of Li 2 O, Na 2 O, and K 2 O: 0.5 to 20% . 前記酸化物系介在物はLi2O/SiO2(質量比)が0.01〜0.5となるものである請求項1に記載の高清浄度鋼。 The oxide inclusions are Li 2 O / SiO 2 (weight ratio) is high cleanliness steel according to claim 1 in which the 0.01 to 0.5. 前記酸化物系介在物中のSiO2含量が30%以上45%未満である請求項1又は2に記載の高清浄度鋼。 The oxide-based high cleanliness steel according to claim 1 or 2 SiO 2 content of inclusions is less than 45% to 30%. 前記鋼が、C:1.2%以下、Si:0.1〜4%、Mn:0.1〜2.0%、Al:0.005%以下を満たすものである請求項1〜3のいずれかに記載の高清浄度鋼。   4. The steel according to claim 1, wherein the steel satisfies C: 1.2% or less, Si: 0.1 to 4%, Mn: 0.1 to 2.0%, Al: 0.005% or less. High cleanliness steel according to any one of the above. 他の元素として、Cr,Ni,V,Nb,Mo,W,Cu,Tiよりなる群から選択される1種以上の元素を含むものである請求項4に記載の高清浄度鋼。   The high cleanliness steel according to claim 4, wherein the other clean element contains at least one element selected from the group consisting of Cr, Ni, V, Nb, Mo, W, Cu, and Ti.
JP2004014693A 2003-06-18 2004-01-22 High cleanliness steel with excellent fatigue strength and cold workability Expired - Fee Related JP4423050B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004014693A JP4423050B2 (en) 2003-06-18 2004-01-22 High cleanliness steel with excellent fatigue strength and cold workability
US10/564,061 US7608130B2 (en) 2004-01-22 2004-12-17 Method for producing high cleanliness steel excellent in fatigue strength or cold workability
KR1020067014779A KR100825160B1 (en) 2004-01-22 2004-12-17 High-cleanliness steel having high fatigue strength and high cold workability, and preparation method thereof
AT04807278T ATE545716T1 (en) 2004-01-22 2004-12-17 PROCESS FOR PRODUCING HIGH PURITY STEEL WITH EXCELLENT FATIGUE STRENGTH OR COLD FORMABILITY
PCT/JP2004/018920 WO2005071120A1 (en) 2004-01-22 2004-12-17 Method for producing high cleanness steel excellent in fatigue strength or cold workability
CN2004800235139A CN1836052B (en) 2004-01-22 2004-12-17 Method for producing high cleanness steel excellent in fatigue strength or cold workability
EP04807278A EP1707644B1 (en) 2004-01-22 2004-12-17 Method for producing high cleanliness steel excellent in fatigue strength or cold workability
US12/108,204 US7615099B2 (en) 2004-01-22 2008-04-23 Method for producing high cleanness steel excellent in fatigue strength or cold workability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003173276 2003-06-18
JP2004014693A JP4423050B2 (en) 2003-06-18 2004-01-22 High cleanliness steel with excellent fatigue strength and cold workability

Publications (2)

Publication Number Publication Date
JP2005029888A true JP2005029888A (en) 2005-02-03
JP4423050B2 JP4423050B2 (en) 2010-03-03

Family

ID=34219960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014693A Expired - Fee Related JP4423050B2 (en) 2003-06-18 2004-01-22 High cleanliness steel with excellent fatigue strength and cold workability

Country Status (1)

Country Link
JP (1) JP4423050B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092164A (en) * 2005-09-05 2007-04-12 Kobe Steel Ltd Steel wire rod having excellent drawability and fatigue properties, and manufacturing method of the same
JP2007169769A (en) * 2005-12-26 2007-07-05 Kobe Steel Ltd High cleanliness steel having excellent fatigue strength
WO2008081674A1 (en) 2006-12-28 2008-07-10 Kabushiki Kaisha Kobe Seiko Sho Silicon-killed steel wire material and spring
WO2008081673A1 (en) 2006-12-28 2008-07-10 Kabushiki Kaisha Kobe Seiko Sho Si KILLED STEEL WIRE MATERIAL HAVING EXCELLENT FATIGUE PROPERTY AND SPRING
EP2060649A1 (en) 2007-11-19 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Spring steel and spring superior in fatigue properties
JP2010024538A (en) * 2007-11-19 2010-02-04 Kobe Steel Ltd Spring steel and spring superior in fatigue property
JP2010222604A (en) * 2009-03-19 2010-10-07 Kobe Steel Ltd Spring steel
WO2012118093A1 (en) 2011-03-01 2012-09-07 新日本製鐵株式会社 High-carbon steel wire having excellent drawability and fatigue properties after drawing
CN104056871A (en) * 2013-12-13 2014-09-24 武汉钢铁(集团)公司 Spring steel wire production process used for controlling inclusion substances
WO2014175377A1 (en) 2013-04-24 2014-10-30 新日鐵住金株式会社 Low-oxygen-purified steel and low-oxygen-purified steel product
CN104866660A (en) * 2015-05-14 2015-08-26 西北师范大学 Method for predicting absorption property of MgO nano-cluster surface vapor state deposition transition metal Au and Pt in absorbing CO molecules
CN111088452A (en) * 2019-12-16 2020-05-01 首钢集团有限公司 Method and device for reducing alloy smelting cost

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937973B2 (en) 2013-01-15 2016-06-22 株式会社神戸製鋼所 Si-killed steel wire rod having excellent fatigue characteristics and spring using the same
JP2015163735A (en) 2014-01-29 2015-09-10 株式会社神戸製鋼所 Spring steel wire material excellent in fatigue characteristic and spring

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092164A (en) * 2005-09-05 2007-04-12 Kobe Steel Ltd Steel wire rod having excellent drawability and fatigue properties, and manufacturing method of the same
US8668783B2 (en) 2005-09-05 2014-03-11 Kobe Steel, Ltd. Steel wire rod having excellent drawability and fatigue properties, and manufacturing method of the same
JP4718359B2 (en) * 2005-09-05 2011-07-06 株式会社神戸製鋼所 Steel wire rod excellent in drawability and fatigue characteristics and manufacturing method thereof
JP2007169769A (en) * 2005-12-26 2007-07-05 Kobe Steel Ltd High cleanliness steel having excellent fatigue strength
JP4606321B2 (en) * 2005-12-26 2011-01-05 株式会社神戸製鋼所 High cleanliness steel with excellent fatigue strength
WO2008081673A1 (en) 2006-12-28 2008-07-10 Kabushiki Kaisha Kobe Seiko Sho Si KILLED STEEL WIRE MATERIAL HAVING EXCELLENT FATIGUE PROPERTY AND SPRING
EP2410069A1 (en) 2006-12-28 2012-01-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Si-killed steel wire rod and spring excellent in fatigue properties
US9725779B2 (en) 2006-12-28 2017-08-08 Kobe Steel, Ltd. Si-killed steel wire rod and spring
EP2527485A1 (en) 2006-12-28 2012-11-28 Kabushiki Kaisha Kobe Seiko Sho A silicon killed steel wire rod
WO2008081674A1 (en) 2006-12-28 2008-07-10 Kabushiki Kaisha Kobe Seiko Sho Silicon-killed steel wire material and spring
US9290822B2 (en) 2006-12-28 2016-03-22 Kobe Steel, Ltd. Si-killed steel wire rod and spring
US9062361B2 (en) 2006-12-28 2015-06-23 Kobe Steel, Ltd. Si-killed steel wire rod and spring excellent in fatigue properties
JP2010024538A (en) * 2007-11-19 2010-02-04 Kobe Steel Ltd Spring steel and spring superior in fatigue property
EP2060649A1 (en) 2007-11-19 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Spring steel and spring superior in fatigue properties
US8900381B2 (en) 2007-11-19 2014-12-02 Kobe Steel, Ltd. Spring steel and spring superior in fatigue properties
JP2010222604A (en) * 2009-03-19 2010-10-07 Kobe Steel Ltd Spring steel
WO2012118093A1 (en) 2011-03-01 2012-09-07 新日本製鐵株式会社 High-carbon steel wire having excellent drawability and fatigue properties after drawing
WO2014175377A1 (en) 2013-04-24 2014-10-30 新日鐵住金株式会社 Low-oxygen-purified steel and low-oxygen-purified steel product
KR20150131392A (en) 2013-04-24 2015-11-24 신닛테츠스미킨 카부시키카이샤 Low-oxygen-purified steel and low-oxygen-purified steel product
US10526686B2 (en) 2013-04-24 2020-01-07 Nippon Steel Corporation Low-oxygen clean steel and low-oxygen clean steel product
CN104056871A (en) * 2013-12-13 2014-09-24 武汉钢铁(集团)公司 Spring steel wire production process used for controlling inclusion substances
CN104866660A (en) * 2015-05-14 2015-08-26 西北师范大学 Method for predicting absorption property of MgO nano-cluster surface vapor state deposition transition metal Au and Pt in absorbing CO molecules
CN111088452A (en) * 2019-12-16 2020-05-01 首钢集团有限公司 Method and device for reducing alloy smelting cost
CN111088452B (en) * 2019-12-16 2021-05-25 首钢集团有限公司 Method and device for reducing alloy smelting cost

Also Published As

Publication number Publication date
JP4423050B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP5047871B2 (en) Steel wire rod with excellent wire drawing workability and fatigue resistance
US20080202289A1 (en) Method for producing high cleanness steel excellent in fatigue strength or cold workability
JP4423050B2 (en) High cleanliness steel with excellent fatigue strength and cold workability
JP2018193615A (en) Spring steel wire excellent in fatigue characteristic and spring
JP4347786B2 (en) High cleanliness spring steel
JP4606321B2 (en) High cleanliness steel with excellent fatigue strength
JP4393335B2 (en) Manufacturing method of high cleanliness steel with excellent fatigue strength or cold workability
JP5320274B2 (en) Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JPH08193240A (en) Steel material excellent in temper embrittlement resistance and its production
JP4417792B2 (en) High cleanliness steel with excellent fatigue strength or cold workability
JP5342827B2 (en) Spring steel and spring with excellent fatigue characteristics
JP4315825B2 (en) Steel wire for highly clean springs with excellent fatigue characteristics
JP3533196B2 (en) High fatigue strength spring steel wire and its manufacturing method.
JP4177403B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JP4177404B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JP4134223B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JP4134224B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JP4177405B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JP2003055743A (en) Steel for cold die having excellent machinability
JP2020525647A (en) Flux-cored wire cold-rolled steel sheet and method for producing the same
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP4134225B2 (en) Si-killed steel wire rod and spring with excellent fatigue characteristics
JP5231345B2 (en) High cleanliness spring steel
WO2022070873A1 (en) Steel sheet
JP5323416B2 (en) Spring steel and spring with excellent fatigue characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4423050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees