JP2005027411A - Dc feeding system protection relay - Google Patents

Dc feeding system protection relay Download PDF

Info

Publication number
JP2005027411A
JP2005027411A JP2003189155A JP2003189155A JP2005027411A JP 2005027411 A JP2005027411 A JP 2005027411A JP 2003189155 A JP2003189155 A JP 2003189155A JP 2003189155 A JP2003189155 A JP 2003189155A JP 2005027411 A JP2005027411 A JP 2005027411A
Authority
JP
Japan
Prior art keywords
current
value
output
failure
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003189155A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Ashikaga
朋義 足利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TMT & D KK
Original Assignee
TMT & D KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TMT & D KK filed Critical TMT & D KK
Priority to JP2003189155A priority Critical patent/JP2005027411A/en
Publication of JP2005027411A publication Critical patent/JP2005027411A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC feeding system protection relay which detects the current of a feeding system of an electric train track; discriminates changes in a load current, failure current, and the current during invalid regeneration of the electric train; and outputs a trip signal to a breaker only at current changes in failure. <P>SOLUTION: The relay comprises a current detecting means, a current change value detecting means, a polarity discriminating means, an in-regeneration abrupt change judging means, a failure identifying means, and a regenerative track side failure discriminating means. It acquires the current change value of the detected current value of a feeding system when detected, and if the current change value exceeds a current abrupt change reference value (K<SB>1</SB>), the polarity indicating the direction of current at that time is detected. If the polarity is forward, the failure identifying means identifies failure in the detected current, and if the polarity is inverted, whether during invalid regeneration or not is judged based on the polarity and the current change value. If judged to be during invalid regeneration, the regenerative track side failure judging means identifies a failure current during the period of regenerative lapse. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電鉄用変電所の直流き電回路を保護する直流き電回路保護継電装置に関するものである。
【0002】
【従来の技術】
従来の電鉄用変電所の直流き電回路を保護する直流き電回路保護継電装置としては、例えば特許文献1に開示されたものがある。その構成は、特許文献1の第1図に示されたように、直流き電回路の負荷電流が入力される入力部と、入力されたき電線電流をA/D変換するA/D変換器と、入力されているプログラムに応じてディジタル演算を行い、系統事故を判別する演算部と、入出力信号のインターフェース部とを備え、事故発生時及び判別時に外部に対して出力信号を出力する出力部とで構成されている。
【0003】
き電線の負荷電流は、特許文献1の第3図のように、電車の起動時の直列及び並列起動及びノッチ切換え時により急激に立ち上がって一定値となり、ノッチ上げによってさらに上昇し一定値となる階段状の波形となる。
故障電流特性は起動時の負荷電流特性とは異なり、急激に立ち上がり一定値となる波形であり、階段状にはならない。
故障電流であることの判断は、特許文献1の第2図に示されてとおり、ディジタル演算で算出された電流の大きさが、ある一定値以上である判断条件と、一定値以上の電流の増加変化が一定時間継続する場合のAND条件で行っている。
【0004】
【特許文献1】
特開昭63−90450号公報
【0005】
【発明が解決しようとする課題】
従来の特許文献1の直流き電回路保護継電装置は、電流が一定値以上に変化し、一定時間以上継続したときに故障判定を行っているために、いかなる場合にも故障判定が設定された時間経過後となり、事故時は時間経過とともにき電回路に流れる電流が大きくなり、より高速に遮断する必要があるにもかかわらず、遮断ができないで事故範囲が拡大して事故除去が難しくなるばかりでなく、変電所の機器が破壊に至る可能性が高くなる問題点があった。
また、同一の直流母線から給電されるき電回路に複数の電車が存在し、いずれかの電車が力行中であり、他のいずれかの電車が回生制動中に、力行中の電車一編成でノッチオフされた場合には回生電流を消費する部分がなくなり、このときに生じる回生失効によって電流増加するが、電流増加と故障電流による電流増加とが区別できないので、故障と判定して動作してしまう問題点もあった。
【0006】
この発明は、上記問題点を解消するためになされたものであり、き電回路の電流変化に対し、電車負荷による電流変化、故障時の電流変化、あるいは回生失効現象による電流変化を判別し、故障時の電流変化に対してのみ遮断器にトリップ信号を出力する直流き電線回路の保護継電装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る直流き電回路保護継電装置は、き電回路の電流を検出する電流検出手段と、電流検出手段により検出された検出電流値(I)を微分演算して電流変化値(dI/dt)を出力する電流変化値演算手段と、上記電流変化値(dI/dt)と予め設定した電流急変判定基準値(K)とを比較し、電流変化値(dI/dt)が電流急変判定基準値(K)を越えた場合にON出力する電流急変判定手段と、この電流急変判定手段のON出力時点の検出電流値(I)をベース電流値(I)として設定するベース電流設定手段と、設定されたベース電流値(I)と、検出電流値(I)との差の電流変化値(ΔI)を演算して出力する加算器と、電流変化値(ΔI)が、予め設定された電流変化値(ΔI)の故障判定基準値(K)を越えたときにON出力する故障電流判定手段と、検出電流値(I)が正方向電流のときにON出力する極性判定手段と、電流急変判定手段のON出力があり、かつ、極性判定手段がON出力なしのときに、回生中電流が急変したとしてON出力を開始する回生中急変判定手段と、電流急変判定手段のON出力および故障電流判定手段のON出力があり、回生中急変判定手段のON出力がない場合に故障と判定する故障判定手段と、予め設定した回生失効現象中の時間(T)を経過した後に、回生中急変判定手段のON出力をリセットし、かつ、回生線路の短絡故障を判定するために回生失効現象中の時間(T)を経過した後に予め設定した時間(T)の間ON出力する回生失効分別手段と、該回生失効中分別手段のON出力があり、故障電流判定手段と極性判定手段の双方からのON出力もあるときに故障と判定する回生線路側故障判定手段と、故障判定手段または回生線路側故障判定手段のいずれかが故障と判定した場合に、上記遮断器のトリップ信号を出力するトリップ信号出力手段とを備えた構成としたものである。
【0008】
【発明の実施の形態】
実施の形態1.
直流電圧により運行する電車線路は、電力系統の商用周波交流電圧を整流して直流に変換し、変換した直流電圧を電車線路のき電線に供給されるものであり、き電線路は一定区間毎にき電区分され、き電区分毎にき電線により給電される構成である。
直流き電線に流れる電流は、列車の起動時には図5に示す電流が流れる。即ち、列車の起動時には、ノッチ位置に対応する電流が増大して飽和する曲線を画きノッチアップする毎に同様の曲線で階段状に大きくなる。一方故障時は図6に示すように時間経過とともに増大し飽和状態となる電流が流れる。
【0009】
また、電車線路で運行される列車は、電力回生車両も多く運行される状況にあり、電力回生車両が多く運行されると、き電範囲中に力行中の電車と回生中の電車が存在し、一方の電車が回生制動中に、力行中の電車がノッチオフすると、回生中電車の回生電力が消費されない状態が発生して、き電線回路の電圧が上昇する現象として表れる。このような場合は、回生中電車において、電圧上昇が検知された時点で過電圧継電器が動作し、過電圧抑制抵抗を通して短絡させて、過電圧を抑制するように構成されている。過電圧抑制抵抗を通して短絡させる状態を回生失効と呼ばれている。
【0010】
回生失効現象となる状態について詳細に説明する。図7は、き電回路で発生する回生失効現象を説明するための回路図である。
直流母線1には電力系統の交流電圧を全波整流して変換した直流電圧が供給され、電車線路のき電区分81には直流母線1から遮断器61、き電線71を介して供給され、電車線路のき電区分82には直流母線1から遮断器62、き電線72を介して供給され、電車線路のき電区分83には直流母線1から遮断器63、き電線73を介して供給され、電車線路のき電区分84には直流母線1から遮断器64、き電線74を介して供給されている。そして電車Aが電車線路のき電区分83に存在して力行中であり、電車Bがき電区分82に存在して力行中であるとする。
【0011】
いま、電車Aが回生制動に入り回生車となったとすると、電車Aの回生電流(−I)は、き電線73、遮断器63、直流母線1、遮断器62、き電線72、き電区分82を経由して電車Bに供給される状態となり、電車Bが回生車となった電車Aの負荷車となる。この状態において、負荷車の電車BがノッチOFFすると、回生電力を消費する負荷が急になくなってしまったことになり、回生車の電車Aの電圧が急上昇し、電車Aの内部に設けられた過電圧継電器が動作して、過電圧制限抵抗により電車Aの主回路が短絡し、回生失効状態が発生する。この結果き電線73の電流は回生電流(−I)が流れていた状態から急に消滅するので、き電線電流が回生電流(−I)分の逆方向電流(+I)が電流増加したこととなり、さらに、電車Aの内部において、過電圧抑制抵抗が挿入されるために(+ΔI)が流れて(I+ΔI)の電流増加が発生したとして検出される。この電流の状態を図8に示す。このような状態になったときには、従来装置では、検出された電流の大きさが、ある一定値以上であることと、一定値以上の電流の増加変化が一定時間継続した場合のAND条件で判定しているので、回生失効による電流増加と、故障電流による電流増加の区別ができないで故障と判定し、不要動作する可能性がある。
【0012】
実施の形態1は、き電回路の電流変化に対し、電車負荷による電流変化、故障時の電流変化および上記した回生失効現象時の電流変化を的確に判別し、故障時の電流変化に対してのみ遮断器にトリップ信号を出力する直流き電線回路保護継電装置を構成するものである。
【0013】
図1は実施の形態1の直流き電線回路保護継電装置をディジタル形で構成した場合のブロック図である。この構成は、電力系統の交流電圧を整流して直流に変換した直流電圧が直流母線1に給電されており、この直流母線1から遮断器2を介してき電線3を経由して図示しない電車の駆動部に供給され、き電線3には流れる直流電流を検出する電流検出手段4が装備されている。
【0014】
電流検出手段4が検出した検出電流は、アナログ量をディジタル量に変換して検出電流値(I)を出力するA/D変換器5を介して故障演算処理部20に入力される。
故障演算処理部20は、A/D変換器5が出力する検出電流値の6次の整数倍の高調波成分を低減する高調波フィルタ6と、この高調波フィルタ6から出力される検出電流値(I)を微分演算して単位時間当たりの電流変化値(dI/dt)を出力する電流変化値演算手段7と、この電流変化値演算手段7が出力した単位時間当たりの電流変化値(dI/dt)と予め設定した電流急変判定基準値(K)とを比較し、電流変化値(dI/dt)が電流急変判定基準値(K)を越えた場合にON出力する電流急変判定手段8と、上記検出電流値(I)と電流変化値演算手段7が出力した単位時間当たりの電流変化値(dI/dt)とを入力し、高調波フィルタ6のフィルタ演算による遅れ分を補償する電流予測手段9と、上記急変判定手段8のON出力のときの上記検出電流値(I)をベース電流値(I)として設定するベース電流設定手段10と、このベース電流設定手段10により設定されたベース電流値(I)と電流予測手段9により高調波フィルタ6による遅れ補償された検出電流値(I)との差の電流変化値(ΔI)を演算して出力する加算器11と、この加算器11の出力が予め設定した上記電流変化値(I)の故障判定基準値(K)を越えたときにON出力する故障電流判定手段12と、上記検出電流値(I)が0以上の場合にON出力する極性判定手段13と、上記電流急変判定手段8のON出力があり、且つ、上記極性判定手段13のON出力なしの場合にON出力を開始して回生中の電流が急変したことを判定する回生中急変判定手段14と、上記電流急変判定手段8の出力および上記故障電流判定手段12の出力があり、上記回生中急変判定手段14のON出力がない場合に故障と判定する故障判定手段15と、上記回生中急変判定手段14のON出力が回生失効現象中の時間(T)を経過した後に、上記回生中急変判定手段14の出力をリセットし、且つ、回生線路の短絡故障を判定するために回生失効現象中の時間(T)を経過した後に予め設定した時間(T)の間ON出力する回生失効分別手段16と、この回生失効中分別手段16のON出力があり、上記故障電流判定手段15と上記極性判定手段13の双方からのON出力もある時に故障と判定する回生線路側故障判定手段17と、上記故障判定手段15または上記回生線路側故障判定手段17のいずれかがON出力した場合に、上記遮断器2のトリップ指令信号を出力するトリップ信号出力手段18とで構成されている。
故障演算処理部20のトリップ信号がトリップ指令出力手段19に入力されて、トリップ指令出力手段19から遮断器2に対してトリップ指令を出力する構成であり、直流き電回路保護継電装置は、A/D変換器5と故障演算処理部20とトリップ指令出力手段19とで構成されている。
【0015】
次に動作について説明する。直流き電線の負荷電流は、電車の起動時には、図5に示すようにノッチ切換により階段状に変化する電流が流れ、き電線回路の故障時には、図6のように電流値が時間経過とともに大きくなって飽和する電流が流れる。電車制動時には回生電流が負荷電流とは逆方向に流れる。
【0016】
き電線回路3の電流は、電流検出手段4により検出されて、A/D変換器5によりディジタル量の検出電流値(I)に変換され、高調波フィルタ6を通すことにより検出電流値(I)の6次の整数倍の高調波が除去され、電流変化値演算手段7に入力されて電流変化値(dI/dt)が出力される。
高調波フィルタ6を通すと電流の遅れが発生するので、電流予測手段9により、高調波フィルタ6を通した検出電流値(I)に、電流変化値演算手段7の出力の電流変化値(dI/dt)に係数を乗じた値を加えて遅れ補償される。
【0017】
電流変化値(dI/dt)は、電流急変判定手段8において、予め設定された電流急変判定基準値(K)と比較し、電流急変判定基準値(K)を越えたときにON出力する。電流急変判定手段8がON出力すると、そのON出力によりベース電流設定手段に10おいて、そのときの検出電流値(I)を判定開始時のベース電流値(I)として設定し、加算器11において検出電流値(I)からベース電流値(I)を差し引いて電流変化値(ΔI)が出力される。この電流変化値(ΔI)が故障電流判定手段12に入力され、電流急変開始時の検出電流値(I)が0以上であり、電流急変判定期間中の検出電流値(I)と予め設定された故障判定基準値(K)とを比較し、電流変化値(ΔI)が故障判定基準値(K)を越えた場合に故障と判定しON出力する。
【0018】
回生中急変判定手段14においては、電流急変判定手段8の出力がON出力であり、極性判定手段13の出力なしの場合に回生中と判定し、予め設定した回生失効時間(T)の間は判定を行わず、回生失効時間(T)経過後に回生中急変判定手段14のON出力をリセットし、その後に回生中失効分別手段16において、回生線路の故障を判定するために予め設定した一定の故障判定時間(T)の間ON出力を保持する。
【0019】
故障判定手段15では、電流急変開始時のベース電流値(I)が負の場合は回線失効現象による電流急変であり、誤動作を防止するために回生失効現象の事前設定された時間(T)の間は判定を行わず、故障電流判定手段12がON出力であり、電流急変判定手段8がON出力であり、回生中急変判定手段14のON出力がないときに故障と判断しON出力する。
【0020】
回生線路側故障判定手段17では、故障電流判定手段12の出力がONであり、回生失効分別手段16がON出力しており、極性判定手段13がON出力の時に回生線路側の故障と判定しON出力する。
【0021】
トリップ信号出力手段18では、故障判定手段15または回生線路側故障判定手段17のいずれかがON出力すると、遮断器のトリップ信号をトリップ指令出力手段19に出力し、トリップ指令出力手段19が遮断器2に対してトリップ指令信号を出力する。
【0022】
上記構成において、入力される直流電圧が、三相交流電圧を全波整流を想定して6の整数倍の高調波を抑制する高調波フィルタ6と、高調波フィルタ6を設けたことにより検出電流の遅れを補償する電流予測手段9を設け、電流予測手段9の出力は、故障電流判定手段12に入力し、電流変化値演算手段7には電流予測手段9高調波を抑制する処理をしないで入力しているのは、電流予測手段9を通すと電流が急変する立ち上がり部分において峻度が緩やかになって正確な電流急変現象が検出できなくなるからである。したがって、故障判定には検出電流値(I)と電流予測手段9から出力される(I)は同一として扱ってよい。
【0023】
また、入力される直流電圧が、三相交流電圧を全波整流を想定して6の整数倍の高調波を抑制する高調波フィルタ6と、高調波フィルタ6を設けたことにより検出電流の遅れを補償する電流予測手段9を設けたものとしているが、直流電源の高調波が無視できる場合には、高調波フィルタ6および電流予測手段9を設けなくてもよい。この場合は検出電流値(I)が電流変化値演算手段7および故障電流判定手段12に直接入力される構成となる。
【0024】
このように構成すると、き電回路の検出電流値(I)の電流変化値(dI/dt)が電流急変判定基準値(K)を越える場合に故障と判定することにより、故障電流の立ち上がりに対して高精度で高速に検出され、電流急増前の極性判定手段により電流方向を検出し、検出された電流方向に極性により回生中であるかないかが明確に判断され、回生中でれば回生失効期間中(例えば300ms)は出力を抑えておき、その後に故障判定をすることで、回生線路側の故障と回生失効中の分別ができ、的確な故障の検出が可能となる。
【0025】
また、図1に示す構成は、各部が検出電流値をディジタル信号に変換したディジタル形に対応しているが、電流変換手段4が検出したアナログ量の検出電流値により上記の保護機能を満足させる構成としても同様の効果を奏することはいうまでもない。
【0026】
実施の形態2.
図2は実施の形態2の直流き電線回路保護継電装置をディジタル形で構成した場合のブロック図である。 実施の形態2は、実施の形態1の高調波フィルタ6のフィルタ演算による遅れ分を補償する電流予測手段9の単純予測演算方式から改良形オイラー法を用いたフィルタ遅れ補償手段としたものである。
【0027】
図2の構成は、実施の形態1の図1とは、電流予測手段9の部分を改良形オイラー法を用いたフィルタ遅れ補償手段21としたものである。その他の1〜8、10〜19は実施の形態1の図1と同一である。直流き電回路保護継電装置の故障演算処理部30は、6〜8、10〜18、21で構成されている。
高調波フィルタ6による遅れを補償する改良形オイラー法は下記のように演算する方法である。
・下記演算により係数AおよびBを求める。
A={A(N)+A(N−1)}/2
B={B(N)+B(N−1)}/2
・補償後の電流値は下記の演算により求める。
I=I(N)+{dI/dt(N)+B−A×(I(N)+dI/dt(N)×ΔT)}×ΔT/2.0
但し、
A(N)={dI/dt(N)−(dI/dt(N−1)}/{−I(N)+I(N−1)}
B(N)={dI/dt(N)−A(N)×I(N)}
Nはサンプリング、ΔTはサンプリング間隔を表す。
改良形オイラー法により検出電流の遅れを補償すると実施の形態1の電流予測手段に比べて演算量が増加するが遅れの補償精度が高くなる。
【0028】
図2において、各部は検出電流値をディジタル信号に変換したディジタル形で構成しているが、各部を電流変換手段4が検出したアナログ量の検出電流値により上記の保護機能を満足させる構成としても同様の効果を奏する構成とすることができる。
【0029】
実施の形態3.
図3は実施の形態2の直流き電線回路保護継電装置をディジタル形で構成した場合のブロック図である。実施の形態3は、実施の形態1の構成に、検出電流値(I)から回生線路側の重故障が直接検知できるように構成したものである。
【0030】
図3の構成は、実施の形態1の図1の構成に、電流予測手段9に変わる高調波フィルタ遅れ補償手段21と、検出電流値と故障判定基準値(K)とを直接比較することにより故障状態を判定する回生線路側故障電流判定手段31と、回生線路側重短絡故障判定手段32とを付加したものであり、その他の1〜8、10〜17、19は実施の形態1の図1と同一である。改良形オイラー法を用いたフィルタ遅れ補償手段21は、実施の形態2の図2と同一である。直流き電回路保護継電装置の故障演算処理部40は、6〜8、10〜17、21、回生線路側故障電流判定手段31、回生線路側重短絡故障判定手段32、およびトリップ信号出力手段38で構成されている。
【0031】
回生線路側故障電流判定手段31は、検出電流値(I)と故障判定基準値(K)とを比較し、検出電流値(I)が故障判定基準値(K)を越えた場合に故障と判定しON出力するものであり、回生線路側重短絡故障判定手段32は、回生線路側故障電流判定手段31のON出力と、回生中急変判定手段14のON出力と極性判定手段13のON出力の全てが揃ったときにON出力するものである。トリップ信号出力手段38は、故障判定手段15または上記回生線路側故障判定手段17または回生線路側重短絡故障判定手段32のいずれかかららON出力された時に故障と判定し、遮断器のトリップ指令信号を出力する。
【0032】
このように構成すると、回生線路側に電流急変が発生した場合に検出電流値が事前に故障判定基準値(K)よりも大きいことで重短絡故障と判定し、回生失効現象の分別中も回生線路側の重短絡故障が検出できる構成となる。
【0033】
図3においても、各部は検出電流値をディジタル信号に変換したディジタル形で構成しているが、電流変換手段4が検出したアナログ量の検出電流値により上記の保護機能を満足させる構成としても同様の効果を奏する構成とすることができる。
【0034】
実施の形態4.
電車線路は一定の間隔でき電区分され、直流母線から各き電区分に給電され、き電区分毎に保護されるように構成されているので、大電流を消費しながら走行する電車がき電区分点を通過すると、進入してきた電車に流れていた電流は進入したき電区分から給電されることになり、き電区分毎の電流変化値により、故障判定を行っているので、進入してきた電車の電流が増加して電流変化量が大きくなり故障と判定して不要動作する可能性がある。
【0035】
実施の形態4は、電車がき電区分を通過したときの電流急変に対して不要動作しない対策を付加した構成である。
図4は実施の形態4の直流き電回路保護継電装置をディジタル形で構成した場合のブロック図である。図4は、例えばF1、F2、F3、F4の複数のき電区分に給電するき電回路毎に故障演算処理部とA/D変換器5およびトリップ指令出力手段19を含めた直流き電回路保護継電装置51、52、53、54を設けた状態を示している。図示は直流き電回路保護継電装置51の故障演算処理部の構成について詳細に示し、これと同一の構成の直流き電回路保護継電装置52、53、54は枠で示している。
【0036】
直流き電回路保護継電装置51は、実施の形態3の図3に示す構成の電流変化値演算手段6の出力側に、電流変化値(dI/dt)が予め設定した電流急減基準値(K)を下回った場合にき電区分通過と判定し、検出された電流変化値(dI/dt)に予め設定したき電区分通過補償率(S)を乗じたき電区分通過補償値(I)[=(dI/dt)×(S)]を前方のき電区分に出力するき電区分通過判定手段55と、自き電区分の電流変化値(dI/dt)を後方のき電区分からのき電区分通過補償値(I)により相殺する加算器57を有するき電区分通過補償切替手段56を設けている。
【0037】
実際のき電回路の直流き電回路保護継電装置は、直列状態に配置されたき電区分毎に設けられているので、き電区分毎に同一に構成したき電回路保護継電装置を設け、それぞれ前方き電区分にき電区分通過補償値を出力し、後方のき電区分からのき電区分通過補償値(I)により自き電区分の電流変化率を相殺することで、き電区分通過現象による不要動作が防止できる。
【0038】
【発明の効果】
この発明の請求項1に係る直流き電回路保護継電装置は、き電回路の電流を検出する電流検出手段と、検出電流値の電流変化値を出力する電流変化値演算手段と、電流変化値と予め設定した電流急変判定基準値(K)とを比較し、電流急変判定基準値(K)を越えた場合にON出力する電流急変判定手段と、急変判定手段の出力がON出力時点の上記検出電流値をベース電流値として設定するベース電流設定手段と、設定されたベース電流値と、検出電流値との差の電流変化値を演算して出力する加算器と、電流変化値が、故障判定基準値(K)を越えたときにON出力する故障電流判定手段と、検出電流値が正方向電流のときにON出力する極性判定手段と、電流急変判定手段のON出力があり、かつ、上記極性判定手段がON出力なしのときに、回生中電流が急変したとしてON出力を開始する回生中急変判定手段と、上記電流急変判定手段のON出力および故障電流判定手段のON出力があり、回生中急変判定手段のON出力がない場合に故障と判定する故障判定手段と、予め設定した回生失効現象中の時間(T)を経過した後に、回生中急変判定手段のON出力をリセットし、かつ、回生線路の短絡故障を判定するために回生失効現象中の時間(T)を経過した後に予め設定した時間(T)の間ON出力する回生失効分別手段と、回生失効中分別手段のON出力があり、故障電流判定手段と極性判定手段の双方からのON出力もあるときに故障と判定する回生線路側故障判定手段と、故障判定手段または回生線路側故障判定手段のいずれかが故障と判定した場合に、遮断器のトリップ信号を出力するトリップ信号出力手段とを備えた構成としたことにより、回生中の故障と回生失効中との分別ができるので、的確な故障の検出が可能となる。
【図面の簡単な説明】
【図1】実施の形態1の直流き電線回路保護継電装置の構成を示すブロック図である。
【図2】実施の形態2の直流き電線回路保護継電装置の構成を示すブロック図である。
【図3】実施の形態3の直流き電線回路保護継電装置の構成を示すブロック図である。
【図4】実施の形態4の直流き電線回路保護継電装置の構成を示すブロック図である。
【図5】電車起動中の負荷電流の変化状態を示す図である。
【図6】故障電流の変化状態を示す図である。
【図7】回生失効現象を説明する説明酢である。
【図8】回生失効中の電流の変化状況を示す図である。
【符号の説明】
1 直流母線、2 遮断器、3 き電線、4 電流検出手段、
5 A/D変換器、6 高調波フィルタ、7 電流変化値演算手段、
8 電流急変判定手段、9 電流予測手段、10 ベース電流設定手段、
11 加算器、12 故障電流判定手段、13 極性判定手段、
14 回生中急変判定手段、15 故障判定手段、16 回生失効分別手段、
17 回生線路側故障判定手段、18 トリップ信号出力手段、
19 トリップ指令出力手段、20 故障演算処理部、
21 高調波フィルタ遅れ補償手段、30 故障演算処理部、
31 回生線路側故障電流判定手段、32 回生線路側重短絡故障判定手段、
38 トリップ信号出力手段、40 故障演算処理部、50 故障演算処理部、
55 き電分通過判定手段、56 き電区分通過補償切換装置、
57 加算器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a DC feeder circuit protection relay device for protecting a DC feeder circuit of a railway substation.
[0002]
[Prior art]
An example of a DC feeder circuit protection relay device that protects a DC feeder circuit of a conventional railway substation is disclosed in Patent Document 1, for example. As shown in FIG. 1 of Patent Document 1, the configuration includes an input unit to which a load current of a DC feeder circuit is input, an A / D converter that performs A / D conversion on the input feeder current, and An output unit that performs a digital operation according to the input program and discriminates a system fault, and an input / output signal interface unit, and outputs an output signal to the outside when an accident occurs and when it is discriminated It consists of and.
[0003]
As shown in FIG. 3 of Patent Document 1, the load current of the feeder line rises suddenly and becomes a constant value when the train is started in series and parallel and when the notch is switched, and further increases and becomes a constant value when the notch is raised. It has a stepped waveform.
Unlike the load current characteristic at the time of start-up, the fault current characteristic is a waveform that suddenly rises to a constant value and does not have a staircase shape.
As shown in FIG. 2 of Patent Document 1, the determination that the current is a fault current is based on the determination condition that the magnitude of the current calculated by the digital operation is a certain value or more, The AND condition is used when the increasing change continues for a certain time.
[0004]
[Patent Document 1]
JP-A 63-90450
[0005]
[Problems to be solved by the invention]
The conventional DC feeder circuit protection relay device of Patent Document 1 performs failure determination when the current changes to a certain value or more and continues for a certain time or more, so failure determination is set in any case. However, when an accident occurs, the current flowing through the feeder circuit increases with the passage of time, and even though it is necessary to shut off at a higher speed, it is not possible to shut down and the scope of the accident is expanded, making it difficult to remove the accident. In addition to this, there is a problem that the possibility that the equipment of the substation will be destroyed increases.
In addition, there are multiple trains in the feeder circuit that is fed from the same DC bus, and one of the trains is powered, and one of the other trains is in regenerative braking. When notched off, there is no part that consumes the regenerative current, and the current increases due to the regenerative invalidation that occurs at this time, but it can not be distinguished from the current increase and the current increase due to the fault current, so it will operate as a failure There was also a problem.
[0006]
The present invention was made to solve the above problems, and for the current change of the feeder circuit, the current change due to the train load, the current change at the time of failure, or the current change due to the regeneration invalidation phenomenon is determined, It is an object of the present invention to provide a protective relay device for a DC feeder circuit that outputs a trip signal to a circuit breaker only against a current change at the time of failure.
[0007]
[Means for Solving the Problems]
The DC feeder circuit protection relay device according to the present invention includes a current detection means for detecting a current of the feeder circuit, and a current change value (dI) obtained by differentiating the detected current value (I) detected by the current detection means. Current change value calculating means for outputting / dt), the current change value (dI / dt) and a preset current sudden change judgment reference value (K 1 ) And the current change value (dI / dt) is the current sudden change judgment reference value (K 1 ) And the detected current value (I) at the time of ON output of the current sudden change determination means is the base current value (I b ) And a set base current value (I b ) And a detected current value (I), an adder that calculates and outputs a current change value (ΔI), and the current change value (ΔI) is a failure determination of a preset current change value (ΔI). Reference value (K 2 There is a fault current determination means that outputs ON when the detected current value (I) is a positive current, a polarity determination means that outputs ON when the detected current value (I) is a positive current, and an ON output of a sudden current change determination means. There is a sudden change during regenerative judgment means that starts ON output when the current is suddenly changed when there is no ON output, and an ON output from the sudden current change judgment means and an ON output from the fault current judgment means. A failure determination means for determining a failure when there is no ON output of the means, and a preset time (T 1 ), The ON output of the sudden change judgment means during regeneration is reset, and the time during the regeneration invalidation phenomenon (T 1 ) After a predetermined time (T 2 The regeneration line side failure is determined to be a failure when there is an ON output from the regeneration invalidation classification means and the regeneration invalidation classification means, and both the ON output from both the fault current determination means and the polarity determination means. The apparatus includes a determination unit and a trip signal output unit that outputs a trip signal for the circuit breaker when either the failure determination unit or the regeneration line side failure determination unit determines that a failure has occurred.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A train line operated by a DC voltage is one that rectifies and converts the commercial frequency AC voltage of the power system into DC, and supplies the converted DC voltage to the feeders of the train line. In this configuration, the feeders are classified and fed by feeders for each feeder segment.
The current shown in FIG. 5 flows through the DC feeder when the train is started. That is, when the train is started, a current curve corresponding to the notch position is increased and saturated, and every time the train is notched up, the same curve increases in a staircase pattern. On the other hand, at the time of failure, as shown in FIG. 6, a current that increases and saturates flows with time.
[0009]
In addition, trains operated on train tracks are in a situation where many power regenerative vehicles are operated, and when many power regenerative vehicles are operated, there are power trains and regenerative trains within the feeder range. If one of the trains is in regenerative braking and the power train is notched off, a state in which the regenerative power of the train being regenerated is not consumed appears as a phenomenon that the voltage of the feeder circuit rises. In such a case, the regenerative train is configured such that the overvoltage relay operates when a voltage increase is detected and is short-circuited through the overvoltage suppression resistor to suppress the overvoltage. The state of short-circuiting through the overvoltage suppression resistor is called regenerative invalidation.
[0010]
The state which becomes a regeneration invalidation phenomenon is demonstrated in detail. FIG. 7 is a circuit diagram for explaining the regeneration invalidation phenomenon that occurs in the feeder circuit.
The DC bus 1 is supplied with a DC voltage obtained by full-wave rectification and conversion of the AC voltage of the power system, and is supplied to the feeder section 81 of the train line from the DC bus 1 through the circuit breaker 61 and the feeder 71. The feeder line 82 of the train line is supplied from the DC bus 1 through the circuit breaker 62 and the feeder 72, and the feeder section 83 of the train line is supplied from the DC bus 1 through the circuit breaker 63 and the feeder 73. The feeder line 84 of the train line is supplied from the DC bus 1 through the circuit breaker 64 and the feeder line 74. Then, it is assumed that the train A exists in the power line section 83 of the train track and is powering, and the train B exists in the power section 82 and is powering.
[0011]
Now, assuming that train A enters regenerative braking and becomes a regenerative vehicle, the regenerative current of train A (−I 1 ) Is supplied to the train B via the feeder 73, the breaker 63, the DC bus 1, the breaker 62, the feeder 72, and the feeder section 82, and the train A in which the train B becomes a regenerative vehicle. It becomes a load car. In this state, when the load car train B is notched off, the load that consumes regenerative power suddenly disappears, and the voltage of the train A of the regenerative vehicle suddenly rises and is installed inside the train A. The overvoltage relay operates, the main circuit of the train A is short-circuited by the overvoltage limiting resistor, and a regeneration invalidation state occurs. As a result, the current of the feeder 73 is a regenerative current (−I 1 ) Suddenly disappears from the state where the current was flowing, so the feeder current becomes regenerative current (-I 1 ) Minutes of reverse current (+ I 1 ) Increases in current, and further, since an overvoltage suppression resistor is inserted inside the train A, (+ ΔI 2 ) Flows (I 1 + ΔI 2 ) Is detected as an increase in current. The state of this current is shown in FIG. In such a state, in the conventional device, the detected current magnitude is determined to be greater than a certain value, and an AND condition is used when an increase in current exceeding the certain value continues for a certain time. Therefore, it is not possible to distinguish between an increase in current due to regeneration invalidation and an increase in current due to failure current, and it may be determined that there is a failure and unnecessary operation may occur.
[0012]
The first embodiment accurately discriminates a current change caused by a train load, a current change at the time of a failure, and a current change at the time of the regenerative invalidation phenomenon with respect to a current change of the feeder circuit. It constitutes a DC feeder circuit protection relay device that outputs a trip signal only to a circuit breaker.
[0013]
FIG. 1 is a block diagram when the DC feeder circuit protection relay device of the first embodiment is configured in a digital form. In this configuration, a DC voltage obtained by rectifying the AC voltage of the power system and converting it to DC is fed to the DC bus 1, and the DC bus 1 is connected to the DC bus 1 via the circuit breaker 2 and the electric wire 3. Current detecting means 4 for detecting a direct current flowing through the feeder 3 supplied to the drive unit is provided.
[0014]
The detected current detected by the current detecting means 4 is input to the failure calculation processing unit 20 via the A / D converter 5 that converts an analog amount into a digital amount and outputs a detected current value (I).
The failure calculation processing unit 20 includes a harmonic filter 6 that reduces a harmonic component that is a sixth-order integer multiple of the detected current value output from the A / D converter 5, and a detected current value that is output from the harmonic filter 6. A current change value calculating means 7 for differentiating (I) and outputting a current change value (dI / dt) per unit time, and a current change value per unit time (dI) output by the current change value calculating means 7 / Dt) and preset current sudden change judgment reference value (K 1 ) And the current change value (dI / dt) is the current sudden change judgment reference value (K 1 ), The current abrupt change determination means 8 that outputs ON when the value exceeds the detected current value (I) and the current change value per unit time (dI / dt) output by the current change value calculation means 7 are input, The current predicting means 9 for compensating for the delay caused by the filter calculation of the harmonic filter 6 and the detected current value (I) when the sudden change determining means 8 is ON output are set to the base current value (I b ) And the base current value (I) set by the base current setting means 10 b ) And the detected current value (I) compensated for delay by the harmonic filter 6 by the current prediction means 9. 0 Current change value (ΔI) 0 ) And outputs the current change value (I) set in advance by the output of the adder 11 0 ) Failure criterion value (K 2 ) Exceeds the fault current determination means 12 that outputs ON when the detected current value (I) is 0 or more, the polarity determination means 13 that outputs ON when the detected current value (I) is 0 or more, and the ON output of the sudden current change determination means 8 In addition, when there is no ON output of the polarity determination means 13, the ON output is started and the sudden change judgment means 14 for judging that the current during regeneration has suddenly changed, the output of the sudden current change judgment means 8 and the failure Failure determination means 15 for determining a failure when there is an output of the current determination means 12 and no ON output of the sudden change determination means 14 during regeneration, and a time during which the ON output of the sudden change determination means 14 during regeneration is in a regeneration invalidation phenomenon (T 1 ) After resetting, the output during the regeneration invalidation phenomenon in order to reset the output of the sudden change determination means 14 during regeneration and to determine the short-circuit failure of the regeneration line (T 1 ) After a predetermined time (T 2 ) Is determined to be faulty when there is ON output from both the failure current determination means 15 and the polarity determination means 13. The trip signal output means 18 for outputting the trip command signal of the circuit breaker 2 when either the regenerative line side failure determination means 17 and the failure determination means 15 or the regeneration line side failure determination means 17 are turned ON. It consists of and.
The trip signal of the failure calculation processing unit 20 is input to the trip command output means 19 and the trip command output means 19 outputs a trip command to the circuit breaker 2. The DC feeder circuit protection relay device The A / D converter 5, the failure calculation processing unit 20, and the trip command output means 19 are configured.
[0015]
Next, the operation will be described. As shown in FIG. 5, the load current of the DC feeder flows in a staircase shape due to notch switching as shown in FIG. 5, and when the feeder circuit fails, the current value increases with time as shown in FIG. A saturated current flows. During train braking, the regenerative current flows in the opposite direction to the load current.
[0016]
The current of the feeder circuit 3 is detected by the current detection means 4, converted into a digital detected current value (I) by the A / D converter 5, and passed through the harmonic filter 6 to detect the detected current value (I ) Is removed and is input to the current change value calculating means 7 to output a current change value (dI / dt).
Since a current lag occurs when the harmonic filter 6 is passed, the current predictor 9 outputs the current change value (dI) of the output of the current change value calculator 7 to the detected current value (I) passed through the harmonic filter 6. / Dt) is multiplied by a coefficient to compensate for delay.
[0017]
The current change value (dI / dt) is determined by the current sudden change determination means 8 by a preset current sudden change determination reference value (K 1 ) And the current sudden change judgment reference value (K 1 ON output when exceeding). When the sudden current change determination means 8 outputs an ON signal, the ON output causes the base current setting means 10 to output the detected current value (I 0 ) Base current value (I b ) And the detected current value (I 0 ) To base current value (I b ) Is subtracted from the current change value (ΔI 0 ) Is output. This current change value (ΔI 0 ) Is input to the fault current determination means 12, the detected current value (I) at the start of the sudden current change is 0 or more, and the detected current value (I) during the sudden current change determination period 0 ) And a preset failure criterion value (K 2 ) And the current change value (ΔI 0 ) Is the failure criterion value (K 2 If it exceeds), it is judged as a failure and is output ON.
[0018]
In the regenerative sudden change determination means 14, when the output of the sudden current change determination means 8 is ON output and there is no output from the polarity determination means 13, it is determined that regeneration is in progress, and a preset regeneration expiration time (T 1 ) During the regeneration expiration time (T 1 ) After the elapse of time, the ON output of the sudden change determination unit 14 during regeneration is reset, and then, in the regeneration invalidation classification unit 16, a predetermined failure determination time (T 2 The ON output is held for
[0019]
In the failure determination means 15, the base current value (I b ) Is negative, it indicates a sudden change in current due to a line lapse phenomenon, and a preset time (T 1 ), The failure current determination means 12 is ON output, the current sudden change determination means 8 is ON output, and when there is no ON output of the regenerative sudden change determination means 14, it is determined that there is a failure and is ON output. To do.
[0020]
In the regenerative line side failure determination means 17, when the output of the failure current determination means 12 is ON, the regenerative invalidation classification means 16 outputs ON, and the polarity determination means 13 determines that the failure is on the regenerative line side when the output is ON. Output ON.
[0021]
In the trip signal output means 18, when either the failure determination means 15 or the regenerative line side failure determination means 17 outputs ON, the trip signal of the circuit breaker is output to the trip command output means 19, and the trip command output means 19 outputs the circuit breaker. 2 output a trip command signal.
[0022]
In the above-described configuration, the input DC voltage is detected by providing a harmonic filter 6 that suppresses harmonics that are integer multiples of 6 assuming full-wave rectification of the three-phase AC voltage, and the harmonic filter 6. Current prediction means 9 is provided to compensate for the delay, the output of the current prediction means 9 is input to the fault current determination means 12, and the current change value calculation means 7 is not subjected to processing to suppress harmonics of the current prediction means 9. The reason for the input is that when the current predicting means 9 is passed, the steepness becomes moderate at the rising portion where the current suddenly changes, and an accurate current sudden change phenomenon cannot be detected. Therefore, in the failure determination, the detected current value (I) and the current prediction means 9 output (I 0 ) May be treated the same.
[0023]
In addition, the input DC voltage is a delay of the detection current by providing the harmonic filter 6 that suppresses harmonics that are integer multiples of 6 assuming full-wave rectification of the three-phase AC voltage, and the harmonic filter 6. However, if the harmonics of the DC power supply can be ignored, the harmonic filter 6 and the current prediction means 9 may not be provided. In this case, the detected current value (I) is directly input to the current change value calculation means 7 and the fault current determination means 12.
[0024]
With this configuration, the current change value (dI / dt) of the detected current value (I) of the feeder circuit is the current sudden change determination reference value (K 1 ) Is detected at high speed with high accuracy against the rise of the fault current, the current direction is detected by the polarity judgment means before the current suddenly increases, and the detected current direction is regenerated by the polarity. It is clearly determined whether it is in or not, and if it is being regenerated, the output is suppressed during the regeneration invalidation period (for example, 300 ms), and then the failure is judged to distinguish between the failure on the regeneration line side and the regeneration invalidation period. This makes it possible to detect an accurate failure.
[0025]
The configuration shown in FIG. 1 corresponds to a digital type in which each part converts a detected current value into a digital signal. However, the above protection function is satisfied by an analog detected current value detected by the current converting means 4. Needless to say, the same effects can be obtained in the configuration.
[0026]
Embodiment 2. FIG.
FIG. 2 is a block diagram when the DC feeder circuit protection relay device of the second embodiment is configured in a digital form. The second embodiment is a filter delay compensation means that uses an improved Euler method instead of the simple prediction calculation method of the current prediction means 9 that compensates for the delay caused by the filter calculation of the harmonic filter 6 of the first embodiment. .
[0027]
The configuration of FIG. 2 is different from that of FIG. 1 of the first embodiment in that the current prediction means 9 is replaced with a filter delay compensation means 21 using an improved Euler method. Others 1 to 8 and 10 to 19 are the same as those in FIG. The failure calculation processing unit 30 of the DC feeder circuit protection relay device is composed of 6-8, 10-18, and 21.
The improved Euler method for compensating for the delay caused by the harmonic filter 6 is a method of calculating as follows.
-Calculate the coefficients A and B by the following calculation.
A = {A (N) + A (N-1)} / 2
B = {B (N) + B (N-1)} / 2
• Obtain the current value after compensation by the following calculation.
I = I (N) + {dI / dt (N) + B−A × (I (N) + dI / dt (N) × ΔT)} × ΔT / 2.0
However,
A (N) = {dI / dt (N)-(dI / dt (N-1)} / {-I (N) + I (N-1)}
B (N) = {dI / dt (N) −A (N) × I (N)}
N represents sampling, and ΔT represents a sampling interval.
Compensating the delay of the detected current by the improved Euler method increases the amount of calculation compared with the current predicting means of the first embodiment, but increases the accuracy of delay compensation.
[0028]
In FIG. 2, each part is configured in a digital form in which a detected current value is converted into a digital signal. However, each part may be configured to satisfy the above-described protection function by an analog amount of detected current value detected by the current converting means 4. It can be set as the structure which show | plays the same effect.
[0029]
Embodiment 3 FIG.
FIG. 3 is a block diagram when the DC feeder circuit protection relay device of the second embodiment is configured in a digital form. The third embodiment is configured such that a serious failure on the regenerative line side can be directly detected from the detected current value (I) in the configuration of the first embodiment.
[0030]
The configuration of FIG. 3 is the same as the configuration of FIG. 1 of the first embodiment except that the harmonic filter delay compensation means 21 is replaced with the current prediction means 9, the detected current value, and the failure determination reference value (K 2 ) Are added to the regenerative line side fault current determining means 31 and the regenerative line side heavy short-circuit fault determining means 32, and the other 1-8, 10-17, 19 Is the same as FIG. 1 of the first embodiment. The filter delay compensation means 21 using the improved Euler method is the same as that in FIG. 2 of the second embodiment. The fault calculation processing unit 40 of the DC feeder circuit protection relay device includes 6-8, 10-17, 21, regenerative line side fault current determining means 31, regenerative line side heavy short-circuit fault determining means 32, and trip signal output means 38. It consists of
[0031]
The regenerative line side fault current determination means 31 has a detected current value (I) and a fault determination reference value (K 2 ) And the detected current value (I) is the failure criterion value (K 2 ), The regenerative line-side heavy short-circuit fault determining means 32 outputs the ON output of the regenerative line-side fault current determining means 31 and the ON output of the regenerative sudden change determining means 14. When all of the ON outputs of the polarity determination means 13 are complete, the ON output is performed. The trip signal output means 38 determines that a failure has occurred when the failure is output from either the failure determination means 15 or the regenerative line side failure determination means 17 or the regenerative line side heavy short circuit failure determination means 32, and the trip command signal for the circuit breaker is determined. Is output.
[0032]
With this configuration, when a sudden current change occurs on the regenerative line side, the detected current value is preliminarily determined as a failure determination reference value (K 2 ) Is determined to be a heavy short-circuit failure, and a heavy short-circuit failure on the regenerative line side can be detected even during the regeneration invalidation classification.
[0033]
Also in FIG. 3, each part is configured in a digital form in which the detected current value is converted into a digital signal. However, the same configuration may be adopted in which the above protection function is satisfied by the detected analog current value detected by the current converting means 4. It can be set as the structure which has the effect of.
[0034]
Embodiment 4 FIG.
The train tracks are divided into electricity at regular intervals, and are fed to each feeder section from the DC bus and protected for each feeder section, so the train feeder section that runs while consuming a large current After passing the point, the current that was flowing into the entering train will be fed from the entering feeder segment, and the failure determination is performed based on the current change value for each feeder segment, so the entering train Current increases and the amount of current change increases, and it may be determined that a failure has occurred and an unnecessary operation may occur.
[0035]
The fourth embodiment has a configuration in which a measure for preventing unnecessary operation against a sudden change in current when a train passes through a feeding section is added.
FIG. 4 is a block diagram when the DC feeder circuit protective relay device of the fourth embodiment is configured in a digital form. FIG. 4 shows a DC feeder circuit including a fault calculation processing unit, an A / D converter 5 and a trip command output means 19 for each feeder circuit that feeds power to a plurality of feeder sections F1, F2, F3, and F4, for example. The state which provided the protective relay apparatuses 51, 52, 53, and 54 is shown. The drawing shows in detail the configuration of the failure calculation processing unit of the DC feeder circuit protection relay device 51, and the DC feeder circuit protection relay devices 52, 53, and 54 having the same configuration are shown by frames.
[0036]
The DC feeder circuit protection relay device 51 has a current sudden decrease reference value (dI / dt) set in advance on the output side of the current variation value calculating means 6 having the configuration shown in FIG. K 3 ) Is less than), it is determined that the feeding section has passed, and the detected current change value (dI / dt) is multiplied by a preset feeding section passing compensation rate (S) (I). S ) [= (DI / dt) × (S)] that outputs the feeding section passing judgment means 55 to the front feeding section and the current change value (dI / dt) of the own feeding section as the rear feeding section. Compensation value for passing through the power distribution (I S ) Is provided with feeding section passing compensation switching means 56 having an adder 57 that cancels out.
[0037]
Since the actual feeder circuit DC relay circuit protection relay device is provided for each feeder section arranged in series, the feeder circuit protection relay device configured identically is provided for each feeder section. , Output the feeding section passage compensation value to the front feeding section, and feed the feeding section passage compensation value from the rear feeding section (I S ) Cancels out the current change rate of the self-feeding section, so that unnecessary operation due to the feeding section passing phenomenon can be prevented.
[0038]
【The invention's effect】
According to a first aspect of the present invention, there is provided a DC feeder circuit protection relay device comprising: a current detecting means for detecting a current of the feeder circuit; a current change value calculating means for outputting a current change value of the detected current value; Value and preset current sudden change judgment reference value (K 1 ) And the current sudden change criterion value (K 1 ), When the output of the sudden change determination means is ON, the detected current value when the output is ON is set as the base current value, the set base current value, An adder that calculates and outputs a current change value that is a difference from the detected current value, and the current change value is a failure determination reference value (K 2 ) Exceeds the fault current determining means, the polarity determining means outputting ON when the detected current value is a positive current, and the ON output of the sudden current change determining means. When there is no ON output, there are a regenerative sudden change determination means that starts ON output when the current during regenerative change suddenly, an ON output of the sudden current change determination means and an ON output of the fault current determination means, and a sudden change determination during regenerative means Failure determination means for determining a failure when there is no ON output, and a preset time (T 1 ), The ON output of the sudden change judgment means during regeneration is reset, and the time during the regeneration invalidation phenomenon (T 1 ) After a predetermined time (T 2 The regeneration line side failure determination that determines that there is a failure when there is ON output from the regeneration invalidation classification means and the regeneration invalidation classification means that are ON output during both of the failure current determination means and the polarity determination means. And a trip signal output unit that outputs a trip signal for a circuit breaker when either of the failure determination unit or the regeneration line side failure determination unit determines that a failure has occurred. And regenerative expired can be discriminated, making it possible to accurately detect failures.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a DC feeder circuit protection relay device according to a first embodiment.
FIG. 2 is a block diagram illustrating a configuration of a DC feeder circuit protection relay device according to a second embodiment;
FIG. 3 is a block diagram illustrating a configuration of a DC feeder circuit protection relay device according to a third embodiment.
4 is a block diagram showing a configuration of a DC feeder circuit protection relay device according to a fourth embodiment. FIG.
FIG. 5 is a diagram showing a change state of a load current during train activation.
FIG. 6 is a diagram showing a change state of a fault current.
FIG. 7 is an explanatory vinegar that explains the regeneration expiration phenomenon.
FIG. 8 is a diagram showing a change state of current during regeneration invalidation.
[Explanation of symbols]
1 DC bus, 2 circuit breakers, 3 feeders, 4 current detection means,
5 A / D converter, 6 harmonic filter, 7 current change value calculation means,
8 sudden current change judging means, 9 current predicting means, 10 base current setting means,
11 adder, 12 fault current judging means, 13 polarity judging means,
14 sudden change judgment means during regeneration, 15 failure judgment means, 16 regeneration expiration classification means,
17 regeneration line side failure judgment means, 18 trip signal output means,
19 trip command output means, 20 fault calculation processing section,
21 harmonic filter delay compensation means, 30 fault calculation processing unit,
31 regenerative line side fault current judging means, 32 regenerative line side heavy short-circuit fault judging means,
38 trip signal output means, 40 fault calculation processing section, 50 fault calculation processing section,
55 feeding part passage judging means, 56 feeding section passing compensation switching device,
57 Adder.

Claims (6)

直流電圧がき電され、電車が運行される電車線路のき電回路電流を検出してき電回路の故障を判別し、き電回路の遮断器に対してトリップ信号を出力する直流き電回路保護継電装置であって、き電回路の電流を検出する電流検出手段と、該電流検出手段により検出された検出電流値(I)を微分演算して電流変化値(dI/dt)を出力する電流変化値演算手段と、該電流変化値演算手段が出力した電流変化値(dI/dt)と予め設定された電流急変判定基準値(K)とを比較し、電流変化値(dI/dt)が電流急変判定基準値(K)を越えた場合にON出力する電流急変判定手段と、上記電流急変判定手段のON出力時点の上記検出電流値(I)をベース電流値(I)として設定するベース電流設定手段と、上記設定されたベース電流値(I)と、上記検出電流値(I)との差の電流変化値(ΔI)を演算して出力する加算器と、上記電流変化値(ΔI)が、予め設定された上記電流変化値(ΔI)の故障判定基準値(K)を越えたときにON出力する故障電流判定手段と、上記検出電流値(I)が正方向電流のときにON出力する極性判定手段と、上記電流急変判定手段のON出力があり、かつ、上記極性判定手段がON出力なしのときに、回生中電流が急変したとしてON出力を開始する回生中急変判定手段と、上記電流急変判定手段のON出力および上記故障電流判定手段のON出力があり、上記回生中急変判定手段のON出力がない場合に故障と判定する故障判定手段と、予め設定した回生失効現象中の時間(T)を経過した後に、上記回生中急変判定手段のON出力をリセットし、かつ、回生線路の短絡故障を判定するために回生失効現象中の時間(T)を経過した後に予め設定した時間(T)の間ON出力する回生失効分別手段と、該回生失効中分別手段のON出力があり、上記故障電流判定手段と上記極性判定手段の双方からのON出力もあるときに故障と判定する回生線路側故障判定手段と、上記故障判定手段または上記回生線路側故障判定手段のいずれかが故障と判定した場合に、上記遮断器のトリップ信号を出力するトリップ信号出力手段とを備えたことを特徴とする直流き電回路保護継電装置。DC feeding circuit protection relay that detects the fault of the feeding circuit by detecting the feeding circuit current of the train line where the DC voltage is fed and the train is operated, and outputs a trip signal to the breaking circuit of the feeding circuit A current detecting means for detecting a current of a feeding circuit, and a current change for differentiating the detected current value (I) detected by the current detecting means and outputting a current change value (dI / dt) The value calculation means and the current change value (dI / dt) output from the current change value calculation means are compared with a preset current sudden change determination reference value (K 1 ), and the current change value (dI / dt) is Current sudden change determination means that outputs ON when sudden current change determination reference value (K 1 ) is exceeded, and the detected current value (I) at the time of ON output of the current sudden change determination means is set as a base current value (I b ) The base current setting means, and the above set Over scan current value (I b), and the detected current value (I) a current change value of the difference between ([Delta] I) an adder for computing and outputting said current change value ([Delta] I) has been set in advance Fault current judging means for outputting ON when the current change value (ΔI) exceeds the fault judgment reference value (K 2 ), and polarity judging means for outputting ON when the detected current value (I) is a positive current. And the sudden current change determination means during the regeneration, the sudden current change determination means during the regeneration starting the ON output when the current during regeneration is suddenly changed when the polarity determination means is not ON output, and the sudden current change determination A failure determination means for determining a failure when there is an ON output of the means and an ON output of the failure current determination means and there is no ON output of the sudden change determination means during regeneration, and a preset time (T 1 ), After the above regeneration Regeneration revocation resets the ON output of the decision means, and, to between ON output regenerative revocation phenomena in time to determine the short-circuit failure of the regeneration line (T 1) preset time after a lapse of (T 2) Regenerating line side failure determining means for determining failure when there is ON output of the separating means and the regenerating invalidation separating means, and there are also ON outputs from both the failure current determining means and the polarity determining means, and the failure DC feeder circuit protection relay comprising: a trip signal output means for outputting a trip signal of the circuit breaker when either the judging means or the regenerative line side fault judging means judges a fault. apparatus. 上記検出電流値(I)が故障判定基準値(K)を越えたときにON出力する回生線路側故障電流判定手段と、該回生線路側故障電流判定手段の出力と、上記回生中急変判定手段の出力と、上記極性判定手段の出力の全てがON出力のときに故障と判定する回生線路側重短絡故障判定手段とを備えたことを特徴とする請求項1記載の直流き電線回路保護継電装置。When the detected current value (I) exceeds the failure judgment reference value (K 2 ), the regenerative line side fault current judging means that outputs ON, the output of the regenerative line side fault current judging means, and the sudden change judgment during regeneration 2. The DC feeder circuit protective joint according to claim 1, further comprising: a regenerative line side heavy short-circuit fault judging means for judging a fault when all of the outputs of the polarity judging means are ON outputs. Electrical equipment. 上記電流検出手段の出力側に、検出電流の高調波成分を低減する高調波フィルタを配置したことを特徴とする請求項1または請求項2記載の直流き電回路保護継電装置。3. The DC feeding circuit protection relay device according to claim 1, wherein a harmonic filter for reducing a harmonic component of the detected current is disposed on the output side of the current detecting means. 上記高調波フィルタの出力側に、上記検出電流値(I)と上記電流変化値演算手段が出力した上記電流変化値(dI/dt)とを入力し、上記高調波フィルタのフィルタ演算による遅れ分を補償する電流予測手段を配置したことを特徴とする請求項3記載の直流き電回路保護継電装置。The detected current value (I) and the current change value (dI / dt) output from the current change value calculation means are input to the output side of the harmonic filter, and the delay due to the filter calculation of the harmonic filter is input. 4. The DC feeding circuit protection relay device according to claim 3, further comprising a current predicting means for compensating the current. 上記高調波フィルタの出力側の高調波フィルタの演算による遅れ分を補償する電流予測手段は、改良形オイラー法で行う高調波フィルタ遅れ補償手段としたことを特徴とする請求項4記載の直流き電回路保護継電装置。5. The DC power supply according to claim 4, wherein the current predicting means for compensating for the delay due to the operation of the harmonic filter on the output side of the harmonic filter is a harmonic filter delay compensating means performed by an improved Euler method. Electrical circuit protection relay device. 上記電流変化値演算手段の出力値が上記電流急減判定基準値(K)より下回ったときに、き電区分通過と判定し、出力値に予め設定したき電区分通過補償率(S)を乗じたき電区分通過補償値を前方のき電回線に出力するき電区分通過判定手段と、後方のき電区分のき電区分通過判定手段からのき電区分通過補償値により上記電流変化値と相殺するき電区分補償処理手段とを備えたことを特徴とする請求項1〜請求項5のいずれかに記載の直流き電回路保護継電装置。When the output value of the current change value calculation means falls below the current sudden decrease determination reference value (K 3 ), it is determined that the feeder section has passed, and the feeder section passage compensation rate (S) preset in the output value is set. The current change value is calculated by the feeding section passage judging means for outputting the feeding section passing compensation value to the front feeding line and the feeding section passing compensation value from the feeding section passage judging means of the rear feeding section. The DC feeder circuit protection relay device according to any one of claims 1 to 5, further comprising a feeding section compensation processing means for canceling.
JP2003189155A 2003-07-01 2003-07-01 Dc feeding system protection relay Pending JP2005027411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189155A JP2005027411A (en) 2003-07-01 2003-07-01 Dc feeding system protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189155A JP2005027411A (en) 2003-07-01 2003-07-01 Dc feeding system protection relay

Publications (1)

Publication Number Publication Date
JP2005027411A true JP2005027411A (en) 2005-01-27

Family

ID=34187441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189155A Pending JP2005027411A (en) 2003-07-01 2003-07-01 Dc feeding system protection relay

Country Status (1)

Country Link
JP (1) JP2005027411A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074354A (en) * 2006-09-25 2008-04-03 Railway Technical Res Inst Section part overhead wire breakage preventive device
CN103395377A (en) * 2013-06-24 2013-11-20 南车株洲电力机车有限公司 Main cutting-off circuit of electric locomotive set and main cutting-off control method
JP2015098286A (en) * 2013-11-19 2015-05-28 株式会社東芝 Dc feeder protection relay device
CN108254675A (en) * 2018-03-14 2018-07-06 奥克斯空调股份有限公司 Pfc circuit failure detector, method and convertible frequency air-conditioner
CN112467688A (en) * 2020-11-11 2021-03-09 广州市扬新技术研究有限责任公司 Current increment protection method of direct current traction protection measurement and control device
CN113036734A (en) * 2020-09-21 2021-06-25 西南交通大学 Traction network power supply arm relay protection method based on directional current increment element
CN113451998A (en) * 2021-06-25 2021-09-28 许继集团有限公司 Flexible direct-current voltage abrupt change protection method and device
KR102330825B1 (en) * 2021-08-13 2021-11-24 인텍전기전자 주식회사 System for detecting fault of ring main unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074354A (en) * 2006-09-25 2008-04-03 Railway Technical Res Inst Section part overhead wire breakage preventive device
CN103395377A (en) * 2013-06-24 2013-11-20 南车株洲电力机车有限公司 Main cutting-off circuit of electric locomotive set and main cutting-off control method
JP2015098286A (en) * 2013-11-19 2015-05-28 株式会社東芝 Dc feeder protection relay device
CN108254675A (en) * 2018-03-14 2018-07-06 奥克斯空调股份有限公司 Pfc circuit failure detector, method and convertible frequency air-conditioner
CN113036734A (en) * 2020-09-21 2021-06-25 西南交通大学 Traction network power supply arm relay protection method based on directional current increment element
CN112467688A (en) * 2020-11-11 2021-03-09 广州市扬新技术研究有限责任公司 Current increment protection method of direct current traction protection measurement and control device
CN113451998A (en) * 2021-06-25 2021-09-28 许继集团有限公司 Flexible direct-current voltage abrupt change protection method and device
KR102330825B1 (en) * 2021-08-13 2021-11-24 인텍전기전자 주식회사 System for detecting fault of ring main unit

Similar Documents

Publication Publication Date Title
EP3614513B1 (en) Dc ground fault detection system and dc ground fault detection method for dc electric railway
WO2008004727A1 (en) Delta i ground-fault protection relaying system for dc traction power supply system and method of controlling the same
CA2692508C (en) Controller for ac electric train
JP5119229B2 (en) Vehicle control device
CN109217270B (en) DC line sectional type timing limit overcurrent protection method and device
JP2005027411A (en) Dc feeding system protection relay
KR100696984B1 (en) Pilot ground fault protective relaying scheme in traction power supply system
JP4718407B2 (en) Section section overhead wire cutting prevention device
WO2006001566A1 (en) Ground overcurrent protection relay system for ungrounded dc power feed system and method of controlling the same
JP2018036054A (en) Earth detector, ground fault protection device, and method for detecting ground fault
EP0777587B1 (en) Electromagnetic interference detection system for mass transit vehicles with electric propulsion
JP2003032875A (en) Feeder current relay apparatus
JPH1146402A (en) Pantograph arc detecting device for dc electric car
JP2014075938A (en) Electric power converter for electric motor vehicle
JP5367444B2 (en) Electric vehicle control device and test method thereof
JP6159601B2 (en) Railway vehicle control system and control method
JP2539178B2 (en) DC feeding circuit failure selection method
JP2004023884A (en) Dc current relay device
JP2005027378A (en) Controller for electric vehicle
JP2003274501A (en) Measuring method of dc pantograph arc
JP2004056956A (en) Detection circuit for reduction in filter capacitor capacitance
JP2007282337A (en) Device for determining line wire grounded circuit in direct-current electric railroad
JP2002271972A (en) Ground relaying system of dc feeding substation
JP2003174704A (en) Power supply for electric car
JP7076998B2 (en) Ground fault protection device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050629