JP2005027229A - Surface acoustic wave device and its manufacturing method - Google Patents

Surface acoustic wave device and its manufacturing method Download PDF

Info

Publication number
JP2005027229A
JP2005027229A JP2003270594A JP2003270594A JP2005027229A JP 2005027229 A JP2005027229 A JP 2005027229A JP 2003270594 A JP2003270594 A JP 2003270594A JP 2003270594 A JP2003270594 A JP 2003270594A JP 2005027229 A JP2005027229 A JP 2005027229A
Authority
JP
Japan
Prior art keywords
metal film
acoustic wave
surface acoustic
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003270594A
Other languages
Japanese (ja)
Inventor
Yuji Ogawa
祐史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003270594A priority Critical patent/JP2005027229A/en
Publication of JP2005027229A publication Critical patent/JP2005027229A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a means for downsizing a SAW device and lowering its back. <P>SOLUTION: A surface acoustic wave device element is bonded to an insulating substrate through metal bumps by a flip chip method. An insulating resin is applied to the surface acoustic wave device element and the insulating substrate and is cured by heat to form the surface acoustic wave device which is provided with an airtight space between the surface acoustic wave device element and the insulating substrate. A multilayer metal film, composed of at least two layers, a first metal film exhibiting a high adhesiveness and a second metal layer, is provided on the outer surface of the insulating resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は弾性表面波デバイスとその製造法に関し、特に簡易封止に絶縁性フィルムあるいは絶縁樹脂を用い、且つその表面に積層金属膜を付着した弾性表面波デバイスとその製造法に関する。   The present invention relates to a surface acoustic wave device and a manufacturing method thereof, and more particularly to a surface acoustic wave device using an insulating film or an insulating resin for simple sealing and having a laminated metal film attached to the surface and a manufacturing method thereof.

近年、弾性表面波デバイス(以下、SAWデバイスと称す)は通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話、無線LAN等に多く用いられている。
図7は従来のSAWデバイスの構成を示す断面図であって、SAWデバイス素子21をセラミックパッケージ22に収容し、該セラミックパッケージ22の凹陥部とSAWデバイス素子21の底面とを接着剤を用いて接着固定した後、SAWデバイスのパッド電極(図示せず)とセラミックパッケージ22の段差部に設けた電極23とをボンディングワイヤ24にて接続する。そして、セラミックパッケージ22の上部の周縁部に形成したメタライズ25と金属蓋26とを抵抗溶接等の手段を用いて気密封止して、SAWデバイスを構成する。
In recent years, surface acoustic wave devices (hereinafter referred to as SAW devices) have been widely used in the communication field, and since they have excellent characteristics such as high performance, small size, and mass productivity, they are often used particularly for mobile phones and wireless LANs. Yes.
FIG. 7 is a cross-sectional view showing a configuration of a conventional SAW device, in which a SAW device element 21 is accommodated in a ceramic package 22, and a concave portion of the ceramic package 22 and a bottom surface of the SAW device element 21 are used with an adhesive. After bonding and fixing, the pad electrode (not shown) of the SAW device and the electrode 23 provided on the step portion of the ceramic package 22 are connected by the bonding wire 24. Then, the metallization 25 and the metal lid 26 formed on the peripheral edge of the upper part of the ceramic package 22 are hermetically sealed using means such as resistance welding to constitute a SAW device.

セラミックパッケージ22の内部を乾燥窒素等の気体で満たして気密封止する理由は、周知のようにSAWデバイス素子21の電極が酸化することによる周波数変動を防止するためと、環境変化、例えば温度変化によって結露が発生し、SAWデバイス素子21上に出現した水滴による性能劣化を防ぐためである。
セラミックパッケージを用いたSAWデバイスは気密性では優れているものの、小型化、低コスト化という最近の要求を満たすことは難しいという問題があった。この問題を解決する手段として、SAWデバイス素子を絶縁性フィルムから形成した額縁状で絶縁性の壁及び蓋で封止したSAWデバイスとその製造法が、特開2000−114918号公報に開示されている。
The reason for hermetically sealing the interior of the ceramic package 22 with a gas such as dry nitrogen is that, as is well known, in order to prevent frequency fluctuations due to oxidation of the electrodes of the SAW device element 21 and environmental changes such as temperature changes. This is because dew condensation is caused by the above and performance deterioration due to water droplets appearing on the SAW device element 21 is prevented.
Although the SAW device using the ceramic package is excellent in hermeticity, there is a problem that it is difficult to satisfy the recent demands for miniaturization and cost reduction. As means for solving this problem, a SAW device in which a SAW device element is formed of an insulating film and sealed with a frame-like insulating wall and lid, and a method for manufacturing the SAW device, are disclosed in Japanese Patent Application Laid-Open No. 2000-114918. Yes.

特開2000−114918号公報を簡単に説明する。図8(a)に示すようにウエハ31の上に弾性表面波を送受する電極32をマトリクス状に配置し、同図(b)に示すようにウエハ31上の全ての電極32に感光性フィルム33を貼り付け、写真製版技術(フォトリソグラフィ技術)を用いて図8(c)に示すように、電極32を取り囲む額縁状の第1の絶縁性の壁34を形成する。そして、図8(d)に示すように第1の絶縁性の壁34に対して感光性のフィルム35を装着し、電極32との間に空間36を設ける。次に、写真製版技術によって第1の壁34に対する第2の絶縁性の蓋37を形成し、分離線38の位置をダイシングソーにより切断し分割することによって個々のチップ(SAWデバイス)を形成する。 Japanese Patent Laid-Open No. 2000-114918 will be briefly described. As shown in FIG. 8A, electrodes 32 for transmitting and receiving surface acoustic waves are arranged in a matrix on the wafer 31, and as shown in FIG. 8B, all the electrodes 32 on the wafer 31 are exposed to a photosensitive film. As shown in FIG. 8C, a frame-shaped first insulating wall 34 surrounding the electrode 32 is formed using a photoengraving technique (photolithography technique). Then, as shown in FIG. 8D, a photosensitive film 35 is mounted on the first insulating wall 34, and a space 36 is provided between the electrodes 32. Next, a second insulating lid 37 for the first wall 34 is formed by photolithography, and individual chips (SAW devices) are formed by cutting and dividing the positions of the separation lines 38 with a dicing saw. .

図9は、図8に示した製造法を用いて製作したSAWデバイスの構成を示す斜視図であって、圧電基板31上に配置した電極の周囲空間を覆うように額縁状の絶縁性の壁34と、絶縁性の蓋35とからなる簡易パッケージが形成されている。そして、簡易パッケージの表面は内部への湿気の浸入防止用に金属膜で被覆されており、この金属膜を接地電位と導通させることにより電磁気遮蔽としても機能する。   FIG. 9 is a perspective view showing the configuration of the SAW device manufactured using the manufacturing method shown in FIG. 8, and is a frame-like insulating wall so as to cover the surrounding space of the electrodes arranged on the piezoelectric substrate 31. A simple package including 34 and an insulating lid 35 is formed. The surface of the simple package is covered with a metal film for preventing moisture from entering the inside, and also functions as an electromagnetic shield by making the metal film conductive with the ground potential.

特開2000−114918号公報JP 2000-114918 A


しかしながら、図9に示したように絶縁性樹脂に金属膜を付着させると引っ掻き試験で容易に剥離が生じ、あるいはひび割れ等が生じる。その結果、簡易パッケージ内に湿気が浸入し、且つSAWデバイス周辺の電子部品からの電磁気的影響を受けるという問題があった。

However, when a metal film is attached to the insulating resin as shown in FIG. 9, peeling easily occurs in the scratch test, or cracks or the like occur. As a result, there is a problem that moisture penetrates into the simple package and receives electromagnetic influence from electronic components around the SAW device.

図10は絶縁性の樹脂板上に蒸着等の手段でクロム(Cr)、チタン(Ti)、アルミニウム(Al)、銅(Cu)等の金属膜を0.1μm、5μmの膜厚で付着し、引っ掻き試験(引っ掻き試験には鉛筆法JIS K5600−5−4と、荷重針法K5600−5−5があるが後者を用いた)と、図11(a)に示すひび割れ、同図(b)に示す薄膜状の剥離等を観察した結果をまとめた図である。ここで、○、×印はそれぞれ引っ掻き試験で剥離が生じなかった場合と、生じた場合とを示している。図10からアルミニウム、銅は膜厚に関わらず引っ掻き試験に弱いことを示している。一方、クロムは膜厚によらず引っ掻き試験には強いが、膜厚が厚くなるとひび割れが発生する。また、チタンの場合は0.1μmの膜厚では引っ掻き試験で剥離が生じないが、膜厚が5μmと厚くなると剥離が生じ、且つ薄膜状の剥がれも生じることがわかる。引っ掻き試験で剥離を起こすのは金属膜の付着強度が弱く、実用に耐えないことを示している。   In FIG. 10, a metal film of chromium (Cr), titanium (Ti), aluminum (Al), copper (Cu), etc. is deposited on an insulating resin plate with a film thickness of 0.1 μm and 5 μm by means such as vapor deposition. Scratch test (the scratch test includes the pencil method JIS K5600-5-4 and the load needle method K5600-5-5, but the latter was used), the crack shown in FIG. 11A, and FIG. It is the figure which put together the result of having observed the thin film-like peeling etc. which are shown in FIG. Here, the marks “◯” and “X” indicate the case where no peeling occurred and the case where it occurred in the scratch test, respectively. FIG. 10 shows that aluminum and copper are vulnerable to the scratch test regardless of the film thickness. On the other hand, chromium is strong in the scratch test regardless of the film thickness, but cracks occur as the film thickness increases. In addition, in the case of titanium, peeling does not occur in the scratch test at a film thickness of 0.1 μm, but peeling occurs when the film thickness increases to 5 μm, and thin film peeling also occurs. Peeling in the scratch test indicates that the adhesion strength of the metal film is weak and cannot be practically used.

本発明は上記問題を解決するためになされたものであって、金属膜が強固に密着した樹脂製パッケージにSAWデバイス素子を収容したSAWデバイスとその製造法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object thereof is to provide a SAW device in which a SAW device element is accommodated in a resin package in which a metal film is firmly adhered, and a method for manufacturing the SAW device.

上記目的を達成するために本発明に係る弾性表面波デバイスとその製造法の請求項1記載の発明は、所定の配線が施されたプリント基板と、その上にフリップチップ実装した弾性表面波素子と、前記弾性表面波素子と前記プリント基板との間に気密空間を確保するようにこれらの上面を覆う絶縁性の気密部材と、該気密部材の外面に付着した金属膜とを備えた弾性表面波デバイスであって、前記金属膜は、少なくとも前記気密部材との密着性に優れた第1の金属膜と、第1の金属膜とは異なる金属からなる第2の金属膜とを順次付着した構造を含む多層金属膜であることを特徴とする弾性表面波デバイスである。
請求項2記載の発明は、前記第1の金属膜がクロム、チタン、ニッケルのいずれかを主成分とする金属であることを特徴とする請求項1に記載の弾性表面波デバイスである。
請求項3記載の発明は、前記第2の金属膜がアルミニウム、銅のいずれかを主成分とする金属であることを特徴とする請求項1又は2に記載の弾性表面波デバイスである。
請求項4記載の発明は、前記金属膜の外面が絶縁性の樹脂にて覆われていることを特徴とする請求項1乃至3のいずれかに記載の弾性表面波デバイスである。
請求項5記載の発明は、前記第1の金属膜の厚さをH1、前記第2の金属膜の厚さをH2としたとき、
H1≦0.5μm、0.5μm<H2≦50μm
を満たすようにそれぞれの膜厚を設定したことを特徴とする請求項1乃至4のいずれかに記載の弾性表面波デバイスである。
請求項6記載の発明は、外部端子を有し該外部端子と導通する内部導体と配線パターンを複数備えた実装基板母材上に金属バンプを介して弾性表面波素子をマトリクス状にフリップチップ方式でボンディングすると共に、弾性表面波素子上に絶縁性フィルム、あるいは絶縁性樹脂を付着して熱硬化させ、弾性表面波素子と実装基板母材との間に気密空間を形成して封止する工程と、前記熱硬化した絶縁性フィルムあるいは樹脂の外側表面に金属膜を形成する工程と、前記実装基板母材を個片に分割する工程とを備えた弾性表面波デバイスの製造法において、前記絶縁性フィルムあるいは樹脂を熱硬化させた後、前記絶縁性フィルムあるいは樹脂を切断し、前記実装基板母材は分離しないように切れ込みを入れる工程と、前記熱硬化した絶縁性フィルムあるいは樹脂上に密着性の良い第1の金属膜を付着する工程と、該第1の金属膜の上に第2の金属膜を付着する工程と、前記前記熱硬化した絶縁性フィルムあるいは樹脂を切断した切断幅よりも狭い幅で前記実装基板母材を切断して個片に分割する工程を含むことを特徴とする弾性表面波デバイスの製造法である。
請求項7記載の発明は、外部端子を有し該外部端子と導通する内部導体と配線パターンを複数備えた実装基板母材上に金属バンプを介して弾性表面波素子をマトリクス状にフリップチップ方式でボンディングすると共に、弾性表面波素子上に絶縁性フィルム、あるいは絶縁性樹脂を付着して熱硬化させ、弾性表面波デバイス素子と実装基板母材との間に気密空間を形成して封止する工程と、前記熱硬化した絶縁性フィルムあるいは樹脂の外側表面に金属膜を形成する工程と、前記実装基板母材を個片に分割する工程とを備えた弾性表面波デバイスの製造法において、前記絶縁性フィルムあるいは樹脂を熱硬化させた後、前記絶縁性フィルムあるいは樹脂を切断し、前記実装基板母材は分離しないように切れ込みを入れる工程と、前記熱硬化した絶縁性フィルムあるいは樹脂上に密着性の良い第1の金属膜を付着する工程と、該第1の金属膜の上に第2の金属膜を付着する工程と、前記の切れ込み内と前記第2の金属膜とを覆うように樹脂を充填する工程と、前記前記熱硬化した絶縁性フィルムあるいは樹脂を切断した切断幅よりも狭い幅で前記実装基板母材を切断して個片に分割する工程を含むことを特徴とする弾性表面波デバイスの製造法である。
構成してもよい。
In order to achieve the above object, the surface acoustic wave device according to the present invention and the manufacturing method thereof according to claim 1 include a printed circuit board on which predetermined wiring is provided, and a surface acoustic wave element mounted thereon by flip-chip mounting. And an insulating airtight member that covers the upper surface of the surface acoustic wave element and the printed circuit board so as to secure an airtight space, and a metal film attached to the outer surface of the airtight member. In the wave device, the metal film is formed by sequentially attaching at least a first metal film excellent in adhesion to the airtight member and a second metal film made of a metal different from the first metal film. The surface acoustic wave device is a multilayer metal film including a structure.
According to a second aspect of the present invention, in the surface acoustic wave device according to the first aspect, the first metal film is a metal containing chromium, titanium, or nickel as a main component.
A third aspect of the present invention is the surface acoustic wave device according to the first or second aspect, wherein the second metal film is a metal mainly composed of aluminum or copper.
The invention according to claim 4 is the surface acoustic wave device according to any one of claims 1 to 3, wherein an outer surface of the metal film is covered with an insulating resin.
According to a fifth aspect of the present invention, when the thickness of the first metal film is H1, and the thickness of the second metal film is H2,
H1 ≦ 0.5μm, 0.5μm <H2 ≦ 50μm
5. The surface acoustic wave device according to claim 1, wherein each film thickness is set so as to satisfy the above.
According to a sixth aspect of the present invention, a surface acoustic wave element is flip-chiped in a matrix form through a metal bump on a mounting substrate base material having an external terminal and a plurality of internal conductors and wiring patterns that are electrically connected to the external terminal. Bonding, and attaching an insulating film or insulating resin on the surface acoustic wave element and thermosetting it to form an airtight space between the surface acoustic wave element and the mounting substrate base material and sealing A surface acoustic wave device comprising: a step of forming a metal film on an outer surface of the thermally cured insulating film or resin; and a step of dividing the mounting substrate base material into pieces. A step of cutting the insulating film or resin after the thermosetting film or resin is cured, and cutting the mounting substrate base material so as not to be separated; and the thermosetting insulating property A step of depositing a first metal film having good adhesion on a film or a resin, a step of depositing a second metal film on the first metal film, and the thermosetting insulating film or resin. A method of manufacturing a surface acoustic wave device, comprising a step of cutting the mounting substrate base material into a piece that is narrower than a cutting width obtained by cutting the substrate.
According to a seventh aspect of the present invention, a surface acoustic wave device is flip-chiped in a matrix form through metal bumps on a mounting substrate base material having external terminals and having a plurality of internal conductors and wiring patterns that are electrically connected to the external terminals. In addition, the insulating film or insulating resin is attached on the surface acoustic wave element and thermally cured, and an airtight space is formed between the surface acoustic wave device element and the mounting substrate base material to seal. In the method of manufacturing a surface acoustic wave device, comprising: a step; a step of forming a metal film on an outer surface of the thermally cured insulating film or resin; and a step of dividing the mounting substrate base material into pieces. After thermally curing the insulating film or resin, cutting the insulating film or resin and making a notch so that the mounting substrate base material is not separated; and the thermosetting A step of depositing a first metal film having good adhesion on an insulating film or resin, a step of depositing a second metal film on the first metal film, the inside of the notch and the second A step of filling a resin so as to cover the metal film, and a step of cutting the mounting substrate base material by a width narrower than a cutting width obtained by cutting the heat-cured insulating film or resin and dividing the substrate into pieces. A method of manufacturing a surface acoustic wave device.
It may be configured.

本発明は、以上説明したように構成したので、請求項1に記載の発明はパッケージ内への湿気浸入防止と、周囲の電気部品からの電磁気遮蔽の防止という優れた効果を表す。請求項2、3に記載の発明は樹脂製パッケージに強固に付着する金属膜を特定したので、SAWデバイスが容易に実現できるという優れた効果を表す。請求項4に記載の発明は積層金属膜の強化をさらに図る手段を提供するとなる。請求項5に記載の発明は第1、第2の金属膜のそれぞれの膜厚を特定したので、SAWデバイスが容易に実現できるという優れた効果を奏す。請求項6、7に記載の発明は簡易パッケージタイプのSAWデバイスの製作方法を示したのでこのタイプのSAWデバイスが容易に実現できるという優れた効果を奏す。   Since the present invention is configured as described above, the invention described in claim 1 exhibits excellent effects of preventing moisture from entering the package and preventing electromagnetic shielding from surrounding electrical components. Since the invention according to the second and third aspects specifies the metal film that adheres firmly to the resin package, the SAW device can be easily realized. The invention according to claim 4 provides means for further strengthening the laminated metal film. The invention according to claim 5 has an excellent effect that the SAW device can be easily realized because the thickness of each of the first and second metal films is specified. The inventions according to claims 6 and 7 show the manufacturing method of the simple package type SAW device, and therefore, there is an excellent effect that this type of SAW device can be easily realized.

以下本発明を図面に示した実施の形態に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

図1は本発明に係る弾性表面波デバイスの実施例の構成を示す図であって、同図(a)は斜視図、同図(b)は断面図、同図(c)はQ−Qにおける断面図である。絶縁基板1、例えばセラミック基板の上面と裏面にそれぞれ接続端子2と外部端子3を形成すると共に、接続端子2、外部端子3間を導通する内部導体4を形成する。そして、接続端子2に金属バンプ5を介してSAWデバイス素子6をフリップチップ方式でボンディングすると共に、フェイスダウン状態のSAWデバイス素子6と絶縁基板1の上面とに絶縁性樹脂7を付着した上で熱硬化させ、SAWデバイス素子6と絶縁基板1の上面との間に気密空間8を形成する。さらに、熱硬化した絶縁性樹脂7の外側表面に絶縁性樹脂との密着性の良い第1の金属膜9aを付着し、さらに第1の金属膜9aの上に第2の金属膜9bを積層してSAWデバイスを完成する。なお、積層金属膜9(9a、9b)は絶縁基板1上に設けた接地用導体と導通される。   FIG. 1 is a diagram showing the configuration of an embodiment of a surface acoustic wave device according to the present invention, where FIG. 1 (a) is a perspective view, FIG. 1 (b) is a cross-sectional view, and FIG. FIG. A connection terminal 2 and an external terminal 3 are formed on the upper surface and the back surface of an insulating substrate 1, for example, a ceramic substrate, and an internal conductor 4 that conducts between the connection terminal 2 and the external terminal 3 is formed. Then, the SAW device element 6 is bonded to the connection terminal 2 via the metal bump 5 by the flip chip method, and the insulating resin 7 is attached to the SAW device element 6 in the face-down state and the upper surface of the insulating substrate 1. By heat curing, an airtight space 8 is formed between the SAW device element 6 and the upper surface of the insulating substrate 1. Further, a first metal film 9a having good adhesion to the insulating resin is attached to the outer surface of the thermally cured insulating resin 7, and a second metal film 9b is laminated on the first metal film 9a. Thus, the SAW device is completed. The laminated metal film 9 (9a, 9b) is electrically connected to a grounding conductor provided on the insulating substrate 1.

種々の実験を重ねた結果、第1の金属膜9aとしては絶縁性樹脂7と密着性の良いクロム、チタン、ニッケル等が適しているが、これらの金属膜を厚くするとひび割れや薄膜状の剥がれ生じ、引っ掻き試験にも弱くなる。かと言って膜を薄くすると機械的強度の低下は防止できるものの湿気の浸入防止という本来の機能が十分に得られない。これらの弱点を補うべく第1の金属膜9aの上に第2の金属膜9bとしてアルミニウム、銅の膜を積層すれば理想的な膜が得られる。   As a result of various experiments, chromium, titanium, nickel, etc., which have good adhesion to the insulating resin 7 are suitable as the first metal film 9a. However, when these metal films are thickened, cracks or thin film-like peeling occurs. And is weaker to the scratch test. However, when the film is thinned, the mechanical strength can be prevented from being lowered, but the original function of preventing moisture from entering cannot be obtained sufficiently. An ideal film can be obtained by laminating an aluminum or copper film as the second metal film 9b on the first metal film 9a in order to compensate for these weak points.

図2は積層金属膜の実施例で、Aは第1の金属膜9aをクロム膜0.1μm、第2の金属膜9bをアルミニウム膜4μmとした場合で、引っ掻き試験での剥離は生じないし、金属膜の薄膜状の剥がれも生じなかった。Bは第1の金属膜9aをクロム膜0.2μm、第2の金属膜9bをアルミニウム膜4μmとした場合で、引っ掻き試験での剥離は生じないし、金属膜の薄膜状の剥がれも生じなかった。Cは第1の金属膜9aをクロム膜0.1μm、第2の金属膜をアルミニウム膜10μmとした場合で、同様に引っ掻き試験での剥離は生じないし、金属膜の薄膜状の剥がれも生じなかった。   FIG. 2 shows an example of a laminated metal film. A is a case where the first metal film 9a is a chromium film of 0.1 μm and the second metal film 9b is an aluminum film of 4 μm, and peeling does not occur in the scratch test. The metal film did not peel off as a thin film. B shows a case where the first metal film 9a is a chromium film of 0.2 μm and the second metal film 9b is an aluminum film of 4 μm. No peeling occurred in the scratch test, and no metal film was peeled off. . C is a case where the first metal film 9a is a chromium film of 0.1 μm and the second metal film is an aluminum film of 10 μm. Similarly, no peeling occurs in the scratch test, and no metal film is peeled off. It was.

図2の積層金属膜の実施例で第2の金属膜としてアルミニウムの代わりに銅を用い、クロム膜/銅膜をそれぞれ0.1μm/4μm、0.2μm/4μm、0.1μm/10μmとして実験したが、アルミニウムの場合と同様に良好な結果が得られた。   In the example of the laminated metal film of FIG. 2, copper was used instead of aluminum as the second metal film, and the chromium film / copper film were tested at 0.1 μm / 4 μm, 0.2 μm / 4 μm, and 0.1 μm / 10 μm, respectively. However, good results were obtained as in the case of aluminum.

次に、第1の金属膜としてクロムの代わりにチタンを用い、その上に第2の金属膜として、アルミニウム膜あるいは銅膜を積層した積層膜を形成し、引っ掻き試験とひび割れ等を調べたがクロム膜と銅膜との積層の場合とほぼ同様な結果が得られた。   Next, titanium was used instead of chromium as the first metal film, and a laminated film in which an aluminum film or a copper film was laminated thereon as the second metal film was formed, and scratch tests and cracks were investigated. Almost the same results as in the case of the lamination of the chromium film and the copper film were obtained.

また、第1の金属膜としてニッケルを用いても樹脂と強固に密着することが判明した。なお、第2の金属膜(Al、Cu)の厚さを50μm程度まで厚くした膜を試作したが剥離等は生じなかった。   It has also been found that even if nickel is used as the first metal film, it is firmly adhered to the resin. Although a film in which the thickness of the second metal film (Al, Cu) was increased to about 50 μm was prototyped, no peeling or the like occurred.

図1(b)に示すように、絶縁性樹脂7でSAWデバイス素子6の電極面と絶縁基板1の上面との間に気密空間8を形成すると共に、絶縁性樹脂7の外部表面に積層金属膜9を付着することにより、気密空間8内への湿気浸入を防止し、且つSAWデバイスを搭載した周囲の電子部品からの電磁気的影響を完全に防止することができるようになった。   As shown in FIG. 1B, an airtight space 8 is formed between the electrode surface of the SAW device element 6 and the upper surface of the insulating substrate 1 with the insulating resin 7, and a laminated metal is formed on the outer surface of the insulating resin 7. By attaching the film 9, it is possible to prevent moisture from entering the hermetic space 8 and to completely prevent electromagnetic influences from surrounding electronic components on which the SAW device is mounted.

図1に示したSAWデバイスの製造法としては、図3(a)に示すように絶縁基板1をマトリクス状に配置したような実装基板母材1Pのそれぞれの接続端子(図示せず)に、同図(b)に示すように金属バンプ5を介してにSAWデバイス素子6をフリップチップ方式でボンディングすると共に、フェイスダウンのSAWデバイス素子6と実装基板母材1Pの上面とに、同図(c)に示すように絶縁性樹脂7を付着した上で熱硬化させ、それぞれのSAWデバイス素子6と実装基板母材1Pの上面との間に気密空間8を形成する。さらに、図3(d)に示すように実装基板母材1Pを切断しないように、熱硬化した絶縁性樹脂7の厚みに相当する深さにて所定の幅の切れ込みを入れる。そして、図(e)に示すようにそれぞれの絶縁性樹脂7の外表面上に密着性の良い第1の金属膜を蒸着等の手段を用いて付着し、さらに第1の金属膜の上に第2の金属膜を付着して積層金属膜9を形成する。そして、絶縁性樹脂7に入れた切り込み幅よりも狭い幅で実装基板母材1Pを一点鎖線に沿って切断して個片に分割し、SAWデバイスを完成する。 As a method of manufacturing the SAW device shown in FIG. 1, each connection terminal (not shown) of the mounting substrate base material 1P in which the insulating substrate 1 is arranged in a matrix as shown in FIG. As shown in FIG. 4B, the SAW device element 6 is bonded by the flip-chip method through the metal bumps 5, and the face-down SAW device element 6 and the upper surface of the mounting substrate base material 1P are attached to the same figure (FIG. As shown in c), the insulating resin 7 is adhered and thermally cured to form an airtight space 8 between each SAW device element 6 and the upper surface of the mounting substrate base material 1P. Further, as shown in FIG. 3 (d), a notch having a predetermined width is made at a depth corresponding to the thickness of the thermally cured insulating resin 7 so as not to cut the mounting substrate base material 1P. Then, as shown in FIG. 4E, a first metal film having good adhesion is attached on the outer surface of each insulating resin 7 by means such as vapor deposition, and further on the first metal film. A laminated metal film 9 is formed by attaching a second metal film. Then, the mounting substrate base material 1P is cut along a one-dot chain line with a width narrower than the cut width put in the insulating resin 7, and divided into individual pieces, thereby completing the SAW device.

金属膜としては、前述したように第1の金属膜としてクロム、チタン、ニッケルのいずれかを0.5μm以下の厚さに、第2の金属膜としてアルミニウムまたは銅を0.5μmから50μm程度の厚さにすると強固な積層膜が形成できる。図4はクロムの膜厚を0.1μmとし、アルミニウムの膜厚を4μmとして製作したSAWデバイスの上面の写真であり、膜の剥離等が発生していないことが確認できる。   As described above, the first metal film is made of chromium, titanium, or nickel with a thickness of 0.5 μm or less, and the second metal film is made of aluminum or copper with a thickness of about 0.5 μm to 50 μm. When the thickness is increased, a strong laminated film can be formed. FIG. 4 is a photograph of the upper surface of a SAW device manufactured with a chromium film thickness of 0.1 μm and an aluminum film thickness of 4 μm, and it can be confirmed that no peeling of the film occurs.

図5は本発明の係る第2の実施例の構成を示す図であって、同図(a)は斜視図、同図(b)は断面図、同図(c)はQ−Qにおける断面図である。図1に示した第1の実施例との違いは積層金属膜9の上に樹脂10でコーティングし、積層金属膜9の強化を図ったところである。製造方法としては図3(e)に示した工程の後に、図6で示す工程を追加する。即ち、図3(e)の切れ込み内と前記第2の金属膜9とを覆うように樹脂10を充填し、硬化させた上で絶縁性樹脂7に入れた切り込み幅よりも狭い幅で実装基板母材1Pを一点鎖線に沿って切断して個片に分割し、SAWデバイスを完成する。積層金属膜9を樹脂10で覆うことにより、第2の金属膜(アルミニウム、銅)の劣化、酸化等を防止することができる。 FIG. 5 is a diagram showing the configuration of a second embodiment according to the present invention. FIG. 5A is a perspective view, FIG. 5B is a sectional view, and FIG. FIG. The difference from the first embodiment shown in FIG. 1 is that the laminated metal film 9 is coated with a resin 10 to strengthen the laminated metal film 9. As a manufacturing method, the step shown in FIG. 6 is added after the step shown in FIG. That is, the mounting substrate is filled with a resin 10 so as to cover the inside of the notch in FIG. 3E and the second metal film 9 and cured, and is narrower than the notch width put in the insulating resin 7. The base material 1P is cut along an alternate long and short dash line and divided into individual pieces to complete the SAW device. By covering the laminated metal film 9 with the resin 10, it is possible to prevent the second metal film (aluminum, copper) from being deteriorated or oxidized.

図1ではSAWデバイスとして説明したが、これにはSAW共振子、多重モードSAWフィルタ、トランスバーサル型SAWフィルタ等全てのSAWデバイスが含まれることは言うまでもない。また、絶縁性樹脂を用いて簡易パッケージを作ることを説明したが絶縁性のフィルムを用いて熱硬化させ、これに前述の金属膜を積層付着してSAWデバイスを   Although described as a SAW device in FIG. 1, it goes without saying that this includes all SAW devices such as SAW resonators, multimode SAW filters, and transversal SAW filters. In addition, we have explained that a simple package is made using an insulating resin, but heat curing is performed using an insulating film, and the above-mentioned metal film is laminated and adhered to the SAW device.

(a)は本発明に係るSAWデバイスの斜視図、(b)はQ−Qの断面図、(c)はX−Xの断面図である。(A) is a perspective view of a SAW device according to the present invention, (b) is a cross-sectional view of QQ, and (c) is a cross-sectional view of XX. 積層した金属膜のそれぞれの膜厚と、引っ掻き試験、ひび割れの有無を示す図である。It is a figure which shows each film thickness of the laminated | stacked metal film, a scratch test, and the presence or absence of a crack. (a)、(b)、(c)、(d)、(e)は本発明に係るSAWデバイスの製作工程を示す断面図である。(A), (b), (c), (d), (e) is sectional drawing which shows the manufacturing process of the SAW device based on this invention. 樹脂上に形成した積層金属膜(Al/Cr)の写真である。It is a photograph of the laminated metal film (Al / Cr) formed on the resin. 本発明に係る第2の実施例の弾性表面波デバイスの構成を示す図で、(a)は斜視図、(b)はQ−Qの断面図、(c)はX−Xの断面図である。It is a figure which shows the structure of the surface acoustic wave device of 2nd Example which concerns on this invention, (a) is a perspective view, (b) is sectional drawing of QQ, (c) is sectional drawing of XX. is there. 本発明に係る第2の実施例のSAWデバイスの製作工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SAW device of 2nd Example based on this invention. セラミックパッケージを用いた従来の弾性表面波デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional surface acoustic wave device using a ceramic package. (a)、(b)、(c)、(d)、(e)は絶縁性フィルムを用いて簡易パッケージを形成する工程を示す図である。(A), (b), (c), (d), (e) is a figure which shows the process of forming a simple package using an insulating film. 絶縁性フィルムの簡易パッケージに金属膜を付着した弾性表面波デバイスの斜視図である。It is a perspective view of the surface acoustic wave device which attached the metal film to the simple package of the insulating film. 樹脂上へ付着した各種金属膜の引っ掻き試験と金属膜の状態を示す図である。It is a figure which shows the scratch test of the various metal films adhering on resin, and the state of a metal film. (a)は樹脂上へ付着したクロム膜(5μm)のひび割れを示す写真、(b)は樹脂上へ付着したチタン膜(3μm)のひび割れを示す写真である。(A) is a photograph showing a crack of a chromium film (5 μm) deposited on the resin, and (b) is a photograph showing a crack of a titanium film (3 μm) deposited on the resin.

符号の説明Explanation of symbols

1・・圧電基板
1P・・実装基板母材
2・・接続端子
3・・外部端子
4・・内部導体
5・・金属バンプ
6・・SAWデバイス素子
7・・絶縁性樹脂
8・・気密空間
9・・積層金属膜
9a・・第1の金属膜
9b・・第2の金属膜
10・・樹脂



1 .. Piezoelectric substrate 1P .. Mounting substrate base material 2. Connection terminal 3. External terminal 4. Internal conductor 5. Metal bump 6. SAW device element 7. Insulating resin 8. Airtight space 9 ..Laminated metal film 9a..first metal film 9b..second metal film 10..resin



Claims (7)

所定の配線が施されたプリント基板と、その上にフリップチップ実装した弾性表面波素子と、前記弾性表面波素子と前記プリント基板との間に気密空間を確保するようにこれらの上面を覆う絶縁性の気密部材と、該気密部材の外面に付着した金属膜とを備えた弾性表面波デバイスであって、
前記金属膜は、少なくとも前記気密部材との密着性に優れた第1の金属膜と、第1の金属膜とは異なる金属からなる第2の金属膜とを順次付着した構造を含む多層金属膜であることを特徴とする弾性表面波デバイス。
A printed circuit board on which a predetermined wiring is provided, a surface acoustic wave element flip-chip mounted on the printed circuit board, and an insulating covering the upper surface so as to secure an airtight space between the surface acoustic wave element and the printed circuit board A surface acoustic wave device comprising a gas-tight airtight member and a metal film attached to the outer surface of the airtight member,
The metal film includes a multilayer metal film including a structure in which at least a first metal film having excellent adhesion to the hermetic member and a second metal film made of a metal different from the first metal film are sequentially attached. A surface acoustic wave device characterized by the above.
前記第1の金属膜がクロム、チタン、ニッケルのいずれかを主成分とする金属であることを特徴とする請求項1に記載の弾性表面波デバイス。 2. The surface acoustic wave device according to claim 1, wherein the first metal film is a metal containing chromium, titanium, or nickel as a main component. 前記第2の金属膜がアルミニウム、銅のいずれかを主成分とする金属であることを特徴とする請求項1又は2に記載の弾性表面波デバイス。 3. The surface acoustic wave device according to claim 1, wherein the second metal film is a metal containing aluminum or copper as a main component. 4. 前記金属膜の外面が絶縁性の樹脂にて覆われていることを特徴とする請求項1乃至3のいずれかに記載の弾性表面波デバイス。 The surface acoustic wave device according to claim 1, wherein an outer surface of the metal film is covered with an insulating resin. 前記第1の金属膜の厚さをH1、前記第2の金属膜の厚さをH2としたとき、
H1≦0.5μm、0.5μm<H2≦50μm
を満たすようにそれぞれの膜厚を設定したことを特徴とする請求項1乃至4のいずれかに記載の弾性表面波デバイス。
When the thickness of the first metal film is H1, and the thickness of the second metal film is H2,
H1 ≦ 0.5μm, 0.5μm <H2 ≦ 50μm
The surface acoustic wave device according to claim 1, wherein each film thickness is set so as to satisfy the above.
外部端子を有し該外部端子と導通する内部導体と配線パターンを複数備えた実装基板母材上に金属バンプを介して弾性表面波素子をマトリクス状にフリップチップ方式でボンディングすると共に、弾性表面波素子上に絶縁性フィルム、あるいは絶縁性樹脂を付着して熱硬化させ、弾性表面波素子と実装基板母材との間に気密空間を形成して封止する工程と、前記熱硬化した絶縁性フィルムあるいは樹脂の外側表面に金属膜を形成する工程と、前記実装基板母材を個片に分割する工程とを備えた弾性表面波デバイスの製造法において、
前記絶縁性フィルムあるいは樹脂を熱硬化させた後、前記絶縁性フィルムあるいは樹脂を切断し、前記実装基板母材は分離しないように切れ込みを入れる工程と、前記熱硬化した絶縁性フィルムあるいは樹脂上に密着性の良い第1の金属膜を付着する工程と、該第1の金属膜の上に第2の金属膜を付着する工程と、前記前記熱硬化した絶縁性フィルムあるいは樹脂を切断した切断幅よりも狭い幅で前記実装基板母材を切断して個片に分割する工程を含むことを特徴とする弾性表面波デバイスの製造法。
A surface acoustic wave element is bonded in a matrix by a flip chip method on a mounting board base material having external terminals and a plurality of internal conductors and wiring patterns electrically connected to the external terminals via metal bumps. An insulating film or an insulating resin is attached on the element and thermally cured to form an airtight space between the surface acoustic wave element and the mounting substrate base material, and the thermally cured insulating property In a method for manufacturing a surface acoustic wave device comprising a step of forming a metal film on the outer surface of a film or a resin, and a step of dividing the mounting substrate base material into pieces.
After thermally curing the insulating film or resin, cutting the insulating film or resin and making a notch so that the mounting substrate base material is not separated; and on the thermally cured insulating film or resin A step of attaching a first metal film having good adhesion, a step of attaching a second metal film on the first metal film, and a cutting width obtained by cutting the thermally cured insulating film or resin. A method of manufacturing a surface acoustic wave device, comprising a step of cutting the mounting substrate base material with a narrower width and dividing it into pieces.
外部端子を有し該外部端子と導通する内部導体と配線パターンを複数備えた実装基板母材上に金属バンプを介して弾性表面波素子をマトリクス状にフリップチップ方式でボンディングすると共に、弾性表面波素子上に絶縁性フィルム、あるいは絶縁性樹脂を付着して熱硬化させ、弾性表面波デバイス素子と実装基板母材との間に気密空間を形成して封止する工程と、前記熱硬化した絶縁性フィルムあるいは樹脂の外側表面に金属膜を形成する工程と、前記実装基板母材を個片に分割する工程とを備えた弾性表面波デバイスの製造法において、
前記絶縁性フィルムあるいは樹脂を熱硬化させた後、前記絶縁性フィルムあるいは樹脂を切断し、前記実装基板母材は分離しないように切れ込みを入れる工程と、前記熱硬化した絶縁性フィルムあるいは樹脂上に密着性の良い第1の金属膜を付着する工程と、該第1の金属膜の上に第2の金属膜を付着する工程と、前記の切れ込み内と前記第2の金属膜とを覆うように樹脂を充填する工程と、前記前記熱硬化した絶縁性フィルムあるいは樹脂を切断した切断幅よりも狭い幅で前記実装基板母材を切断して個片に分割する工程を含むことを特徴とする弾性表面波デバイスの製造法。
A surface acoustic wave element is bonded in a matrix by a flip chip method on a mounting board base material having external terminals and a plurality of internal conductors and wiring patterns electrically connected to the external terminals via metal bumps. An insulating film or an insulating resin is attached on the element and thermally cured to form an airtight space between the surface acoustic wave device element and the mounting substrate base material, and the thermally cured insulation In a method of manufacturing a surface acoustic wave device comprising a step of forming a metal film on the outer surface of a conductive film or resin, and a step of dividing the mounting substrate base material into pieces.
After thermally curing the insulating film or resin, cutting the insulating film or resin and making a notch so that the mounting substrate base material is not separated; and on the thermally cured insulating film or resin A step of attaching a first metal film having good adhesion, a step of attaching a second metal film on the first metal film, and covering the inside of the notch and the second metal film. And a step of cutting the mounting substrate base material with a width narrower than a cutting width obtained by cutting the heat-cured insulating film or resin, and dividing the mounting substrate base material into pieces. Manufacturing method for surface acoustic wave devices.
JP2003270594A 2003-07-03 2003-07-03 Surface acoustic wave device and its manufacturing method Pending JP2005027229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270594A JP2005027229A (en) 2003-07-03 2003-07-03 Surface acoustic wave device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270594A JP2005027229A (en) 2003-07-03 2003-07-03 Surface acoustic wave device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005027229A true JP2005027229A (en) 2005-01-27

Family

ID=34190504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270594A Pending JP2005027229A (en) 2003-07-03 2003-07-03 Surface acoustic wave device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005027229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834665B1 (en) 2005-10-04 2008-06-02 후지쓰 메디아 데바이스 가부시키가이샤 Surface acoustic wave device and fabrication method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834665B1 (en) 2005-10-04 2008-06-02 후지쓰 메디아 데바이스 가부시키가이샤 Surface acoustic wave device and fabrication method therefor

Similar Documents

Publication Publication Date Title
JP4712632B2 (en) Elastic wave device and manufacturing method thereof
US6969945B2 (en) Surface acoustic wave device, method for manufacturing, and electronic circuit device
US7679153B2 (en) Sealed surface acoustic wave element package
US9099634B2 (en) Elastic-wave filter device and composite device including the same
US7351641B2 (en) Structure and method of forming capped chips
US7094626B2 (en) Method for encapsulating an electrical component
CN107786183A (en) Embedded RF filter packages structure and its manufacture method
WO2009104438A1 (en) Elastic wave device and method for manufacturing the same
JP2006211612A (en) Saw device, communication module and manufacturing method of saw device
JP2002261582A (en) Surface acoustic wave device, its manufacturing method, and circuit module using the same
US8334737B2 (en) Acoustic wave device and electronic apparatus using the same
US6573635B2 (en) Surface acoustic wave device
JP2011188255A (en) Acoustic wave device
US20160301386A1 (en) Elastic wave filter device
CA2330039A1 (en) Electronic component
CN106487350B (en) Acoustic wave device and method for manufacturing the same
WO2009113507A1 (en) Semiconductor device, and communication apparatus and electronic apparatus provided with semiconductor device
KR100891418B1 (en) Acoustic wave device and method of manufacturing the same
KR20170032149A (en) Acoustic wave device and manufacturing method thereof
JP2013115664A (en) Elastic wave device and multilayer substrate
JP2004153412A (en) Surface acoustic wave device and manufacturing method thereof
JPH0818390A (en) Surface acoustic wave device
WO2019004266A1 (en) Electronic component module
JP6482282B2 (en) Electronic components
JP2005027229A (en) Surface acoustic wave device and its manufacturing method