JP2005026666A - Current limiting device and cut-off current interrupting device - Google Patents

Current limiting device and cut-off current interrupting device Download PDF

Info

Publication number
JP2005026666A
JP2005026666A JP2004098713A JP2004098713A JP2005026666A JP 2005026666 A JP2005026666 A JP 2005026666A JP 2004098713 A JP2004098713 A JP 2004098713A JP 2004098713 A JP2004098713 A JP 2004098713A JP 2005026666 A JP2005026666 A JP 2005026666A
Authority
JP
Japan
Prior art keywords
electrode
fusion
fused
current limiting
ptc polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004098713A
Other languages
Japanese (ja)
Other versions
JP4479304B2 (en
Inventor
Sadajiro Mori
貞次郎 森
Atsushi Sawada
敦 澤田
Takashi Inaguchi
隆 稲口
Katsuhiko Fukuhara
勝彦 福原
Yoshiji Inaba
好次 稲葉
Kenichi Nishina
健一 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004098713A priority Critical patent/JP4479304B2/en
Publication of JP2005026666A publication Critical patent/JP2005026666A/en
Application granted granted Critical
Publication of JP4479304B2 publication Critical patent/JP4479304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a current limiting device a cut-off current interrupting device using the same capable of suppressing the deterioration in the conduction performance after the current limiting operation. <P>SOLUTION: The device comprises a PTC element constituted of a pair of fused electrodes 2a and 2b fused to a PTC polymer 1 and to a PTC polymer arranged in opposition to the PTC 1 with a PTC polymer in between, respectively, a pair of terminal electrodes 3a and 3b arranged on the side and opposite side of the PTC polymer of the pair of fused electrodes, respectively, and adjacent to the pair of the fused electrodes, respectively; and pressure applying means 33, 34, 35a, and 35b for pressing the pair of terminal electrodes toward the side of the PTC element. At least one of the pair of fused electrodes is provided with a through-hole 20 formed therein, or is divided into two or more and arranged in a island-pattern. Consequently, the electrode area ratio, which is a ratio of the area of the surface of the PTC polymer to which the fused electrode is fused to the area of the surface of the fused electrode to which the PTC polymer is fused, is less than 1, and the surface of the terminal electrode adjacent to the fused electrode whose electrode area ratio is less than 1 on the side adjacent to the fused electrode is turned into a coarse one. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、正の抵抗温度特性を有するPTC(positive temperature coefficient)ポリマーと該PTCポリマーに融着された一対の電極からなるPTC素子を備えており、短絡電流を限流するために用いられる限流器およびそれを用いた限流遮断装置に関するものである。   The present invention includes a PTC element having a positive temperature coefficient (PTC) polymer having a positive resistance temperature characteristic and a pair of electrodes fused to the PTC polymer, and is used for limiting a short-circuit current. The present invention relates to a flow device and a current-limiting circuit breaker using the same.

従来の限流器においては、ポリマーと、該ポリマー中に混入された導電性物質とからなる正の抵抗温度特性を有するPTCポリマー部、および該PTCポリマー部に融着された一対の電極(融着電極)からなるPTC素子を備えてなる限流器であって、前記電極に少なくとも1つの孔が形成されており、該電極に、前記PTCポリマー部の表面に対して垂直な方向に圧力が加えられている(例えば、特許文献1参照)。   In a conventional current limiter, a PTC polymer portion having a positive resistance temperature characteristic composed of a polymer and a conductive substance mixed in the polymer, and a pair of electrodes (fused to the PTC polymer portion) A current limiting device comprising a PTC element comprising at least one electrode), wherein at least one hole is formed in the electrode, and pressure is applied to the electrode in a direction perpendicular to the surface of the PTC polymer portion. (For example, refer to Patent Document 1).

特開平10−312911号公報(第4−8頁、第1−14図)Japanese Patent Laid-Open No. 10-312911 (page 4-8, FIG. 1-14)

従来の限流器は上記のように構成されており、限流中にPTCポリマー部と融着電極との間でアークが発生し、このアークの熱によってPTCポリマー部の表面が荒れるため、PTCポリマー部と融着電極との間の接触抵抗(電気抵抗)が大幅に増大し、限流器の通電性能が大幅に低下するという問題点があった。   The conventional current limiter is configured as described above, and an arc is generated between the PTC polymer part and the fusion electrode during the current limit, and the surface of the PTC polymer part is roughened by the heat of the arc. There has been a problem that the contact resistance (electrical resistance) between the polymer portion and the fused electrode is greatly increased, and the current-carrying performance of the current limiter is greatly reduced.

本発明は、上記のような従来のものの問題点を解決するためになされたものであり、限流動作後における通電性能の低下を抑制することができる限流器およびそれを用いた限流遮断装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the prior art, and is a current limiter capable of suppressing a decrease in energization performance after a current limiting operation, and a current limiting interruption using the current limiter. An object is to provide an apparatus.

本発明に係る限流器は、PTCポリマーと該PTCポリマーを挟んで対向配置され上記PTCポリマーにそれぞれ融着された一対の融着電極とからなるPTC素子、上記一対の融着電極のPTCポリマー配置側と反対側にそれぞれ配置され、上記一対の融着電極にそれぞれ隣接する一対の端子電極、および上記一対の端子電極を上記PTC素子側に押圧する加圧手段を備え、上記一対の融着電極のうち少なくとも一方の融着電極は、貫通孔が形成されている、または複数に分割されて島状に配置されていることにより、上記PTCポリマーの融着電極との融着面の面積に対する上記融着電極のPTCポリマーとの融着面の面積の割合である電極面積率が1よりも小さく、かつ上記電極面積率が1よりも小さい融着電極に隣接する端子電極の融着電極隣接側の面は粗面化されているものである。   The current limiting device according to the present invention includes a PTC element comprising a PTC polymer and a pair of fusion electrodes which are arranged opposite to each other with the PTC polymer interposed therebetween and fused to the PTC polymer, and the PTC polymer of the pair of fusion electrodes. A pair of terminal electrodes respectively disposed on the opposite side of the arrangement side and adjacent to the pair of fusion electrodes, and a pressing means for pressing the pair of terminal electrodes to the PTC element side, and the pair of fusion electrodes At least one fusion electrode among the electrodes has a through hole or is divided into a plurality of islands and arranged in an island shape, so that the area of the fusion surface with the fusion electrode of the PTC polymer is reduced. The electrode area ratio, which is the ratio of the area of the fused surface with the PTC polymer of the fused electrode, is smaller than 1 and the terminal electrode adjacent to the fused electrode with the electrode area ratio smaller than 1 is fused. Surface of the electrode adjacent side is what is roughened.

本発明に係る限流遮断装置は、電極面積率が互いに異なる一対の融着電極を有する限流器と、電路を開閉する開閉器とが直列接続された限流遮断装置であって、上記限流器における電極面積率が大きい方の融着電極に隣接する端子電極が上記開閉器と接続されたものである。   A current limiting interrupter according to the present invention is a current limiting interrupter in which a current limiter having a pair of fused electrodes having different electrode area ratios and a switch for opening and closing an electric circuit are connected in series, A terminal electrode adjacent to the fused electrode having a larger electrode area ratio in the flow device is connected to the switch.

また、限流器と、電路を開閉する開閉器とが直列接続された限流遮断装置であって、上記限流器が上記開閉器に内蔵されたものである。   Further, the current limiting device is a current limiting interrupter in which a current limiting device and a switch for opening and closing an electric circuit are connected in series, and the current limiting device is built in the switch.

以上のように、本発明によれば、PTCポリマーと該PTCポリマーを挟んで対向配置され上記PTCポリマーにそれぞれ融着された一対の融着電極とからなるPTC素子、上記一対の融着電極のPTCポリマー配置側と反対側にそれぞれ配置され、上記一対の融着電極にそれぞれ隣接する一対の端子電極、および上記一対の端子電極を上記PTC素子側に押圧する加圧手段を備え、上記一対の融着電極のうち少なくとも一方の融着電極は、貫通孔が形成されている、または複数に分割されて島状に配置されていることにより、上記PTCポリマーの融着電極との融着面の面積に対する上記融着電極のPTCポリマーとの融着面の面積の割合である電極面積率が1よりも小さく、かつ上記電極面積率が1よりも小さい融着電極に隣接する端子電極の融着電極隣接側の面は粗面化されているので、限流動作後における通電性能の低下を抑制することができる。   As described above, according to the present invention, a PTC element comprising a PTC polymer and a pair of fusion electrodes that are opposed to each other with the PTC polymer interposed therebetween and fused to the PTC polymer, and the pair of fusion electrodes. A pair of terminal electrodes respectively disposed on the opposite side of the PTC polymer arrangement side and adjacent to the pair of fusion electrodes, and a pressing means for pressing the pair of terminal electrodes toward the PTC element side, At least one fusion electrode among the fusion electrodes has a through-hole formed therein or is divided into a plurality of islands and arranged in an island shape, so that the fusion surface of the fusion electrode with the PTC polymer fusion electrode is formed. A terminal adjacent to the fused electrode having an electrode area ratio, which is a ratio of the area of the fused surface with the PTC polymer of the fused electrode to the area, smaller than 1, and the electrode area ratio is smaller than 1. Since the surface of the adhesive metal adjacent the side of the electrode is roughened, it is possible to suppress a decrease in power performance after current limiting.

また、限流器における電極面積率が大きい方の融着電極に隣接する端子電極が開閉器と接続されたので、限流器の高い通電性能を得ることができる。   In addition, since the terminal electrode adjacent to the fusion electrode having the larger electrode area ratio in the current limiter is connected to the switch, high current-carrying performance of the current limiter can be obtained.

また、限流器と、電路を開閉する開閉器とが直列接続された限流遮断装置であって、上記限流器が上記開閉器に内蔵されたので、限流遮断装置を小型化することができる。   In addition, the current limiting device is a current limiting breaker in which a current limiting device and a switch for opening and closing an electric circuit are connected in series, and the current limiting device is built in the switch, so that the current limiting interrupting device can be miniaturized. Can do.

実施の形態1.
図1〜図3は本発明の実施の形態1による限流器を説明するための図であり、より具体的には、図1は初期状態での(すなわち、一度も限流動作を行っていない)限流器の全体構成を示す断面説明図、図2はPTC素子の構成を示す平面図、図3は限流動作後の(すなわち、少なくとも一度は限流動作を行った)限流器の要部の構成を示す断面説明図である。
Embodiment 1 FIG.
1 to 3 are diagrams for explaining the current limiter according to the first embodiment of the present invention. More specifically, FIG. 1 is an initial state (that is, the current limiting operation has been performed once). FIG. 2 is a plan view showing the configuration of the PTC element, and FIG. 3 is a current limiter after the current limiting operation (that is, the current limiting operation is performed at least once). It is sectional explanatory drawing which shows the structure of the principal part.

2つの平行な主面を有する板状のPTCポリマー1と、PTCポリマー1の主面にそれぞれ融着(熱融着)された一対の融着電極2a,2b(以下、2で代表することもある。)とで、PTC素子が構成されている。
一対の端子電極3a,3b(以下、3で代表することもある。)が、一対の融着電極2a,2bのPTCポリマー1配置側と反対側にそれぞれ配置され、一対の融着電極2a,2bにそれぞれ隣接している。
A plate-like PTC polymer 1 having two parallel principal surfaces, and a pair of fusion electrodes 2a and 2b (hereinafter represented by 2) fused to each principal surface of the PTC polymer 1 (thermal fusion). In other words, a PTC element is configured.
A pair of terminal electrodes 3a, 3b (hereinafter also represented by 3) are respectively arranged on the opposite side of the PTC polymer 1 arrangement side of the pair of fusion electrodes 2a, 2b, and the pair of fusion electrodes 2a, 2b, 2b are adjacent to each other.

PTCポリマー1は、常温での電気抵抗率(常温電気抵抗率)が低く、高温になると急激に電気抵抗率が上昇する特性(正の抵抗温度特性)を示す。この特性をPTC特性という。PTCポリマー1は、電気絶縁性を有するポリマーに粒子状の導電性物質が混練された複合材料からなる。ポリマーは、例えば、ポリエチレン、ポリプロピレンまたはナイロンなどの樹脂であり、粒子状の導電性物質は、カーボンブラックまたは例えばタングステンなどの金属粒子である。かかる場合、PTC特性は、発熱などの温度上昇により、PTCポリマー1の温度がポリマーの溶融温度(遷移温度)を超えたときに、ポリマーが体積膨脹し、ポリマーの非晶質部分(結晶粒界部分)に存在していた粒子状の導電性物質が互いに離れることにより発現すると考えられている。具体的には、例えば、ポリマーがポリエチレンである場合には、遷移温度は130℃程度であり、この温度を超えると、例えば、導電性物質がカーボンブラックである場合には電気抵抗率が100倍程度に増加し、導電性物質がタングステンである場合には電気抵抗率が1万倍程度以上に増加する。   The PTC polymer 1 has a low electrical resistivity at room temperature (room temperature electrical resistivity), and exhibits a characteristic (positive resistance-temperature characteristic) in which the electrical resistivity rapidly increases at a high temperature. This characteristic is called a PTC characteristic. The PTC polymer 1 is made of a composite material in which a particulate conductive substance is kneaded with an electrically insulating polymer. The polymer is a resin such as polyethylene, polypropylene, or nylon, and the particulate conductive material is carbon black or metal particles such as tungsten. In such a case, the PTC characteristic is that when the temperature of the PTC polymer 1 exceeds the melting temperature (transition temperature) of the polymer due to a temperature rise such as exotherm, the volume of the polymer expands, and the amorphous portion (grain boundary of the polymer) It is thought that the particulate conductive substances existing in (part) are expressed by separating from each other. Specifically, for example, when the polymer is polyethylene, the transition temperature is about 130 ° C., and when this temperature is exceeded, for example, when the conductive material is carbon black, the electrical resistivity is 100 times. When the conductive material is tungsten, the electrical resistivity increases to about 10,000 times or more.

融着電極2a,2bは、例えば、銅やニッケルなどの金属箔(例えば厚さ20〜70μm程度)や、銅板(例えば厚さ150μm程度以上)にニッケルや銀などのメッキが施されたものなどが用いられ、融着電極2a,2bの主面がPTCポリマー1の主面に融着されている。また、融着電極2には、例えば図2に示すような形状の貫通孔20が形成されており、このように、融着電極2a,2bに貫通孔20が形成されることにより、PTCポリマー1の融着電極2との融着面(以下、単に、PTCポリマー1の融着面と言うこともある。)の面積に対する、融着電極2a,2bのPTCポリマー1との融着面(以下、単に、融着電極2a,2bの融着面と言うこともある。)の面積の割合である、電極面積率が、1よりも小さく構成されている。なお、本実施の形態では、PTCポリマー1の主面は融着電極2の主面よりも大きく形成されているが、本発明では、PTCポリマー1の融着面の面積とは、PTCポリマー1の主面の全面積ではなく、融着電極2a,2bの主面に対向するPTCポリマー1の融着面の部分(図2にハッチングを施した部分)の面積のことを言う。また、本発明で言う融着電極2a,2bの融着面の面積とは、PTCポリマー1の主面に対向する融着電極2a,2bの融着面の部分(図2にハッチングを施した部分)のうち、貫通孔20の面積を含まない実際に融着される面の面積を指す。   The fusion electrodes 2a and 2b are, for example, a metal foil such as copper or nickel (for example, a thickness of about 20 to 70 μm) or a copper plate (for example, a thickness of about 150 μm or more) plated with nickel or silver. Is used, and the main surfaces of the fused electrodes 2 a and 2 b are fused to the main surface of the PTC polymer 1. Further, the fusion electrode 2 is formed with a through hole 20 having a shape as shown in FIG. 2, for example. By forming the through hole 20 in the fusion electrodes 2a and 2b in this way, the PTC polymer is formed. The fusion surface of the fusion electrodes 2a and 2b with the PTC polymer 1 with respect to the area of the fusion surface with the fusion electrode 2 (hereinafter also referred to simply as the fusion surface of the PTC polymer 1). Hereinafter, the electrode area ratio, which is simply the area ratio of the fusion electrodes 2a and 2b, sometimes referred to as the fusion surface of the fusion electrodes 2a and 2b, is smaller than 1. In the present embodiment, the main surface of the PTC polymer 1 is formed larger than the main surface of the fusion electrode 2. In the present invention, the area of the fusion surface of the PTC polymer 1 is the PTC polymer 1. This is not the total area of the main surface, but the area of the fusion surface of the PTC polymer 1 facing the main surfaces of the fusion electrodes 2a and 2b (the hatched portion in FIG. 2). The area of the fused surface of the fused electrodes 2a and 2b referred to in the present invention is the portion of the fused surface of the fused electrodes 2a and 2b facing the main surface of the PTC polymer 1 (hatched in FIG. 2). Part)), it refers to the area of the surface that is actually fused without including the area of the through hole 20.

さらに、電極面積率が1よりも小さい融着電極2(本実施の形態では両方の融着電極2a,2b)の融着面は、例えばメッキやブラスト加工により平均粗さが例えば5〜30μmの凹凸を有するように粗面を形成しており、すなわち粗面化されており、融着電極2a,2bとPTCポリマー1との間の電気的な接触抵抗は低く保たれている。ここで、平均粗さとは、日本機械学会発行の機械工学便覧(JSME Handbook for Mechanical Engineers)改訂第6版のp.17−190に記載された十点平均粗さを言う。   Further, the fused surface of the fused electrode 2 (both fused electrodes 2a and 2b in the present embodiment) having an electrode area ratio smaller than 1 has an average roughness of, for example, 5 to 30 μm by plating or blasting, for example. The rough surface is formed so as to have irregularities, that is, it is roughened, and the electrical contact resistance between the fusion electrodes 2a, 2b and the PTC polymer 1 is kept low. Here, the average roughness refers to the 6th revised edition of JSME Handbook for Mechanical Engineers published by the Japan Society of Mechanical Engineers. The 10-point average roughness described in 17-190.

端子電極3、および端子電極3を介して融着電極2に電流を供給するための電流導入端子31は、例えば、銅板に銀やスズなどのメッキが施されたものであり、それぞれの厚さは例えば1.5mmおよび2mm程度である。電極面積率が1よりも小さい融着電極2に隣接する端子電極3(本実施の形態では両方の端子電極3a,3b)の融着電極2隣接側の面は、例えばブラスト加工により平均粗さが例えば5〜20μmの凹凸を有するように粗面を形成している、すなわち粗面化されている。融着電極2、端子電極3および電流導入端子31は互いに電気的に接続されている。なお、端子電極3は電流導入端子31と一体化されていてもよい。   The terminal electrode 3 and the current introduction terminal 31 for supplying a current to the fusion electrode 2 through the terminal electrode 3 are, for example, copper plates plated with silver, tin, etc. Is about 1.5 mm and 2 mm, for example. The surface of the terminal electrode 3 adjacent to the fusion electrode 2 having an electrode area ratio smaller than 1 (both terminal electrodes 3a and 3b in the present embodiment) on the side adjacent to the fusion electrode 2 is average-roughed, for example, by blasting. Is roughened, that is, roughened so as to have, for example, irregularities of 5 to 20 μm. The fusion electrode 2, the terminal electrode 3, and the current introduction terminal 31 are electrically connected to each other. The terminal electrode 3 may be integrated with the current introduction terminal 31.

なお、本実施の形態では、端子電極3の融着電極2隣接側の面が粗面化されていることにより接触点の数が増えるので、端子電極3と融着電極2との間の電気的な接触抵抗は粗面化されていない(平面である)場合に比べて減少する。その結果、通電性能が高められる。   In the present embodiment, since the number of contact points increases because the surface of the terminal electrode 3 adjacent to the fusion electrode 2 is roughened, the electrical connection between the terminal electrode 3 and the fusion electrode 2 is increased. The typical contact resistance is reduced compared to the case where the surface is not roughened (planar). As a result, energization performance is improved.

絶縁枠32は、短絡電流または過電流がPTC素子に流れ、限流動作が起こったときにPTCポリマー1と融着電極との間で発生するアークによって生成された導電性のガスにより、電流導入端子31間で短絡が生じるのを防止するために、PTCポリマー1の周辺部に設けられる。
PTC素子を保護するための限流器容器である絶縁容器34は、容器本体34aと容器蓋部34bとで例えばロの字状に構成され、ボルト35aおよびナット35bを締め付けることによりPTC素子を固定しうる。なお、絶縁容器34の内側の高さを一定に保つためのスペーサ36を備えている。
The insulating frame 32 is configured to introduce a current by a conductive gas generated by an arc generated between the PTC polymer 1 and the fusion electrode when a short-circuit current or an overcurrent flows to the PTC element and a current limiting operation occurs. In order to prevent a short circuit between the terminals 31, the PTC polymer 1 is provided in the peripheral portion.
An insulating container 34, which is a current limiting container for protecting the PTC element, is formed in, for example, a square shape with a container body 34a and a container lid part 34b, and the PTC element is fixed by tightening a bolt 35a and a nut 35b. Yes. In addition, a spacer 36 is provided for keeping the inner height of the insulating container 34 constant.

弾性体33は、例えば、板ばね、皿ばね、有機弾性体などであり、電流導入端子31と絶縁容器34との間に配置される。本実施の形態において、弾性体33は、PTCポリマー1の主面に対して垂直な方向において、融着電極2およびPTCポリマー1からなるPTC素子と、端子電極3と、電流導入端子31とに弾性的な圧力を及ぼす。すなわち、容器蓋部34bが容器本体34aに一体化される過程で、弾性体33が圧縮され、一対の電流導入端子31および端子電極3a,3bがPTC素子側に押圧され互いに電気的に接触している。つまり、弾性体33は、一対の端子電極3a,3bをPTC素子側に押圧する加圧手段に相当する。
端子電極3と融着電極5とは金属接触であることにより、電気的な接触抵抗が低いので、弾性体33による加圧力は低く設定される。したがって、PTCポリマー1に高い応力が加わって破損するのを防止できる。
The elastic body 33 is, for example, a leaf spring, a disc spring, or an organic elastic body, and is disposed between the current introduction terminal 31 and the insulating container 34. In the present embodiment, the elastic body 33 is connected to the PTC element composed of the fusion electrode 2 and the PTC polymer 1, the terminal electrode 3, and the current introduction terminal 31 in a direction perpendicular to the main surface of the PTC polymer 1. Apply elastic pressure. That is, in the process in which the container lid 34b is integrated with the container body 34a, the elastic body 33 is compressed, and the pair of current introduction terminals 31 and the terminal electrodes 3a and 3b are pressed toward the PTC element and are in electrical contact with each other. ing. That is, the elastic body 33 corresponds to a pressurizing unit that presses the pair of terminal electrodes 3a and 3b toward the PTC element.
Since the terminal electrode 3 and the fused electrode 5 are in metal contact, the electrical contact resistance is low, so the pressure applied by the elastic body 33 is set low. Therefore, it is possible to prevent the PTC polymer 1 from being damaged due to high stress.

このように構成されたものにおいて、電流は一方の電流導入端子31、一方の端子電極3a、PTC素子、他方の端子電極3b、他方の電流導入端子31を経由して流れる。
負荷電流が流れる場合、通電発熱が少ないのでPTCポリマー1の温度上昇が低く、PTCポリマー1の電気抵抗は低い。
In such a configuration, the current flows through one current introduction terminal 31, one terminal electrode 3a, the PTC element, the other terminal electrode 3b, and the other current introduction terminal 31.
When a load current flows, the energization heat generation is small, so the temperature rise of the PTC polymer 1 is low, and the electrical resistance of the PTC polymer 1 is low.

短絡事故が発生し大電流が流れると、融着電極2とPTCポリマー1との界面の電気的な接触抵抗による発熱によりPTCポリマー1が加熱される。PTCポリマー部1の温度が遷移温度を超えると、PTCポリマー1と融着電極2との界面近傍に存在するポリマーが溶融し、粒子状の導電性物質間の距離が増大し、PTCポリマー1は低電気抵抗状態から高電気抵抗状態へと変化し、短絡電流が抑制される。この抑制された電流は図示しない開閉器によって遮断される。   When a short circuit accident occurs and a large current flows, the PTC polymer 1 is heated by heat generated by the electrical contact resistance at the interface between the fusion electrode 2 and the PTC polymer 1. When the temperature of the PTC polymer part 1 exceeds the transition temperature, the polymer existing in the vicinity of the interface between the PTC polymer 1 and the fusion electrode 2 is melted, and the distance between the particulate conductive materials is increased. It changes from a low electrical resistance state to a high electrical resistance state, and a short circuit current is suppressed. This suppressed current is interrupted by a switch (not shown).

限流中に、PTCポリマー1のうち、融着電極2との界面の近傍部分は、遷移温度をはるかに超えて分解温度に達し、アークが発生する。このアークの熱によって融着電極2との界面の近傍部分のPTCポリマー1が軟化し、融着電極2がPTCポリマー1に食い込む。その結果、融着電極2の貫通孔20の部分がPTCポリマー1で満たされる。本実施の形態では、端子電極3の融着電極2隣接側の面が粗面化されているので、PTCポリマー1の軟化に伴い、融着電極2の貫通孔20に満たされたPTCポリマー1が端子電極3の粗面化された面(粗面)の凹凸に食い込むことにより、端子電極3とPTCポリマー1とが熱融着される。このように、本実施の形態では、PTCポリマー1が端子電極3の粗面化された面(粗面)の凹凸に食い込こむことにより、端子電極3とPTCポリマー1とが熱融着されるので、PTCポリマー1と端子電極3との電気的な接触抵抗は顕著に低くなる。したがって、アークの熱によってPTCポリマー1の表面が荒れてPTCポリマー1と融着電極2との間の電気的な接触抵抗が増大しても、端子電極3とPTCポリマー素子との間の電気的な抵抗増大は顕著に抑制され、限流動作前後における通電性能の低下を顕著に抑制することができる。
なお、初期状態での限流器を示す図1では、融着電極2がPTCポリマー1に食い込んでいないが、融着電極2とPTCポリマー1とを融着する際に融着電極2がPTCポリマー1に多少食い込む場合もある。
During the current limiting, the portion of the PTC polymer 1 in the vicinity of the interface with the fusion electrode 2 reaches the decomposition temperature far exceeding the transition temperature, and an arc is generated. The heat of the arc softens the PTC polymer 1 in the vicinity of the interface with the fusion electrode 2, and the fusion electrode 2 bites into the PTC polymer 1. As a result, the portion of the through hole 20 of the fusion electrode 2 is filled with the PTC polymer 1. In the present embodiment, since the surface of the terminal electrode 3 adjacent to the fusion electrode 2 is roughened, the PTC polymer 1 filled in the through-hole 20 of the fusion electrode 2 as the PTC polymer 1 is softened. Bite into the irregularities of the roughened surface (rough surface) of the terminal electrode 3, whereby the terminal electrode 3 and the PTC polymer 1 are heat-sealed. Thus, in this Embodiment, the terminal electrode 3 and the PTC polymer 1 are heat-seal | fused by the PTC polymer 1 biting into the unevenness | corrugation of the roughened surface (rough surface) of the terminal electrode 3. Therefore, the electrical contact resistance between the PTC polymer 1 and the terminal electrode 3 is significantly reduced. Therefore, even if the surface of the PTC polymer 1 is roughened by the heat of the arc and the electrical contact resistance between the PTC polymer 1 and the fusion electrode 2 is increased, the electrical contact between the terminal electrode 3 and the PTC polymer element is increased. Thus, the increase in resistance can be remarkably suppressed, and the decrease in energization performance before and after the current limiting operation can be remarkably suppressed.
In FIG. 1 showing the current limiting device in the initial state, the fusion electrode 2 does not bite into the PTC polymer 1, but when the fusion electrode 2 and the PTC polymer 1 are fused, the fusion electrode 2 becomes PTC. In some cases, it may bite into the polymer 1.

なお、従来の限流器においても、限流中に、アークの熱によってPTCポリマー1が軟化し、融着電極2がPTCポリマー1に食い込む結果、融着電極2の貫通孔20の部分がPTCポリマー1で満たされる可能性もある。しかしながら、従来の限流器では融着電極2に隣接する端子電極3の融着電極2隣接側の面は粗面化されていないため、端子電極2がPTCポリマー1に熱融着され難く、熱融着したとしてもそれらの接触抵抗は本実施の形態の場合に比べて大きい。その結果、端子電極3とPTCポリマー1との間の電気抵抗増大を、本実施の形態におけるほど顕著に抑制することはできず、限流動作前後における通電性能の低下を顕著に抑制することはできない。   Even in the conventional current limiter, the PTC polymer 1 is softened by the heat of the arc during the current limiting, and the fusion electrode 2 bites into the PTC polymer 1, so that the through hole 20 portion of the fusion electrode 2 becomes PTC. It may also be filled with polymer 1. However, in the conventional current limiter, since the surface of the terminal electrode 3 adjacent to the fusion electrode 2 on the side adjacent to the fusion electrode 2 is not roughened, the terminal electrode 2 is hardly thermally fused to the PTC polymer 1, Even if they are heat-sealed, their contact resistance is larger than that of this embodiment. As a result, the increase in electrical resistance between the terminal electrode 3 and the PTC polymer 1 cannot be suppressed remarkably as in the present embodiment, and the decrease in the energization performance before and after the current limiting operation is remarkably suppressed. Can not.

端子電極3と融着電極2とは何れも金属で形成されており金属接触であるので端子電極3と融着電極2の間の接触抵抗は極めて低く、普通は、これらの電極の接触面を粗面化するという発想は無い。
限流中に、PTCポリマー1のうち、融着電極2との界面の近傍部分で発生するアークの熱によって、融着電極2との界面の近傍部分のPTCポリマー1が軟化し、融着電極2がPTCポリマー1に食い込む結果、融着電極2の貫通孔20の部分がPTCポリマー1で満たされるという現象は、本発明の発明者らが初めて明らかにしたものであり、上記従来の限流器の発明当時には、まだ明らかとなっていなかった。したがって、融着電極2に隣接する端子電極3の融着電極2隣接側の面が粗面化されていると、PTCポリマー1の軟化に伴い、融着電極2の貫通孔20に満たされたPTCポリマー1が端子電極3の粗面化された面(粗面)の凹凸に食い込むことにより端子電極3とPTCポリマー1とが強く熱融着されるので、PTCポリマー1と端子電極3との接触抵抗が顕著に低くなることは、上記従来の限流器の発明当時には、まだ明らかとなっていなかいばかりか、その着想も得られなかった。
Since both the terminal electrode 3 and the fused electrode 2 are made of metal and are in metal contact, the contact resistance between the terminal electrode 3 and the fused electrode 2 is extremely low. There is no idea of roughening.
During the current limiting, the PTC polymer 1 in the vicinity of the interface with the fusion electrode 2 is softened by the heat of the arc generated in the vicinity of the interface with the fusion electrode 2 in the PTC polymer 1. The phenomenon that the through hole 20 portion of the fusion electrode 2 is filled with the PTC polymer 1 as a result of the 2 biting into the PTC polymer 1 has been clarified for the first time by the inventors of the present invention. At the time of the invention of the vessel, it was not yet clear. Therefore, when the surface of the terminal electrode 3 adjacent to the fusion electrode 2 on the side adjacent to the fusion electrode 2 is roughened, the through hole 20 of the fusion electrode 2 is filled with the softening of the PTC polymer 1. Since the terminal electrode 3 and the PTC polymer 1 are strongly heat-sealed when the PTC polymer 1 bites into the unevenness of the roughened surface (rough surface) of the terminal electrode 3, the PTC polymer 1 and the terminal electrode 3 The fact that the contact resistance is remarkably lowered was not yet clear at the time of the invention of the conventional current limiter, and the idea could not be obtained.

なお、貫通孔20の深さ方向に対して垂直な断面の形状は、円状であっても、角状であっても、非対称な鍵穴状のものであってもよい。貫通孔20内部の一部に、融着電極2とPTCポリマー1との融着の際に、軟化したPTCポリマー1が突出せしめられる場合もある。   The shape of the cross section perpendicular to the depth direction of the through hole 20 may be circular, square, or asymmetric keyhole. When the fusion electrode 2 and the PTC polymer 1 are fused to a part of the through hole 20, the softened PTC polymer 1 may be protruded.

また、図1では、容器蓋部34bはボルト35aおよびナット35bを締め付けることにより容器本体34aと一体化されたが、接着剤により容器本体34aと一体化されてもよい。また、絶縁容器34はあらかじめ一体化されたものを用いてもよいが、この場合、治具により弾性体33をあらかじめ圧縮し、PTC素子、端子電極3および電流導入端子31も一括して絶縁容器34に挿入する。
なお、塵埃の侵入を防止するため、絶縁容器34は箱状として密閉状に形成されてもよい。
In FIG. 1, the container lid 34b is integrated with the container main body 34a by tightening the bolt 35a and the nut 35b, but may be integrated with the container main body 34a with an adhesive. The insulating container 34 may be integrated in advance. In this case, the elastic body 33 is compressed in advance with a jig, and the PTC element, the terminal electrode 3 and the current introduction terminal 31 are collectively collected. 34.
In order to prevent intrusion of dust, the insulating container 34 may be formed in a sealed shape as a box shape.

実施の形態2.
図4は本発明の実施の形態2による限流器を説明するための図であり、より具体的には、初期状態における限流器の要部の構成を示す断面説明図である。
本実施の形態による限流器では、電極面積率が1よりも小さい融着電極2(本実施の形態では両方の融着電極2a,2b)に隣接する端子電極3(本実施の形態では両方の端子電極3a,3b)は、融着電極2a,2bに隣接し融着電極2a,2b隣接側の面が粗面化された金属箔301a,301b(以下、301で代表することもある。)と、金属箔301a,301bの融着電極隣接側と反対側に配置された導電板302a,302b(以下、302で代表することもある。)とで構成されている。その他の構成は実施の形態1の構成と同様であるので、以下では主に実施の形態1と異なる点について説明する。
Embodiment 2. FIG.
FIG. 4 is a view for explaining a current limiter according to Embodiment 2 of the present invention, and more specifically, a cross-sectional explanatory view showing a configuration of a main part of the current limiter in an initial state.
In the current limiting device according to the present embodiment, the terminal electrode 3 (both in the present embodiment, both adjacent to the fused electrode 2 (both fused electrodes 2a and 2b in the present embodiment) whose electrode area ratio is smaller than 1 is used. The terminal electrodes 3a and 3b) are represented by metal foils 301a and 301b (hereinafter, 301) which are adjacent to the fusion electrodes 2a and 2b and whose surfaces adjacent to the fusion electrodes 2a and 2b are roughened. ) And conductive plates 302a and 302b (hereinafter also represented by 302) disposed on the opposite side of the metal foils 301a and 301b on the side adjacent to the fusion electrode. Since the other configuration is the same as that of the first embodiment, the following mainly describes differences from the first embodiment.

金属箔301は、例えば銀やニッケルで形成され、厚さは例えば30〜100μm程度である。また、金属箔301の融着電極隣接側の面は、例えばメッキやブラスト加工により平均粗さが例えば5〜20μmの凹凸を有するように粗面を形成している、すなわち粗面化されている。
導電板302は、例えば、銅板に銀やニッケルなどのメッキが施されたものであり、厚さは例えば5〜10μm程度である。融着電極2、金属箔301、導電板302および電流導入端子31は互いに電気的に接続されている。なお、導電板302は電流導入端子31と一体化されていてもよい。
The metal foil 301 is made of, for example, silver or nickel, and has a thickness of about 30 to 100 μm, for example. Further, the surface of the metal foil 301 on the side adjacent to the fusion electrode is roughened, that is, roughened by plating or blasting so as to have irregularities with an average roughness of, for example, 5 to 20 μm. .
The conductive plate 302 is, for example, a copper plate plated with silver or nickel, and has a thickness of about 5 to 10 μm, for example. The fused electrode 2, the metal foil 301, the conductive plate 302 and the current introduction terminal 31 are electrically connected to each other. The conductive plate 302 may be integrated with the current introduction terminal 31.

このように構成されたものにおいて、短絡事故が発生し大電流が流れると、実施の形態1の場合と同様に、融着電極2とPTCポリマー1との界面の電気的な接触抵抗の増大による発熱によりPTCポリマー1が加熱され、PTCポリマー1は低電気抵抗状態から高電気抵抗状態へと変化し、短絡電流が抑制される。
また、限流中に融着電極と金属箔の間で発生するアークの熱によって融着電極2との界面近傍部分のPTCポリマー1が軟化し、融着電極2がPTCポリマー1に食い込む結果、融着電極2の貫通孔20の部分がPTCポリマー1で満たされる。本実施の形態では、金属箔301の融着電極2隣接側の面が粗面化されているので、PTCポリマー1の軟化に伴い、融着電極2の貫通孔20に満たされたPTCポリマー1が金属箔301の粗面化された面(粗面)の凹凸に食い込むことにより、金属箔301とPTCポリマー1と。このように、本実施の形態では、PTCポリマー1が金属箔301の粗面化された面(粗面)の凹凸に食い込むことにより、金属箔301とPTCポリマー1とが熱融着されるので、PTCポリマー1と金属箔301との接触抵抗は顕著に低くなる。また、金属箔301と導電板302とは何れも金属で形成されており金属接触であるので、電気的な接触抵抗は低い。
したがって、アークの熱によってPTCポリマー1の表面が荒れてPTCポリマー1と融着電極2との間の接触抵抗が増大しても、金属箔301とPTCポリマー素子との間の抵抗増大は顕著に抑制され、限流動作前後における通電性能の低下を顕著に抑制することができる。
In such a configuration, when a short circuit accident occurs and a large current flows, due to an increase in electrical contact resistance at the interface between the fusion electrode 2 and the PTC polymer 1, as in the case of the first embodiment. PTC polymer 1 is heated by heat generation, PTC polymer 1 changes from a low electrical resistance state to a high electrical resistance state, and a short circuit current is suppressed.
Further, the PTC polymer 1 in the vicinity of the interface with the fusion electrode 2 is softened by the heat of the arc generated between the fusion electrode and the metal foil during the current limiting, and the fusion electrode 2 bites into the PTC polymer 1 as a result. A portion of the through hole 20 of the fusion electrode 2 is filled with the PTC polymer 1. In the present embodiment, since the surface of the metal foil 301 adjacent to the fusion electrode 2 is roughened, the PTC polymer 1 filled in the through-hole 20 of the fusion electrode 2 as the PTC polymer 1 is softened. Bite into the irregularities on the roughened surface (rough surface) of the metal foil 301, thereby forming the metal foil 301 and the PTC polymer 1. Thus, in this Embodiment, since the metal foil 301 and the PTC polymer 1 are heat-seal | fused because the PTC polymer 1 bites into the unevenness | corrugation of the roughened surface (rough surface) of the metal foil 301. The contact resistance between the PTC polymer 1 and the metal foil 301 is significantly reduced. Moreover, since both the metal foil 301 and the conductive plate 302 are made of metal and are in metal contact, the electrical contact resistance is low.
Therefore, even if the surface of the PTC polymer 1 is roughened by the heat of the arc and the contact resistance between the PTC polymer 1 and the fusion electrode 2 is increased, the resistance increase between the metal foil 301 and the PTC polymer element is remarkable. It is restrained and the fall of the electricity supply performance before and behind current limiting operation can be suppressed notably.

さらに、本実施の形態では、金属箔301と導電板302との間には熱的な接触抵抗があるため、限流動作に伴い金属箔301とPTCポリマー1の間に発生するアークからの熱が金属箔301から導電板302に伝達しにくくなるので、金属箔301の温度上昇が大きくなる。その結果、金属箔301はPTCポリマー1に非常に強く熱融着され、金属箔301とPTCポリマー1との間の電気的な接触抵抗の増大が顕著に抑制され、通電性能、過電流通電性能の低下をいっそう顕著に抑制することができる。   Further, in the present embodiment, since there is a thermal contact resistance between the metal foil 301 and the conductive plate 302, heat from an arc generated between the metal foil 301 and the PTC polymer 1 due to the current limiting operation. Since it becomes difficult to transmit from the metal foil 301 to the conductive plate 302, the temperature rise of the metal foil 301 increases. As a result, the metal foil 301 is very strongly heat-sealed to the PTC polymer 1, and an increase in electrical contact resistance between the metal foil 301 and the PTC polymer 1 is remarkably suppressed. Can be more remarkably suppressed.

なお、金属箔301の厚さは、薄すぎると限流中に融着電極と金属箔の間で発生するアークの熱によって金属箔が蒸発し、厚すぎると金属箔301の温度上昇があまり大きくならないため、20〜100μm程度が望ましい。   If the thickness of the metal foil 301 is too thin, the metal foil evaporates due to arc heat generated between the fusion electrode and the metal foil during current limiting. If the thickness is too thick, the temperature rise of the metal foil 301 is too large. Therefore, about 20 to 100 μm is desirable.

実施の形態3.
図5は本発明の実施の形態3による限流器を説明するための図であり、より具体的には、初期状態における限流器の要部の構成を示す断面説明図である。
本実施の形態による限流器は、一対の融着電極2a,2bは、電極面積率が互いに異なり、しかも、電極面積率が大きい方の融着電極2bに隣接する端子電極3bの融着電極2b隣接側の面は、粗面化されていない。
Embodiment 3 FIG.
FIG. 5 is a view for explaining a current limiting device according to Embodiment 3 of the present invention, and more specifically, a cross-sectional explanatory view showing a configuration of a main part of the current limiting device in an initial state.
In the current limiter according to the present embodiment, the pair of fusion electrodes 2a and 2b have different electrode area ratios, and the fusion electrode of the terminal electrode 3b adjacent to the fusion electrode 2b having the larger electrode area ratio. The surface on the 2b adjacent side is not roughened.

上記各実施の形態では、PTCポリマー1の両主面に融着電極2a,2bが熱融着されている。一方の融着電極2aの融着面をA面、他方の融着電極2bの融着面をB面と呼ぶことにする。実施の形態1および2では、A面の電極面積率(PTCポリマー1の融着電極2aとの融着面の面積に対する、融着電極2aのPTCポリマー1との融着面の面積の割合)とB面の電極面積率(PTCポリマー1の融着電極2bとの融着面の面積に対する、融着電極2bのPTCポリマー1との融着面の面積の割合)とを同一としていた。   In each of the above embodiments, the fusion electrodes 2 a and 2 b are thermally fused to both main surfaces of the PTC polymer 1. The fused surface of one fused electrode 2a will be referred to as A surface, and the fused surface of the other fused electrode 2b will be referred to as B surface. In Embodiments 1 and 2, the electrode area ratio of the A surface (ratio of the area of the fusion surface of the fusion electrode 2a with the PTC polymer 1 to the area of the fusion surface of the PTC polymer 1 with the fusion electrode 2a) And the surface area ratio of the B surface (the ratio of the area of the fused surface of the fused electrode 2b with the PTC polymer 1 to the area of the fused surface of the PTC polymer 1 with the fused electrode 2b) was the same.

実験の結果、上記のようにA面の電極面積率とB面の電極面積率を同一としても、A面のPTCポリマー1との接続部(以下、A面接続部と言うこともある。)の電気的な接触抵抗と、B面のPTCポリマー1との接続部(以下、B面接続部と言うこともある。)の電気的な接触抵抗とは、厳密には同一ではなく少しの相違があるため、短絡電流が流れた時、A面接続部とB面接続部とでは、アーク発生に時間差があることが分かった。そして、限流波高値の時点はA面とB面の内、先にアークが発生した面のアーク発生時点にほぼ一致することが分かった。限流波高値の時点以後、限流波高値の数分の1以下の大きさのアーク電流が流れる。この結果から、アーク発生面を1面に限っても限流波高値はほぼ同じになることが分かった。   As a result of the experiment, even if the electrode area ratio on the A surface and the electrode area ratio on the B surface are the same as described above, the connection portion with the PTC polymer 1 on the A surface (hereinafter also referred to as the A surface connection portion). The electrical contact resistance of the B surface and the electrical contact resistance of the connection portion with the PTC polymer 1 on the B surface (hereinafter sometimes referred to as the B surface connection portion) are not exactly the same and are slightly different. Therefore, when a short-circuit current flows, it was found that there is a time difference in arc generation between the A side connection part and the B side connection part. And it turned out that the time of a current-limiting peak value substantially corresponds to the time of arc occurrence of the surface where the arc has occurred first in the A surface and the B surface. After the point of the current limiting peak value, an arc current having a magnitude that is a fraction of the current limiting peak value flows. From this result, it was found that even if the arc generation surface is limited to one surface, the current limiting wave height value is almost the same.

そこで、本実施の形態では、B面(融着電極2bの融着面)の電極面積率がA面(融着電極2aの融着面)の電極面積率より大きくなるように構成されている。
このように構成されたものにおいて、短絡事故が発生して大電流が流れると、融着電極2とPTCポリマー1との界面の接触抵抗による発熱によりPTCポリマー1が加熱され、PTCポリマー1のうち電極面積率が小さい方のA面接続部の近傍部分は低抵抗状態から高抵抗状態へと変化し、短絡電流が抑制される。なお、PTCポリマー1のうち電極面積率が大きい方のB面接続部の近傍部分は電流密度が小さいため温度上昇は低い。
また、限流中に、PTCポリマー1のうち、電極面積率が小さい方のA面接続部の近傍部分は、遷移温度をはるかに超えて分解温度に達し、アークが発生する。このアークの熱によってA面接続部の近傍部分のPTCポリマー1が軟化し、上記各実施の形態の場合と同様に、PTCポリマー1の軟化に伴い、融着電極2aの貫通孔20に満たされたPTCポリマー1が端子電極3aの粗面化された面(粗面)の凹凸に食い込むことにより、端子電極3aとPTCポリマー1とが熱融着される。限流波高値はPTCポリマー1のうち電極面積率が小さい方のA面接続部の近傍部分で低抵抗状態から高抵抗状態へと変化した時点の電流値であるので、限流波高値が高くなることはほとんどない。
なお、PTCポリマー1のうち、電極面積率が大きい方のB面接続部の近傍部分は、電流密度が低いのでアークは発生しない。限流波高値はPTCポリマー1のうち電極面積率が小さい方のA面接続部の近傍部分で低抵抗状態から高抵抗状態へと変化した時点の電流値であるので、限流波高値が高くなることはほとんどない。
Therefore, in the present embodiment, the electrode area ratio of the B surface (fused surface of the fusion electrode 2b) is configured to be larger than the electrode area ratio of the A surface (fusion surface of the fusion electrode 2a). .
In such a configuration, when a short circuit accident occurs and a large current flows, the PTC polymer 1 is heated by heat generated by the contact resistance at the interface between the fusion electrode 2 and the PTC polymer 1, and the PTC polymer 1 The portion near the A-plane connection portion with the smaller electrode area ratio changes from the low resistance state to the high resistance state, and the short-circuit current is suppressed. In addition, since the current density is small, the temperature rise is low in the vicinity of the B-surface connection portion having the larger electrode area ratio in the PTC polymer 1.
Further, during the current limiting, the portion of the PTC polymer 1 in the vicinity of the A-plane connection portion having the smaller electrode area ratio reaches the decomposition temperature far exceeding the transition temperature, and an arc is generated. Due to the heat of the arc, the PTC polymer 1 in the vicinity of the A-plane connection portion is softened, and as in the case of each of the above embodiments, the through hole 20 of the fusion electrode 2a is filled with the softening of the PTC polymer 1. The PTC polymer 1 bites into the irregularities on the roughened surface (rough surface) of the terminal electrode 3a, whereby the terminal electrode 3a and the PTC polymer 1 are heat-sealed. The current limiting peak value is a current value at the time when the PTC polymer 1 changes from the low resistance state to the high resistance state in the vicinity of the A-surface connection portion with the smaller electrode area ratio, so the current limiting peak value is high. There is little to be.
In addition, since the current density is low, the arc does not occur in the vicinity of the B surface connection portion having the larger electrode area ratio in the PTC polymer 1. The current limiting peak value is a current value at the time when the PTC polymer 1 changes from the low resistance state to the high resistance state in the vicinity of the A-surface connection portion with the smaller electrode area ratio, so the current limiting peak value is high. There is little to be.

このように、本実施の形態によれば、PTCポリマー1のうち、電極面積率が大きい方のB面接続部の抵抗を低減できるため限流器の初期抵抗を低減でき、PTCポリマー1のうち、電極面積率が小さい方のA面で限流波高値が決まる。その結果、限流波高値が増大することなく、限流器の初期抵抗を低減できるので、通電性能を高めることができる。また、限流動作に伴うアーク発生が一方の面(電極面積率が小さい面)に限定されるので、限流動作後の限流器抵抗の増大、すなわち、限流動作前後における通電性能の低下を顕著に抑制できる。これらの結果、初期状態での通電性能が高く、しかも、限流動作後の通電性能が高い限流器を得ることができる。   Thus, according to the present embodiment, among the PTC polymers 1, it is possible to reduce the resistance of the B surface connection portion having the larger electrode area ratio, so that the initial resistance of the current limiter can be reduced. The current-crest peak value is determined by the A surface having the smaller electrode area ratio. As a result, since the initial resistance of the current limiter can be reduced without increasing the current limiting peak value, the energization performance can be improved. In addition, since the arc generation associated with the current limiting operation is limited to one surface (surface with a small electrode area ratio), the resistance of the current limiting device after the current limiting operation increases, that is, the current-carrying performance decreases before and after the current limiting operation. Can be remarkably suppressed. As a result, a current limiter having high energization performance in the initial state and high energization performance after the current limiting operation can be obtained.

なお、本実施の形態では、一対の融着電極2は、電極面積率が互いに異なるので、限流動作に伴うアーク発生がPTCポリマー1の一方の面(電極面積率が小さい面)に限定され、電極面積率が小さい方の融着電極2aに隣接する端子電極3aとPTCポリマー1とが熱融着される。したがって、電極面積率が大きい方の融着電極2bに隣接し、PTCポリマー1と熱融着されない、端子電極3bの融着電極2b隣接側の面は、粗面化されていなくてもよく、製作工程を簡素化できるという効果がある。   In the present embodiment, the pair of fusion electrodes 2 have different electrode area ratios, so that arc generation associated with the current limiting operation is limited to one surface of the PTC polymer 1 (surface having a small electrode area ratio). The terminal electrode 3a adjacent to the fusion electrode 2a having the smaller electrode area ratio and the PTC polymer 1 are thermally fused. Therefore, the surface of the terminal electrode 3b adjacent to the fusion electrode 2b, which is adjacent to the fusion electrode 2b having the larger electrode area ratio and is not thermally fused to the PTC polymer 1, may not be roughened. The manufacturing process can be simplified.

また、電極面積率が1よりも小さい融着電極2(例えば2a)に隣接する端子電極3(例えば3a)の融着電極2a隣接側の面は、粗面化されているが、電極面積率が1である融着電極2(例えば2b)に隣接する端子電極3(例えば3b)の融着電極2b隣接側の面は、粗面化されていなくてもよい。   Further, the surface of the terminal electrode 3 (for example, 3a) adjacent to the fusion electrode 2a (for example, 3a) adjacent to the fusion electrode 2a having an electrode area ratio smaller than 1 is roughened. The surface of the terminal electrode 3 (for example, 3b) adjacent to the fused electrode 2b (for example, 3b) adjacent to the fused electrode 2b may not be roughened.

また、少なくとも電極面積率が小さい方の融着電極2(例えば2a)に隣接する端子電極3(例えば3a)は、融着電極2に隣接し融着電極2隣接側の面が粗面化された金属箔301(例えば301a)と、この金属箔301(例えば301a)の融着電極2(例えば2a)隣接側と反対側に配置された導電板302(例えば302a)とで構成されていてもよく、上記実施の形態3と同様の効果が得られる。   Further, at least the terminal electrode 3 (for example, 3a) adjacent to the fusion electrode 2 (for example, 2a) having the smaller electrode area ratio is adjacent to the fusion electrode 2 and the surface adjacent to the fusion electrode 2 is roughened. The metal foil 301 (for example, 301a) and the conductive plate 302 (for example, 302a) disposed on the opposite side of the metal foil 301 (for example, 301a) on the side adjacent to the fusion electrode 2 (for example, 2a) may be used. Well, the same effect as in the third embodiment can be obtained.

なお、本実施の形態のように、一対の融着電極2a,2bの電極面積率が互いに異なる場合、電極面積率が大きい方の融着電極2bの電極面積率が90%を超えると、PTCポリマー1と融着電極2a,2bとの熱融着時に、融着電極2bと融着電極2aとの熱収縮の度合の違いにより、PTCポリマー1が大きく反る。これを弾性体33で加圧すると、PTCポリマー1の内部応力が大きくなり、限流動作時にPTCポリマー1が破損しやすい。   When the electrode area ratio of the pair of fusion electrodes 2a and 2b is different from each other as in the present embodiment, the electrode area ratio of the fusion electrode 2b having the larger electrode area ratio exceeds 90%. When the polymer 1 and the fusion electrodes 2a and 2b are thermally fused, the PTC polymer 1 is greatly warped due to the difference in the degree of thermal shrinkage between the fusion electrode 2b and the fusion electrode 2a. When this is pressurized with the elastic body 33, the internal stress of the PTC polymer 1 increases, and the PTC polymer 1 is easily damaged during the current limiting operation.

そこで、電極面積率が大きい方の融着電極2bの電極面積率を90%以下とすることにより、PTCポリマー1に作用する初期応力を抑制できるので、限流動作時のPTCポリマー1の破損を抑制できる。その結果、限流動作回数が多い限流器を得ることができる。   Therefore, by setting the electrode area ratio of the fusion electrode 2b having the larger electrode area ratio to 90% or less, the initial stress acting on the PTC polymer 1 can be suppressed, so that the damage of the PTC polymer 1 during the current limiting operation can be prevented. Can be suppressed. As a result, a current limiter with a large number of current limiting operations can be obtained.

なお、限流器の電気抵抗は電極面積率の増大に連れ大きく減少するが、電極面積率が50%以上になるとその減少の度合は小さくなる。したがって、上記を考慮すると、融着電極2a,2bの電極面積率が互いに異なる場合、電極面積率が大きい方の融着電極2bの電極面積率を50%以上かつ90%以下に設定すると、PTCポリマー1の反りを抑制でき、しかも限流器の電気抵抗を低く設定できる。   The electric resistance of the current limiting device is greatly reduced as the electrode area ratio is increased. However, when the electrode area ratio is 50% or more, the degree of decrease is reduced. Therefore, in consideration of the above, when the electrode area ratios of the fusion electrodes 2a and 2b are different from each other, if the electrode area ratio of the fusion electrode 2b having the larger electrode area ratio is set to 50% or more and 90% or less, PTC The warping of the polymer 1 can be suppressed, and the electric resistance of the current limiting device can be set low.

実施の形態4.
図6は本発明の実施の形態4による限流器を説明するための図であり、より具体的には、PTC素子の構成を示す斜視図である。
本実施の形態では、融着電極2を複数に分割し、微小な融着電極部21を島状に均一的に分散配置している点を除いて上記各実施の形態と同じであるので、以下では、上記各実施の形態と異なる点について主に説明する。
Embodiment 4 FIG.
FIG. 6 is a view for explaining a current limiting device according to Embodiment 4 of the present invention, and more specifically, a perspective view showing a configuration of a PTC element.
The present embodiment is the same as the above embodiments except that the fusion electrode 2 is divided into a plurality of portions and the minute fusion electrode portions 21 are uniformly distributed in an island shape. In the following, differences from the above embodiments will be mainly described.

上記各実施の形態では、融着電極2に貫通孔20が形成されていることにより、PTCポリマー1の融着電極2との融着面の面積に対する融着電極2のPTCポリマー1との融着面の面積の割合である電極面積率が1よりも小さく構成されていた。このように、融着電極2に貫通孔20を形成した場合、電極面積率を小さくしようとすると、隣接する貫通孔20間の距離、すなわち、融着電極2の非孔部の幅、を小さくすることが必要になる。しかし、加工上、融着電極2の非孔部の幅を小さくするのには限界がある。そのため電極面積率を小さくするのに限界がある。また、融着電極2の非孔部の幅を極限まで小さくすると、アークの発生が融着電極2の幅が狭い非孔部に局所化されるようになるため、PTCポリマー1に発生する局所的な熱応力が大きくなり、PTCポリマー1が破損しやすくなる。   In each of the above-described embodiments, since the through-hole 20 is formed in the fusion electrode 2, the fusion of the PTC polymer 1 with the PTC polymer 1 with respect to the area of the fusion surface of the PTC polymer 1 with the fusion electrode 2. The electrode area ratio, which is the ratio of the area of the contact surface, was smaller than 1. As described above, when the through-hole 20 is formed in the fusion electrode 2, if the electrode area ratio is to be reduced, the distance between the adjacent through-holes 20, that is, the width of the non-hole portion of the fusion electrode 2 is reduced. It becomes necessary to do. However, there is a limit in reducing the width of the non-hole portion of the fused electrode 2 in processing. Therefore, there is a limit in reducing the electrode area ratio. Further, when the width of the non-hole portion of the fusion electrode 2 is reduced to the limit, the generation of the arc is localized in the non-hole portion where the width of the fusion electrode 2 is narrow. Thermal stress increases, and the PTC polymer 1 is easily damaged.

そこで、本実施の形態では、図6に示すように、融着電極2を複数に分割し、微小な融着電極部21を島状に均一的に分散配置している。
このような構成により、電極面積率を小さくした場合にも、アークを均一的に分散発生できるので、PTCポリマー1に発生する熱応力が分散され、局所的な熱応力が小さくなり、PTCポリマー1の破損を起こしにくくすることができる。
また、負荷電流通電時、PTCポリマー1に流れる電流を均一的に分散化できるので、通電性能を高めることもできる。
Therefore, in the present embodiment, as shown in FIG. 6, the fusion electrode 2 is divided into a plurality of pieces, and the minute fusion electrode portions 21 are uniformly distributed in an island shape.
With such a configuration, even when the electrode area ratio is reduced, the arc can be generated uniformly and distributed, so that the thermal stress generated in the PTC polymer 1 is dispersed, and the local thermal stress is reduced. It can be made difficult to cause damage.
Moreover, since the current flowing through the PTC polymer 1 can be uniformly dispersed when the load current is applied, the energization performance can be improved.

しかしながら、上記のような複数に分割された微小な融着電極部21のそれぞれをPTCポリマー1に熱融着し、島状に均一的に分散配置するのは至難である。
そこで、本実施の形態では、下記のように製造する。
まず、複数に分割される前の大きな融着電極2をPTCポリマー1に全面的に熱融着する。次に、エッチング法により非電極部を削除する。
このような加工方法によれば、例えば融着電極部21が図6に示すように角柱状である場合には、1辺0.2mm程度まで容易に小さく形成でき、融着電極部21の分散性を高めることができる。
However, it is extremely difficult to thermally disperse each of the minute fused electrode portions 21 divided into a plurality of pieces as described above into the PTC polymer 1 and to disperse and arrange them in an island shape uniformly.
Therefore, in the present embodiment, the manufacturing is performed as follows.
First, the large fusion electrode 2 before being divided into a plurality of parts is thermally fused to the PTC polymer 1 entirely. Next, the non-electrode portion is removed by an etching method.
According to such a processing method, for example, when the fused electrode portion 21 has a prismatic shape as shown in FIG. 6, it can be easily formed as small as about 0.2 mm on a side, and the fusion electrode portion 21 is dispersed. Can increase the sex.

なお、融着電極部21の形状は角柱状に限られるものではなく、例えば円柱状のような他の形状であってもよい。   The shape of the fused electrode portion 21 is not limited to a prismatic shape, and may be another shape such as a cylindrical shape.

実施の形態5.
図7は本発明の実施の形態5による限流遮断装置を説明するための図であり、より具体的には、限流遮断装置の構成を示す断面図である。
本実施の形態による限流遮断装置は主に実施の形態3で説明した電極面積率が互いに異なる一対の融着電極を有する限流器100と開閉器200とで構成されている。開閉器200には電路を開閉する開閉部201を有する。基本的には、この開閉部201は固定接点201aと可動接点201bで構成されている。電路の開閉に関しては、手動でまたは図示しない機構で過大電流を検出して自動で、可動接点201bの開閉操作が行われるが、自己消弧型半導体デバイスで開閉が行われてもよい。
Embodiment 5 FIG.
FIG. 7 is a view for explaining a current limiting interrupting device according to Embodiment 5 of the present invention, and more specifically, a cross-sectional view showing a configuration of the current limiting interrupting device.
The current limiting interrupter according to the present embodiment is mainly composed of a current limiter 100 and a switch 200 having a pair of fused electrodes having different electrode area ratios as described in the third embodiment. The switch 200 has an opening / closing part 201 that opens and closes an electric circuit. Basically, the opening / closing part 201 includes a fixed contact 201a and a movable contact 201b. Regarding the opening and closing of the electric circuit, the opening / closing operation of the movable contact 201b is performed manually or automatically by detecting an excessive current by a mechanism (not shown), but may be performed by a self-extinguishing semiconductor device.

本実施の形態では、限流器100は開閉器200に近接して配置される。限流器100における電極面積率が大きい方の融着電極に隣接する端子電極に接続された電流導入端子31aは、開閉器200の一方の端子202aに接続され、電極面積率が小さい方の融着電極に隣接する端子電極に接続された電流導入端子31bは外部電線に接続される。また、開閉器の他方の端子202bは外部電線に接続される。   In the present embodiment, the current limiter 100 is disposed close to the switch 200. The current introduction terminal 31a connected to the terminal electrode adjacent to the fusion electrode having the larger electrode area ratio in the current limiter 100 is connected to one terminal 202a of the switch 200, and the fusion electrode having the smaller electrode area ratio is connected. The current introduction terminal 31b connected to the terminal electrode adjacent to the arrival electrode is connected to the external electric wire. The other terminal 202b of the switch is connected to an external electric wire.

このように構成されたものにおいて、負荷電流が流れると、開閉器200において開閉部201で発熱する。この発熱は主に開閉器200の外部電線に接続された端子202bを経由し外部電線に放熱される。また、限流器100において、電極面積率が小さい融着電極近傍と電極面積率が大きい融着電極近傍で発熱するが、その発熱量は電極面積率が小さい融着電極近傍の方が多い。また、限流器100の主要部であるPTCポリマーの主成分は上述したようにポリマーであるので、熱伝導率が非常に小さい。本実施の形態では、発熱量が多い、電極面積率が小さい方の融着電極近傍に隣接する端子電極に接続された電流導入端子31bが、開閉器200側ではなく、放熱が効率的に行われる外部電線側に接続されているので、この発熱が外部電線側に効率よく放熱される。したがって、限流器100の高い通電性能を得ることができる。   In such a configuration, when a load current flows, the switch 200 generates heat in the switch 200. This generated heat is dissipated to the external wire mainly through the terminal 202b connected to the external wire of the switch 200. Further, in the current limiting device 100, heat is generated in the vicinity of the fusion electrode having a small electrode area ratio and in the vicinity of the fusion electrode having a large electrode area ratio, but the amount of generated heat is greater in the vicinity of the fusion electrode having a small electrode area ratio. Moreover, since the main component of the PTC polymer which is the main part of the current limiting device 100 is a polymer as described above, the thermal conductivity is very small. In the present embodiment, the current introduction terminal 31b connected to the terminal electrode adjacent to the vicinity of the fusion electrode having the larger calorific value and the smaller electrode area ratio is not the switch 200 side, and the heat radiation is efficiently performed. This heat generation is efficiently radiated to the external electric wire side. Therefore, high current-carrying performance of the current limiter 100 can be obtained.

実施の形態6.
図8は本発明の実施の形態6による限流遮断装置を説明するための図であり、より具体的には、限流遮断装置の構成を示す断面図である。
本実施の形態では、限流器100は開閉器200の収納容器内部に収納されている。このように、限流器100を開閉器200に内蔵することにより、収納容器を共有でき無駄なスペースを除去できるので、実施の形態5で示した図7のものと比べて小型化することができる。
Embodiment 6 FIG.
FIG. 8 is a view for explaining a current limiting interrupting device according to Embodiment 6 of the present invention, and more specifically, a cross-sectional view showing a configuration of the current limiting interrupting device.
In the present embodiment, the current limiter 100 is housed inside the container of the switch 200. Thus, by incorporating the current limiter 100 in the switch 200, the storage container can be shared and a useless space can be removed. Therefore, the size can be reduced as compared with that of FIG. it can.

なお、本実施の形態においては、限流器100としては上記実施の形態1〜4で説明した何れの構成を有するものであってもよい。
ただし、上記実施の形態5と同様に、限流器100として、電極面積率が互いに異なる一対の融着電極を有するものを用いた場合には、限流器100における電極面積率が大きい方の融着電極に隣接する端子電極に接続された電流導入端子31aを、開閉器200の一方の端子202aに接続し、電極面積率が小さい方の融着電極に隣接する端子電極に接続された電流導入端子31bを外部電線に接続することにより、小型でしかも高い通電性能を有する限流遮断装置を得ることができる。
In the present embodiment, current limiting device 100 may have any of the configurations described in the first to fourth embodiments.
However, as in the fifth embodiment, when the current limiter 100 having a pair of fused electrodes having different electrode area ratios is used, the electrode area ratio of the current limiter 100 having the larger electrode area ratio is larger. The current introduction terminal 31a connected to the terminal electrode adjacent to the fusion electrode is connected to one terminal 202a of the switch 200, and the current connected to the terminal electrode adjacent to the fusion electrode having a smaller electrode area ratio. By connecting the introduction terminal 31b to an external electric wire, it is possible to obtain a current-limiting circuit breaker that is small and has high energization performance.

本発明の実施の形態1による限流器の初期状態での全体構成を示す断面説明図である。It is sectional explanatory drawing which shows the whole structure in the initial state of the fault current limiter by Embodiment 1 of this invention. 本発明の実施の形態1による限流器の要部であるPTC素子の構成を示す平面図である。It is a top view which shows the structure of the PTC element which is the principal part of the fault current limiter by Embodiment 1 of this invention. 本発明の実施の形態1による限流器の限流動作後の要部の構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of the principal part after the current limiting operation | movement of the current limiting device by Embodiment 1 of this invention. 本発明の実施の形態2による限流器の初期状態での要部の構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of the principal part in the initial state of the fault current limiter by Embodiment 2 of this invention. 本発明の実施の形態3による限流器の初期状態での要部の構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of the principal part in the initial state of the fault current limiter by Embodiment 3 of this invention. 本発明の実施の形態4による限流器の要部であるPTC素子の構成を示す斜視図である。It is a perspective view which shows the structure of the PTC element which is the principal part of the fault current limiter by Embodiment 4 of this invention. 本発明の実施の形態5による限流遮断装置の構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of the current limiting interrupting device by Embodiment 5 of this invention. 本発明の実施の形態6による限流遮断装置の構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of the current limiting interruption device by Embodiment 6 of this invention.

符号の説明Explanation of symbols

1 PTCポリマー、2,2a,2b 融着電極、20 貫通孔、21 融着電極部、3,3a,3b 端子電極、301,301a,301b 金属箔、302,302a,302b 導電板、31,31a,31b 電流導入端子、32 絶縁枠、33 弾性体、34 絶縁容器、35a ボルト、35b ナット、36 スペーサー、100 限流器、200 開閉器、201 開閉部、201a 固定接点、201b 可動接点、202a,202b 端子。   1 PTC polymer, 2, 2a, 2b fused electrode, 20 through hole, 21 fused electrode part, 3, 3a, 3b terminal electrode, 301, 301a, 301b metal foil, 302, 302a, 302b conductive plate, 31, 31a , 31b Current introduction terminal, 32 Insulating frame, 33 Elastic body, 34 Insulating container, 35a Bolt, 35b Nut, 36 Spacer, 100 Current limiter, 200 Switch, 201 Opening / closing part, 201a Fixed contact, 201b Movable contact, 202a, 202b terminal.

Claims (9)

PTCポリマーと該PTCポリマーを挟んで対向配置され上記PTCポリマーにそれぞれ融着された一対の融着電極とからなるPTC素子、上記一対の融着電極のPTCポリマー配置側と反対側にそれぞれ配置され、上記一対の融着電極にそれぞれ隣接する一対の端子電極、および上記一対の端子電極を上記PTC素子側に押圧する加圧手段を備え、上記一対の融着電極のうち少なくとも一方の融着電極は、貫通孔が形成されている、または複数に分割されて島状に配置されていることにより、上記PTCポリマーの融着電極との融着面の面積に対する上記融着電極のPTCポリマーとの融着面の面積の割合である電極面積率が1よりも小さく、かつ上記電極面積率が1よりも小さい融着電極に隣接する端子電極の融着電極隣接側の面は粗面化されていることを特徴とする限流器。 A PTC element comprising a PTC polymer and a pair of fusion electrodes that are arranged opposite to each other with the PTC polymer sandwiched therebetween and fused to the PTC polymer, and is arranged on the opposite side to the PTC polymer arrangement side of the pair of fusion electrodes. A pair of terminal electrodes adjacent to the pair of fusion electrodes, and a pressing means for pressing the pair of terminal electrodes to the PTC element side, and at least one fusion electrode of the pair of fusion electrodes Has a through-hole formed or is divided into a plurality of islands and arranged in an island shape so that the area of the fusion surface of the PTC polymer with the fusion electrode of the fusion electrode and the PTC polymer of the fusion electrode The surface of the terminal electrode adjacent to the fused electrode having a ratio of the electrode area, which is a ratio of the area of the fused surface, smaller than 1 and the electrode area ratio being smaller than 1 is a rough surface. Current limiter, characterized in that it is. 電極面積率が1よりも小さい融着電極の融着面は粗面化されていることを特徴とする請求項1記載の限流器。 The current limiting device according to claim 1, wherein the fused surface of the fused electrode having an electrode area ratio smaller than 1 is roughened. 電極面積率が1よりも小さい融着電極に隣接する端子電極は、上記融着電極に隣接し融着電極隣接側の面が粗面化された金属箔と、該金属箔の融着電極隣接側と反対側に配置された導電板とで構成されていることを特徴とする請求項1または2記載の限流器。 The terminal electrode adjacent to the fusion electrode having an electrode area ratio smaller than 1 is a metal foil having a roughened surface adjacent to the fusion electrode and adjacent to the fusion electrode, and adjacent to the fusion electrode of the metal foil. The current limiting device according to claim 1, wherein the current limiting device comprises a conductive plate disposed on the opposite side to the side. 一対の融着電極は、電極面積率が互いに異なることを特徴とする請求項1または2記載の限流器。 The current limiting device according to claim 1 or 2, wherein the pair of fused electrodes have different electrode area ratios. 電極面積率が大きい方の融着電極に隣接する端子電極の融着電極隣接側の面は、粗面化されていないことを特徴とする請求項4記載の限流器。 5. The current limiting device according to claim 4, wherein a surface of the terminal electrode adjacent to the fusion electrode having a larger electrode area ratio is not roughened. 電極面積率が小さい方の融着電極に隣接する端子電極は、上記融着電極に隣接し融着電極隣接側の面が粗面化された金属箔と、該金属箔の融着電極隣接側と反対側に配置された導電板とで構成されていることを特徴とする請求項4記載の限流器。 The terminal electrode adjacent to the fusion electrode having the smaller electrode area ratio is a metal foil having a roughened surface adjacent to the fusion electrode and adjacent to the fusion electrode, and the fusion electrode adjacent side of the metal foil. The current limiting device according to claim 4, wherein the current limiting device includes a conductive plate disposed on the opposite side of the current limiting plate. 電極面積率が大きい方の融着電極の電極面積率は、50%以上かつ90%以下であることを特徴とする請求項4記載の限流器。 The current limiting device according to claim 4, wherein the electrode area ratio of the fused electrode having the larger electrode area ratio is 50% or more and 90% or less. 上記請求項4〜6のいずれかに記載の電極面積率が互いに異なる一対の融着電極を有する限流器と、電路を開閉する開閉器とが直列接続された限流遮断装置であって、上記限流器における電極面積率が大きい方の融着電極に隣接する端子電極が上記開閉器と接続されたことを特徴とする限流遮断装置。 A current limiting device comprising a series of a current limiting device having a pair of fused electrodes with different electrode area ratios according to any one of claims 4 to 6 and a switch for opening and closing an electric circuit, A current limiting interrupter, wherein a terminal electrode adjacent to a fused electrode having a larger electrode area ratio in the current limiting device is connected to the switch. 上記請求項1〜6のいずれかに記載の限流器と、電路を開閉する開閉器とが直列接続された限流遮断装置であって、上記限流器が上記開閉器に内蔵されたことを特徴とする限流遮断装置。 The current limiting device according to any one of claims 1 to 6 and a switch for opening and closing an electric circuit are connected in series, and the current limiting device is built in the switch. Current-limiting circuit breaker characterized by
JP2004098713A 2003-06-12 2004-03-30 Current limiting device, current limiting interrupter, and current limiting device manufacturing method Expired - Lifetime JP4479304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098713A JP4479304B2 (en) 2003-06-12 2004-03-30 Current limiting device, current limiting interrupter, and current limiting device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003167515 2003-06-12
JP2004098713A JP4479304B2 (en) 2003-06-12 2004-03-30 Current limiting device, current limiting interrupter, and current limiting device manufacturing method

Publications (2)

Publication Number Publication Date
JP2005026666A true JP2005026666A (en) 2005-01-27
JP4479304B2 JP4479304B2 (en) 2010-06-09

Family

ID=34196999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098713A Expired - Lifetime JP4479304B2 (en) 2003-06-12 2004-03-30 Current limiting device, current limiting interrupter, and current limiting device manufacturing method

Country Status (1)

Country Link
JP (1) JP4479304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762051A (en) * 2013-12-30 2014-04-30 深圳市慧瑞电子材料有限公司 High-holding current PPTC (polymeric positive temperature coefficient) overcurrent protector and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762051A (en) * 2013-12-30 2014-04-30 深圳市慧瑞电子材料有限公司 High-holding current PPTC (polymeric positive temperature coefficient) overcurrent protector and manufacturing method thereof

Also Published As

Publication number Publication date
JP4479304B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
CA1331399C (en) Assemblies of ptc circuit protection devices
JP6297028B2 (en) Protective device
KR101632417B1 (en) Connecting element and Secondary battery comprising the same
KR101690295B1 (en) Overcurrent shut-off device and Secondary battery comprising the same
JP6437262B2 (en) Mounting body manufacturing method, thermal fuse element mounting method, and thermal fuse element
JP6195910B2 (en) Protective device
CA2439860C (en) Connection device for an electric accumulator
JP2010257625A (en) Bypass switch
CN103794304A (en) Surface-mounted overcurrent protection element
US6898063B2 (en) Over-current protection device
JP4479304B2 (en) Current limiting device, current limiting interrupter, and current limiting device manufacturing method
KR100841142B1 (en) Ptc-device with improved safety and manufacturing method thereof
EP3288042A1 (en) Protection element
KR100697918B1 (en) PTC current limiting device having structure preventing flashover
JP3853419B2 (en) Overvoltage / overcurrent protection device
KR100697917B1 (en) PTC current limiting device
US5977861A (en) Current limiting device with grooved electrode structure
US9613736B1 (en) Positive temperature coefficient circuit protection chip device
KR20140110190A (en) Safety kit for secondary battery and Secondary battery comprising the same
JP3815026B2 (en) Current limiter
JP3731337B2 (en) Current limiter
JP4623415B2 (en) PTC element
JP3828238B2 (en) Current limiter
JP2008091505A (en) Ptc element and battery protection system
JPH10312911A (en) Current-limiting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250