JP2005025651A - 微分方程式の数値解を求める方法およびその方法を用いたプログラム - Google Patents

微分方程式の数値解を求める方法およびその方法を用いたプログラム Download PDF

Info

Publication number
JP2005025651A
JP2005025651A JP2003205868A JP2003205868A JP2005025651A JP 2005025651 A JP2005025651 A JP 2005025651A JP 2003205868 A JP2003205868 A JP 2003205868A JP 2003205868 A JP2003205868 A JP 2003205868A JP 2005025651 A JP2005025651 A JP 2005025651A
Authority
JP
Japan
Prior art keywords
equation
differential equation
solution
circuit
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205868A
Other languages
English (en)
Inventor
Yasushi Fujimoto
康 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003205868A priority Critical patent/JP2005025651A/ja
Publication of JP2005025651A publication Critical patent/JP2005025651A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

【課題】台形公式などの差分法で微分方程式の数値的な解を求める場合、解が周波数の比較的高い成分と低い成分を含むときは、区間分割を高い周波数成分の短い周期(波長)に比べて十分小さく設定しなくてはならなかった。そのため低い周波数成分が関与する大きい(広い)領域に関して解を求めるためには非常に大きな計算負荷が必要となるという課題が存在した。
【課題を解決するための手段】本発明では上記の従来の方法における課題を解決するための手段として、微分方程式を解く際に、領域を複数の区間に分割し、未知の変数をその区間における(離散)フーリエ級数により近似する。さらに微分方程式を、未知数の(離散)フーリエ級数の係数間の差分方程式へと変換し、この差分方程式を解くことにより、微分方程式を数値的に解く。
【選択図】 図1

Description

【発明の属する技術分野】
本発明は微分方程式を数値的に解く技術の一つである。特に、解となる変数がある周波数近傍の成分を特に多く含むことが判明していて、解のその周波数周辺の成分を効率的に求めつつも、他の周波数成分も考慮に入れたいときに有効である。
【従来の技術】
微分方程式の数値的に解く代表的な方法として、台形公式、前進積分法、バックワードオイラー法などの差分法がある。電気回路が満たすべき微分方程式を、台形公式を用いて数値的に解き、その過渡現象を解析するプログラムとしてEMTP(参考文献H.W.Dommel,”Nonlinear and time−varying elements in digital simulation of electromagnetic transients”,IEEE Power App.Syst.,Vol.PAS−90,pp.2561−2567,June 1971)が有名である。
また、微分方程式を一定の条件の下で数値的に解く別の方法として次のようなものがある。求めようとする変数の解が有る周波数成分(基本周波数)を非常に多く含み、解析の対象が主にその周波数近傍成分に限定されるときは、解がその周波数の成分の波で表されると仮定し,その振幅と位相の変化すると仮定して、解を求める方法が存在する。このような方法の例として、電力系統解析における動的安定度解析をあげることができる。電力系統は電気回路として表現され、電気回路の満たすべき方程式はもともと微分方程式で表されるわけであるから、これらの解法は、もともとの微分方程式を特殊な条件の下に解いていると考えられる。
【発明が解決しようとする課題】
台形公式などの差分法で微分方程式の数値的な解を求める場合,解が周波数の比較的高い成分と、低い成分を含むとき(Stiffな系と呼ばれる)は区間分割を、高い周波数成分の短い周期(波長)に比べて十分に小さく設定しなくてはならなかった。そのため低い周波数成分が関与する大きい(広い)領域に関して解を求めるためには非常に大きな計算負荷が必要となるという課題が存在した。
一方、電力系統解析における動的安定度解析では、解がある周波数の波(基本周波数)で近似されることを前提に方程式が構成されている。そのため,方程式の解がその周波数以外の成分を含むような場合は、求まる解の精度が悪化するという問題点があった。また、解析精度を上げることを目的として、区分(時間刻み)を細かくすることも試みられているが、前提として解が基本周波数成分により表されるため、区分を基本周波数の波長(周期)以下に縮めても、その精度が上がるとは限らないという課題が存在した。
【課題を解決するための手段】本発明では上記の従来の方法における課題を解決するための手段として、微分方程式を解く際に、領域を複数の区間に分割し、未知の変数をその区間における、(離散)フーリエ級数により近似する。さらに微分方程式を、未知数の(離散)フーリエ級数の係数間の差分式へと変換し、この差分式を解くことにより、微分方程式を数値的に解く。
【発明実施の形態】
【実施例1】
yに関する微分方程式
【数38】
Figure 2005025651
を初期条件
【数39】
Figure 2005025651
のもとで領域
【数40】
Figure 2005025651
について本発明を用いて数値的に解く。
微分方程式を解くためにxを、区分幅1を用いて区分
【数41】
Figure 2005025651
を考え、それぞれの区分において、y,uを
【数42】
Figure 2005025651
【数43】
Figure 2005025651
のようにフーリエ級数で近似する。またこれらの係数を並べてベクトル
【数44】
Figure 2005025651
【数45】
Figure 2005025651
を考える。
微分方程式
【数38】は本発明により次の差分方程式へと置き換えられる。
【数46】
Figure 2005025651
【数47】
Figure 2005025651
ここで初期条件は
【数48】
Figure 2005025651
であり、U
【数49】
Figure 2005025651
となる。また係数A,Kは
【数50】
Figure 2005025651
【数51】
Figure 2005025651
により与えられる。
【数46】は
【数52】
Figure 2005025651
と変換できるのでこれを
【数47】と併せて用いると、順次Yを求めていくことができる。
得られた数値解を
【表1】に示す。
この数値解をグラフで表すと
【図1】の様になる。このなかで、実線が求まった本発明による方法で求まった数値解を
【数42】を適用してグラフに描いたものである。点線が微分方程式
【数42】を解析的に解いて求まる解をグラフを描いたものである。グラフから得られた数値解が妥当なものであることが判別できる。
【実施例2】
【図3】のような回路の過渡現象を考える。ここで回路のパラメータとして
【数53】
Figure 2005025651
【数54】
Figure 2005025651
【数55】
Figure 2005025651
とし、初期条件として
【数56】
Figure 2005025651
とする。
過渡現象を解くためにxについて区分幅1を用いた区分
【数57】
Figure 2005025651
を考える。また回路を流れる電流i(x)とノードQの電圧v(x)は
【数58】
Figure 2005025651
【数59】
Figure 2005025651
により近似されるとする。
インダクタンスの電流と電圧の間にはv(t)の間には
【数60】
Figure 2005025651
なる関係が成立する。この関係式は本発明の方法により差分方程式
【数61】
Figure 2005025651
【数62】
Figure 2005025651
に変換される。ただし
【数63】
Figure 2005025651
【数64】
Figure 2005025651
【数65】
Figure 2005025651
【数66】
Figure 2005025651
である。
【数61】によりインダクタンスは仮想的な区分Tにおいて
【数67】、
【数68】により与えられる仮想的なアドミタンスGとそれに並列な仮想的電流源Hにより表される。
【数67】
Figure 2005025651
【数68】
Figure 2005025651
一方回路網方程式はノードQから流れ出る電流の合計が0であることを利用すると
【数69】
Figure 2005025651
を得る。したがって各区分TにおいてVEn、Hが与えられれば
【数70】
Figure 2005025651
によりVQnを求めることができる。G
【数71】
Figure 2005025651
である。
過渡現象の数値解は次の手続き(iv)〜(vii)を実施することにより順次求められる。
(iv)n=0とし、初期条件よりh=0とする。
(v)
【数68】からHを求める。
(vi)問題の条件
【数53】から
【数72】
Figure 2005025651
であるので、
【数70】を使用してVQnを計算する。
(vii)
【数62】を使用してhn+1を計算する。nを一つ増加させ(v)へ戻る。
実際に数値計算を実施して求まった数値解を
【表2】に示す。
【実施例3】
yに関する微分方程式
【数73】
Figure 2005025651
を初期条件
【数74】
Figure 2005025651
のもとで領域
【数75】
Figure 2005025651
について本発明を用いて数値的に解く。解を求める領域を刻み幅T=1を用いて
【数76】
Figure 2005025651
に分割する。請求項3の中で使用されている変数P,Mについてそれぞれ1,60として各区分の中でy(x)を離散フーリエ級数によって近似する。
【数77】
Figure 2005025651
ここでθ、Tn,m
【数78】
Figure 2005025651
【数79】
Figure 2005025651
とする。
離散フーリエ級数を並べてベクトル
【数80】
Figure 2005025651
を考えると、本発明により微分方程式
【数73】は差分方程式
【数81】
Figure 2005025651
【数82】
Figure 2005025651
へと変換できる。
ここで初期条件は
【数83】
Figure 2005025651
であり、U
【数84】
Figure 2005025651
となる(u(x)を
【数79】の領域で平均して求まる値に対して、離散フーリエ級数を求める)。また係数A,K
【数85】
Figure 2005025651
【数86】
Figure 2005025651
により与えられる。
【数81】は
【数87】
Figure 2005025651
と変換できるので、これを
【数82】と併せて用いると、順次YDnを求めていくことができる。数値計算を実施して求まった数値解を
【表3】に示す。
【実施例4】
【図3】のような回路の過渡現象を考える。ここで回路のパラメータとして
【数53】(再掲)
Figure 2005025651
【数54】(再掲)
Figure 2005025651
【数55】(再掲)
Figure 2005025651
とし、初期条件として
【数56】(再掲)
Figure 2005025651
とする。
過渡現象を解くためにxについて区分幅1を用いた区分
【数57】(再掲)
Figure 2005025651
を考える。さらに本発明で使用するパラメータM,Pをここでは60,1と選んで
【数79】(再掲)
Figure 2005025651
とする。
回路を流れる電流i(x)とノードQの電圧v(x)は
【数88】
Figure 2005025651
【数89】
Figure 2005025651
により近似する。
インダクタンスの電流と電圧の間にはv(t)の間には
【数60】(再掲)
Figure 2005025651
なる関係が成立する。この関係式は本発明の方法により差分方程式
【数90】
Figure 2005025651
【数91】
Figure 2005025651
に変換される。ただし
【数92】
Figure 2005025651
【数93】
Figure 2005025651
【数94】
Figure 2005025651
【数95】
Figure 2005025651
である。
【数90】によりインダクタンスは仮想的な区分Tにおいて
【数96】、
【数97】により与えられる仮想的なアドミタンスGとそれに並列な仮想的電流源Hにより表される。
【数96】
Figure 2005025651
【数97】
Figure 2005025651
一方回路網方程式はノードQから流れ出る電流の合計が0であることを利用すると
【数98】
Figure 2005025651
を得る。したがって各区分TにおいてVEDn、HDnが与えられれば
【数99】
Figure 2005025651
によりVQnを求めることができる。GRD
【数100】
Figure 2005025651
である。
過渡現象の数値解は次の手続き(iv)〜(vii)を実施することにより順次求められる。
(iv)n=0とし、初期条件よりhDn=0とする。
(v)
【数97】からHDnを求める。
(vi)問題の条件
【数53】から
【数101】
Figure 2005025651
であるので、
【数99】を使用してVQDnを計算する。
(vii)
【数91】を使用してhDn+1を計算する。nを一つ増加させ(v)へ戻る。
実際に数値計算を実施して求まった数値解(IDn)を
【表4】に示す。IDn,−1はIDn,1に複素共役なので表からは省略してある。
【実施例5】
yに関する微分方程式
【数102】
Figure 2005025651
を初期条件
【数103】
Figure 2005025651
のもとで領域
【数104】
Figure 2005025651
について本発明を用いて数値的に解く。解を求める領域を刻み幅T=10を用いて
【数105】
Figure 2005025651
に分割する。それぞれの区分において、y,uを
【数106】
Figure 2005025651
【数107】
Figure 2005025651
のようにフーリエ級数で近似する。またこれらの係数を並べてベクトル
【数108】
Figure 2005025651
【数109】
Figure 2005025651
を考える。
微分方程式
【数102】は本発明により次の差分方程式へと置き換えられる。
【数110】
Figure 2005025651
【数111】
Figure 2005025651
ここで初期条件は
【数112】
Figure 2005025651
であり、U
【数113】
Figure 2005025651
となる。また係数A,Kは
【数114】
Figure 2005025651
【数115】
Figure 2005025651
により与えられる。
【数110】は
【数116】
Figure 2005025651
と変換できるのでこれを
【数111】と併せて用いると、順次Yを求めていくことができる。
得られた数値解を
【表5】に示す。
【実施例6】
【図3】のような回路の過渡現象を考える。ここで回路のパラメータとして
【数117】
Figure 2005025651
【数118】
Figure 2005025651
【数119】
Figure 2005025651
とし、初期条件として
【数120】
Figure 2005025651
とする。
過渡現象を解くためにxについて区分幅10を用いた区分
【数121】
Figure 2005025651
を考える。また回路を流れる電流i(x)とノードQの電圧v(x)は
【数122】
Figure 2005025651
【数123】
Figure 2005025651
により近似されるとする。
インダクタンスの電流と電圧の間にはv(t)の間には
【数124】
Figure 2005025651
なる関係が成立する。この関係式は本発明の方法により差分方程式
【数125】
Figure 2005025651
【数126】
Figure 2005025651
に変換される。ただし
【数127】
Figure 2005025651
【数128】
Figure 2005025651
【数129】
Figure 2005025651
【数130】
Figure 2005025651
である。
【数125】によりインダクタンスは仮想的な区分Tにおいて
【数131】、
【数132】により与えられる仮想的なアドミタンスGとそれに並列な仮想的電流源Hにより表される。
【数131】
Figure 2005025651
【数132】
Figure 2005025651
一方回路網方程式はノードQから流れ出る電流の合計が0であることを利用すると
【数133】
Figure 2005025651
を得る。したがって各区分TにおいてVEn、Hが与えられれば
【数134】
Figure 2005025651
によりVQnを求めることができる。G
【数135】
Figure 2005025651
である。
過渡現象の数値解は次の手続き(iv)〜(vii)を実施することにより順次求められる。
(iv)n=0とし、初期条件よりh=0とする。
(v)
【数132】からHを求める。
(vi)問題の条件
【数117】から
【数136】
Figure 2005025651
であるので、
【数134】を使用してVQnを計算する。
(vii)
【数126】を使用してhn+1を計算する。nを一つ増加させ(v)へ戻る。
実際に数値計算を実施して求まった数値解を
【表6】に示す。
【実施例7】
請求項1の方法において
【数137】
Figure 2005025651
【数138】
Figure 2005025651
なる変数変換を施すことを考える。ここでWは例として
Figure 2005025651
により与える。すると、
【数6】、
【数7】はそれぞれ
【数139】
Figure 2005025651
【数140】
Figure 2005025651
と変換される。ただし、
【数141】
Figure 2005025651
【数142】
Figure 2005025651
【数143】
Figure 2005025651
である。得られたこれらの差分式を用いて微分方程式を解く方法は実施例1と同様である。
【実施例8】実施例1の方法で
【数144】
Figure 2005025651
【数145】
Figure 2005025651
とする。
【数146】
Figure 2005025651
【数147】
Figure 2005025651
【数148】
Figure 2005025651
【数149】
Figure 2005025651
とすれば
【数150】
Figure 2005025651
【数151】
Figure 2005025651
【数152】
Figure 2005025651
となり差分方程式
【数6】、
【数7】はそれぞれ
【数153】
Figure 2005025651
【数154】
Figure 2005025651
と変換される。ただし、
【数155】
Figure 2005025651
【数156】
Figure 2005025651
【数157】
Figure 2005025651
である。得られたこれらの差分式を用いて微分方程式を解く方法は実施例1と同様である。
【発明の効果】微分方程式の解となる変数がある周波数近傍の成分を特に多く含むことが判明していている場合に、本発明により、解のその周波数周辺の成分を効率的に求めつつも、他の周波数成分も考慮に入れて効率的に数値的に解くことができる。
【図面の簡単な説明】
【図1】実施例1の結果得られた数値解をグラフ化したもの
【図2】実施例1の結果得られた数値解
【図3】過渡現象を数値解析する回路例
【図4】実施例2の結果得られた数値解
【図5】実施例3の結果得られた数値解
【図6】実施例4の結果得られた数値解
【図7】実施例5の結果得られた数値解
【図8】実施例6の結果得られた数値解
【符号の説明】
1−1は本発明による数値解をグラフ化したもの
1−2は解析解
2−1は実施例1の解析結果
3−1は電圧源
3−2は抵抗
3−3はインダクタンス
4−1は実施例2の解析結果
5−1は実施例3の解析結果
6−1は実施例4の解析結果
7−1は実施例5の解析結果
8−1は実施例6の解析結果

Claims (8)

  1. 微分方程式を数値的に解く際に次の処理(i)〜(iv)を持つことを特徴とする方法、その方法を用いた微分方程式の数値解をもとめるプログラム。
    (i)解を求めたい領域を刻み幅Tを用いて複数の区間
    【数1】に分割する。
    Figure 2005025651
    (ii)それぞれの区間で、解析の対象となる変数を、フーリエ級数によって近
    似する(
    【数2】、
    【数3】)。
    Figure 2005025651
    Figure 2005025651
    ただし、ここでNは1以上の整数、ωは
    Figure 2005025651
    で与えられる。
    (iii)二つの変数に関係
    Figure 2005025651
    が存在するとき、ステップ(ii)で表したフーリエ級数の間に
    Figure 2005025651
    Figure 2005025651
    なる関係式が存在するとして微分方程式を差分化する。ただし、ここで
    Figure 2005025651
    Figure 2005025651
    Figure 2005025651
    Figure 2005025651
    である。hは前の区分までの解に由来する履歴項である。また右肩のは転置をあらわす。
    (iv)(iii)で求めた関係式を順次解くことにより微分方程式の数値解をもとめる。
  2. 電気回路の過渡現象を数値的に解く際に次の処理(i)〜(vii)を持つことを特徴とする方法、およびその方法を用いた電気回路の過渡現象を数値的に解くプログラム。
    (i)解を求めたい時間を時間刻みTにより区間
    【数1】に分割する(xは時間を表す)。
    (ii)それぞれの区間において、回路の電気的な諸量(電圧、電流など)をその区間におけるフーリエ級数の係数により近似する。(
    【数2】、
    【数3】)(iii)個々の電気回路の素子の2つの諸量の間に関係
    【数5】が存在するとき、ステップ(ii)で表したフーリエ級数の間に
    【数6】、
    【数7】で表される関係式が存在するとして微分方程式を差分化する。ただし、
    【数6】、
    【数7】で使用されるF、G、A、Kは
    【数8】、
    【数9】、
    【数10】、
    【数11】により与えられる。hは前の区分までの解に由来する履歴項である。
    (iv)適切な初期化方法により開始時間刻みにおける個々の電気素子に対する履歴項hをもとめる。
    (v)(iii)により求められた差分式と履歴項hを用いて、個々の電気素子の両端間の電圧が
    Figure 2005025651
    素子を流れる電流が
    Figure 2005025651
    により与えられるとき、その関係を、仮想的なアドミタンスGとそれに並列な電流源
    Figure 2005025651
    を用いて
    Figure 2005025651
    による等価回路により表現する。ここで
    Figure 2005025651
    Figure 2005025651
    Figure 2005025651
    である。
    (vi) 解析しようとする電気回路中のすべての素子を(v)の方法で等価回路として表現した後、その時間刻みについて回路の各ノードの電圧を求める。ここでノードの電圧は
    Figure 2005025651
    として与えられる。
    (vii)(vi)にて求まった回路のノード電圧を使用し、各電気素子の履歴項hの次の時間区分における値を求め、時間刻みを一つ進める。その後(v)へ戻る。
  3. 微分方程式を数値的に解く際に次の処理(i)〜(iv)を持つことを特徴とする方法、その方法を用いた微分方程式の数値解をもとめるプログラム。
    (i)解を求めたい領域を刻み幅Tを用いて複数の区間
    【数1】に分割する。
    【数1】(再掲)
    Figure 2005025651
    Figure 2005025651
    象となる変数を、離散フーリエ級数によって近似する(
    【数20】、
    【数21】)。
    Figure 2005025651
    Figure 2005025651
    Figure 2005025651
    n,m
    Figure 2005025651
    で与えられる。
    (iii)二つの変数に関係
    【数5】(再掲)
    Figure 2005025651
    が存在するとき、ステップ(ii)で表したフーリエ級数の間に
    Figure 2005025651
    Figure 2005025651
    なる関係式が存在するとして微分方程式を差分化する。ただし、ここで
    Figure 2005025651
    Figure 2005025651
    Figure 2005025651
    Figure 2005025651
    である。hDnは前の区分までの解に由来する履歴項である。
    (iv)(iii)で求めた関係式を順次解くことにより微分方程式の数値解をもとめる。
  4. 電気回路の過渡現象を数値的に解く際に次の処理(i)〜(vii)を持つことを特徴とする方法、およびその方法を用いた電気回路の過渡現象を数値的に解くプログラム。
    (i)解を求めたい時間を時間刻みTにより区間
    【数1】に分割する(xは時間を表す)。
    Figure 2005025651
    路の電気的な諸量(電圧、電流など)をその区間における離散フーリエ級数の係数により近似する。(
    【数20】、
    【数21】、
    【数22】、
    【数23】)(iii)個々の電気回路の素子の2つの諸量の間に関係
    【数5】が存在するとき、ステップ(ii)で表した離散フーリエ級数の間に
    【数24】、
    【数25】で表される関係式が存在するとして微分方程式を差分化する。ただし、
    【数24】、
    【数25】で使用されるFDn、GDn、A、K
    【数26】、
    【数27】、
    【数28】、
    【数29】により与えられる。hDnは前の区分までの解に由来する履歴項である。
    (iv)適切な初期化方法により開始時間刻みにおける個々の電気素子に対する履歴項hDnをもとめる。
    (v)(iii)により求められた差分式と履歴項hDnを用いて、個々の電気素子の両端間の電圧が
    Figure 2005025651
    素子を流れる電流が
    Figure 2005025651
    により与えられるとき、その関係を、仮想的なアドミタンスGとそれに並列な電流源
    Figure 2005025651
    を用いて
    Figure 2005025651
    による等価回路により表現する。ここで
    Figure 2005025651
    Figure 2005025651
    Figure 2005025651
    である。
    (vi) 解析しようとする電気回路中のすべての素子を(v)の方法で等価回路として表現した後、その時間刻みについて回路の各ノードの電圧を求める。ここでノードの電圧は
    Figure 2005025651
    として与えられる。
    (vii)(vi)にて求まった回路のノード電圧を使用し、各電気素子の履歴項hの次の時間区分における値を求め、時間刻みを一つ進める。その後(v)へ戻る。
  5. 請求項1、請求項3の方法において最高次数の高調波以外の成分のうち一つもしくはいくつかを0と仮定し、縮小した行列、ベクトルを用いて、微分方程式を解く方法、及びその方法を用いた微分方程式の数値解をもとめるプログラム。
  6. 請求項2、請求項4、の方法において最高次数の高調波以外の成分のうち一つもしくはいくつかを0と仮定し、縮小した行列、ベクトルを用いて、電気回路の過渡現象を数値的に解く方法、およびその方法を用いた電気回路の過渡現象を数値的に解くプログラム。
  7. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6の方法、プログラムについて(離散)フーリエ級数を並べたベクトルに対して、逆行列をもつ行列を乗じて、変換を施したもの。
  8. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7の方
    法、プログラムについて
    【数1】で表される区分をシフトさせて適用したもの。
JP2003205868A 2003-06-30 2003-06-30 微分方程式の数値解を求める方法およびその方法を用いたプログラム Pending JP2005025651A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205868A JP2005025651A (ja) 2003-06-30 2003-06-30 微分方程式の数値解を求める方法およびその方法を用いたプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205868A JP2005025651A (ja) 2003-06-30 2003-06-30 微分方程式の数値解を求める方法およびその方法を用いたプログラム

Publications (1)

Publication Number Publication Date
JP2005025651A true JP2005025651A (ja) 2005-01-27

Family

ID=34190018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205868A Pending JP2005025651A (ja) 2003-06-30 2003-06-30 微分方程式の数値解を求める方法およびその方法を用いたプログラム

Country Status (1)

Country Link
JP (1) JP2005025651A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220077A1 (ja) 2021-04-13 2022-10-20 WhiteRook合同会社 常微分方程式の数値計算装置、計算装置において常微分方程式を解く演算の実行方法、及びプログラムを記憶した記憶媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220077A1 (ja) 2021-04-13 2022-10-20 WhiteRook合同会社 常微分方程式の数値計算装置、計算装置において常微分方程式を解く演算の実行方法、及びプログラムを記憶した記憶媒体

Similar Documents

Publication Publication Date Title
Newman et al. Delta operator digital filters for high performance inverter applications
Deng et al. Bi-minimax design of even-order variable fractional-delay FIR digital filters
Amran et al. A unified SPICE compatible average model of PWM converters
Abur et al. Time domain modeling of external systems for electromagnetic transients programs
Choo et al. Complexity reduction of digital filters using shift inclusive differential coefficients
Proverbio et al. Toward the wave digital real-time emulation of audio circuits with multiple nonlinearities
Wah et al. Discrete Lagrangian methods for optimizing the design of multiplierless QMF banks
Vandersteen et al. A methodology for efficient high-level dataflow simulation of mixed-signal front-ends of digital telecom transceivers
Qiu et al. Harmonic analysis of PWM converters
Wong et al. Steady-state analysis of PWM DC/DC switching regulators using iterative cycle time-domain simulation
Naredo et al. ${z} $-Transform-Based Methods for Electromagnetic Transient Simulations
Ibanez et al. Frequency response analysis for bidirectional series‐resonant DC/DC converter in discontinuous mode
JP2005025651A (ja) 微分方程式の数値解を求める方法およびその方法を用いたプログラム
Na et al. An improved high-accuracy interpolation method for switching devices in EMT simulation programs
US20100127681A1 (en) Methods and systems for power supply adaptive control utilizing transfer function measurements
Kodek Performance limit of finite wordlength FIR digital filters
Benvenuto et al. Finite wordlength digital filter design using an annealing algorithm
JPH08214458A (ja) 放射状配電系統用潮流計算方法
Wambacq et al. Dataflow simulation of mixed-signal communication circuits using a local multirate, multicarrier signal representation
Nakahara A fast computer algorithm for switching converters
Constantinescu et al. Large signal analysis of RF circuits–an overview
Gheorghe et al. The envelope following analysis of a buck converter with closed loop control
Yi et al. A single-phase harmonics extraction algorithm based on the principle of trigonometric orthogonal functions
CN117074778B (zh) 基于负载场景的谐波提取方法、装置和计算机设备
JP4183455B2 (ja) 配線設計方法および配線設計プログラム