JP2005025281A - Method for managing microbial in-hospital infection - Google Patents

Method for managing microbial in-hospital infection Download PDF

Info

Publication number
JP2005025281A
JP2005025281A JP2003187151A JP2003187151A JP2005025281A JP 2005025281 A JP2005025281 A JP 2005025281A JP 2003187151 A JP2003187151 A JP 2003187151A JP 2003187151 A JP2003187151 A JP 2003187151A JP 2005025281 A JP2005025281 A JP 2005025281A
Authority
JP
Japan
Prior art keywords
infection
facility
code
nosocomial
infectious
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003187151A
Other languages
Japanese (ja)
Inventor
Satoshi Kimura
聡 木村
Toratetsu Kobayashi
寅てつ 小林
Hiromitsu Osawa
宏充 大澤
Akihiko Yamamoto
昭彦 山本
Yukio Sakabe
幸男 坂部
Koji Ishiguro
厚至 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kagaku Bio-Clinical Laboratories Inc
Original Assignee
Mitsubishi Kagaku Bio-Clinical Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kagaku Bio-Clinical Laboratories Inc filed Critical Mitsubishi Kagaku Bio-Clinical Laboratories Inc
Priority to JP2003187151A priority Critical patent/JP2005025281A/en
Publication of JP2005025281A publication Critical patent/JP2005025281A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide an information management means for supervising a medical institution for in-hospital infection as a system to efficiently discover infections and construct countermeasures. <P>SOLUTION: For a facility where an inspection system has been previously introduced because of a contract or the like, means for encoding localizations within a facility and for encoding combinations of infectious microorganisms are introduced. Using the system for the analysis of the behavior of infectious microorganisms allows the early detection of the condition and frequency of the occurrence of infection, routes of infection and the like, leading to more appropriate countermeasures against in-hospital infection. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
この発明は、病院施設等の医療機関における院内感染における早期の対策を可能にするための新規な微生物院内感染管理方法を提供するビジネス方法に関する。
【0002】
【従来の技術】
医療機関における院内感染は、医療事故といえる大きな問題である。すべての病原微生物が院内感染を起こしうるが、現在問題になっているのは、結核菌やレジオネラなどの強毒菌、サルモネラや病原性大腸菌O−157などの食中毒菌、メチシリン耐性黄色ブドウ球菌(MRSA)やバンコマイシン耐性腸球菌など、抗生物質が効かない耐性菌、セラチア菌や緑膿菌など、病原性は弱いが環境中のあちこちにいて、医療器具を感染しやすい日和見菌等がある。
日本で院内感染が初めて社会問題化したのは15年ほど前、針刺し事故による医療スタッフのB型肝炎感染だった。その後、1991(平成3)年に訴訟が起きた東京の大学病院での感染を皮切りに、全国でMRSA院内感染が多発した。それ以来、多くの病院が、針刺し事故防止とMRSA感染防止を院内感染対策の主眼にしているが、ここ数年は、病原性が弱く、薬が効くため軽視されがちだった日和見感染での死亡例が相次いでいる。
院内感染の統計は日本をはじめ、世界でもほとんどないが、アメリカの疫学調査では年間約200万人が院内感染にかかり、12万5000人が死亡している。これを日本に当てはめて推計すると、年間約70万人が院内感染し、4万4000人が死亡していることになる。年間約1万3000人の交通事故死者の3倍以上に相当する。
そして、厚生労働省は2000年7月、集中治療室(ICU)や病院の臨床検査室などを対象に「院内感染対策サーベイランス事業」を始めた。
【0003】
【発明が解決しようとする課題】
本発明の課題は、医療機関における院内感染をシステムとして監視し、その感染の効率的な発見及び対処策を構築するための情報管理手段を提供することである。
【0004】
【課題を解決するための手段】
上記課題を解決するために本発明者らは鋭意研究を重ねた結果、あらかじめ契約等によって管理システムを導入した施設について、施設内の局在についてコード化すること、さらに感染微生物の組み合わせをコード化すること等の手段を導入し、このシステムを使って感染微生物の動態を分析すると、感染の状態、感染の発生頻度、感染経路等が早期に感知でき、より的確な院内感染対策をとりうることを見出し本発明を完成した。
【0005】
すなわち本発明は、
「1.微生物院内感染管理システム参加施設は、少なくとも施設名、施設内局在及び試料材料名を特定して試料を検査施設に提供し、検査施設は参加施設から提供された試料の病原菌を測定し、各施設について得られたこの測定値を情報伝達保存ツールを利用してデータ解析部門に収集され、得られたデータから施設内院内感染起炎菌分布及び/又は施設内感染経路の評価の提供を可能とする微生物院内感染管理方法。
2.参加施設の施設内局在別及び/又は参加施設の試料材料名別の微生物院内感染の確認を可能とし、施設内院内感染起炎菌分布及び/又は施設内感染経路の評価を行う請求項1の微生物院内感染管理方法。
3.病原菌の薬剤感受性をパターンコード化し、パターンコードのパターン分析から、施設内院内感染起炎菌分布の類似性及び/又は施設内感染経路の評価を行う請求項1の微生物院内感染管理方法。
4.病原菌の薬剤感受性のパターンコードが以下の薬剤についての表示分類である請求項3の微生物院内感染管理方法。
コード1:ABPC+IPM/CS
コード2:CEZ+CAZ
コード3:GM+AMK
コード4:EM+CLDM
コード5:MINO+OFLX
コード6:VCM
5.病原菌の測定を一定間隔でおこない、これをデータ解析部門に収集し、施設内院内感染起炎菌分布及び/又は施設内感染経路の経時的評価を行う請求項1の微生物院内感染管理方法。」
からなる。
【0006】
【発明の実施の形態】
本発明におけるデータの収集法は以下である。
本発明におけるデータの収集の対象となる施設は、個々に契約等の業務提携を行い、定期的な試料採取、試料提供、試料試験を行う。この対象施設を微生物院内感染管理システム参加施設と呼ぶ。
【0007】
参加施設では、試料採取・提供にあたり、少なくとも施設名、施設内局在及び試料材料名を特定して試料を検査施設に提供する。さらに所望により、患者IDも特定する。施設名とは、病院名、医院名等を意味し、対象の施設を意味する。施設内局在とは、例えば病院内の科、棟番号、階番号、室番号等を意味し、適宜特定のために必要十分な情報が提供される。試料材料名とは、尿、糞便、喀痰、膿、分泌物、血液等の採取サンプルの由来情報を意味する。その他、試料については、採取日、採取時間等の特定を行う。患者IDは、所望特定事項であり、所謂患者情報である。例えば、個人秘密情報との関係で氏名を隠し、ID番号化し、所望により性別、年齢、疾患履歴、疾患名等の情報が提供される。
【0008】
試料の提供は、採取後速やかに、或いは冷蔵処理等を施し、サンプルの変性を防ぐ条件下で、検査施設に移送される。検査施設への移送は、特に限定されないが、試料の移送時間を考慮すると、1日以内に完了することが好ましい。検査施設は、所謂臨床検査施設を意味する。
【0009】
検査施設は、参加施設から提供された試料の病原菌を測定を実施する。病原菌は、細菌、ウイルス等施設の所望により随時変更可能である。細菌については、上記先行技術に開示した微生物等であり、ウイルスについては、水痘ウイルス、アデノウイルス、パルボウイルス、ロタウイルス、HBウイルス、HCウイルス、HAウイルス等随時取り決めうる。
【0010】
検査施設では、随時これら試料について、測定値を得、各関連情報を付帯して、情報伝達保存ツールを利用して集計される。情報伝達保存ツールとは、インターネット、イントラネット、無線ラン、専用回線、FD、CDなどあらゆる情報伝達ツールが利用可能であり、保存はデータベース化されたホストコンピュータ等に集積される。各施設について得られたこの測定値及び関連情報を情報伝達保存ツールを利用してデータ解析部門で内容の分析がなされる。本発明にあっては、関連情報を入力し、特に施設内局在性、施設内時系列局在性を分析可能にしたから、本システムにより、院内感染経路、院内感染の発生頻度、院内感染レベル及び院内感染分布が客観的に判断可能となり、院内感染の早期そして総合対策の構築が極めて容易となった。
【0011】
本発明の一つの態様では、病原菌(ブドウ球菌、緑膿菌等)の薬剤感受性をパターンコード化し、パターンコードのパターン分析から、施設内院内感染起炎菌分布の類似性及び/又は施設内感染経路の評価を行う。β−ラクタム剤(ペニシリン系、セフェム系、モノバクタム系、カルバペネム系、ペネム系等)、アミノグリコシド系抗生物質、マクロライド系抗生物質、ニューキノロン系抗菌剤、キノロン等の薬剤への耐性を区分けし、グループ化し、それをパターン分析する。分析で、パターンの類似性から、各病原菌の由来、感染経路の同定を行う。
病原菌の薬剤感受性のパターンコードは例えば以下のような薬剤について表示分類される。この薬剤の組み合わせは、依頼施設毎に異なるものであり、パターンコードの算出方式も施設毎に異なる。また、パターンコードの桁数も8行まで自由に組むことが可能である。
なお、薬剤の各略字は以下の意味である。
ABPC:アンピシリン
IPM/CS:イミペネム/シラスタチン
CEZ:セファゾリン
CAZ:セフタジジム
GM:ゲンタマイシン
AMK:アミカシン
EM:エリスロマイシン
CLDM:クリンダマイシン
MINO:ミノサイクリン
OFLX:オフロキサシン
VCM:バンコマイシン
コード1:ABPC+IPM/CS
コード2:CEZ+CAZ
コード3:GM+AMK
コード4:EM+CLDM
コード5:MINO+OFLX
コード6:VCM
【0012】
本発明にあっては、病原菌を測定を一定間隔でおこない、これをデータ解析部門に収集し、施設内院内感染起炎菌分布及び/又は施設内感染経路の経時的評価を行う。これにより、院内感染の初期段階で感染を把握可能とし、さらに感染拡大の経路の早期発見対応を可能とする。測定間隔は、試料材料名によって変動するが、毎日1回から数回、隔日、毎月1〜数回での測定が推奨される。
【0013】
【実施例】
以下に実施例によって、本発明を説明するが、本発明はこれらに限定されるものではなく、基本的思想が各請求項に含まれる限り全ての発明はその対象とされる。
【実施例1】
図1及び2は、MRSAの検出についての、基礎情報及び集計後の出力の一態様を示す。図1は、左から病棟(施設局在)、患者名、診療科名、患者年齢、試料材料名、患者ID、試料採取日(受付日)を記載する試料由来の基礎関連データである。この情報を確保することで、MRSAの院内感染の状況把握が可能となる。図において、3Fヒガシとは東病棟の3階フローアの患者であることを意味し、試料材料名とは試料の採取部位(採取源)を意味し、眼脂とは眼やにとしてでてきた検体を採取したものであり、吸引痰とはつまった痰を吸引により採取した痰であり、咽頭液とは咽頭部から採取した液であり、創ガーゼとは傷口にあてたガーゼを試料としたものであり、創部とは傷口周辺部から採取した液を意味している。実施例では、5月にいずれも採取されたことを示す。
図2は、集計サンプルを示し、5月1日〜31日での月単位でのMRSAの検出を示す。これを毎月の変動を確認すれば感染の速度、感染の発生頻度、感染範囲、感染経路が判断できるのである。西棟4階は他の部署と感染経路が遮断されており、何らかの有効な手立てが確立しているものと推定できる。しかし西棟5階は同じ棟でありながら、東棟の5階及び6階から感染が広がったことが推定され、この感染経路の早期の対策が緊急課題であることを示している。感染は、病棟の各部署はさまよいおとづれるものであることが示唆され、統制のとれた管理体制、防御体性の確立がこの施設では必須であると示唆するものである。材料分析からは、創である傷口での感染の問題が高いことをしめしており、予防策の大きな一助を提供する。
【0014】
【実施例2】
図3は、(MRSA)薬剤感受性パターンをコード化し、パターン分析による施設内での感染経路の分析を可能とする系の一つの帳票である。各横軸は、患者の検体の受付日、試料材料名、施設内局在、採取された菌体量、そして各薬剤、及びパターンコードが列記されている。各薬剤に対してMRSAの程度をR:耐性、I:耐性と感受性ありの中間、S:感受性あり、空白:データなしを示す。そして、薬剤をグループ分けし、
コード1:ABPC+IPM/CS
コード2:CEZ+CAZ
コード3:GM+AMK
コード4:EM+CLDM
コード5:MINO+OFLX
コード6:VCM
に分類した。そして、R:4点、I:2点、S:1点、データ無し:0点として、各患者についてのパターンをコード化した。最上段の患者は、
コード1:ABPC+IPM/CS=8
コード2:CEZ+CAZ=0
コード3:GM+AMK=0
コード4:EM+CLDM=0
コード5:MINO+OFLX=8
コード6:VCM=1
で、患者ID02−05787−5は、800081とコード化される。同様に患者ID02−0462−1と患者ID02−02936−1は、同じパターンコードである881041であり、感染の同一性が推定可能である。また、患者ID02−0462−1と患者ID02−02936−1は5F西棟と5F東棟であるにもかかわらず同一パタンコードを示すことからこの5F間での感染ルートが推定される。さらに5F西棟の患者ID02−06074−7は、そのパターンコードが884041であり、5F西棟に同一由来の株が広がりつつあることが検知される。以上のように、本発明の系では、施設内局在として何階、何棟を入力要素として加え、それを薬剤耐性のパターンとの組合せで分析可能としたから、耐性菌の感染レベル、感染経路のより早期の簡便な検知手段を提供するものである。
【0015】
【実施例3】
図4は、監視対象菌を縦列に、各施設内局在(病棟)を横列にとり、監視菌の各施設内局在での検出状況を示した。Pseudomonas aeruginosaは、ほぼ全ての施設からの検体から検出され、他剤耐性菌は検出されていない。7階は西棟、東棟とも菌体の検出が高く、菌体感染防御の必要性が推認される。
【0016】
【実施例4】
本発明の情報伝達保存ツールを利用したシステムは、以下ように例示される。
本発明からなる微生物院内感染管理システムについて、参加施設はあらかじめ契約を締結し、所望によりユーザーIDおよびパスワードが付与される。施設とは、微生物院内感染解析情報について予め提供内容について取り決めを行う。試料には、少なくとも施設名、施設内局在及び試料材料名等が特定される。これらコードの主要内容は、例えばバーコード化されている。採取された試料は、参加施設と予め取り決められた検査施設に搬送され、検査施設では、試料の特定と、各種微生物検査を行う。検査は、試料中の微生物の有無、存在する微生物の特定、それに対する薬剤耐性の試験が行われる。試験結果及び各特定情報は、検査施設からホストデータベースに情報伝達ツールによって送致され、ホストデータベースに蓄積される。このように情報伝達保存ツールに蓄積された後、予め参加施設と取り決められた一定期間ごとにデータを取り出し統計解析処理を行う。解析は、予めプログラミングされた各種ソフトによっておこなわれ、参加施設に定期的に出力帳票として、あるいは参加施設が情報伝達ツールを通じてアクセスし、所望の解析データの入手を可能とする。参加施設は例えば施設内院内感染起炎菌分布、施設内感染経路の評価等の資料の入手が可能となる。
【0017】
【実施例5】
本発明の出力事例は以下のようなものが例示されるが、順次拡大可能である。
1)菌種別検出状況一覧:病棟、診療科別の対象菌検出患者の一覧及び病棟、科別検出数ならびに全データでの検出率比較データ等が出力される。これにより、院内におけるMRSA(その他特定菌)の検出状況が部署別(病棟別、診療科別等)、検体別等条件指定により自由に区分し一元把握が可能となる。検出状況を前月、前々月と比較することにより、院内感染の発生状況や対策の進行状況が把握可能である。さらに、院内感染発生状況を一元把握、院内感染対策の動機付けが可能となる。
2)薬剤感受性パターンからみた菌株の分類:薬剤感受性を顧客毎にパターンコード化し、同一コード毎に分類出力を可能にする。出力薬剤は、菌株間差が出るように顧客毎に選定設定可能とする。結果として、院内感染の可能性を警告するコメントを提供する。薬剤感受性のパターンを数値化によって分類し、薬剤感受性パターンから菌種の同一性をスクリーニングし分析することにより、同一菌株による院内感染拡大の可能性を警告し、さらにDNA分類等による検索を促す。また、病棟や診療科を横断的に広がる同一菌による感染の早期発見に役立つ。
3)抗酸菌他監視すべき病原体の検出状況:MRSAを含む菌の病棟別検出件数データと菌に関するプロファイルを出力する。院内感染対策が必要な菌に限定して出力するのが特徴である。これにより、院内感染対策上、重要でありながら医療現場での認知度が不十分な菌について検出状況を報告し、報告菌名についてのプロファイルを同時出力報告可能とし、よって耐性菌を検出するために必要な検査を周知させることを可能にする。
4)血液培養陽性リスト:材料採取日順の培養陽性患者名および検出菌名データを出力する。例えば今週分と過去三週分を出力し、比較可能にする。耐性傾向が強い菌種を中心に菌種毎にマスターファイルを設定し、基準を超えて検出された場合に、院内感染発生の可能性を警告コメントを出力する。検出された菌のプロファイルを出力する。これによって、血液培養における検出菌の傾向を全体的に把握でき、重大な血液感染による院内感染の発生を予知可能とする。また、同一菌種が集中的に複数の患者から検出された場合に、院内感染の可能性を予知可能となる。
5)主要菌の抗菌薬感受性率:病棟別、診療科別に高頻度分離菌に対する主要薬剤感受性率データを出力する。薬剤有効性を明示する。例えば、薬剤感受性が90%以上の薬剤を明示する。出力する薬剤名は、依頼実績により適宜選定される。これにより、診療科毎、病棟毎の主要菌に対する主な抗菌薬の感受性を把握し、治療の指針とできる。また、90%以上の感受性率薬剤データは抗菌薬選択の指針となる。ドクターが常に携帯することにより迅速な治療指針を得ることができる。
6)材料別検出菌の上位菌種:試料の材料別の高頻度分離菌ベスト5(例えば)を出力する。材料は検出傾向(常在菌を除く)が明らかとなるようにグループ集計される。これにより、微生物検査に供される主要材料からの検出菌数、検出率を把握し、医師は治療の指針とすることができる。本資料は、ドクターが常に携帯することにより迅速な治療指針を得ることができる。
【発明の効果】
以上のように、本発明では、微生物院内感染管理システム参加施設について、少なくとも施設名、施設内局在及び試料材料名を特定して試料を検査施設に提供し、検査施設は参加施設から提供された試料の病原菌を測定し、各施設について得られたこの測定値を情報伝達保存ツールを利用してデータ解析部門に収集され、得られたデータから施設内院内感染起炎菌分布及び/又は施設内感染経路の評価の提供を可能とする微生物院内感染管理方法を提供するものであり、医療施設の微生物院内感染管理システムとして極めて有用性の高いものである。なお、本発明で菌の検出は、既に臨床検査法等で確立された公知の検査によっておこなった。
【図面の簡単な説明】
【図1】MRSAの検出についての、基礎情報を示す。
【図2】MRSAの検出についての、基礎情報の集計後の出力の一態様を示す。
【図3】(MRSA)薬剤感受性パターンをコード化し、パターン分析による施設内での感染経路の分析を可能とする系の一つの帳票を示す。
【図4】各施設内局在(病棟)を横列にとり、監視菌の各施設内局在での検出状況を示す。
[0001]
[Technical field to which the invention belongs]
The present invention relates to a business method for providing a novel microbial nosocomial infection management method for enabling early measures against nosocomial infection in medical institutions such as hospital facilities.
[0002]
[Prior art]
Nosocomial infection in medical institutions is a major problem that can be called a medical accident. Although all pathogenic microorganisms can cause nosocomial infections, the current problems are highly toxic bacteria such as M. tuberculosis and Legionella, food poisoning bacteria such as Salmonella and pathogenic Escherichia coli O-157, methicillin-resistant Staphylococcus aureus ( MRSA), vancomycin-resistant enterococci, and other resistant bacteria that do not work with antibiotics, such as Serratia and Pseudomonas aeruginosa, but there are opportunistic bacteria that are weak in the environment but easy to infect medical devices.
About 15 years ago, nosocomial infections became the first social problem in Japan because of a hepatitis B infection of a medical staff due to a needlestick accident. After that, MRSA nosocomial infections occurred frequently throughout the country, starting with an infection at a university hospital in Tokyo, where a lawsuit was filed in 1991. Since then, many hospitals have focused on prevention of needlestick accidents and prevention of MRSA infections, but for the past few years, deaths due to opportunistic infections, which were apt to be neglected because they are weakly pathogenic and effective Examples are in succession.
There are few statistics of nosocomial infections in Japan and the world, but in the epidemiological survey in the United States, about 2 million people suffer from nosocomial infections and 125,000 people die each year. If this is applied to Japan, approximately 700,000 people are hospitalized and 44,000 people die annually. This is equivalent to more than three times the annual traffic deaths of about 13,000 people.
In July 2000, the Ministry of Health, Labor and Welfare started the “In-Hospital Infection Control Surveillance Project” for intensive care units (ICU) and clinical laboratories in hospitals.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an information management means for monitoring nosocomial infection in a medical institution as a system and constructing an efficient detection and countermeasure for the infection.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted extensive research and, as a result, coded the localization within the facility, and further coded the combination of infecting microorganisms, for the facility where the management system was previously introduced by contract etc. Introducing measures such as doing this, and analyzing the dynamics of infectious microorganisms using this system, the state of infection, the frequency of infection, the route of infection, etc. can be detected at an early stage, and more appropriate hospital infection measures can be taken. The present invention has been completed.
[0005]
That is, the present invention
"1. Participating facilities in the Microbiology Hospital Infection Management System specify at least the name of the facility, the location within the facility, and the name of the sample material, and provide the sample to the testing facility. The testing facility measures the pathogenic bacteria in the sample provided from the participating facility. The measured values obtained for each facility are collected by the data analysis department using the information transfer and storage tool, and the distribution of the in-hospital pathogens and / or the infectious route of the institution is evaluated from the obtained data. Microbiology nosocomial infection control method that can be provided.
2. 2. Confirmation of nosocomial microbiological infections by location within a participating facility and / or by sample material name of a participating facility, and evaluation of nosocomial infectious pathogens and / or infectious route of infection. Microbial nosocomial infection control method.
3. The method for managing a microbial nosocomial infection according to claim 1, wherein the drug susceptibility of the pathogenic bacterium is pattern-coded, and the similarity of the in-house nosocomial infection pathogenic fungus distribution and / or the in-house infection route is evaluated from the pattern analysis of the pattern code.
4). 4. The method for controlling infection in a microbiological hospital according to claim 3, wherein the pattern code of the drug susceptibility of the pathogen is the display classification for the following drugs.
Code 1: ABPC + IPM / CS
Code 2: CEZ + CAZ
Code 3: GM + AMK
Code 4: EM + CLDM
Code 5: MINO + OFLX
Code 6: VCM
5. 2. The method of managing a microbial nosocomial infection according to claim 1, wherein the pathogen is measured at regular intervals, collected in a data analysis department, and the distribution of the infectious nosocomial pathogen and / or the infectious route of the institution is evaluated over time. "
Consists of.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The data collection method in the present invention is as follows.
The facilities for which data is collected in the present invention individually make business alliances such as contracts, and perform periodic sampling, sample provision, and sample testing. This target facility is called a microbe hospital infection control system participating facility.
[0007]
Participating facilities specify at least the name of the facility, the location within the facility, and the name of the sample material, and provide the sample to the inspection facility when collecting and providing the sample. Furthermore, patient ID is also specified if desired. The facility name means a hospital name, a clinic name, etc., and means a target facility. Localization within a facility means, for example, a department in a hospital, a ridge number, a floor number, a room number, etc., and information necessary and sufficient for identification is provided as appropriate. The sample material name means the origin information of collected samples such as urine, feces, sputum, pus, secretions, blood and the like. For other samples, specify the date of collection, time of collection, etc. The patient ID is a desired specific item and is so-called patient information. For example, the name is concealed in relation to personal secret information, converted into an ID number, and information such as gender, age, disease history, disease name, etc. is provided as desired.
[0008]
The sample is transferred to an inspection facility immediately after collection or under conditions that prevent the sample from being denatured by refrigeration. The transfer to the inspection facility is not particularly limited, but is preferably completed within one day in consideration of the sample transfer time. Laboratory facilities refer to so-called clinical laboratory facilities.
[0009]
The laboratory will measure the pathogens in the samples provided by the participating facilities. The pathogenic bacteria can be changed at any time according to the desire of the facility such as bacteria and viruses. Bacteria are the microorganisms disclosed in the above prior art, and viruses can be negotiated at any time, such as varicella virus, adenovirus, parvovirus, rotavirus, HB virus, HC virus, and HA virus.
[0010]
In the inspection facility, measurement values are obtained for these samples from time to time, each related information is attached, and the information is stored using an information transmission and storage tool. As the information transmission storage tool, any information transmission tool such as the Internet, an intranet, a wireless run, a dedicated line, an FD, and a CD can be used, and the storage is accumulated in a host computer or the like that is made into a database. The data analysis department analyzes the measured values and related information obtained for each facility using an information transmission and storage tool. In the present invention, since related information is input and in particular, in-facility localization and in-house time series localization can be analyzed, this system enables nosocomial infection routes, nosocomial infection frequency, nosocomial infections. The level and distribution of nosocomial infections can be objectively judged, making it easy to establish a comprehensive countermeasure early in nosocomial infection.
[0011]
In one embodiment of the present invention, the drug sensitivity of pathogenic bacteria (staphylococcus, Pseudomonas aeruginosa, etc.) is pattern-coded, and from the pattern analysis of the pattern code, the similarity of the distribution of pathogenic bacteria in the hospital and / or the infection in the hospital Perform route evaluation. β-lactam agents (penicillins, cephems, monobactams, carbapenems, penems, etc.), aminoglycoside antibiotics, macrolide antibiotics, new quinolone antibacterials, quinolones, etc. And pattern-analyze it. In the analysis, the origin of each pathogen and the infection route are identified from the similarity of the patterns.
The pattern codes of drug susceptibility of pathogenic bacteria are classified for display for the following drugs, for example. This combination of medicines differs for each requested facility, and the pattern code calculation method also differs for each facility. Also, the number of digits of the pattern code can be freely set up to 8 lines.
In addition, each abbreviation of a medicine has the following meaning.
ABPC: ampicillin IPM / CS: imipenem / cilastatin CEZ: cefazolin CAZ: ceftazidime GM: gentamicin AMK: amikacin EM: erythromycin CLDM: clindamycin MINO: minocycline OFX: ofloxacin VCM: vancomycin code 1: ABPC + IPM / CS
Code 2: CEZ + CAZ
Code 3: GM + AMK
Code 4: EM + CLDM
Code 5: MINO + OFLX
Code 6: VCM
[0012]
In the present invention, pathogens are measured at regular intervals, collected in the data analysis department, and the time course evaluation of the in-hospital infectious pathogenic bacteria distribution and / or the in-house infection route is performed. This makes it possible to grasp infection at an early stage of nosocomial infection, and to enable early detection of the route of infection spread. The measurement interval varies depending on the name of the sample material, but it is recommended to measure once to several times every day, every other day, or once to several times every month.
[0013]
【Example】
EXAMPLES The present invention will be described below with reference to examples. However, the present invention is not limited to these examples, and all the inventions are targeted as long as the basic idea is included in each claim.
[Example 1]
1 and 2 show one aspect of the basic information and the output after aggregation for MRSA detection. FIG. 1 shows sample-related basic related data describing the ward (facility localization), patient name, department name, patient age, sample material name, patient ID, and sample collection date (acceptance date) from the left. By securing this information, it is possible to grasp the status of nosocomial infection of MRSA. In the figure, “3F Higashi” means a patient on the third floor of the East Ward, “Sample Material Name” means the sample collection site (collection source), and “Ophthalmic oil” appears in the eyes. Specimen collected from a sputum and a sputum collected by suction. The pharyngeal fluid is collected from the pharynx, and the wound gauze is a sample of gauze applied to the wound. The wound refers to the fluid collected from the wound periphery. The examples show that all were collected in May.
FIG. 2 shows an aggregate sample and shows detection of MRSA on a monthly basis from May 1st to 31st. By checking the monthly fluctuations, it is possible to determine the speed of infection, the frequency of infection, the scope of infection, and the route of infection. The fourth floor of the West Wing is blocked from other departments, and it can be estimated that some effective measures have been established. However, although the 5th floor of the west wing is the same building, it is presumed that infection spread from the 5th and 6th floors of the east wing, indicating that early countermeasures for this infection route are urgent issues. Infection suggests that each department of the ward can be easily settled, suggesting that a well-established management system and establishment of defenses are essential at this facility. The material analysis shows that the problem of infection at the wound, which is a wound, is high, and provides a great help for preventive measures.
[0014]
[Example 2]
FIG. 3 is one form of a system that encodes (MRSA) drug susceptibility patterns and enables analysis of infection routes within a facility by pattern analysis. Each horizontal axis lists the date of reception of the patient's specimen, the name of the sample material, the localization in the facility, the amount of collected bacteria, each drug, and the pattern code. The degree of MRSA for each drug indicates R: resistance, I: intermediate between resistance and sensitivity, S: sensitivity, blank: no data. Then group the drugs,
Code 1: ABPC + IPM / CS
Code 2: CEZ + CAZ
Code 3: GM + AMK
Code 4: EM + CLDM
Code 5: MINO + OFLX
Code 6: VCM
Classified. The pattern for each patient was coded with R: 4 points, I: 2 points, S: 1 point, and no data: 0 points. The top patient is
Code 1: ABPC + IPM / CS = 8
Code 2: CEZ + CAZ = 0
Code 3: GM + AMK = 0
Code 4: EM + CLDM = 0
Code 5: MINO + OFLX = 8
Code 6: VCM = 1
Thus, patient ID 02-05787-5 is encoded as 800081. Similarly, patient ID02-0462-1 and patient ID02-02936-1 are 881041, which is the same pattern code, and the identity of infection can be estimated. Moreover, since patient ID02-0462-1 and patient ID02-02936-1 show the same pattern code, although they are 5F west wing and 5F east wing, the infection route between these 5F is estimated. Furthermore, the patient ID 02-0607-7 in the 5F West Wing has a pattern code of 884041, and it is detected that the same strain is spreading in the 5F West Wing. As described above, in the system of the present invention, the number of floors and the number of buildings as the in-facility localization are added as input elements, which can be analyzed in combination with the drug resistance pattern. It is intended to provide a simpler and early detection means for a route.
[0015]
[Example 3]
FIG. 4 shows the detection status of the monitoring bacteria in each facility, with the monitoring target bacteria in the column and the localization (ward) in each facility in the row. Pseudomonas aeruginosa is detected from specimens from almost all facilities, and other drug resistant bacteria are not detected. On the 7th floor, the detection of fungal cells is high in both the west and east buildings, and the need for protection against bacterial infection is presumed.
[0016]
[Example 4]
The system using the information transmission and storage tool of the present invention is exemplified as follows.
About the nosocomial infection control system according to the present invention, the participating facilities make a contract in advance, and a user ID and a password are given if desired. The facility decides in advance about the contents to be provided for in-hospital infection analysis information. At least the name of the facility, the location in the facility, the name of the sample material, and the like are specified for the sample. The main contents of these codes are converted into bar codes, for example. The collected sample is transported to a participating facility and a predetermined inspection facility, where the sample is specified and various microorganism tests are performed. In the test, the presence or absence of microorganisms in the sample, the identification of the microorganisms present, and the drug resistance against them are tested. The test result and each specific information are sent from the inspection facility to the host database by the information transmission tool and accumulated in the host database. After being stored in the information transmission and storage tool in this way, data is taken out at regular intervals determined in advance with participating facilities and subjected to statistical analysis processing. The analysis is performed by various pre-programmed software, and the participating facilities are regularly accessed as an output form, or the participating facilities can access through the information transmission tool to obtain desired analysis data. Participating facilities can obtain materials such as distribution of infectious pathogens in the hospital and evaluation of infectious routes of infection.
[0017]
[Example 5]
Examples of output of the present invention are as follows, but can be expanded sequentially.
1) Bacteria type detection status list: A list of target bacteria detection patients by ward and department and ward, number of detections by department, detection rate comparison data in all data, and the like are output. As a result, MRSA (other specific bacteria) detection status in the hospital can be freely classified and unified by specifying conditions such as by department (by ward, by department, etc.) and by specimen. By comparing the detection status with the previous month and the month before last, it is possible to grasp the occurrence status of nosocomial infections and the progress of countermeasures. In addition, it is possible to unify the status of hospital infections and motivate measures for hospital infections.
2) Classification of strains from the viewpoint of drug sensitivity pattern: The drug sensitivity is pattern-coded for each customer, and classification output is made possible for each identical code. The output drug can be selected and set for each customer so that there is a difference between strains. As a result, provide comments that warn of nosocomial infections. By classifying drug sensitivity patterns by digitization and screening and analyzing the identity of the bacterial species from the drug sensitivity patterns, the possibility of nosocomial infection spread by the same strain is warned, and further search by DNA classification or the like is promoted. It is also useful for early detection of infections caused by the same bacteria that spread across wards and departments.
3) Detection status of mycobacteria and other pathogens to be monitored: The number of detection data for each ward of bacteria containing MRSA and a profile about the bacteria are output. The output is limited to bacteria that require nosocomial infection countermeasures. To report the detection status of bacteria that are important in hospital infection countermeasures but have insufficient recognition in the medical field, and to be able to report the profile of the reported bacteria name at the same time, thus detecting resistant bacteria It is possible to make the necessary tests known.
4) Blood culture positive list: Outputs culture positive patient name and detected bacteria name data in order of material collection date. For example, this week and the past three weeks are output and can be compared. A master file is set for each bacterial species with a strong tendency to be resistant, and a warning comment is output regarding the possibility of nosocomial infections if the standard file is detected. Output the profile of the detected bacteria. This makes it possible to grasp the overall tendency of detected bacteria in blood culture and to predict the occurrence of nosocomial infections due to serious blood infections. Moreover, when the same bacterial species is intensively detected from a plurality of patients, the possibility of nosocomial infection can be predicted.
5) Antimicrobial susceptibility rate of major bacteria: Main drug susceptibility rate data for high-frequency isolates is output by ward and department. Clarify drug efficacy. For example, a drug having a drug sensitivity of 90% or more is clearly indicated. The name of the medicine to be output is appropriately selected according to the request results. Thereby, the sensitivity of the main antimicrobial agent with respect to the main microbe for every medical department and every ward can be grasped | ascertained, and it can be used as a treatment guideline. In addition, drug data with a sensitivity of 90% or more is a guideline for selecting an antibacterial drug. By always carrying the doctor, you can get quick treatment guidelines.
6) Higher bacterial species of detection bacteria by material: The most frequently separated bacteria best 5 (for example) by sample material is output. The materials are grouped together so that the detection trend (excluding resident bacteria) is clear. Thereby, a doctor can grasp | ascertain the number of detection bacteria and the detection rate from the main material provided for a microbe test | inspection, and a doctor can make it a guideline of treatment. This document can be obtained quickly by always carrying it with a doctor.
【The invention's effect】
As described above, according to the present invention, at least the name of the facility, the location within the facility, and the name of the sample material are specified and the sample is provided to the inspection facility with respect to the facility participating in the microbiology hospital infection management system, and the inspection facility is provided from the participating facility. The measured pathogens of each sample were measured, and the measured values obtained for each facility were collected by the data analysis department using the information transmission and storage tool. From the obtained data, the distribution of infectious pathogenic bacteria in the facility and / or the facility The present invention provides a method for controlling the infection of microorganisms in a hospital that enables the evaluation of the route of infection in the interior of a microorganism, and is extremely useful as a system for managing infection in a hospital of microorganisms. In the present invention, the bacteria were detected by a known test already established by a clinical test method or the like.
[Brief description of the drawings]
FIG. 1 shows basic information about MRSA detection.
FIG. 2 shows an aspect of output after aggregation of basic information regarding detection of MRSA.
FIG. 3 shows one form of a system that encodes (MRSA) drug susceptibility patterns and allows analysis of infection routes within a facility by pattern analysis.
FIG. 4 shows the state of detection in each institutional location of monitored bacteria, taking the in-facility localization (ward) in a row.

Claims (5)

微生物院内感染管理システム参加施設は、少なくとも施設名、施設内局在及び試料材料名を特定して試料を検査施設に提供し、検査施設は参加施設から提供された試料の病原菌を測定し、各施設について得られたこの測定値を情報伝達保存ツールを利用してデータ解析部門に収集され、得られたデータから施設内院内感染起炎菌分布及び/又は施設内感染経路の評価の提供を可能とする微生物院内感染管理方法。Participating facilities of the Microbiology Hospital Infection Control System identify at least the name of the facility, the location within the facility, and the name of the sample material, and provide the sample to the testing facility. The testing facility measures the pathogenic bacteria in the sample provided from the participating facility, This measurement value obtained for the facility is collected by the data analysis department using the information transmission and storage tool, and it is possible to provide an evaluation of the in-hospital infection-causing fungus distribution and / or the infectious route of infection from the obtained data. Microbiology nosocomial infection control method. 参加施設の施設内局在別及び/又は参加施設の試料材料名別の微生物院内感染の確認を可能とし、施設内院内感染起炎菌分布及び/又は施設内感染経路の評価を行う請求項1の微生物院内感染管理方法。2. Confirmation of nosocomial infection of microorganisms by in-house localization of participating facilities and / or sample material names of participating facilities, and evaluation of nosocomial infectious pathogenic fungi and / or infectious routes of institution. Microbial nosocomial infection control method. 病原菌の薬剤感受性をパターンコード化し、パターンコードのパターン分析から、施設内院内感染起炎菌分布の類似性及び/又は施設内感染経路の評価を行う請求項1の微生物院内感染管理方法。The method for managing a microbial nosocomial infection according to claim 1, wherein the drug sensitivity of the pathogenic bacterium is pattern-coded, and the similarity of the in-house nosocomial infection pathogenic fungi distribution and / or the in-house infection route is evaluated from the pattern analysis of the pattern code. 病原菌の薬剤感受性のパターンコードが以下の薬剤についての表示分類である請求項3の微生物院内感染管理方法。
コード1:ABPC+IPM/CS
コード2:CEZ+CAZ
コード3:GM+AMK
コード4:EM+CLDM
コード5:MINO+OFLX
コード6:VCM
4. The method for controlling infection in a microbiological hospital according to claim 3, wherein the pattern code of the drug susceptibility of the pathogen is the display classification for the following drugs.
Code 1: ABPC + IPM / CS
Code 2: CEZ + CAZ
Code 3: GM + AMK
Code 4: EM + CLDM
Code 5: MINO + OFLX
Code 6: VCM
病原菌の測定を一定間隔でおこない、これをデータ解析部門に収集し、施設内院内感染起炎菌分布及び/又は施設内感染経路の経時的評価を行う請求項1の微生物院内感染管理方法。2. The method for managing a microbial nosocomial infection according to claim 1, wherein the pathogen is measured at regular intervals, collected in a data analysis department, and the distribution of the infectious nosocomial pathogen and / or the infectious route of the institution is evaluated over time.
JP2003187151A 2003-06-30 2003-06-30 Method for managing microbial in-hospital infection Withdrawn JP2005025281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187151A JP2005025281A (en) 2003-06-30 2003-06-30 Method for managing microbial in-hospital infection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187151A JP2005025281A (en) 2003-06-30 2003-06-30 Method for managing microbial in-hospital infection

Publications (1)

Publication Number Publication Date
JP2005025281A true JP2005025281A (en) 2005-01-27

Family

ID=34186089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187151A Withdrawn JP2005025281A (en) 2003-06-30 2003-06-30 Method for managing microbial in-hospital infection

Country Status (1)

Country Link
JP (1) JP2005025281A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093617A (en) * 2007-09-14 2009-04-30 Gunma Univ Method and device for detecting bacteria abnormal accumulation, method and device for classifying antibiogram, method and device for forming two-dimensional carrier map, method and device for evaluating infection control index, and method and device for graphing warning score accumulation in detection of bacteria abnormal accumulation
WO2012002435A1 (en) * 2010-06-30 2012-01-05 株式会社ニコン Infection spread prevention support system, infection spread prevention support server, examination terminal, mobile terminal and program
JP2012234347A (en) * 2011-04-28 2012-11-29 Sysmex Corp Contamination information delivery system, contamination information delivery device, and computer program
WO2022208948A1 (en) * 2021-04-02 2022-10-06 カーブジェン株式会社 System, mobile terminal device, program, and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093617A (en) * 2007-09-14 2009-04-30 Gunma Univ Method and device for detecting bacteria abnormal accumulation, method and device for classifying antibiogram, method and device for forming two-dimensional carrier map, method and device for evaluating infection control index, and method and device for graphing warning score accumulation in detection of bacteria abnormal accumulation
JP2013101675A (en) * 2007-09-14 2013-05-23 Gunma Univ Anti-biogram classification method and device, two-dimensional carrier map preparation method and device, and evaluation method and device of infection measure index
JP2014209356A (en) * 2007-09-14 2014-11-06 国立大学法人群馬大学 Evaluation method and apparatus of infection control index
WO2012002435A1 (en) * 2010-06-30 2012-01-05 株式会社ニコン Infection spread prevention support system, infection spread prevention support server, examination terminal, mobile terminal and program
JPWO2012002435A1 (en) * 2010-06-30 2013-08-29 株式会社ニコン Infection spread prevention support system, infection spread prevention support server, inspection terminal, mobile terminal and program
JP5928332B2 (en) * 2010-06-30 2016-06-01 株式会社ニコン Infection spread prevention support system, infection spread prevention support server, inspection terminal, mobile terminal and program
JP2012234347A (en) * 2011-04-28 2012-11-29 Sysmex Corp Contamination information delivery system, contamination information delivery device, and computer program
WO2022208948A1 (en) * 2021-04-02 2022-10-06 カーブジェン株式会社 System, mobile terminal device, program, and method
JP2022158399A (en) * 2021-04-02 2022-10-17 カーブジェン株式会社 System, portable terminal device, program, and method

Similar Documents

Publication Publication Date Title
Mergenhagen et al. Determining the utility of methicillin-resistant Staphylococcus aureus nares screening in antimicrobial stewardship
Wangai et al. Methicillin-resistant Staphylococcus aureus (MRSA) in East Africa: red alert or red herring?
Harbarth et al. Evaluation of rapid screening and pre-emptive contact isolation for detecting and controlling methicillin-resistant Staphylococcus aureus in critical care: an interventional cohort study
Khan et al. Device-Associated Healthcare-Associated Infections (DA-HAI) and the caveat of multiresistance in a multidisciplinary intensive care unit
Skoglund et al. Estimated clinical and economic impact through use of a novel blood collection device to reduce blood culture contamination in the emergency department: a cost-benefit analysis
Hardy et al. Reduction in the rate of methicillin-resistant Staphylococcus aureus acquisition in surgical wards by rapid screening for colonization: a prospective, cross-over study
Leth et al. Surveillance of hospital-acquired infections based on electronic hospital registries
Mody et al. Longitudinal assessment of multidrug-resistant organisms in newly admitted nursing facility patients: implications for an evolving population
Tan et al. Accuracy of administrative data for identification of patients with infective endocarditis
Tübbicke et al. Transmission rates, screening methods and costs of MRSA—a systematic literature review related to the prevalence in Germany
Halverson et al. Impact of hourly emergency department patient volume on blood culture contamination and diagnostic yield
US20190226004A1 (en) Multi-level, laboratory-based surveillance system for detection of intraoperative &#34;eskape&#34; bacterial pathogens for hcai prevention
Peterson et al. New technology for detecting multidrug-resistant pathogens in the clinical microbiology laboratory.
Spence et al. Contact precautions for methicillin-resistant Staphylococcus aureus colonization: costly and unnecessary?
Vendemiato et al. Microbiological characteristics of sepsis in a University hospital
Tsalik et al. Advancing diagnostics to address antibacterial resistance: the Diagnostics and Devices Committee of the Antibacterial Resistance Leadership Group
Mutters et al. Costs and possible benefits of a two-tier infection control management strategy consisting of active screening for multidrug-resistant organisms and tailored control measures
Torres et al. Predictors of methicillin-resistant Staphylococcus aureus colonization at hospital admission
Wakatake et al. Positive clinical risk factors predict a high rate of methicillin-resistant Staphylococcus aureus colonization in emergency department patients
Mergenhagen et al. Utility of methicillin-resistant Staphylococcus aureus nares screening for patients with a diabetic foot infection
Bunduki et al. Antimicrobial resistance in a war-torn country: Lessons learned in the Eastern Democratic Republic of the Congo
Wozniak et al. The increased length of hospital stay and mortality associated with community-associated infections in Australia
Hiett et al. Using active methicillin-resistant Staphylococcus aureus surveillance nasal swabs to predict clinical respiratory culture results
Kurtzhalts et al. Impact of antimicrobial stewardship on outcomes in hospitalized veterans with pneumonia
Weber et al. Mayhall’s Hospital epidemiology and infection prevention

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905