JP2005024384A - Compression fatigue testing method - Google Patents

Compression fatigue testing method Download PDF

Info

Publication number
JP2005024384A
JP2005024384A JP2003190102A JP2003190102A JP2005024384A JP 2005024384 A JP2005024384 A JP 2005024384A JP 2003190102 A JP2003190102 A JP 2003190102A JP 2003190102 A JP2003190102 A JP 2003190102A JP 2005024384 A JP2005024384 A JP 2005024384A
Authority
JP
Japan
Prior art keywords
compression
fatigue test
compression fatigue
test method
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190102A
Other languages
Japanese (ja)
Inventor
Manabu Oishi
学 大石
Nobunori Matoba
伸啓 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Research Center Inc
Original Assignee
Toray Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Research Center Inc filed Critical Toray Research Center Inc
Priority to JP2003190102A priority Critical patent/JP2005024384A/en
Publication of JP2005024384A publication Critical patent/JP2005024384A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and efficiently provide a method for measuring the deformation restoring characteristics of a polymer material. <P>SOLUTION: In this compression fatigue testing method, the non-contact state of an indenter and a sample is provided one or more times during measurement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮疲労試験方法に関し、特に高分子材料の変形回復特性を測定する方法に関するものである。
【0002】
【従来の技術】
従来、伸長および圧縮の繰り返し応力を作用させて、補強体の残存引張強度の測定を行う疲労試験方法が提案されている(例えば、特許文献1参照)。
【0003】
また、圧力試験装置としては、試料に動的な荷重を加え、メカニカル疲労試験を行う装置が提案されている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平8−304250号公報(第1頁)
【0005】
【特許文献2】
特開2000−136990号公報(第1頁)
【0006】
【発明が解決しようとする課題】
しかし、従来の測定方法では、得られる情報量が少ないため、経時の劣化挙動や試料間の差異の解析が不十分であった。かかる状況に鑑み、本発明は、圧縮疲労試験から得られる情報量を増加させることを目的とし、特に、経時の劣化挙動を、より詳細に解明することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を達成するため、本発明は以下の構成をとる。
すなわち、本発明は、
(1)測定中に圧子と試料が非接触である状態を1回以上設けることを特徴とする圧縮疲労試験方法。
(2)前記非接触である時間を測定することを特徴とする(1)に記載の圧縮疲労試験方法。
(3)前記圧子を繰り返し変位制御することを特徴とする(1)または(2)に記載の圧縮疲労試験方法。
(4)変位制御が圧縮−圧縮の片振りであることを特徴とする(3)に記載の圧縮疲労試験方法。
(5)試料が高分子材料である(1)〜(4)のいずれかに記載の圧縮疲労試験方法。
(6)試料が積層されたものである(5)に記載の圧縮疲労試験方法。
である。
【0008】
【発明の実施の形態】
本発明は、圧縮疲労試験方法に関するものであり、具体的には、測定中に圧子と試料が非接触である状態を1回以上設けることを特徴とする圧縮疲労試験方法である。測定中に圧子と試料が非接触である状態を設けることにより、例えば、非接触時間や接触前後の応力変化の測定が可能となる。
【0009】
本発明においては、好ましくは非接触時間を測定する。非接触時間をトレースすることで、試料の圧縮疲労特性が、より正確に把握できることを見出したのが、本発明につながったのである。
【0010】
本発明において、圧子を繰り返し変位制御することが好ましい。圧子を繰り返し変位制御することで、測定中に圧子と試料が非接触である状態を複数回つくることができ、経時の疲労挙動が測定できるからである。
【0011】
また、変位制御が圧縮−圧縮の片振りであることが好ましい。変位制御が圧縮−圧縮の片振りであることで、圧子と試料との非接触時間を明確に測定することが可能となるからである。
【0012】
本発明において、圧子の変位制御は、周波数を持つ変位であることが好ましい。周波数を持つことで、経時的に均質な変位を試料に与えることができるからである。ここで、周波数は特に限定されず、任意の周波数を選定することができる。
【0013】
ただし、周波数を変えた場合、非接触時間も異なることになるため、試料間を同じ条件で比較するためには、非接触時間を規格化し、一連の試料は同一の規格化された非接触時間で測定することが好ましい。規格化された非接触時間φの定義式を式(1)に示す。
規格化非接触時間φ=t/T ・・・(1)
ここで、
:非接触時間
T :1周期の時間
である。
【0014】
本発明の圧縮疲労試験方法が適用できる材料は特に限定されず、例えば、高分子材料、金属材料、セラミックス材料等の圧縮疲労挙動を測定することができる。好ましくは、高分子材料である。高分子材料は圧縮後の変形回復に要する時間が比較的長いため、材料間の差や経時の差が顕著に現れるからである。
【0015】
試料が積層された高分子材料であるのは、本発明の好ましい態様である。積層された高分子材料は、本発明の効果が特に顕著に現れる材料だからである。ここで、積層成分の中に高分子材料以外の成分が含まれていても良いし、高分子材料を含まない層が積層されていてもかまわない。
【0016】
本発明において、試料の形状は特に制限は無く、例えば、凸凹があっても良いし、試料の表面が艶消し状であっても良い。この場合、圧子の振幅は、凸凹や艶消しの深さを超えることが好ましい。
【0017】
圧縮疲労試験に用いる機器は特に限定されず、例えば、インストロン社製の万能材料試験機、島津製作所製のオートグラフ、サーボパルサーなど、公知の機器を用いることができるが、測定中に圧子と試料が非接触である状態を1回以上設けることができる必要がある。好ましくは、非接触時間が測定できることである。
【0018】
【実施例】
(実施例1)
厚み0.180mmのナフィオン117単膜を2mm×2mmに5枚切り出し、厚さ方向に重ね合わせ、2mm×2mm×厚さ0.9mmの試験片を作製した。この試験片をインストロン社製高精密材料試験機にて、それぞれ、30℃30%RH、60℃30%RH、90℃30%RH雰囲気にて圧縮疲労試験を行った。制御モードは、変位制御で圧縮−圧縮の片振りとし、−4μmから−40μmの変位を正弦波にて周波数=1Hzの繰り返し試験を行った。使用した試験片の模式図を図1に、圧縮疲労における変形回復特性の測定方法の模式図とその制御波形を図2に示す。
また、結果を図3に示す。非接触時間は、サイクル数が多いほど、また、高温ほど大きくなっていることがわかった。
【0019】
【発明の効果】
本発明により圧縮サイクル毎の試料の粘性やその経時変化、試料間の比較、また、実使用条件下における力学的な劣化挙動を簡便かつ効率的に解明することが可能となり、その有用性は多大である。
【図面の簡単な説明】
【図1】実施例1に使用した試験片形状の模式図である。
【図2】実施例1に使用した変形回復特性測定の模式図とその制御波形である。
【図3】実施例1の測定結果(規格化非接触時間とサイクル数との関係)である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compression fatigue test method, and more particularly to a method for measuring deformation recovery characteristics of a polymer material.
[0002]
[Prior art]
Conventionally, there has been proposed a fatigue test method for measuring the residual tensile strength of a reinforcing body by applying repeated stress of elongation and compression (see, for example, Patent Document 1).
[0003]
Moreover, as a pressure test apparatus, an apparatus for applying a dynamic load to a sample and performing a mechanical fatigue test has been proposed (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-8-304250 (first page)
[0005]
[Patent Document 2]
JP 2000-136990 A (first page)
[0006]
[Problems to be solved by the invention]
However, in the conventional measurement method, since the amount of information obtained is small, the analysis of the deterioration behavior over time and the difference between samples has been insufficient. In view of this situation, an object of the present invention is to increase the amount of information obtained from a compression fatigue test, and in particular, to elucidate the deterioration behavior over time in more detail.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
That is, the present invention
(1) A compression fatigue test method characterized by providing a state where the indenter and the sample are not in contact with each other during the measurement at least once.
(2) The compression fatigue test method according to (1), wherein the non-contact time is measured.
(3) The compression fatigue test method according to (1) or (2), wherein the displacement of the indenter is repeatedly controlled.
(4) The compression fatigue test method according to (3), wherein the displacement control is compression-compression swing.
(5) The compression fatigue test method according to any one of (1) to (4), wherein the sample is a polymer material.
(6) The compression fatigue test method according to (5), wherein the samples are laminated.
It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a compression fatigue test method. Specifically, the compression fatigue test method is characterized in that a state where the indenter and the sample are not in contact with each other during the measurement is provided at least once. By providing a state in which the indenter and the sample are not in contact during the measurement, for example, it is possible to measure a non-contact time and a stress change before and after contact.
[0009]
In the present invention, the non-contact time is preferably measured. The fact that the compression fatigue characteristics of the sample can be grasped more accurately by tracing the non-contact time has led to the present invention.
[0010]
In the present invention, it is preferable to repeatedly control the displacement of the indenter. This is because by repeatedly controlling the displacement of the indenter, a state where the indenter and the sample are not in contact can be created a plurality of times, and the fatigue behavior over time can be measured.
[0011]
The displacement control is preferably compression-compression swing. This is because the non-contact time between the indenter and the sample can be clearly measured when the displacement control is compression-compression swing.
[0012]
In the present invention, the displacement control of the indenter is preferably a displacement having a frequency. This is because by having the frequency, a uniform displacement can be given to the sample over time. Here, the frequency is not particularly limited, and an arbitrary frequency can be selected.
[0013]
However, if the frequency is changed, the non-contact time will also be different. Therefore, in order to compare samples under the same conditions, the non-contact time is normalized, and a series of samples have the same standardized non-contact time. It is preferable to measure by. Formula (1) shows a standardized definition of the non-contact time φ.
Standardized non-contact time φ = t 0 / T (1)
here,
t 0 : non-contact time T 1: time of one cycle.
[0014]
The material to which the compression fatigue test method of the present invention can be applied is not particularly limited, and for example, the compression fatigue behavior of a polymer material, a metal material, a ceramic material, or the like can be measured. A polymer material is preferable. This is because the polymer material takes a relatively long time to recover the deformation after compression, and thus a difference between the materials and a difference with time appear remarkably.
[0015]
It is a preferred embodiment of the present invention that the sample is a polymer material laminated. This is because the laminated polymer material is a material in which the effects of the present invention are particularly prominent. Here, a component other than the polymer material may be contained in the laminated component, or a layer not containing the polymer material may be laminated.
[0016]
In the present invention, the shape of the sample is not particularly limited, and for example, there may be irregularities, or the surface of the sample may be matte. In this case, it is preferable that the amplitude of the indenter exceeds the depth of unevenness or matte.
[0017]
The equipment used for the compression fatigue test is not particularly limited. For example, known equipment such as a universal material testing machine manufactured by Instron, an autograph manufactured by Shimadzu Corporation, and a servo pulsar can be used. It is necessary to be able to provide a state in which the sample is not in contact at least once. Preferably, the non-contact time can be measured.
[0018]
【Example】
(Example 1)
Five Nafion 117 single membranes having a thickness of 0.180 mm were cut into 2 mm × 2 mm, and overlapped in the thickness direction to prepare test pieces of 2 mm × 2 mm × thickness 0.9 mm. This specimen was subjected to a compression fatigue test in an atmosphere of 30 ° C., 30% RH, 60 ° C., 30% RH, and 90 ° C., 30% RH using an Instron high precision material testing machine. The control mode was compression-compression one-way swing by displacement control, and a displacement test of -4 μm to −40 μm was repeated with a sine wave at a frequency = 1 Hz. A schematic diagram of the used test piece is shown in FIG. 1, and a schematic diagram of a measuring method of deformation recovery characteristics in compression fatigue and a control waveform thereof are shown in FIG.
The results are shown in FIG. It was found that the non-contact time increased as the number of cycles increased and as the temperature increased.
[0019]
【The invention's effect】
The present invention makes it possible to easily and efficiently elucidate the viscosity of samples for each compression cycle, changes with time, comparison between samples, and mechanical deterioration behavior under actual use conditions. It is.
[Brief description of the drawings]
1 is a schematic diagram of the shape of a test piece used in Example 1. FIG.
FIG. 2 is a schematic diagram of deformation recovery characteristic measurement used in Example 1 and its control waveform.
FIG. 3 shows measurement results (relationship between normalized non-contact time and the number of cycles) of Example 1.

Claims (6)

測定中に圧子と試料が非接触である状態を1回以上設けることを特徴とする圧縮疲労試験方法。A compression fatigue test method characterized by providing a state where the indenter and the sample are not in contact with each other during the measurement at least once. 前記非接触である時間を測定することを特徴とする請求項1に記載の圧縮疲労試験方法。The compression fatigue test method according to claim 1, wherein the non-contact time is measured. 前記圧子を繰り返し変位制御することを特徴とする請求項1または2に記載の圧縮疲労試験方法。The compression fatigue test method according to claim 1 or 2, wherein the displacement of the indenter is repeatedly controlled. 変位制御が圧縮−圧縮の片振りであることを特徴とする請求項3に記載の圧縮疲労試験方法。4. The compression fatigue test method according to claim 3, wherein the displacement control is compression-compression swing. 試料が高分子材料である請求項1〜4のいずれかに記載の圧縮疲労試験方法。The compression fatigue test method according to any one of claims 1 to 4, wherein the sample is a polymer material. 試料が積層されたものである請求項5に記載の圧縮疲労試験方法。The compression fatigue test method according to claim 5, wherein the samples are laminated.
JP2003190102A 2003-07-02 2003-07-02 Compression fatigue testing method Pending JP2005024384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190102A JP2005024384A (en) 2003-07-02 2003-07-02 Compression fatigue testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190102A JP2005024384A (en) 2003-07-02 2003-07-02 Compression fatigue testing method

Publications (1)

Publication Number Publication Date
JP2005024384A true JP2005024384A (en) 2005-01-27

Family

ID=34188084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190102A Pending JP2005024384A (en) 2003-07-02 2003-07-02 Compression fatigue testing method

Country Status (1)

Country Link
JP (1) JP2005024384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508866A (en) * 2008-11-14 2012-04-12 アトミック エナジー オブ カナダ リミテッド Portable polymer testing equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508866A (en) * 2008-11-14 2012-04-12 アトミック エナジー オブ カナダ リミテッド Portable polymer testing equipment
US8857246B2 (en) 2008-11-14 2014-10-14 Atomic Energy Of Canada Limited Portable polymer tester
EP2356425A4 (en) * 2008-11-14 2015-05-13 Atomic Energy Of Canada Ltd Portable polymer tester
KR101751073B1 (en) 2008-11-14 2017-06-26 아토믹 에너지 오브 캐나다 리미티드 Portable polymer tester
US10107732B2 (en) 2008-11-14 2018-10-23 Atomic Energy Of Canada Limited Portable polymer tester

Similar Documents

Publication Publication Date Title
EP2616796B1 (en) Methods and apparatus for detecting cross-linking in a polymer
CN112345380B (en) Method for testing fracture toughness of ceramic coating
JP2010243387A (en) Delayed destructive test method and tester by indentation method
CN102607971A (en) Test method for cyclic fatigue life under condition of piezoelectric ceramics force electric coupling
RU2515337C1 (en) Method to determine strength of adhesive connection of rubber-like coating with base
JP2005024384A (en) Compression fatigue testing method
JP2007057325A (en) Remaining lifetime prediction method
CN110530718B (en) Double-shaft residual stress introducing device based on white light interferometry surface morphology
Bradley Strength testing of adhesives and consolidants for conservation purposes
RU2647551C1 (en) Method for determining characteristics of crackbility of materials
KR101685507B1 (en) Test method of interfacial adhesion
Nygårds et al. Strength of HVOF coating–substrate interfaces
CN107389452B (en) Stretching device for testing heterogeneous interface spalling and spalling testing method and application
Jankowski et al. Combined loading and failure analysis of lead-free solder joints due to creep and fatigue phenomena
KR20080053499A (en) Electrochemical fatigue sensor system and methods
RU2551263C2 (en) Method to determine properties of material by nanoindentation
JP2015225058A (en) Method and device for estimating fracture stress in oxide film fracture
RU2499244C1 (en) Method to determine residual stresses and energy characteristics of gas thermal coatings
US20050050961A1 (en) Method and apparatus for determining hydrogen embrittlement
Perlega Influence of testing frequency on the fatigue properties of polycrystalline copper
Xu Characterization and modeling of mechanical behavior of polymers and composites at small scales by nanoindentation
Park et al. Novel test procedure of tensile test for MEMS materials
RU2209412C2 (en) Method of manufacture of strain gauge to check cyclic deformations
Mahan et al. Reliability evaluation of conformal coatings for tin whisker failure mitigation in accelerated testing conditions
JP2010091409A (en) Method for evaluating resin film