JP2005023338A - Method of producing apparatus for city water made of lead-containing copper alloy - Google Patents

Method of producing apparatus for city water made of lead-containing copper alloy Download PDF

Info

Publication number
JP2005023338A
JP2005023338A JP2003187339A JP2003187339A JP2005023338A JP 2005023338 A JP2005023338 A JP 2005023338A JP 2003187339 A JP2003187339 A JP 2003187339A JP 2003187339 A JP2003187339 A JP 2003187339A JP 2005023338 A JP2005023338 A JP 2005023338A
Authority
JP
Japan
Prior art keywords
water
lead
antifouling
treatment
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003187339A
Other languages
Japanese (ja)
Inventor
Yukio Kanbayashi
由己夫 神林
Takashi Mizutani
岳志 水谷
Koji Sato
浩司 佐藤
Mie Sakai
三恵 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2003187339A priority Critical patent/JP2005023338A/en
Priority to PCT/JP2004/007255 priority patent/WO2005001160A1/en
Priority to CN 200480018040 priority patent/CN1813081A/en
Publication of JP2005023338A publication Critical patent/JP2005023338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Domestic Plumbing Installations (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for city water made of a lead-containing copper alloy having excellent antifoulancy while sufficiently reducing the amount of lead to be eluted from the inner circumferential face of a water passage to water, and further having excellent decorativeness by a specular gloss. <P>SOLUTION: The method of producing an apparatus for city water made of a lead-containing copper alloy is provided with: a plating stage where a nickel-chromium plating layer is applied to the outer circumferential face of a work consisting of a lead-containing copper alloy and having a water passage; and a lead removal stage where, after the plating stage, the work is dipped into a lead removal liquid, and the inner circumferential face of the water passage is subjected to lead removal treatment. In the process of the lead removal stage, an antifoulant treatment stage where an antifoulant film consisting of a fluorine-containing polymer capable of bonding with chromium is formed on the outer circumferential face of the work is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉛含有銅合金製水道用器具の製造方法に関する。
【0002】
【従来の技術】
水栓金具や水道管等の水道用器具には耐腐食性、切削性等の観点から鉛含有銅合金である青銅や黄銅等が用いられている。このような鉛含有銅合金製の水道用器具は通常以下のように製造されていた。すなわち、まず、鋳造品、鍛造品、棒材又は管材からなるワークを用意する。このワークは、鉛含有銅合金からなり、水を通す通水路を有するものである。このワークに対し、切削工程により切削加工を行った後、研磨工程により研磨加工を行う。そして、このワークに対し、外周面にニッケル・クロムめっき層を施すめっき工程を行う。一般的なめっき工程は、前処理工程の後、ニッケルめっき浴を用いたニッケルめっき工程を行う。これにより、ワークの外周面にニッケルめっき層を施す。ニッケルめっき層は表面の平滑化及び優れた耐食性を実現する。この後、クロムめっき浴を用いたクロムめっき工程により、ワークの外周面にクロムめっき層を施す。なお、各めっき工程間にもめっき浴を水洗する水洗工程が存在する。そして、組立工程によりこのワークを組み立て、水道用器具を得る。こうして得られた水道用器具は通水路内に水が通されて活用されることとなる。また、この水道用器具は、クロムめっき層の鏡面光沢により優れた装飾性を発揮する。
【0003】
ところが、上記通常の水道用器具は、表面になんら防汚性が付与されていないため、汚れが付きやすく、付いた汚れが落ち難いという不具合もある。このため、防汚性の付与された水道用器具が強く要求されている。この要求は水栓金具において特に強い。
【0004】
このため、特許文献2開示のように、一般的な製造方法で得られた水道用器具に防汚処理剤を塗布することも考えられる。防汚処理剤を水道用器具の表面に塗布すれば、得られる水道用器具は防汚処理剤からなる防汚皮膜により防汚性が付与されたものとなると考えられる。
【0005】
また、非特許文献1、2開示の水道用器具も提案されている。この水道用器具は、ニッケルめっき工程、サテンニッケルめっき工程及び撥水めっき工程からなる下地めっき工程と、クロムめっき工程と、加熱工程とを順次行う製造方法によって製造される。下地めっき工程の撥水めっき工程では、ポリテトラフルオロエチレン(PTFE)粒子が添加されたニッケルめっき浴を用いている。加熱工程では、クロムめっき層上に露出したPTFE粒子を表面に広げる。なお、各めっき工程間にはめっき浴を水洗する水洗工程が存在する。こうして得られた水道用器具は、表面に存在するPTFEにより撥水性が付与されたものとなる。
【0006】
一方、近年、水に含有されている鉛による健康阻害が危惧されつつあり、水道用器具の通水路の内周面からの水への鉛の溶出量を一層低減させたいという要望がある。このため、特許文献2には、めっき工程の後、ワークを脱鉛液に浸漬してワークの通水路の内周面の脱鉛処理を行う脱鉛工程を行う製造方法が提案されている。この製造方法によれば、通水路の内周面からの水への鉛の溶出量をより確実に低減できる。
【0007】
【特許文献1】
特開2001−295334号公報
【特許文献2】
WO02/36856A1
【非特許文献1】
吉川豊、西川賢一著「ユージライトニュース(撥水性めっき テフジットシステム)」、2000年05月、P.7
【非特許文献1】
「表面技術協会めっき部会6月例会資料」、2000年06月15日発表、P.21−25
【0008】
【発明が解決しようとする課題】
しかし、上記特許文献1開示の水道用器具は、水道用器具の表面に防汚処理剤を塗布しただけのものであるため、防汚皮膜がクロムめっき層から剥れ易く、防汚性、特に長期間使用後の防汚性が十分でない。例えば、特開2000−290089号公報開示の防汚処理剤は、対象物の表面に存在する水酸基と脱水反応により化学結合する有機ケイ素化合物とフッ素とを含むものであるため、表面に水酸基を有するガラス層をもつセラミックスに対しては有効であるものの、表面がクロムめっき層である水道用器具に対しては十分な防汚性を付与することができない。
【0009】
また、上記非特許文献1、2開示の水道用器具においては、PTFE粒子を採用していることにより、表面がぼんやりとくすんだ外観になることが避けられず、そのためにサテンニッケルめっき工程を行って表面を梨地状とする等の手段が採用されている。つまり、従来の製造方法によって得られる水道用器具は、撥水による防汚性は有しているものの、鏡面光沢を有しないものである。
【0010】
本発明は、上記従来の実情に鑑みてなされたものであって、通水路の内周面からの水への鉛の溶出量を十分に少なくしつつ、優れた防汚性を有するとともに、鏡面光沢による優れた装飾性を有する鉛含有銅合金製水道用器具を提供することを解決すべき課題としている。
【0011】
【課題を解決するための手段】
発明者らは、上記課題解決のために鋭意研究を行い、水道用器具に防汚皮膜が強固に結合しない理由がその水道用器具を一旦製造してしまうことにあることを発見した。すなわち、水道用器具は、図10に示すように、鉛含有銅合金からなり、水を通す通水路90aを有する基材90と、この基材90の表面側に形成されたニッケルめっき層91と、このニッケルめっき層91の表面側に形成されたクロムめっき層92とからなるのであるが、一旦製造したその水道用器具は、そのクロムめっき層92の表面にクロメート皮膜(xCr・yCrO・zHO)等からなる不動態皮膜93が完全に形成されているのである。この不動態皮膜93は、クロムめっき層92を施すためのクロムめっき工程後の水洗工程において、クロムめっき浴のクロム酸によって形成される。
【0012】
こうして、発明者らは、クロムと結合可能であってフッ素を含むポリマーを用い、その不動態皮膜93が完全に形成される前に防汚皮膜をワークの外周面に形成することにより、本発明の課題を解決できることを発見したのである。
【0013】
本発明の鉛含有銅合金製水道用器具の製造方法は、鉛含有銅合金からなり、水を通す通水路を有するワークの外周面にニッケル・クロムめっき層を施すめっき工程と、該めっき工程後に該ワークを脱鉛液に浸漬して該通水路の内周面の脱鉛処理を行う脱鉛工程とを備えた鉛含有銅合金製水道用器具の製造方法において、
前記脱鉛工程中において、クロムと結合可能であってフッ素を含むポリマーからなる防汚皮膜を前記ワークの外周面に形成する防汚処理工程を行うことを特徴とする。
【0014】
本発明の製造方法では、脱鉛工程において、めっき工程後にワークを脱鉛液に浸漬して通水路の内周面の脱鉛処理を行うため、通水路の内周面からの水への鉛の溶出量をより確実に低減できる。
【0015】
また、本発明の製造方法では、その脱鉛工程中において、防汚皮膜をワークの外周面に形成する防汚処理工程を行うため、クロムめっき層に不動態皮膜が完全に形成される前に防汚皮膜が形成され、得られる水道用器具は防汚皮膜が強固に結合したものとなる。また、この製造方法では、PTFE粒子を採用していないことから、得られる水道用器具は鏡面光沢を有するものとなる。
【0016】
したがって、本発明の製造方法によれば、通水路の内周面からの水への鉛の溶出量を十分に少なくしつつ、優れた防汚性を有するとともに、鏡面光沢による優れた装飾性を有する鉛含有銅合金製水道用器具が得られる。
【0017】
クロムと結合可能であってフッ素を含むポリマーとしては、特開2000−62105開示のものを用いることができる。発明者らの試験結果によれば、このポリマーを構成する成分の一つである官能基含有含フッ素エチレン単量体としては、化1、化2又は化3に示すものが好ましい。酸素の二重結合がクロムめっき層のクロムとの結合に代えられ、防汚皮膜がクロムめっき層に強固に結合するからである。
【0018】
【化1】

Figure 2005023338
【0019】
【化2】
Figure 2005023338
【0020】
【化3】
Figure 2005023338
【0021】
脱鉛液としては、鉛が両性金属であるため、酸性液やアルカリ液を用いることが考えられる。
【0022】
脱鉛工程としては、めっき工程後のワークを酸を含む処理液に浸漬する酸処理工程と、この酸処理工程後のワークから処理液を水洗する酸処理水洗工程とを採用することができる。この場合、防汚処理工程を酸処理水洗工程中に行うことが好ましい。めっき工程後にはクロムめっき層の表面に不動態皮膜が徐々に形成されるため、脱鉛工程の酸処理水洗工程中に防汚処理工程を行えば、その不動態皮膜がクロムめっき層の表面に強固に形成される前に防汚皮膜をクロムめっき層の表面に形成することができるからである。この際、酸処理工程で用いられる酸を含む処理液は、ワークの外周面のクロムめっき層を活性化し、防汚皮膜をクロムめっき層の表面に強固に形成する。
【0023】
酸を含む処理液は、通水路の内周面の脱鉛処理を行う脱鉛液としても機能する。酸処理工程で用いる処理液に含まれる酸としては、クロム酸、リン酸、塩酸、硫酸、酢酸、硝酸等を採用することができる。この処理液はクロムめっき層を腐食させない程度の濃度とすることが好ましい。例えば、Cr6+濃度数千〜数十万ppmのクロム酸、0.1〜10%のリン酸等を採用することができる。
【0024】
本発明の製造方法では、特に、脱鉛工程は、めっき工程後のワークを活性アルカリ液に浸漬し、通水路の内周面から鉛をエッチングするエッチング工程と、エッチング工程後のワークから活性アルカリ液を水洗するエッチング水洗工程と、エッチング水洗工程後のワークをリン酸を含む処理液に浸漬し、通水路の内周面に不動態皮膜を形成する酸処理・不動態化工程と、酸処理・不動態化工程後のワークから処理液を水洗する酸処理水洗工程とからなり得る。この場合も、防汚処理工程を酸処理水洗工程中に行うことが好ましい。
【0025】
エッチング工程の活性アルカリ液も通水路の内周面の脱鉛処理を行う脱鉛液として機能する。活性アルカリ液はpHが12〜14の範囲を示すようなアルカリ液をいう。pHがこの範囲の活性アルカリ液によれば、その活性アルカリ液は通水路の内周面の鉛と化学反応を起こしやすいので、その鉛を溶解して除去しやすい。このような活性アルカリ液は、主に炭酸ナトリウム、水酸化ナトリウム、リン酸ナトリウム、メタケイ酸ナトリウム、トリポリリン酸ナトリウム、オルケイ酸ナトリウム、水酸化カリウム等の水溶液である。
【0026】
リン酸とは、五酸化リン(P)が種々の程度に水化して生じる一連の酸(P・nHO)である。例えば、オルトリン酸(HPO(0.5P・1.5HO))、メタリン酸(HPO(0.5P・0.5HO))等である。リン酸塩として処理液に含ませることも可能である。リン酸塩としては、リン酸亜鉛系、リン酸マンガン系、リン酸鉄系、リン酸亜鉛・カルシウム系等を採用することができる。リン酸亜鉛系としては、第1リン酸亜鉛(Zn(HPO)を主成分とするもの等がある。その他、リン酸ナトリウム(NaHPO、NaHPO等)、リン酸アルミニウム(Al(HPO等)、リン酸アンモニウム(NHPO等)等がある。
【0027】
酸処理工程でリン酸を含む処理液を用いた場合、通水路の内周面に不動態皮膜が形成され、この不動態皮膜が鉛の浸出を防止する。この不動態皮膜は、例えば、第一リン酸亜鉛(Zn(HPO)とリン酸(HPO)とを主成分とする処理液を用いた場合、以下のように生成されるものと考えられる。
【0028】
まず、鉛含有銅合金製のワークにそのような処理液を接触させると、化4に示すように、リン酸によって銅が処理液中に溶解して銅イオンを生じる。
【0029】
【化4】
Cu+2H→Cu2++H
【0030】
また、そのワークの通水路の内周面に鉛が存在するのであれば、化5に示すように、リン酸によって鉛も処理液中に溶解して鉛イオンを生じ得る。
【0031】
【化5】
Pb+2H→Pb2++H
【0032】
ここで、第一リン酸亜鉛は、化6に示すように、処理液中において一部が解離している。
【0033】
【化6】
Zn(HPO→ZnPO +HPO+H
【0034】
このため、処理液中の銅イオン及び/又は鉛イオンは、以下の化7及び/又は化8に示す化学反応を起こし、ワークの表面に不動態皮膜を形成するものと考えられる。
【0035】
【化7】
Cu2++2ZnPO →ZnCu(PO
【0036】
【化8】
Pb2++2ZnPO →ZnPb(PO
【0037】
また、ZnCu(PO、ZnPb(PO以外にも、Zn(PO・4HO又は/及びZn(HPOの不活性な結晶からなる不動態皮膜が形成されているものとも考えられる。発明者らの実験結果によれば、こうして形成された不動態皮膜により、鉛の浸出を防止することができる。
【0038】
また、リン酸又はリン酸塩は、クロムめっき層を形成するためのクロム酸を含むクロムめっき浴や不動態化を行うためのクロム酸を含むクロメート液に比して毒性がほとんどない。このため、処理液を接触させた後の各ワークを洗浄した洗浄液や廃液に対して中和や希釈を行うだけでそれら洗浄液等を処分することができる。そのため、洗浄液等の管理も簡易となる。
【0039】
酸処理水洗工程は、通常、複数の水洗槽にワークを順次浸漬することにより行われる。これによって水洗槽中の水の処理液の濃度を徐々に低くし、環境上の問題を無くしている。水洗槽に貯溜される水は、室温の水を用いる場合と、40〜60°Cの温水を用いる場合とがある。この場合、防汚処理工程はポリマーを分散させてなる防汚液を少なくとも一の水洗槽に添加することにより行うことができる。これによって通常の水道用器具の製造ラインをそのまま使用して本発明の製造方法を実施することができる。
【0040】
複数の水洗槽のうち、温水を貯溜してなる温水洗槽に防汚液を添加することもできる。温水によって酸処理水洗工程を行う湯洗浄は、通常、室温の水によって酸処理水洗工程を行う水洗浄の最も下流側に位置される。これによってワークから処理液を完全に除去するとともに、水洗後のワークから水が揮発しやすくして乾燥工程を省略することができる。湯洗浄中に防汚処理工程を行えば、防汚皮膜がより活性化してクロムめっき層のクロムと強固に結合すると考えられる。
【0041】
複数の水洗槽のうち、下流側に防汚液を添加することが好ましい。めっき工程後の脱鉛工程をクロムめっき工程からさほどの水洗工程を経ずに行う場合、水洗槽中の水には、上流側程高い濃度のクロムめっき浴が含まれている。このため、上流側の水洗槽に防汚液を添加すると、防汚液のポリマーがそのクロムめっき浴のクロムと結合してしまって無駄に消費されることとなる。これに対し、下流側の水洗槽に防汚液を添加するのであれば、防汚液のポリマーがより確実にワークのクロムめっき層のクロムと結合し、防汚皮膜を確実に生成させることとなる。
【0042】
ワークとしては種々のものを採用することができるが、水栓金具用のワークを採用することが好ましい。水栓金具は、水や温水によって汚れを落とすために用いられ、汚れが付着しやすいものである一方、従来から高い美観が要求されているからである。
【0043】
【発明の実施の形態】
以下、本発明を具体化した実施例1〜5及び比較例1、2を図面を参照しつつ説明する。
【0044】
(実施例1)
実施例1では、図1に示す各工程に従って、以下のとおり本発明を実施する。まず、鋳造品、鍛造品、棒材又は管材からなるJISCAC406(青銅6種)製のワークを用意する。このワークは水栓金具用のものである。このワークに対し、切削工程S10により切削加工を行った後、研磨工程S20により研磨加工を行う。こうして、図4(A)に示すように、研磨工程S20後のワークWを得る。このワークWは、水を通す通水路1aを有する基材1のみからなる。このワークWに対し、図1に示すように、外周面にニッケル・クロムめっき層を施すめっき工程S30を行う。
【0045】
このめっき工程S30は、前処理工程の後、ニッケルめっき浴を用いたニッケルめっき工程及びクロムめっき浴を用いたクロムめっき工程を行う。これにより、図4(B)に示すように、ワークWの外周面にニッケルめっき層2を施す。ニッケルめっき層2は表面の平滑化及び優れた耐食性を実現する。また、ワークWの外周面にクロムめっき層3を施す。なお、各めっき工程間にもめっき浴を水洗する水洗工程が存在する。
【0046】
次いで、ワークWに対し、図1に示すように、脱鉛工程及び防汚処理工程S40を行う。まず、図2に示すように、エッチング工程S41を行う。ここでは、めっき工程S30後のワークWを活性アルカリ液に10分間浸漬する。活性アルカリ液は水酸化ナトリウムを50g/l含むpH14の強アルカリ水溶液であり、その温度は50°Cである。これにより、図4(C)に示すように、通水路1aの内周面に鉛の少ない低鉛層4が形成される。この後、図2に示すように、エッチング水洗工程S42を行う。これにより、エッチング工程S41後のワークWから活性アルカリ液を水洗する。
【0047】
そして、酸処理・不動態化工程S43を行う。ここでは、エッチング水洗工程S42後のワークWをリン酸を含む処理液に10分間浸漬する。この処理液はリン酸(HPO)0.9質量%の水溶液であり、その温度は50°Cである。これにより、図4(D)に示すように、通水路1aの内周面の低鉛層4からさらに鉛が除かれるとともに、低鉛層4の内側に不動態皮膜5が形成される。この後、図2に示すように、酸処理水洗工程及び防汚処理工程S44を行う。これにより、酸処理・不動態化工程S43後のワークWから処理液を水洗するとともに、図4(E)に示すように、防汚皮膜6をワークWの外周面に形成する。
【0048】
ここで、酸処理水洗工程S44は、図3に示すように、2〜6段階で水洗浄を行う水洗槽11〜13と、2段階で湯洗浄を行う温水洗槽14、15とを用い、これらに酸処理・不動態化工程S43後のワークWを順次浸漬することにより行われる。水洗浄の水の温度は室温であり、湯洗浄の温水の温度は40〜60(50±10)°Cである。これによって水洗槽11〜13及び温水洗槽14、15中の水のpHを3から5.5、…7へと徐々に低くし、環境上の問題を無くしている。なお、最上流側の水洗槽11中の水のpHが限度を超えて低くなれば、その水洗槽11を浄化処理に回し、下流側の水洗槽12〜13を順次上流側に移動させる。
【0049】
また、クロムと結合可能であってフッ素を含むポリマーを分散させた防汚液(ダイキン工業(株)製)を用意する。この防汚液中のポリマーは、官能基含有含フッ素エチレン単量体からなる。
【0050】
実施例1では、防汚処理工程S44として、水洗槽11〜13の一つの水洗槽12に防汚液を水に対して0.1質量%添加している。発明者らの試験によれば、防汚液を水に対して10質量%程度まで添加可能である。
【0051】
こうして、通常の水栓金具の製造ラインをそのまま使用し、図4(E)及び図5に示すワークWを得る。そして、図1に示すように、組立工程S50によりこのワークWを組み立て、防汚水栓金具を得る。
【0052】
得られた防汚水栓金具は、図5に示すように、水を通す通水路1aを有する基材1と、この基材1の外周面側に形成されたニッケルめっき層2と、このニッケルめっき層2のさらに外周面側に形成されたクロムめっき層3と、このクロムめっき層3のさらに外周面側に形成されたポリマーの防汚皮膜6と、基材1の内周面側に形成された低鉛層4と、低鉛層4のさらに内周面側に形成された不動態皮膜5とからなる。
【0053】
この防汚水栓金具は、脱鉛工程S40において、めっき工程S30後にワークWを活性アルカリ液及び処理液に浸漬して通水路1aの内周面の脱鉛処理を行うため、通水路1aの内周面に低鉛層4及び不動態皮膜5が形成されたものであり、通水路1aの内周面から水への鉛の溶出量をより確実に低減できる。
【0054】
また、この防汚水栓金具は水接触角が95°以上であり、優れた撥水等による防汚性を有していた。特に、この防汚水栓金具は使用によっても水接触角がほとんど低下せず、優れた耐久性を有している。こうして、この製造方法では、防汚処理工程S44を酸処理水洗工程S44中に行うことにより、図10に示すような不動態皮膜93がクロムめっき層3の表面に強固に形成される前に防汚皮膜6をクロムめっき層3の表面に形成しているため、得られる防汚水栓金具は防汚皮膜6が強固に結合しているのである。また、この製造方法では、PTFE粒子を採用していないことから、得られる防汚水栓金具は鏡面光沢を有するものであった。
【0055】
なお、実施例1において、水洗槽12以外の水洗槽11、13又は全ての水洗槽11〜13に防汚液を添加することも可能である。
【0056】
(実施例2)
実施例2では、防汚処理工程S44として、図6に示すように、湯水洗槽14に防汚液を水に対して0.1質量%添加している。他の条件は実施例1と同様である。この製造方法によっても、同様の防汚水栓金具を製造することができる。
【0057】
なお、実施例2において、湯水洗槽14以外の湯水洗槽15又は両湯水洗槽14、15に防汚液を添加することも可能である。
【0058】
(実施例3)
実施例3では、防汚処理工程S44として、図7に示すように、下流側の二つの水洗槽12、13の間に防汚処理槽21のラインを設けている。防汚処理槽21には、防汚液を65°Cの温水に対して0.1質量%添加している。他の条件は実施例1と同様である。この製造方法では、通常の水道用器具の製造ラインをやや変更するだけで、同様の防汚水栓金具を製造することができる。
【0059】
(実施例4)
実施例4では、防汚処理工程S44として、図8に示すように、湯水洗槽14、15の間に防汚処理槽21のラインを設けている。他の条件は実施例3と同様である。この製造方法においても、実施例3と同様の作用効果を奏することができる。
【0060】
なお全ての水洗槽11〜13及び湯水洗槽14、15に防汚液を添加することも可能である。
【0061】
(実施例5)
実施例5では、図9に示すように、エッチング工程S41、エッチング水洗工程S42の後に酸処理・再活性化処理工程S45を行っている。この際に用いる処理液は、Cr6+濃度数千〜数十万ppmのクロム酸、0.1〜10%のリン酸等の水溶液である。この処理液によって、ワークWの外周面のクロムめっき層3を活性化し、防汚皮膜6をクロムめっき層3の表面に強固に形成する。また、この処理液によって、通水路1aの内周面の脱鉛処理も行う。この後、上記実施例1等の酸処理水洗工程及び防汚処理工程S44を行う。他の条件は実施例1等と同様である。この製造方法においても、実施例1等と同様の作用効果を奏することができる。
【0062】
(比較例1)
表面になんら防汚性が付与されていない通常の水栓金具を得る。この水栓金具は水接触角が50〜85°以上であり、汚れが付きやすく、付いた汚れが落ち難いものであった。
【0063】
(比較例2)
表面になんら防汚性が付与されていない通常の水栓金具を一旦製造し、この水栓金具に防汚液を直接塗布した。こうして得られた防汚水栓金具は水接触角が85〜90°であったが、使用によって水接触角が低下しやすく、耐久性が劣るものであった。これは、この防汚水栓金具では、一旦製造した水栓金具が図10に示すように不動態皮膜93を有するものであるため、防汚皮膜が強固に結合しないためである。
【0064】
したがって、実施例1〜5の製造方法によれば、通水路1aの内周面からの水への鉛の溶出量を十分に少なくしつつ、優れた防汚性を有するとともに、鏡面光沢による優れた装飾性を有する防汚水栓金具が得られることがわかる。
【図面の簡単な説明】
【図1】実施例1〜5の製造方法を示す工程図である。
【図2】実施例1〜4の製造方法を示す工程図である。
【図3】実施例1の製造方法の酸処理水洗工程及び防汚処理工程を示す工程図である。
【図4】図(A)は研磨工程後のワークの断面図、図(B)はめっき工程後のワークの断面図、図(C)はエッチング工程後のワークの断面図、図(D)は酸処理・不動態化工程後のワークの断面図、図(E)は防汚処理工程後のワークの断面図である。
【図5】防汚処理工程後のワークの拡大断面図である。
【図6】実施例2の製造方法の酸処理水洗工程及び防汚処理工程を示す工程図である。
【図7】実施例3の製造方法の酸処理水洗工程及び防汚処理工程を示す工程図である。
【図8】実施例4の製造方法の酸処理水洗工程及び防汚処理工程を示す工程図である。
【図9】実施例5の製造方法を示す工程図である。
【図10】従来例及び比較例2に係るワークの拡大断面図である。
【符号の説明】
W…ワーク
1a…通水路
2…ニッケルめっき層
3…クロムめっき層
S30…めっき工程
S40…脱鉛工程、防汚処理工程
S41…エッチング工程
S42…エッチング水洗工程
S43…酸処理・不動態化工程
S44…酸処理水洗工程、防汚処理工程
6…防汚皮膜
5、93…不動態皮膜
11〜15…水洗槽(14、15…温水洗槽)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lead-containing copper alloy water supply device.
[0002]
[Prior art]
Bronze or brass, which is a lead-containing copper alloy, is used for water supply equipment such as faucet fittings and water pipes from the viewpoint of corrosion resistance, machinability and the like. Such a water supply device made of a lead-containing copper alloy is usually manufactured as follows. That is, first, a workpiece made of a cast product, a forged product, a bar material, or a pipe material is prepared. This work is made of a lead-containing copper alloy and has a water passage through which water passes. The workpiece is cut by a cutting process and then polished by a polishing process. And the plating process which gives a nickel chrome plating layer to an outer peripheral surface is performed with respect to this workpiece | work. In a general plating process, a nickel plating process using a nickel plating bath is performed after the pretreatment process. Thereby, a nickel plating layer is applied to the outer peripheral surface of the workpiece. The nickel plating layer realizes surface smoothing and excellent corrosion resistance. Thereafter, a chromium plating layer is applied to the outer peripheral surface of the workpiece by a chromium plating process using a chromium plating bath. In addition, the water-washing process which rinses a plating bath also exists between each plating process. Then, this work is assembled by an assembly process to obtain a water supply device. The water supply device obtained in this way is used by passing water through the water passage. Moreover, this water supply device exhibits an excellent decorative property due to the mirror gloss of the chromium plating layer.
[0003]
However, the above-mentioned normal water supply equipment has a problem that the surface is not provided with any antifouling property, so that it is easily contaminated and the attached dirt is difficult to remove. For this reason, there is a strong demand for water supply equipment with antifouling properties. This requirement is particularly strong in faucet fittings.
[0004]
For this reason, it is also conceivable to apply an antifouling agent to a water supply device obtained by a general production method as disclosed in Patent Document 2. If the antifouling treatment agent is applied to the surface of the water supply device, the resulting water supply device is considered to have been imparted with antifouling properties by an antifouling film made of the antifouling treatment agent.
[0005]
In addition, water supply devices disclosed in Non-Patent Documents 1 and 2 have also been proposed. This water supply apparatus is manufactured by a manufacturing method in which a base plating process including a nickel plating process, a satin nickel plating process, and a water repellent plating process, a chromium plating process, and a heating process are sequentially performed. In the water repellent plating step of the base plating step, a nickel plating bath to which polytetrafluoroethylene (PTFE) particles are added is used. In the heating step, the PTFE particles exposed on the chromium plating layer are spread on the surface. In addition, between each plating process, the water-washing process which rinses a plating bath with water exists. The water supply device thus obtained is given water repellency by PTFE existing on the surface.
[0006]
On the other hand, in recent years, there has been a concern about the health hindrance caused by lead contained in water, and there is a demand for further reducing the amount of lead eluted into water from the inner peripheral surface of the water passage of a water supply device. For this reason, Patent Document 2 proposes a manufacturing method for performing a deleading process in which a work is immersed in a deleading solution and a deleading process is performed on the inner peripheral surface of the water passage of the work after the plating process. According to this manufacturing method, the elution amount of lead into water from the inner peripheral surface of the water passage can be more reliably reduced.
[0007]
[Patent Document 1]
JP 2001-295334 A [Patent Document 2]
WO02 / 36856A1
[Non-Patent Document 1]
Yutaka Yoshikawa and Kenichi Nishikawa “Eugelite News (Water-repellent plating Tefjit System)”, May 2000, P.M. 7
[Non-Patent Document 1]
"Surface Technology Association Plating Division June Monthly Meeting Document", published on June 15, 2000, p. 21-25
[0008]
[Problems to be solved by the invention]
However, since the water supply device disclosed in the above-mentioned Patent Document 1 is simply a coating of the antifouling treatment agent on the surface of the water supply device, the antifouling film is easily peeled off from the chromium plating layer, The antifouling property after long-term use is not sufficient. For example, since the antifouling treatment agent disclosed in JP-A-2000-290089 contains a hydroxyl group present on the surface of an object, an organosilicon compound chemically bonded by a dehydration reaction, and fluorine, a glass layer having a hydroxyl group on the surface Although effective for ceramics having a surface, sufficient antifouling properties cannot be imparted to water supply equipment whose surface is a chromium plating layer.
[0009]
In addition, in the water supply devices disclosed in Non-Patent Documents 1 and 2 above, the use of PTFE particles inevitably results in a dull appearance on the surface. For this reason, a satin nickel plating process is performed. For example, means such as making the surface a satin finish is adopted. That is, the water supply apparatus obtained by the conventional manufacturing method has anti-stain properties due to water repellency, but does not have specular gloss.
[0010]
The present invention has been made in view of the above-described conventional situation, and has an excellent antifouling property while sufficiently reducing the amount of lead eluted into water from the inner peripheral surface of the water passage, and has a mirror surface. It is an issue to be solved to provide a lead-containing copper alloy water supply device having excellent decorative properties due to luster.
[0011]
[Means for Solving the Problems]
The inventors have intensively studied to solve the above problems, and have found that the reason why the antifouling film is not firmly bonded to the water supply device is that the water supply device is once manufactured. That is, as shown in FIG. 10, the water supply device is made of a lead-containing copper alloy, and has a base material 90 having a water passage 90 a through which water passes, and a nickel plating layer 91 formed on the surface side of the base material 90. The nickel plating layer 91 has a chromium plating layer 92 formed on the surface side. The once-manufactured water supply device has a chromate film (xCr 2 O 3 .yCrO) on the surface of the chromium plating layer 92. The passive film 93 made of 3 · zH 2 O) or the like is completely formed. This passive film 93 is formed by chromic acid in a chrome plating bath in the water washing step after the chrome plating step for applying the chrome plating layer 92.
[0012]
Thus, the inventors use a polymer that can bind to chromium and contains fluorine, and form the antifouling film on the outer peripheral surface of the workpiece before the passive film 93 is completely formed. It was discovered that this problem can be solved.
[0013]
The method for producing a lead-containing copper alloy water supply device of the present invention comprises a lead-containing copper alloy, a plating step of applying a nickel-chromium plating layer to the outer peripheral surface of a work having a water passage through which water passes, and after the plating step In a method for producing a lead-containing copper alloy water supply device comprising a deleading step of performing a deleading treatment on the inner peripheral surface of the water passage by immersing the workpiece in a deleading solution,
In the deleading process, an antifouling treatment process is performed in which an antifouling film made of a polymer that can be combined with chromium and contains fluorine is formed on the outer peripheral surface of the workpiece.
[0014]
In the manufacturing method of the present invention, in the lead removal process, the work is immersed in the lead removal liquid after the plating process to perform the lead removal treatment on the inner peripheral surface of the water passage. Can be more reliably reduced.
[0015]
Further, in the manufacturing method of the present invention, during the deleading process, an antifouling treatment process is performed to form an antifouling film on the outer peripheral surface of the workpiece, so that the passive film is completely formed on the chromium plating layer. An antifouling film is formed, and the water supply device obtained is one in which the antifouling film is firmly bonded. Moreover, in this manufacturing method, since the PTFE particle | grains are not employ | adopted, the water supply tool obtained will have a specular gloss.
[0016]
Therefore, according to the production method of the present invention, while sufficiently reducing the amount of lead elution into the water from the inner peripheral surface of the water passage, it has excellent antifouling properties and has excellent decorative properties due to mirror gloss. A lead-containing copper alloy water supply device is obtained.
[0017]
As a polymer which can be combined with chromium and contains fluorine, those disclosed in JP-A-2000-62105 can be used. According to the test results of the inventors, as the functional group-containing fluorine-containing ethylene monomer which is one of the components constituting this polymer, those shown in Chemical Formula 1, Chemical Formula 2 or Chemical Formula 3 are preferable. This is because the double bond of oxygen is replaced with the bond of chromium in the chromium plating layer, and the antifouling film is firmly bonded to the chromium plating layer.
[0018]
[Chemical 1]
Figure 2005023338
[0019]
[Chemical 2]
Figure 2005023338
[0020]
[Chemical 3]
Figure 2005023338
[0021]
As the lead removal liquid, since lead is an amphoteric metal, it is conceivable to use an acidic liquid or an alkaline liquid.
[0022]
As the lead removal process, an acid treatment process in which the work after the plating process is immersed in a treatment liquid containing an acid and an acid treatment water washing process in which the treatment liquid is washed from the work after the acid treatment process can be adopted. In this case, the antifouling treatment step is preferably performed during the acid treatment water washing step. Since a passive film is gradually formed on the surface of the chromium plating layer after the plating process, if the antifouling treatment process is performed during the acid treatment water washing process of the deleading process, the passive film is formed on the surface of the chromium plating layer. This is because the antifouling film can be formed on the surface of the chromium plating layer before it is firmly formed. Under the present circumstances, the process liquid containing the acid used at an acid treatment process activates the chromium plating layer of the outer peripheral surface of a workpiece | work, and forms the antifouling film firmly on the surface of a chromium plating layer.
[0023]
The treatment liquid containing an acid also functions as a deleading liquid that performs a deleading process on the inner peripheral surface of the water passage. As the acid contained in the treatment liquid used in the acid treatment step, chromic acid, phosphoric acid, hydrochloric acid, sulfuric acid, acetic acid, nitric acid and the like can be employed. It is preferable that this treatment liquid has a concentration that does not corrode the chromium plating layer. For example, Cr 6+ concentration of several thousand to several hundred thousand ppm chromic acid, 0.1 to 10% phosphoric acid, etc. can be employed.
[0024]
In the manufacturing method of the present invention, in particular, the lead removal process includes an etching process in which the work after the plating process is immersed in an active alkali solution, and lead is etched from the inner peripheral surface of the water passage. An etching water washing process for washing the liquid, an acid treatment / passivation process for immersing the work after the etching water washing process in a treatment liquid containing phosphoric acid, and forming a passive film on the inner peripheral surface of the water passage, and an acid treatment -It can consist of the acid-treated water washing process of washing a process liquid from the workpiece | work after a passivation process. Also in this case, it is preferable to perform the antifouling treatment step during the acid treatment water washing step.
[0025]
The active alkaline solution in the etching process also functions as a deleading solution that performs a deleading process on the inner peripheral surface of the water passage. An active alkaline solution refers to an alkaline solution having a pH ranging from 12 to 14. According to the activated alkaline solution having a pH in this range, the activated alkaline solution tends to cause a chemical reaction with lead on the inner peripheral surface of the water passage, so that the lead is easily dissolved and removed. Such an active alkaline solution is mainly an aqueous solution of sodium carbonate, sodium hydroxide, sodium phosphate, sodium metasilicate, sodium tripolyphosphate, sodium orthosilicate, potassium hydroxide or the like.
[0026]
Phosphoric acid is a series of acids (P 2 O 5 .nH 2 O) produced by hydrating phosphorus pentoxide (P 2 O 5 ) to various degrees. For example, orthophosphoric acid (H 3 PO 4 (0.5P 2 O 5 · 1.5H 2 O)), metaphosphoric acid (HPO 3 (0.5P 2 O 5 · 0.5H 2 O)) and the like. It can also be included in the treatment liquid as a phosphate. As the phosphate, zinc phosphate, manganese phosphate, iron phosphate, zinc phosphate / calcium phosphate, or the like can be used. Examples of the zinc phosphate-based one include those mainly composed of first zinc phosphate (Zn (H 2 PO 4 ) 2 ). In addition, there are sodium phosphate (NaH 2 PO 4 , Na 2 HPO 4 and the like), aluminum phosphate (Al (H 2 PO 4 ) 3 and the like), ammonium phosphate (NH 4 H 2 PO 4 and the like), and the like.
[0027]
When a treatment solution containing phosphoric acid is used in the acid treatment step, a passive film is formed on the inner peripheral surface of the water passage, and this passive film prevents leaching of lead. This passive film is produced as follows when, for example, a treatment liquid mainly composed of primary zinc phosphate (Zn (H 2 PO 4 ) 2 ) and phosphoric acid (H 3 PO 4 ) is used. It is considered to be done.
[0028]
First, when such a treatment liquid is brought into contact with a workpiece made of a lead-containing copper alloy, as shown in Chemical Formula 4, copper is dissolved in the treatment liquid by phosphoric acid to generate copper ions.
[0029]
[Formula 4]
Cu + 2H + → Cu 2+ + H 2
[0030]
Moreover, if lead exists in the inner peripheral surface of the water flow path of the workpiece, as shown in Chemical formula 5, lead can also be dissolved in the treatment liquid by phosphoric acid to generate lead ions.
[0031]
[Chemical formula 5]
Pb + 2H + → Pb 2+ + H 2
[0032]
Here, as shown in Chemical Formula 6, a part of the primary zinc phosphate is dissociated in the treatment liquid.
[0033]
[Chemical 6]
Zn (H 2 PO 4 ) 2 → ZnPO 4 + H 3 PO 4 + H +
[0034]
For this reason, it is considered that the copper ions and / or lead ions in the treatment liquid cause a chemical reaction shown in chemical formula 7 and / or chemical formula 8 below to form a passive film on the surface of the workpiece.
[0035]
[Chemical 7]
Cu 2+ + 2ZnPO 4 → Zn 2 Cu (PO 4 ) 2
[0036]
[Chemical 8]
Pb 2+ + 2ZnPO 4 → Zn 2 Pb (PO 4 ) 2
[0037]
In addition to Zn 2 Cu (PO 4 ) 2 and Zn 2 Pb (PO 4 ) 2 , Zn 3 (PO 4 ) 2 .4H 2 O or / and Zn (H 2 PO 4 ) 2 are inactive crystals. It is thought that the passive film which consists of is formed. According to the experimental results of the inventors, lead leaching can be prevented by the passive film thus formed.
[0038]
Further, phosphoric acid or phosphate has almost no toxicity compared to a chromium plating bath containing chromic acid for forming a chromium plating layer or a chromate solution containing chromic acid for passivation. For this reason, these washing | cleaning liquids etc. can be disposed only by performing neutralization or dilution with respect to the washing liquid or waste liquid which washed each workpiece | work after making a process liquid contact. Therefore, management of the cleaning liquid and the like is also simplified.
[0039]
The acid-treated water washing step is usually performed by sequentially immersing the workpiece in a plurality of water washing tanks. As a result, the concentration of the water treatment solution in the water rinsing tank is gradually lowered to eliminate environmental problems. The water stored in the washing tank may be room temperature water or 40 to 60 ° C. hot water. In this case, the antifouling treatment step can be performed by adding an antifouling liquid in which the polymer is dispersed to at least one washing tank. Accordingly, the production method of the present invention can be carried out using a normal production line for water supply equipment as it is.
[0040]
Of the plurality of washing tanks, the antifouling liquid can be added to a warm water washing tank in which warm water is stored. The hot water washing in which the acid-treated water washing step is performed with warm water is usually positioned on the most downstream side of the water washing in which the acid-treated water washing step is performed with room temperature water. As a result, the treatment liquid can be completely removed from the workpiece, and the water can easily evaporate from the workpiece after washing, thereby omitting the drying step. If the antifouling treatment step is performed during hot water washing, the antifouling film is more activated and is considered to be firmly bonded to the chromium of the chromium plating layer.
[0041]
Of the plurality of washing tanks, it is preferable to add an antifouling liquid to the downstream side. When the lead removal step after the plating step is performed without going through the water washing step so much from the chromium plating step, the water in the water washing tank contains a chromium plating bath having a higher concentration on the upstream side. For this reason, when the antifouling liquid is added to the upstream washing tank, the polymer of the antifouling liquid is combined with the chromium in the chromium plating bath and is wasted. On the other hand, if the antifouling liquid is added to the downstream washing tank, the polymer of the antifouling liquid more reliably binds to the chromium of the chrome plating layer of the workpiece, and reliably generates an antifouling film. Become.
[0042]
Various works can be adopted, but it is preferable to employ a work for a faucet fitting. This is because the faucet fitting is used to remove dirt with water or hot water, and dirt is likely to adhere to the water faucet, while a high aesthetic appearance has been conventionally demanded.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
Examples 1 to 5 and Comparative Examples 1 and 2 embodying the present invention will be described below with reference to the drawings.
[0044]
(Example 1)
In Example 1, the present invention is implemented as follows according to the steps shown in FIG. First, a work made of JISCAC406 (6 types of bronze) made of a cast product, a forged product, a bar material, or a pipe material is prepared. This work is for faucet fittings. The workpiece is cut in the cutting step S10 and then polished in the polishing step S20. Thus, as shown in FIG. 4A, the workpiece W after the polishing step S20 is obtained. This work W consists only of the base material 1 which has the water flow path 1a which lets water pass. As shown in FIG. 1, a plating step S <b> 30 for applying a nickel / chrome plating layer to the outer peripheral surface is performed on the workpiece W.
[0045]
In the plating step S30, after the pretreatment step, a nickel plating step using a nickel plating bath and a chromium plating step using a chromium plating bath are performed. Thereby, the nickel plating layer 2 is applied to the outer peripheral surface of the workpiece W as shown in FIG. The nickel plating layer 2 realizes smoothing of the surface and excellent corrosion resistance. Further, the chromium plating layer 3 is applied to the outer peripheral surface of the workpiece W. In addition, the water-washing process which rinses a plating bath also exists between each plating process.
[0046]
Next, as shown in FIG. 1, the lead removal process and the antifouling process S <b> 40 are performed on the workpiece W. First, as shown in FIG. 2, an etching step S41 is performed. Here, the workpiece W after the plating step S30 is immersed in the active alkali solution for 10 minutes. The active alkaline solution is a strong alkaline aqueous solution having a pH of 14 containing 50 g / l of sodium hydroxide, and its temperature is 50 ° C. Thereby, as shown in FIG.4 (C), the low lead layer 4 with few lead is formed in the internal peripheral surface of the water flow path 1a. Then, as shown in FIG. 2, etching water washing process S42 is performed. Thereby, the active alkali solution is washed with water from the work W after the etching step S41.
[0047]
Then, an acid treatment / passivation step S43 is performed. Here, the work W after the etching water washing step S42 is immersed in a treatment liquid containing phosphoric acid for 10 minutes. This treatment liquid is an aqueous solution of 0.9% by mass of phosphoric acid (H 3 PO 4 ), and its temperature is 50 ° C. As a result, as shown in FIG. 4D, lead is further removed from the low lead layer 4 on the inner peripheral surface of the water passage 1 a, and a passive film 5 is formed inside the low lead layer 4. Thereafter, as shown in FIG. 2, an acid-treated water washing step and an antifouling treatment step S44 are performed. As a result, the treatment liquid is washed with water from the work W after the acid treatment / passivation step S43, and the antifouling film 6 is formed on the outer peripheral surface of the work W as shown in FIG.
[0048]
Here, as shown in FIG. 3, the acid-treated water washing step S44 uses water washing tanks 11 to 13 for performing water washing in 2 to 6 stages and warm water washing tanks 14 and 15 for performing hot water washing in two stages. This is performed by sequentially immersing the workpiece W after the acid treatment / passivation step S43 in these. The temperature of water for water washing is room temperature, and the temperature of hot water for hot water washing is 40 to 60 (50 ± 10) ° C. As a result, the pH of the water in the water washing tanks 11 to 13 and the warm water washing tanks 14 and 15 is gradually lowered from 3 to 5.5,... 7 to eliminate environmental problems. In addition, if the pH of the water in the flush tank 11 on the most upstream side becomes lower than the limit, the flush tank 11 is sent to the purification treatment, and the downstream flush tanks 12 to 13 are sequentially moved to the upstream side.
[0049]
Further, an antifouling liquid (manufactured by Daikin Industries, Ltd.) in which a polymer that can be combined with chromium and contains fluorine is prepared. The polymer in the antifouling liquid is composed of a functional group-containing fluorine-containing ethylene monomer.
[0050]
In Example 1, as antifouling treatment process S44, 0.1 mass% of antifouling liquid is added to one water washing tank 12 of water washing tanks 11-13 with respect to water. According to the tests by the inventors, the antifouling liquid can be added up to about 10% by mass with respect to water.
[0051]
In this manner, a normal faucet fitting production line is used as it is, and the workpiece W shown in FIGS. 4E and 5 is obtained. And as shown in FIG. 1, this workpiece | work W is assembled by assembly process S50 and an antifouling water faucet is obtained.
[0052]
As shown in FIG. 5, the obtained antifouling water faucet has a base material 1 having a water passage 1a through which water passes, a nickel plating layer 2 formed on the outer peripheral surface side of the base material 1, and this nickel plating. Formed on the outer peripheral surface side of the layer 2, the antifouling film 6 of the polymer formed on the outer peripheral surface side of the chromium plating layer 3, and the inner peripheral surface side of the substrate 1. The low lead layer 4 and the passive film 5 formed on the inner peripheral surface side of the low lead layer 4.
[0053]
In this antifouling water faucet, in the deleading step S40, the work W is immersed in the active alkaline solution and the treatment solution after the plating step S30 to perform the deleading treatment on the inner peripheral surface of the water passage 1a. The low lead layer 4 and the passive film 5 are formed on the peripheral surface, and the amount of lead elution from the inner peripheral surface of the water passage 1a into water can be reduced more reliably.
[0054]
Further, this antifouling water faucet had a water contact angle of 95 ° or more, and had excellent antifouling properties due to water repellency and the like. In particular, this antifouling water faucet has excellent durability, with a water contact angle hardly decreasing even when used. Thus, in this manufacturing method, the antifouling treatment step S44 is performed during the acid treatment water washing step S44, so that the passivation film 93 as shown in FIG. Since the dirty film 6 is formed on the surface of the chromium plating layer 3, the antifouling film 6 is firmly bonded to the obtained antifouling water faucet. Moreover, in this manufacturing method, since the PTFE particle | grains are not employ | adopted, the antifouling water faucet | fitting obtained had mirror surface glossiness.
[0055]
In Example 1, the antifouling liquid can be added to the washing tanks 11 and 13 other than the washing tank 12 or all the washing tanks 11 to 13.
[0056]
(Example 2)
In Example 2, as shown in FIG. 6, as the antifouling treatment step S44, 0.1% by mass of the antifouling liquid is added to the hot water washing tank 14 with respect to water. Other conditions are the same as in the first embodiment. A similar antifouling water faucet can also be produced by this production method.
[0057]
In Example 2, the antifouling liquid can be added to the hot water / water tub 15 other than the hot water / water tub 14 or the both hot water / water tubs 14 and 15.
[0058]
Example 3
In Example 3, as shown in FIG. 7, as the antifouling treatment step S44, a line of the antifouling treatment tank 21 is provided between the two water washing tanks 12 and 13 on the downstream side. The antifouling treatment tank 21 is added with 0.1% by mass of an antifouling liquid with respect to 65 ° C. warm water. Other conditions are the same as in the first embodiment. In this manufacturing method, the same antifouling water faucet can be manufactured only by slightly changing the production line of a normal water supply device.
[0059]
(Example 4)
In Example 4, as the antifouling treatment step S44, as shown in FIG. 8, a line of the antifouling treatment tank 21 is provided between the hot and cold water washing tanks 14 and 15. Other conditions are the same as in Example 3. Also in this manufacturing method, the same effect as Example 3 can be produced.
[0060]
In addition, it is also possible to add antifouling liquid to all the water-washing tanks 11-13 and the hot-water water-washing tanks 14 and 15.
[0061]
(Example 5)
In Example 5, as shown in FIG. 9, the acid treatment / reactivation treatment step S45 is performed after the etching step S41 and the etching water washing step S42. The treatment liquid used at this time is an aqueous solution of Cr 6+ having a concentration of several thousand to several hundred thousand ppm, such as chromic acid and 0.1 to 10% phosphoric acid. With this treatment liquid, the chromium plating layer 3 on the outer peripheral surface of the workpiece W is activated, and the antifouling film 6 is firmly formed on the surface of the chromium plating layer 3. Moreover, the lead removal process of the internal peripheral surface of the water flow path 1a is also performed with this process liquid. Thereafter, the acid treatment water washing step and the antifouling treatment step S44 of Example 1 and the like are performed. Other conditions are the same as in Example 1. Also in this manufacturing method, the same operation effect as Example 1 etc. can be produced.
[0062]
(Comparative Example 1)
An ordinary faucet fitting with no antifouling property on the surface is obtained. This faucet fitting had a water contact angle of 50 to 85 ° or more, was easily soiled, and the attached soiling was difficult to remove.
[0063]
(Comparative Example 2)
A normal water faucet with no antifouling property on the surface was once manufactured, and an antifouling liquid was directly applied to the water faucet. The antifouling water faucet thus obtained had a water contact angle of 85 to 90 °, but the water contact angle was liable to be lowered by use and the durability was poor. This is because in this antifouling faucet fitting, since the faucet fitting once manufactured has a passive film 93 as shown in FIG. 10, the antifouling coating is not firmly bonded.
[0064]
Therefore, according to the manufacturing methods of Examples 1 to 5, while having an excellent antifouling property while sufficiently reducing the amount of lead eluted into the water from the inner peripheral surface of the water passage 1a, it is excellent due to mirror gloss. It can be seen that an antifouling faucet having a decorative property can be obtained.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a production method of Examples 1 to 5.
FIG. 2 is a process diagram showing a production method of Examples 1 to 4.
3 is a process diagram showing an acid-treated water washing process and an antifouling process of the production method of Example 1. FIG.
4A is a cross-sectional view of the work after the polishing process, FIG. 4B is a cross-sectional view of the work after the plating process, FIG. 4C is a cross-sectional view of the work after the etching process, and FIG. Is a cross-sectional view of the work after the acid treatment / passivation step, and FIG. (E) is a cross-sectional view of the work after the antifouling treatment step.
FIG. 5 is an enlarged cross-sectional view of the work after the antifouling treatment step.
6 is a process diagram showing an acid-treated water washing step and an antifouling treatment step of the production method of Example 2. FIG.
7 is a process diagram showing an acid-treated water washing step and an antifouling treatment step of the production method of Example 3. FIG.
8 is a process diagram showing an acid-treated water washing step and an antifouling treatment step of the production method of Example 4. FIG.
9 is a process chart showing the production method of Example 5. FIG.
10 is an enlarged cross-sectional view of a workpiece according to a conventional example and Comparative Example 2. FIG.
[Explanation of symbols]
W ... Work 1a ... Water passage 2 ... Nickel plating layer 3 ... Chromium plating layer S30 ... Plating step S40 ... Deleading step, antifouling treatment step S41 ... Etching step S42 ... Etching water washing step S43 ... Acid treatment / passivation step S44 ... acid treatment water washing process, antifouling treatment process 6 ... antifouling film 5, 93 ... passive film 11-15 ... water washing tank (14, 15 ... warm water washing tank)

Claims (7)

鉛含有銅合金からなり、水を通す通水路を有するワークの外周面にニッケル・クロムめっき層を施すめっき工程と、該めっき工程後に該ワークを脱鉛液に浸漬して該通水路の内周面の脱鉛処理を行う脱鉛工程とを備えた鉛含有銅合金製水道用器具の製造方法において、
前記脱鉛工程中において、クロムと結合可能であってフッ素を含むポリマーからなる防汚皮膜を前記ワークの外周面に形成する防汚処理工程を行うことを特徴とする鉛含有銅合金製水道用器具の製造方法。
A plating step comprising a lead-containing copper alloy and having a water passage for passing water, and a nickel / chromium plating layer applied to the outer peripheral surface of the workpiece, and the inner circumference of the water passage by immersing the workpiece in a delead solution after the plating step In a method for producing a lead-containing copper alloy water supply device having a deleading process for performing a deleading process on a surface,
In the deleading process, the antifouling treatment process is performed for forming an antifouling film made of a polymer that can be combined with chromium and contains fluorine on the outer peripheral surface of the workpiece. Instrument manufacturing method.
前記脱鉛工程は、前記めっき工程後の前記ワークを酸を含む処理液に浸漬する酸処理工程と、該酸処理工程後の該ワークから該処理液を水洗する酸処理水洗工程とからなり、前記防汚処理工程を該酸処理水洗工程中に行うことを特徴とする請求項1記載の鉛含有銅合金製水道用器具の製造方法。The lead removal step includes an acid treatment step of immersing the workpiece after the plating step in a treatment solution containing an acid, and an acid treatment water washing step of washing the treatment solution from the workpiece after the acid treatment step, The method for producing a lead-containing copper alloy water supply device according to claim 1, wherein the antifouling treatment step is performed during the acid treatment water washing step. 前記脱鉛工程は、前記めっき工程後の前記ワークを活性アルカリ液に浸漬し、前記通水路の内周面から鉛をエッチングするエッチング工程と、該エッチング工程後の該ワークから該活性アルカリ液を水洗するエッチング水洗工程と、該エッチング水洗工程後の該ワークをリン酸を含む処理液に浸漬し、該通水路の内周面に不動態皮膜を形成する酸処理・不動態化工程と、該酸処理・不動態化工程後の該ワークから該処理液を水洗する酸処理水洗工程とからなり、前記防汚処理工程を該酸処理水洗工程中に行うことを特徴とする請求項1記載の鉛含有銅合金製水道用器具の製造方法。The deleading step includes immersing the workpiece after the plating step in an active alkaline solution, etching the lead from the inner peripheral surface of the water passage, and removing the active alkaline solution from the workpiece after the etching step. An etching water washing step for washing with water, an acid treatment / passivation step for immersing the workpiece after the etching water washing step in a treatment solution containing phosphoric acid, and forming a passive film on the inner peripheral surface of the water passage, The acid treatment / passivation step is followed by an acid treatment water washing step in which the treatment liquid is washed from the workpiece, and the antifouling treatment step is performed during the acid treatment water washing step. A method for producing lead-containing copper alloy water supply equipment. 前記酸処理水洗工程は複数の水洗槽に前記ワークを順次浸漬することにより行われ、前記防汚処理工程は前記ポリマーを分散させてなる防汚液を少なくとも一の該水洗槽に添加することにより行うことを特徴とする請求項2又は3記載の鉛含有銅合金製水道用器具の製造方法。The acid-treated water washing step is performed by sequentially immersing the work in a plurality of water washing tanks, and the antifouling treatment step is performed by adding an antifouling liquid in which the polymer is dispersed to at least one of the water washing tanks. The method for producing a lead-containing copper alloy water supply device according to claim 2 or 3, wherein the method is performed. 複数の前記水洗槽のうち、温水を貯溜してなる温水洗槽に前記防汚液を添加することを特徴とする請求項4記載の鉛含有銅合金製水道用器具の製造方法。The said antifouling liquid is added to the warm water washing tank which stores warm water among the said several washing tanks, The manufacturing method of the lead-containing copper alloy water supply apparatus of Claim 4 characterized by the above-mentioned. 複数の水洗槽のうち、下流側に前記防汚液を添加することを特徴とする請求項4又は5記載の鉛含有銅合金製水道用器具の製造方法。The method for producing a lead-containing copper alloy water supply device according to claim 4 or 5, wherein the antifouling liquid is added to a downstream side of the plurality of washing tanks. 前記ワークは水栓金具用のものであることを特徴とする請求項1乃至6のいずれか1項記載の鉛含有銅合金製水道用器具の製造方法。The method for producing a lead-containing copper alloy water supply device according to any one of claims 1 to 6, wherein the workpiece is for a faucet fitting.
JP2003187339A 2003-06-30 2003-06-30 Method of producing apparatus for city water made of lead-containing copper alloy Pending JP2005023338A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003187339A JP2005023338A (en) 2003-06-30 2003-06-30 Method of producing apparatus for city water made of lead-containing copper alloy
PCT/JP2004/007255 WO2005001160A1 (en) 2003-06-30 2004-05-27 Method for manufacturing water appliance made from copper alloy containing lead
CN 200480018040 CN1813081A (en) 2003-06-30 2004-05-27 Method for manufacturing water appliance made from copper alloy containing lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187339A JP2005023338A (en) 2003-06-30 2003-06-30 Method of producing apparatus for city water made of lead-containing copper alloy

Publications (1)

Publication Number Publication Date
JP2005023338A true JP2005023338A (en) 2005-01-27

Family

ID=33549724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187339A Pending JP2005023338A (en) 2003-06-30 2003-06-30 Method of producing apparatus for city water made of lead-containing copper alloy

Country Status (3)

Country Link
JP (1) JP2005023338A (en)
CN (1) CN1813081A (en)
WO (1) WO2005001160A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180837A1 (en) * 2017-03-27 2018-10-04 株式会社Lixil Method for manufacturing water supply device, and water supply device
WO2020067510A1 (en) * 2018-09-27 2020-04-02 Toto株式会社 Faucet fixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055446A1 (en) * 2007-11-12 2009-05-14 Hansgrohe Ag Provision of water-bearing components from brass alloys with reduced metal ion release

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000062105A (en) * 1998-08-24 2000-02-29 Daikin Ind Ltd Structure having transparent layer composed of fluorinecontaining polymer and reflecting sheet using it
JP3866198B2 (en) * 2000-10-31 2007-01-10 株式会社Inax Lead removal method and faucet fitting for plated products made of lead-containing copper alloy having a cylindrical part, and lead leaching prevention method and faucet fitting for lead-containing copper alloy products
JP2004217950A (en) * 2003-01-09 2004-08-05 Daikin Ind Ltd Surface treatment agent for plated film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180837A1 (en) * 2017-03-27 2018-10-04 株式会社Lixil Method for manufacturing water supply device, and water supply device
WO2020067510A1 (en) * 2018-09-27 2020-04-02 Toto株式会社 Faucet fixture
CN111247297A (en) * 2018-09-27 2020-06-05 Toto株式会社 Water faucet part
JP2020164977A (en) * 2018-09-27 2020-10-08 Toto株式会社 Faucet metal fitting
EP3842596A4 (en) * 2018-09-27 2022-01-19 Toto Ltd. Faucet fixture

Also Published As

Publication number Publication date
CN1813081A (en) 2006-08-02
WO2005001160A1 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
CN102947486B (en) The method of preservative coat is prepared in metallic surface
JP2004003025A (en) Surface treatment imparting corrosion resistance for adhesion of adhesive for structure of metal
US6656294B1 (en) Method of reducing elution of lead in lead-containing copper alloy, and drinking water service fittings made of lead-containing copper alloy
CN102686780B (en) Pretreatment process for aluminum and high etch cleaner used therein
JP2005171296A (en) Trivalent chromate solution for aluminum or aluminum alloy, and method for forming corrosion-resistant film on surface of aluminum or aluminum alloy by using the same
KR101536514B1 (en) Passivation treatment method for imporving corrosion of stainless steel produts
KR101738089B1 (en) Electrodeposition coating method that generation of bubbles is prevented
JP4197269B2 (en) Nickel elution prevention method for copper alloy piping equipment such as valves and fittings and its copper alloy piping equipment
JP3866198B2 (en) Lead removal method and faucet fitting for plated products made of lead-containing copper alloy having a cylindrical part, and lead leaching prevention method and faucet fitting for lead-containing copper alloy products
JP2005023338A (en) Method of producing apparatus for city water made of lead-containing copper alloy
US7001533B2 (en) Chromate-free method for surface etching of aluminum and aluminum alloys
JPWO2004024987A1 (en) Lead elution reduction processing method for lead-containing copper alloy and lead-containing copper alloy water supply device
CN107335550A (en) A kind of high anti-corrosion incrustation scale of high fatigue rinses valve body and its manufacture method
WO2004081257A1 (en) Method for manufacturing utensil for drinking water system made from lead-containing copper alloy, cast and lead-removed utensil for drinking water system, and utensil for drinking water system
JP2008231561A (en) Alkali degreasing/cleaning agent for aluminum or aluminum alloy, and pretreatment method for aluminum or aluminum alloy using the same
CN111074259A (en) Metal plate surface passivation treatment method
JP4103861B2 (en) Blackened steel sheet and manufacturing method thereof
JP2005325403A (en) Surface treatment method for aluminum die-cast material
JP5406505B2 (en) Aqueous chemical conversion liquid and chemical conversion stainless steel sheet
JP2007100186A (en) Chemical conversion treatment method
JP2002088483A (en) Composition and method for surface treatment of aluminum and alloy thereof
JP2004285373A (en) Method for forming highly corrosion resistant chemical conversion coating containing no hexavalent chromium and fluorine on aluminum or aluminum alloy and highly corrosion resistant aluminum or aluminum alloy
JP6396620B1 (en) Surface treatment method for stainless steel cooling pipe for beer server and beer server assembly method
JP2000017447A (en) Faucet fitting
JP2011012342A (en) Method for producing apparatus for city water made of lead-containing copper alloy, and treatment method therefor