JP2005022622A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2005022622A
JP2005022622A JP2003270990A JP2003270990A JP2005022622A JP 2005022622 A JP2005022622 A JP 2005022622A JP 2003270990 A JP2003270990 A JP 2003270990A JP 2003270990 A JP2003270990 A JP 2003270990A JP 2005022622 A JP2005022622 A JP 2005022622A
Authority
JP
Japan
Prior art keywords
region
tire
rubber
tan
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003270990A
Other languages
Japanese (ja)
Other versions
JP4303051B2 (en
Inventor
Tamotsu Mizutani
保 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2003270990A priority Critical patent/JP4303051B2/en
Publication of JP2005022622A publication Critical patent/JP2005022622A/en
Application granted granted Critical
Publication of JP4303051B2 publication Critical patent/JP4303051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire which can achieve low fuel consumption and improve brake performance at the same time, which conflict with each other. <P>SOLUTION: A Rolling Resistance Coefficient (RRC), in other words, the low fuel consumption and the brake performance, which conflict with each other, can be achieved and improved at the same time as follows. A tread is formed so as to have a dual layered structure composed of cap rubber layers arranged on both sides of the tread and a base rubber layer arranged inside the cap rubber layer. The cap rubber layer is divided into five regions in the direction of the width of the tire. Rubber moduli in the central region X, the intermediate region Y, and the shoulder region Z are set so as to satisfy X≤Z<Y, and a loss tangent (tan δ) are set so as to satisfy X≤Y<Z. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低燃費化と制動性能の向上を両立した空気入りタイヤに関するものである。  The present invention relates to a pneumatic tire that achieves both low fuel consumption and improved braking performance.

自動車のタイヤのトレッド部における転がり抵抗は車両の燃費に影響を与える。トレッドゴムのtanδ(損失弾性率/貯蔵弾性率)はエネルギーの吸収度合いを示すもので、tanδが小さいほど、転がり抵抗が小さくなり、低燃費化が実現できる。
一方、タイヤの諸特性として制動性能もタイヤにとっては重要である。この制動性能はゴムモジュラス(ゴム弾性率)が重要な要素になることが知られている。ゴムモジュラスが高いほど、制動性能が良好となる。
Rolling resistance in the tread portion of an automobile tire affects the fuel consumption of the vehicle. The tan δ (loss elastic modulus / storage elastic modulus) of the tread rubber indicates the degree of energy absorption. The smaller the tan δ, the lower the rolling resistance and the lower the fuel consumption.
On the other hand, braking performance is also important for the tire as various characteristics of the tire. It is known that the rubber modulus (rubber elastic modulus) is an important factor for this braking performance. The higher the rubber modulus, the better the braking performance.

しかしながら、トレッドゴムのtanδを小さくして低燃費化を図る試みがなされたが、これと二律背反する制動性能、特に、ウエット性等の性能低下が生じてしまう可能性があるため、従来からトレッド面を複数領域に分割し、夫々の部位に特徴あるトレッドゴム配合を分割配置させ、転がり抵抗の低減と制動性能の両立を図る試みがなされてきた。
特許文献1には、トレッドゴムをタイヤ軸方向に少なくとも3分割し、タイヤ赤道面付近のゴムを高弾性ゴムに、ショルダー部付近のゴムを低弾性ゴムとし、これらのゴムのtanδをほぼ同一にする空気入りタイヤが開示されている。さらに、特許文献1では、トレッドゴムがタイヤ幅方向で4分割以上されている場合、タイヤ赤道面付近のゴムとショルダー部付近のゴムの中間に位置するゴムの動的弾性率を、両ゴムの動的弾性率の中間の値にするのが好ましいことが記載されている。
特開平7−164821号(段落0004〜0009参照)
However, attempts have been made to reduce fuel consumption by reducing the tan δ of the tread rubber. However, there is a possibility that the braking performance contradicting this, particularly performance degradation such as wetness, may occur. Attempts have been made to achieve both reduction in rolling resistance and braking performance by dividing the tire into a plurality of regions and dividing and arranging a characteristic tread rubber compound in each region.
In Patent Document 1, the tread rubber is divided into at least three in the tire axial direction, the rubber near the tire equatorial plane is made high elastic rubber, the rubber near the shoulder portion is made low elastic rubber, and tan δ of these rubbers is almost the same. A pneumatic tire is disclosed. Furthermore, in Patent Document 1, when the tread rubber is divided into four or more in the tire width direction, the dynamic elastic modulus of the rubber located in the middle between the rubber near the tire equator surface and the rubber near the shoulder portion is expressed as the two rubbers. It is described that it is preferable to set it to an intermediate value of the dynamic elastic modulus.
Japanese Patent Laid-Open No. 7-164821 (see paragraphs 0004 to 0009)

しかしながら、特許文献1に示す技術は、ウエット性などの他の性能を維持しながらタイヤ全体の転がり抵抗を低減する手法であり、制動性能の向上と同時に低燃費化も図れる空気入りタイヤの提供には至っていない。  However, the technique shown in Patent Document 1 is a method of reducing the rolling resistance of the entire tire while maintaining other performance such as wettability, and provides a pneumatic tire that can improve fuel consumption and reduce fuel consumption at the same time. Has not reached.

そこで、本発明は、二律背反する転がり抵抗の低減と制動性能を同時に向上させることができる空気入りタイヤの提供を目的としている。  Accordingly, an object of the present invention is to provide a pneumatic tire capable of simultaneously reducing the anti-rolling resistance and improving the braking performance.

上記目的を達成するため、本発明者は、特許文献1に開示されたトレッドゴムのタイヤ幅方向の3分割化をさらに進めて、タイヤ幅方向において、タイヤ赤道面が通るセンター領域Xと、センター領域を挟んでその両側に形成される中間領域Yと、中間領域のさらに外側に形成されるショルダー領域Zとからなる5つの領域に区分し、これら各領域のゴム物性のうち、ゴムモジュラスとtanδに着目して、これらを種々変更することにより、二律背反する転がり抵抗の低減と制動性能の向上とを同時に満足させる空気入りタイヤの提供を目指した。  In order to achieve the above-mentioned object, the present inventor further advances the division of the tread rubber disclosed in Patent Document 1 into three in the tire width direction, the center region X through which the tire equatorial plane passes in the tire width direction, and the center The region is divided into five regions consisting of an intermediate region Y formed on both sides of the region and a shoulder region Z formed further outside the intermediate region. Of the rubber properties of each region, the rubber modulus and tan δ Focusing on the above, by changing these variously, we aimed to provide a pneumatic tire that simultaneously satisfies the contradictory reduction in rolling resistance and improved braking performance.

その結果、以下の知見が得られた。まず、制動性能はモジュラスを高めることのみならず、接地圧分布の影響を大きいことが判明した。タイヤ幅方向の各領域におけるモジュラスと接地圧分布の影響は、センター領域よりもショルダー領域の感度が高く、ショルダー領域でモジュラスを高くすれば、その影響が大きいことが判明した。  As a result, the following knowledge was obtained. First, it has been found that the braking performance not only increases the modulus, but also greatly affects the contact pressure distribution. It has been found that the effects of the modulus and contact pressure distribution in each region in the tire width direction are more sensitive if the sensitivity of the shoulder region is higher than that of the center region and the modulus is increased in the shoulder region.

また、転がり抵抗に関連するRRC(Rolling Resistance Coefficient:転がり抵抗係数)に着目して、tanδの影響を考察してみたところ、ショルダー領域よりもセンター領域での感度が高く、センター領域でのtanδを高くすれば、これに対するRRCの影響が大きくなることが判明した。  Further, focusing on the RRC (Rolling Resistance Coefficient) related to the rolling resistance, the influence of tan δ was examined. As a result, the sensitivity in the center region was higher than that in the shoulder region, and It became clear that the effect of RRC on this would increase if the value was increased.

上記知見の下、タイヤの接地圧分布に対して感度の高いショルダー領域ではなく、感度の低い中間領域のみモジュラスの高いゴムを使用することで、接地圧分布の悪化を抑えて制動性能の向上を図り、また、歪エネルギーに対して感度の高いセンター領域のtanδを低くすれば、二律背反するRRCと制動性能を同時に向上させることができることを見出した。  Based on the above knowledge, it is possible to improve the braking performance by suppressing the deterioration of the contact pressure distribution by using rubber with high modulus only in the intermediate region where the sensitivity is low, not the shoulder region which is highly sensitive to the contact pressure distribution of the tire. In addition, it has been found that if the tan δ of the center region, which is highly sensitive to strain energy, is lowered, the RRC and braking performance that are contradictory can be improved at the same time.

すなわち、本発明に係る空気入りタイヤは、トレッド部がタイヤ幅方向において、タイヤ赤道面が通るセンター領域Xと、センター領域を挟んでその両側に形成される中間領域Yと、中間領域のさらに外側に形成されるショルダー領域Zとから5つの領域に区分され、これらの領域のゴムモジュラスがX≦Z<Yに設定され、損失正接(tanδ)がX≦Y<Zに設定されていることが特徴としている。   That is, the pneumatic tire according to the present invention has a tread portion in the tire width direction, a center region X through which the tire equatorial plane passes, an intermediate region Y formed on both sides of the center region, and an outer side of the intermediate region. Are divided into five regions, the rubber modulus of these regions is set to X ≦ Z <Y, and the loss tangent (tan δ) is set to X ≦ Y <Z. It is a feature.

上記構成によると、ゴムモジュラスをX≦Z<Yとすることで、感度の高いショルダー領域における接地圧増加を抑え、制動性能を向上させることができ、かつ前後剛性をアップさせることができる。また、tanδをX≦Y<Zとすることにより、センター領域における転がり抵抗の低減を図ることができる。  According to the above configuration, by setting the rubber modulus to X ≦ Z <Y, an increase in contact pressure in a highly sensitive shoulder region can be suppressed, braking performance can be improved, and front-rear rigidity can be increased. Further, by setting tan δ to X ≦ Y <Z, it is possible to reduce the rolling resistance in the center region.

トレッド部は、タイヤ半径方向で単層構造あるいは複層構造を問わないが、近年、タイヤの諸特性を有効に発揮する複層構造に本発明を適用するのが好適である。すなわち、トレッド部が、トレッド面側のキャップゴム層と、その内側に配置されるベースゴム層との2層構造からなり、キャップゴム層が、タイヤ幅方向において、センター領域、中間領域、およびショルダー領域の5つの領域に区分された空気入りタイヤにおいて、上記領域の各ゴムモジュラスとtanδを適用するのが好ましい。  The tread portion may be a single layer structure or a multi-layer structure in the tire radial direction. However, in recent years, it is preferable to apply the present invention to a multi-layer structure that effectively exhibits various characteristics of the tire. That is, the tread portion has a two-layer structure of a cap rubber layer on the tread surface side and a base rubber layer disposed inside the tread portion, and the cap rubber layer has a center region, an intermediate region, and a shoulder in the tire width direction. In a pneumatic tire divided into five regions, it is preferable to apply each rubber modulus and tan δ of the region.

以上の説明から明らかなように、本発明によると、キャップゴム層を5領域に区分し、センター領域X、中間領域Y及びショルダー領域ZのゴムモジュラスをX≦Z<Yに設定し、損失正接(tanδ)をX≦Y<Zに設定することにより、RRC、つまり低燃費化と制動性能の二律背反する性能の両方を向上させることができる。  As apparent from the above description, according to the present invention, the cap rubber layer is divided into five regions, the rubber moduli of the center region X, the intermediate region Y, and the shoulder region Z are set to X ≦ Z <Y, and the loss tangent By setting (tan δ) to X ≦ Y <Z, it is possible to improve both RRC, that is, the fuel consumption reduction and anti-braking performance.

以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明の実施形態を示す空気入りタイヤのうち、トレッド部におけるラジアルタイヤの軸(幅)方向の要部断面図であり、タイヤ赤道面Aから一側のトレッド端部Bまでを図示している。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a main portion in the axial (width) direction of a radial tire in a tread portion of a pneumatic tire showing an embodiment of the present invention, and shows from a tire equatorial plane A to a tread end portion B on one side. Show.

このラジアルタイヤ1は、一対のビード部から半径方向外向きに延びるサイドウォール部(共に図示略)と、その上端をつなぐトレッド部2と、これらの内周に沿って両端がビードコア(図示略)で折返されて支持されたカーカス6(一部図示)とを備えている。トレッド部2とカーカス6の間にベルト層7を備えており、その補強構造は一般的なラジアルタイヤの場合と同様であるので、詳細な説明は省略する。  The radial tire 1 includes a sidewall portion (both not shown) extending radially outward from a pair of bead portions, a tread portion 2 connecting the upper ends thereof, and bead cores (not shown) at both ends along the inner periphery thereof. And a carcass 6 (partially shown) supported by being folded. Since the belt layer 7 is provided between the tread portion 2 and the carcass 6 and the reinforcing structure thereof is the same as that of a general radial tire, detailed description thereof is omitted.

トレッド部2は、キャップゴム層10とその内方に位置するベースゴム層11の2層からなるキャップ−ベース構造を備えている。キャップゴム層10の外周面にはタイヤ周方向に直線状もしくはジグザグ状をなして延びる複数本の主溝12a,12b(本実施形態では4条の主溝)が形成され、さらに図示を省略しているが、通常、前記の主溝12a,12bと交叉する方向の横溝、さらにはタイヤ周方向で主溝よりも細幅の副溝や横溝を繋ぐ補助溝が形成されて、所定のトレッドパターンが形成されている。  The tread portion 2 has a cap-base structure composed of two layers of a cap rubber layer 10 and a base rubber layer 11 located inside the cap rubber layer 10. A plurality of main grooves 12a and 12b (four main grooves in this embodiment) are formed on the outer peripheral surface of the cap rubber layer 10 so as to extend linearly or in a zigzag shape in the tire circumferential direction. However, normally, a lateral groove in a direction intersecting with the main grooves 12a and 12b, and further, an auxiliary groove connecting a sub-groove and a lateral groove narrower than the main groove in the tire circumferential direction are formed, and a predetermined tread pattern is formed. Is formed.

キャップゴム層10は、それぞれ赤道面Aを中心に挟んで形成されたセンター領域Xと、センター領域Xを挟んでその両側に形成される中間領域Yと、中間領域Yを挟んでその両側に形成されるショルダー領域Zの合計5つの領域に区分されている。キャップゴム層10におけるセンター領域X、中間領域Y、ショルダー領域Zの各部位を10x、10y、10zで示す。  The cap rubber layer 10 is formed with a center region X formed with the equator plane A as the center, an intermediate region Y formed with both sides of the center region X, and both sides with the intermediate region Y interposed therebetween. The shoulder region Z is divided into a total of five regions. Each part of the center region X, the intermediate region Y, and the shoulder region Z in the cap rubber layer 10 is indicated by 10x, 10y, and 10z.

そして、センター領域X、中間領域Y及びショルダー領域ZのゴムモジュラスがX≦Z<Yに設定され、損失正接(tanδ)がX≦Y<Zに設定されている。  The rubber modulus of the center region X, the intermediate region Y, and the shoulder region Z is set to X ≦ Z <Y, and the loss tangent (tan δ) is set to X ≦ Y <Z.

センター領域Xと中間領域Yとを区分する第一境界線15は、中央寄りの第一の主溝12aの底面に沿って形成されている。中間領域Yとショルダー領域Zとを区分する第二境界線16は、第一の主溝12aよりも外側の第二の主溝12bの底面に沿って設定されている。これら第一境界線15および第二境界線16は、それぞれ赤道面Aを挟んで対称位置に一対ずつ形成されている。なお、第一境界線15及び第二境界線16は、トレッド部2の陸部表面に形成してもよい。  The first boundary line 15 that divides the center region X and the intermediate region Y is formed along the bottom surface of the first main groove 12a closer to the center. The second boundary line 16 that divides the intermediate region Y and the shoulder region Z is set along the bottom surface of the second main groove 12b outside the first main groove 12a. The first boundary line 15 and the second boundary line 16 are formed in pairs at symmetrical positions with the equator plane A interposed therebetween. The first boundary line 15 and the second boundary line 16 may be formed on the land portion surface of the tread portion 2.

第一境界線15および第二境界線16の配置は、FEM解析によれば、赤道面を0としてトレッド端部の位置を100とするとき、第一境界線15を5〜60の範囲内に位置させ、第二境界線を30〜90の範囲内に位置させるのが好ましいことが判明した。さらに、第一境界線15を5〜30、第二境界線16を40〜60の範囲内に位置させると、より好ましい結果が得られた。   According to the FEM analysis, the first boundary line 15 and the second boundary line 16 are arranged within a range of 5 to 60 when the equatorial plane is 0 and the position of the tread edge is 100. It has been found that it is preferable to position the second boundary line within the range of 30-90. Furthermore, when the 1st boundary line 15 was located in the range of 5-30, and the 2nd boundary line 16 was located in the range of 40-60, the more preferable result was obtained.

なお、ゴムモジュラスおよび損失正接(tanδ)の調整は、配合するポリマーやカーボンの種類、配合量、シリカ、オイル、硫黄の配合量等の組合わせにより適宜調整可能である。表1に3種の配合例を示す。但し、本発明は表1の配合例に限定されるものではないことは勿論である。  The rubber modulus and loss tangent (tan δ) can be adjusted as appropriate by a combination of the type of polymer and carbon to be blended, the blending amount, the blending amount of silica, oil, and sulfur. Table 1 shows three blending examples. However, it goes without saying that the present invention is not limited to the formulation examples in Table 1.

Figure 2005022622
Figure 2005022622

次に、上記構成の空気入りタイヤの実施例について説明する。表2は、キャップゴム層のモジュラス・tanδを変更した7種類のラジアルタイヤのRRC性能、制動性能、接地圧分布の評価試験を行った結果を示すものである。供試タイヤのタイヤサイズは185/65R15である。   Next, examples of the pneumatic tire having the above-described configuration will be described. Table 2 shows the results of evaluation tests of RRC performance, braking performance, and ground pressure distribution of seven types of radial tires in which the modulus and tan δ of the cap rubber layer were changed. The tire size of the test tire is 185 / 65R15.

Figure 2005022622
Figure 2005022622

表2において、実施例1〜3および比較例4はキャップゴム層をそれぞれ5領域に区分し、それぞれの領域のモジュラス・tanδを種々変更した場合を示す。キャップゴム層10のセンター領域X、中間領域Yおよびショルダー領域Zの5つの領域は、赤道面Aの位置を0としトレッド端部Bの位置を100とするときに、第一境界線15を「20」、第二境界線16を「50」の位置にそれぞれ設定した。比較例1〜3は、キャップゴム層が夫々単体ゴムから構成され、その単体ゴムのモジュラス・tanδを種々変更した例を示す。   In Table 2, Examples 1 to 3 and Comparative Example 4 show cases where the cap rubber layer is divided into 5 regions, and the modulus and tan δ of each region are variously changed. The five regions including the center region X, the intermediate region Y, and the shoulder region Z of the cap rubber layer 10 have the first boundary line 15 defined as “1” when the position of the equator plane A is 0 and the position of the tread end portion B is 100. 20 ”and the second boundary line 16 were set at the position“ 50 ”, respectively. Comparative Examples 1 to 3 show examples in which the cap rubber layer is composed of a single rubber, and the modulus and tan δ of the single rubber are variously changed.

モジュラスは、試料の伸び100%時の引張応力(M100)であり、JIS K6251に準じて、試料長さ20mmに設定し、23℃で4mm/minで延伸し、得られる応力〜歪曲線からヤング率を求めた。そして、表2においては、引張応力0.29MPaを指数100として指数表示している。  The modulus is the tensile stress (M100) at 100% elongation of the sample. The sample length is set to 20 mm according to JIS K6251 and stretched at 23 ° C. at 4 mm / min. The rate was determined. In Table 2, the tensile stress of 0.29 MPa is shown as an index 100.

tanδは、試料(20mm×5mm×1mm)を、60℃で、初期歪5%で、周波数10Hz、動歪10%を与えたときの損失弾性率と貯蔵弾性率との比で表わされ、tanδ=0.2を指数100として指数表示している。  tan δ is represented by a ratio of loss elastic modulus and storage elastic modulus when a sample (20 mm × 5 mm × 1 mm) is given an initial strain of 5%, a frequency of 10 Hz, and a dynamic strain of 10% at 60 ° C., The index is displayed with tan δ = 0.2 as index 100.

また、表2中のRRC、制動性能および接地圧分布は以下のとおり求めた。   Further, RRC, braking performance and contact pressure distribution in Table 2 were determined as follows.

<RRC>
RRC(Rolling Resistance Coefficient)は、転がり抵抗係数で、転がり抵抗を負荷荷重で除した係数として表わしている。測定は、内圧を200kPaに設定し、リム組みした供試タイヤをドラム試験機にセットし、荷重505kg、速度80km/hでドラム走行させて回転抵抗を測定し、比較例1(従来構造のCAP配合1)のタイヤの回転抵抗を指数100として、比較例1の回転抵抗/評価タイヤの回転抵抗として指数表示した。RRCの値が大きい程、転がり抵抗が小さくなり、性能が良好となる。
<RRC>
RRC (Rolling Resistance Coefficient) is a rolling resistance coefficient expressed as a coefficient obtained by dividing the rolling resistance by the load. In the measurement, the internal pressure was set to 200 kPa, the test tire assembled with a rim was set on a drum testing machine, the drum was run at a load of 505 kg and a speed of 80 km / h, and the rotational resistance was measured. The rotation resistance of the tire of Formulation 1) was indicated as an index 100, and the index was expressed as the rotation resistance of Comparative Example 1 / the rotation resistance of the evaluation tire. The larger the value of RRC, the lower the rolling resistance and the better the performance.

<制動性能>
制動性能は、実車走行で速度100km/hでのABS制動距離の逆数を、比較例1(CAP配合1)のタイヤの制動距離を100として指数表示した。値が大きい程性能が良い。
<Brake performance>
The braking performance was displayed as an index with the reciprocal of the ABS braking distance at a speed of 100 km / h in actual vehicle running as 100 and the braking distance of the tire of Comparative Example 1 (CAP formulation 1) as 100. The larger the value, the better the performance.

<接地圧力分布>
接地圧力分布は、ショルダー部の最大接地圧を平均圧で除した数値(%)を示す。タイヤ幅方向に均一なタイヤ程、タイヤとしては良好で、制動性能が良好となる。
<Ground pressure distribution>
The contact pressure distribution indicates a numerical value (%) obtained by dividing the maximum contact pressure of the shoulder portion by the average pressure. The more uniform the tire in the tire width direction, the better the tire and the better the braking performance.

<評価結果>
表2に示すように、キャップゴム層として単体ゴムを使用した比較例において、比較例1ではモジュラス/tanδにそれぞれ低く設定し、比較例2および比較例3では、比較例1よりもモジュラス/tanδに設定している。この比較例1〜3のRRCおよび制動性能は、モジュラス/tanδが低いほど、ゴムが柔らかく、制動性能が悪化する反面、RRCが良好となり、低燃費化されている。
<Evaluation results>
As shown in Table 2, in the comparative example using a single rubber as the cap rubber layer, the modulus / tan δ was set lower in the comparative example 1 than in the comparative example 1 and the modulus / tan δ in the comparative example 2 and the comparative example 3 than in the comparative example 1. Is set. In the RRC and braking performance of Comparative Examples 1 to 3, the lower the modulus / tan δ, the softer the rubber and the worse the braking performance, but the RRC becomes better and the fuel consumption is reduced.

比較例4は、キャップゴム層を5領域に区分し、各領域のモジュラス及びtanδをセンター領域からショルダー領域に向かうほど高く設定した例である。つまり、ゴムモジュラスをX≦Y<Zとし、tanδをX≦Y<Zとした例である。  Comparative Example 4 is an example in which the cap rubber layer is divided into five regions, and the modulus and tan δ of each region are set higher toward the shoulder region from the center region. That is, in this example, the rubber modulus is set to X ≦ Y <Z and tan δ is set to X ≦ Y <Z.

この比較例4は、センター領域のモジュラスを比較例1と同様に設定し(30%)、ショルダー領域では170(%)に設定しているため、制動性能は比較例1に比べて高く(指数換算で「115」)なっているものの、単体ゴムで指数170(%)に設定している比較例3に比べて制動性能は劣る結果となっている。これは、ショルダー部のゴムモジュラスを高めた結果、接地圧分布が不均一(指数「90」)になったためと考えられる。  In Comparative Example 4, the modulus of the center region is set similarly to Comparative Example 1 (30%), and the shoulder region is set to 170 (%). Therefore, the braking performance is higher than that of Comparative Example 1 (index). Although it is “115” in terms of conversion, the braking performance is inferior to that of Comparative Example 3 in which the index is set to 170 (%) with a single rubber. This is presumably because the contact pressure distribution became non-uniform (index “90”) as a result of increasing the rubber modulus of the shoulder portion.

一方、実施例1〜3では、ゴムモジュラスをX≦Z<Yとし、tanδをX≦Y<Zとした例である。いずれの実施例1〜3においても、中間領域Yのゴムモジュラスをショルダー領域Zよりも高め、tanδはセンター領域からショルダー領域にかけて順次高めた例である。この結果、比較例4よりも制動性能およびRRCのバランスが向上している。  On the other hand, in Examples 1 to 3, the rubber modulus is X ≦ Z <Y, and tan δ is X ≦ Y <Z. In any of Examples 1 to 3, the rubber modulus of the intermediate region Y is higher than that of the shoulder region Z, and tan δ is sequentially increased from the center region to the shoulder region. As a result, the balance between braking performance and RRC is improved as compared with Comparative Example 4.

これは、タイヤの接地圧分布に対して感度の高いショルダー領域Zではなく、感度の低い中間領域Yのみについてモジュラスの高いゴムを使用したことに起因しているものと考えられる。また、センター領域Xは歪エネルギーに対して感度が高いので、この部分のtanδを低く設定して転がり抵抗の低減を図っている。  This is considered to be due to the use of rubber having a high modulus only in the intermediate region Y having a low sensitivity, not in the shoulder region Z having a high sensitivity to the tire contact pressure distribution. Further, since the center region X is highly sensitive to strain energy, tan δ in this portion is set low to reduce rolling resistance.

図2は縦軸に制動性能を、横軸にRRCをとって制動性能と燃費性能との関係を対比したグラフである。このグラフでは、制動性能とRRCについて、実施例1〜3(図中、「発明品」で示す)同士を、また、比較例1〜4(図中、「従来構造」として示す)同士を関連付けたものである。それぞれ線形として表わすことができ、実施例1〜3の線分は従来構造である比較例1〜4に比べて、右上方向に略平行に移動した結果が得られ、制動性能及びRRCが従来に比べて良好になっているのがわかる。  FIG. 2 is a graph comparing the relationship between braking performance and fuel consumption performance, with the vertical axis representing braking performance and the horizontal axis representing RRC. In this graph, for braking performance and RRC, Examples 1 to 3 (shown as “invention product” in the figure) and Comparative Examples 1 to 4 (shown as “conventional structure” in the figure) are associated with each other. It is a thing. Each can be expressed as linear, and the line segments of Examples 1 to 3 are compared to Comparative Examples 1 to 4 of the conventional structure, and the result is that they are moved substantially parallel to the upper right direction. It can be seen that it is better than that.

このように、センター領域X、中間領域Y及びショルダー領域ZのゴムモジュラスをX≦Z<Yに設定し、損失正接(tanδ)をX≦Y<Zに設定することにより、RRCと制動性能の二律背反する性能の両立を図ることができる。  Thus, by setting the rubber modulus of the center region X, the intermediate region Y, and the shoulder region Z to X ≦ Z <Y and setting the loss tangent (tan δ) to X ≦ Y <Z, the RRC and the braking performance can be improved. A balance of contradictory performance can be achieved.

本発明の実施形態を示すラジアルタイヤの要部断面図Sectional drawing of the principal part of the radial tire which shows embodiment of this invention 制動性能と燃費性能との関係を示すグラフGraph showing the relationship between braking performance and fuel efficiency

符号の説明Explanation of symbols

1 ラジアルタイヤ
2 トレッド部
6 カーカス
7 ベルト層
10 キャップゴム層
11 ベースゴム層
15 第一境界線
16 第二境界線
A タイヤ赤道面
B トレッド端部
X センター領域
Y 中間領域
Z ショルダー領域
DESCRIPTION OF SYMBOLS 1 Radial tire 2 Tread part 6 Carcass 7 Belt layer 10 Cap rubber layer 11 Base rubber layer 15 First boundary line 16 Second boundary line A Tire equatorial plane B Tread edge X Center area Y Middle area Z Shoulder area

Claims (2)

トレッド部が、タイヤ幅方向において、タイヤ赤道面が通るセンター領域Xと、センター領域を挟んでその両側に形成される中間領域Yと、中間領域のさらに外側に形成されるショルダー領域Zとから5つの領域に区分され、これらの領域のゴムモジュラスがX≦Z<Yに設定され、損失正接(tanδ)がX≦Y<Zに設定されたことを特徴とする空気入りタイヤ。 The tread portion is composed of a center region X through which the tire equatorial plane passes in the tire width direction, an intermediate region Y formed on both sides of the center region, and a shoulder region Z formed further outside the intermediate region. A pneumatic tire characterized by being divided into two regions, wherein the rubber modulus of these regions is set to X ≦ Z <Y, and the loss tangent (tan δ) is set to X ≦ Y <Z. トレッド部が、トレッド面側のキャップゴム層と、その内側に配置されるベースゴム層との2層構造とされると共に、キャップゴム層が、タイヤ幅方向において、タイヤ赤道面が通るセンター領域Xと、センター領域を挟んでその両側に形成される中間領域Yと、中間領域のさらに外側に形成されるショルダー領域Zとから5つの領域に区分され、これらの領域のゴムモジュラスがX≦Z<Yに設定され、損失正接(tanδ)がX≦Y<Zに設定されたことを特徴とする空気入りタイヤ。

The tread portion has a two-layer structure of a cap rubber layer on the tread surface side and a base rubber layer disposed inside the tread portion, and the cap rubber layer has a center region X through which the tire equatorial plane passes in the tire width direction. And an intermediate region Y formed on both sides of the center region, and a shoulder region Z formed further outside the intermediate region, and the rubber modulus of these regions is X ≦ Z < A pneumatic tire characterized by being set to Y and having a loss tangent (tan δ) set to X ≦ Y <Z.

JP2003270990A 2003-07-04 2003-07-04 Pneumatic tire Expired - Lifetime JP4303051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270990A JP4303051B2 (en) 2003-07-04 2003-07-04 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270990A JP4303051B2 (en) 2003-07-04 2003-07-04 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2005022622A true JP2005022622A (en) 2005-01-27
JP4303051B2 JP4303051B2 (en) 2009-07-29

Family

ID=34190788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270990A Expired - Lifetime JP4303051B2 (en) 2003-07-04 2003-07-04 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4303051B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240507A (en) * 2005-03-04 2006-09-14 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2007119582A (en) * 2005-10-27 2007-05-17 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2007290453A (en) * 2006-04-21 2007-11-08 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
WO2009069586A1 (en) * 2007-11-26 2009-06-04 Equos Research Co., Ltd. Tire
JP2009126425A (en) * 2007-11-26 2009-06-11 Equos Research Co Ltd Tire
JP2009126424A (en) * 2007-11-26 2009-06-11 Equos Research Co Ltd Tire
JP2009126426A (en) * 2007-11-26 2009-06-11 Equos Research Co Ltd Tire
WO2010070868A1 (en) * 2008-12-17 2010-06-24 株式会社ブリヂストン Tire
US7942178B2 (en) * 2007-06-13 2011-05-17 Bridgestone Corporation Pneumatic tire for motorcycle having central, intermediate and shoulder tread rubber
US8011403B2 (en) * 2007-07-24 2011-09-06 Bridgestone Corporation Pneumatic tire for motorcycle having center, intermediate and shoulder rubber
US8127813B2 (en) 2005-11-11 2012-03-06 Bridgestone Corporation Pneumatic tire for two-wheeled vehicle
US8257530B2 (en) * 2007-06-07 2012-09-04 Bridgestone Corporation Pair of tires for motorcycle and method of using tires for motorcycle
US20130025752A1 (en) * 2010-01-26 2013-01-31 Bridgestone Corporation Pneumatic tire for a motorcycle
US8464770B2 (en) 2007-06-07 2013-06-18 Bridgestone Corporation Pneumatic tire for motorcycle
WO2015182449A1 (en) * 2014-05-26 2015-12-03 横浜ゴム株式会社 Pneumatic tire
EP3954550B1 (en) * 2020-08-12 2024-05-01 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992893B1 (en) * 2012-07-05 2014-08-01 Michelin & Cie PNEUMATIC COMPRISING A TREAD TAPE CONSISTING OF SEVERAL ELASTOMERIC MIXTURES

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240507A (en) * 2005-03-04 2006-09-14 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP4566788B2 (en) * 2005-03-04 2010-10-20 東洋ゴム工業株式会社 Pneumatic tires for passenger cars
JP2007119582A (en) * 2005-10-27 2007-05-17 Toyo Tire & Rubber Co Ltd Pneumatic tire
US8127813B2 (en) 2005-11-11 2012-03-06 Bridgestone Corporation Pneumatic tire for two-wheeled vehicle
JP2007290453A (en) * 2006-04-21 2007-11-08 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
US8464770B2 (en) 2007-06-07 2013-06-18 Bridgestone Corporation Pneumatic tire for motorcycle
US8257530B2 (en) * 2007-06-07 2012-09-04 Bridgestone Corporation Pair of tires for motorcycle and method of using tires for motorcycle
US7942178B2 (en) * 2007-06-13 2011-05-17 Bridgestone Corporation Pneumatic tire for motorcycle having central, intermediate and shoulder tread rubber
CN104842715A (en) * 2007-06-13 2015-08-19 株式会社普利司通 Pneumatic tire for a motorcycle
US8011403B2 (en) * 2007-07-24 2011-09-06 Bridgestone Corporation Pneumatic tire for motorcycle having center, intermediate and shoulder rubber
JP2009126426A (en) * 2007-11-26 2009-06-11 Equos Research Co Ltd Tire
JP2009126424A (en) * 2007-11-26 2009-06-11 Equos Research Co Ltd Tire
JP2009126425A (en) * 2007-11-26 2009-06-11 Equos Research Co Ltd Tire
WO2009069586A1 (en) * 2007-11-26 2009-06-04 Equos Research Co., Ltd. Tire
WO2010070868A1 (en) * 2008-12-17 2010-06-24 株式会社ブリヂストン Tire
US20130025752A1 (en) * 2010-01-26 2013-01-31 Bridgestone Corporation Pneumatic tire for a motorcycle
WO2015182449A1 (en) * 2014-05-26 2015-12-03 横浜ゴム株式会社 Pneumatic tire
JP5874867B1 (en) * 2014-05-26 2016-03-02 横浜ゴム株式会社 Pneumatic tire
CN106061758A (en) * 2014-05-26 2016-10-26 横滨橡胶株式会社 Pneumatic tire
US10245894B2 (en) 2014-05-26 2019-04-02 The Yokohama Rubber Co., Ltd. Pneumatic tire
EP3954550B1 (en) * 2020-08-12 2024-05-01 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Also Published As

Publication number Publication date
JP4303051B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4303051B2 (en) Pneumatic tire
JP5576908B2 (en) Run flat tire
US9150051B2 (en) Pneumatic tire
EP2842765B1 (en) Pneumatic tire
US20150165823A1 (en) Pneumatic tire
JP2009029176A (en) Pneumatic tire for motorcycle
EP3482976B1 (en) Heavy-duty pneumatic tire
US9919564B2 (en) Pneumatic tire
US10882358B2 (en) Pneumatic tire for a motorcycle
JP2009262808A (en) Pneumatic tire
EP1834814B1 (en) Pneumatic tire
EP3202598A1 (en) Run-flat tire
WO2020262596A1 (en) A noise improving tread
JP2001010308A (en) Pneumatic radial tire
EP4070968B1 (en) Motorcycle tyre
JP4631496B2 (en) Pneumatic tire
US6807996B2 (en) Pneumatic tire
JP2018167753A (en) Pneumatic tire
EP3530487B1 (en) Two-wheeled vehicle tyre
US10272723B2 (en) Pneumatic tire
EP3653401A1 (en) Pneumatic tyre
JP5217347B2 (en) Pneumatic tire
JP6718264B2 (en) Run flat tires
JP2007290453A (en) Pneumatic radial tire
JP2004074935A (en) Pneumatic radial tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4303051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150501

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term