JP2005021983A - Titanium-based wire rod for forming molten metal and method for manufacturing the same - Google Patents

Titanium-based wire rod for forming molten metal and method for manufacturing the same Download PDF

Info

Publication number
JP2005021983A
JP2005021983A JP2004106814A JP2004106814A JP2005021983A JP 2005021983 A JP2005021983 A JP 2005021983A JP 2004106814 A JP2004106814 A JP 2004106814A JP 2004106814 A JP2004106814 A JP 2004106814A JP 2005021983 A JP2005021983 A JP 2005021983A
Authority
JP
Japan
Prior art keywords
wire
oxide film
molten metal
forming
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004106814A
Other languages
Japanese (ja)
Other versions
JP4380392B2 (en
Inventor
Makoto Nakajoya
真 中條屋
Ken Kariya
憲 假屋
Koji Horio
浩次 堀尾
Kazuhiro Toyoda
和洋 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004106814A priority Critical patent/JP4380392B2/en
Publication of JP2005021983A publication Critical patent/JP2005021983A/en
Application granted granted Critical
Publication of JP4380392B2 publication Critical patent/JP4380392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium-based wire rod for forming molten metal which is excellent in both feeding ability and arc stability. <P>SOLUTION: The titanium-based wire rod 301 for forming the molten metal is composed of a rod stock 3 of titanium-based metal. The longitudinal tensile strength of the wire rod is in a range between Smin and Smax, wherein Smin=-230Dw+850 in MPa and Smax=-620Dw+2,000 in MPa. A titanium-based oxide film of 1μm or more and 5μm or less in thickness is formed on the surface of the rod stock 3. The rod stock 3 on which a titanium-based oxide film 2 is formed is then thinned together with the titanium-based oxide film 2 by a cold wire drawing process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶接や溶射等において溶融金属を形成するために使用されるTi系線材に関する。   The present invention relates to a Ti-based wire used for forming a molten metal in welding, thermal spraying, or the like.

Ti金属あるいはTi合金からなるTi系金属部材の溶接に際しては、工業用Ti系線材を用い、かつ活性金属であるTiの酸化を防止するために、溶接部位を不活性ガスで覆ってアーク溶接を行なうシールドアーク溶接が採用される。例えば、MIG溶接(Metal Inert Gas Arc Welding)においては、図8に示すように、アルゴン、ヘリウム等の不活性ガスIG雰囲気中で溶接用Ti系線材201と純チタン製又はチタン合金製母材WPとの間にアークARを発生させる。そして、送給ローラ202によって線材201の先端部をアークAR内に送給して溶融させながら溶接する。なお、符号205は先端から不活性ガスIGを噴出させるガスノズル(トーチ)であり、基端側に柔軟性を有するコンジットチューブ204を備える。符号206はトーチ205に固定され線材201を保持するとともに線材201に電流を供給する電極チップ(コンタクトチップ)であり、WMは溶接ビード、MPは溶融池である。MIG溶接によれば高能率化とともに、溶融エネルギーの向上により溶け込みが深くなって溶接不良の発生が抑えられ、また、トーチ205先端部が小型になって狭い場所での溶接が容易となる利点がある。   When welding Ti-based metal members made of Ti metal or Ti alloy, arc welding is performed by using an industrial Ti-based wire and covering the welding site with an inert gas to prevent oxidation of Ti, which is an active metal. Performed shielded arc welding is employed. For example, in MIG welding (Metal Inert Gas Arc Welding), as shown in FIG. 8, a Ti wire 201 for welding and a base material WP made of pure titanium or titanium alloy in an inert gas IG atmosphere such as argon or helium. An arc AR is generated between the two. Then, the tip of the wire 201 is fed into the arc AR by the feed roller 202 and welded while being melted. Reference numeral 205 denotes a gas nozzle (torch) that ejects an inert gas IG from the distal end, and includes a flexible conduit tube 204 on the proximal end side. Reference numeral 206 denotes an electrode tip (contact tip) that is fixed to the torch 205 and holds the wire 201 and supplies current to the wire 201, WM is a weld bead, and MP is a molten pool. According to MIG welding, there is an advantage that not only the efficiency is increased, but the melting is deepened and the occurrence of poor welding is suppressed by improving the melting energy, and the tip of the torch 205 is reduced in size to facilitate welding in a narrow place. is there.

他方、大型部材の耐食性被覆等を目的として、Ti系金属の被覆層を溶射法にて形成することが行われている。この溶射の分野においては、上記溶接と同様のTi系線材を用い、溶射法、例えばアーク溶射法により溶射層を形成することが行われている。アーク溶射法は、2本のTi系線材を通電用のホルダに並行送給し、線材先端間にアーク放電ギャップを形成して溶融金属を作り、これを窒素やアルゴン等の不活性ガス、あるいは空気を媒体として噴射することにより、被処理物表面に溶射層を堆積させるようにする方法である。Ti系線材は、溶接の場合と同様に、コンジットチューブを介して溶射ガンに送給される。   On the other hand, a Ti-based metal coating layer is formed by thermal spraying for the purpose of corrosion-resistant coating of large members. In the field of this thermal spraying, a thermal spray layer is formed by a thermal spraying method, for example, an arc thermal spraying method, using a Ti-based wire similar to the above welding. In the arc spraying method, two Ti-based wires are fed in parallel to a holder for energization, and an arc discharge gap is formed between the tips of the wires to create a molten metal, which is made of an inert gas such as nitrogen or argon, or This is a method in which a sprayed layer is deposited on the surface of an object to be processed by jetting air as a medium. The Ti-based wire is fed to the thermal spray gun through a conduit tube as in the case of welding.

ところで、近年ではTi溶接工程の高能率化及び溶接施工の短納期化を目指すため、線材201の送給速度はますます高速化する傾向にある。この場合、線材201の表面とコンジットチューブ204との間の摩擦力が大きいと、線材201の送給がスムーズになされなくなり、最悪の場合コンジットチューブ204内で線材201に詰まりや座屈が発生するおそれがある。   By the way, in recent years, in order to improve the efficiency of the Ti welding process and shorten the delivery time of the welding work, the feeding speed of the wire 201 tends to be further increased. In this case, when the frictional force between the surface of the wire 201 and the conduit tube 204 is large, the wire 201 is not smoothly fed, and in the worst case, the wire 201 is clogged or buckled in the conduit tube 204. There is a fear.

特に、従来の溶接用Ti系線材の場合、線材の表面を機械的あるいは化学的に研磨して、金属光沢仕上げとすることが行なわれているが、このような処理を施した線材は表面が粗く送給性に劣る難点がある。また、金属光沢状の外観を有する線材は、溶接時のアークの安定性が見かけほどには良好でなく、自動溶接機を用いたMIG溶接では、アークが安定点を求めて細かく移動するため、良好なビード形状が得られない問題がある。これは、送給速度が不安定化すると、溶融する線材先端と溶接される母材との間の距離が微妙に変化することも関係していると思われる。   In particular, in the case of a conventional welding Ti-based wire, the surface of the wire is mechanically or chemically polished to give a metallic luster finish. There is a problem that it is rough and inferior in feedability. In addition, the wire having a metallic gloss appearance is not as good as the arc stability during welding, and in MIG welding using an automatic welder, the arc moves finely in search of a stable point. There is a problem that a good bead shape cannot be obtained. This seems to be related to the fact that when the feed speed becomes unstable, the distance between the molten wire tip and the base material to be welded changes slightly.

なお、Fe系部材のMIG溶接においてはFe系溶接線材の表面に、摩擦低減のためにCuメッキを施したり、潤滑油を塗布したりすることが行なわれている。しかしながら、活性金属であるTiの溶接の場合、線材表面にCuメッキを施したり潤滑油を塗布したりすることは、脆弱なCu−Ti系金属間化合物や炭化物の形成により、溶接継手強度の低下を招くので採用することができない。他方、溶接時のアークの安定化を図る方法としては、シールドガス中に炭酸ガスや酸素を導入する方法が古くから採用されているが、この方法はシールドガスからの溶接ビードへの酸素の吸収が大きく、Ti溶接の場合は溶接継手の伸びの低下につながるため好ましくない。   In MIG welding of an Fe-based member, Cu plating or lubricating oil is applied to the surface of the Fe-based welding wire to reduce friction. However, in the case of welding of Ti, which is an active metal, applying Cu plating or lubricating oil to the surface of the wire reduces the strength of the welded joint due to the formation of brittle Cu-Ti intermetallic compounds and carbides. Can not be adopted. On the other hand, as a method for stabilizing the arc during welding, a method of introducing carbon dioxide gas or oxygen into the shield gas has long been adopted, but this method absorbs oxygen from the shield gas to the weld bead. In the case of Ti welding, it is not preferable because it leads to a decrease in the elongation of the welded joint.

また、Ti溶射を行なう場合においても、基本的には溶接の場合と同様の問題が生ずる。例えばアーク溶射の場合、2本のTi系線材間にアーク形成することから、一方の線材の供給速度が乱れるだけでもアーク放電ギャップ間隔が変化して、アークが不安定化する。従って、アーク安定性の問題は、溶接の場合よりもより生じやすいといえる。   Also, when Ti spraying is performed, the same problems as in the case of welding basically occur. For example, in the case of arc spraying, since an arc is formed between two Ti wires, even if the supply speed of one wire is disturbed, the arc discharge gap interval changes and the arc becomes unstable. Therefore, it can be said that the problem of arc stability is more likely to occur than in the case of welding.

本発明の課題は、溶接あるいは溶射等を行なう際の、線材の送給性とアークの安定性との双方に優れ、しかも得られる溶接部の機械的特性や溶射層の品質も良好に確保できる溶融金属形成用Ti系線材を提供することにある。   The object of the present invention is to provide both excellent wire feedability and arc stability when performing welding or thermal spraying, etc., and also to ensure the mechanical properties of the obtained welded part and the quality of the sprayed layer. The object is to provide a Ti-based wire for forming a molten metal.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の溶融金属形成用Ti系線材は、先端側から順次加熱溶融してTi系金属からなる溶融金属を形成するための溶融金属形成用Ti系線材であって、線材本体がTi系金属にて構成され、線径をDwとして、線材長手方向の引張強度が、
Smin=−230Dw+850 (単位:MPa)
Smax=−620Dw+2000 (単位:MPa)
にて表されるSmin以上Smax以下の範囲にあり、線材本体の表面にTi系酸化膜が1μm以上5μm以下の厚さにて形成されたことを特徴とする。
In order to solve the above problems, the molten metal-forming Ti-based wire of the present invention is a molten metal-forming Ti-based wire for forming a molten metal composed of a Ti-based metal by heating and melting sequentially from the tip side. The wire body is made of a Ti metal, the wire diameter is Dw, and the tensile strength in the wire longitudinal direction is
Smin = −230 Dw + 850 (unit: MPa)
Smax = −620Dw + 2000 (unit: MPa)
And a Ti-based oxide film is formed on the surface of the wire main body with a thickness of 1 μm or more and 5 μm or less.

なお、本明細書において「Ti系金属」とは、Ti金属もしくはTiを主成分(50質量%以上)とするTi合金のことをいう。また、Ti系酸化膜とは、カチオン元素の50質量%以上がTiである酸化物被膜のことをいう。また、線径Dwは公称値を意味する。   In the present specification, “Ti-based metal” refers to a Ti metal or a Ti alloy containing Ti as a main component (50 mass% or more). The Ti-based oxide film means an oxide film in which 50% by mass or more of the cation element is Ti. Moreover, the wire diameter Dw means a nominal value.

また、本発明の溶融金属形成用Ti系線材の製造方法は、先端側から順次加熱溶融してTi系金属からなる溶融金属を形成するための溶融金属形成用Ti系線材の製造方法であって、Ti系金属にて構成された加工前線材の表面にTi系酸化膜を形成し、該加工前線材をTi系酸化膜とともに冷間伸線加工することにより、Ti系金属からなる線材本体の表面にTi系酸化膜が1μm以上5μm以下の厚さにて形成された溶融金属形成用Ti系線材を得ることを特徴とする。   The method for producing a molten metal forming Ti wire according to the present invention is a method for producing a molten metal forming Ti wire for forming a molten metal comprising a Ti metal by heating and melting sequentially from the tip side. By forming a Ti-based oxide film on the surface of a pre-processed wire composed of a Ti-based metal, and cold drawing the pre-processed wire together with the Ti-based oxide film, A Ti-based wire for forming a molten metal having a Ti-based oxide film formed on the surface with a thickness of 1 μm or more and 5 μm or less is obtained.

Tiは活性金属であるため、常温大気中で表面に不働態をなす自然酸化膜を形成する。該自然酸化膜が金属内部の腐食を抑制するために、Ti金属もしくはTiを主成分とするTi合金は優れた耐食性を示す。しかしながら、この自然酸化膜の厚さはおおむね40〜100nmと極めて薄い。本発明にて線材の表面に形成するのは、この自然酸化膜よりも厚い、具体的には厚さが1μm以上5μm以下のTi系酸化膜である。このように自然酸化膜よりも厚いTi系酸化膜を線材表面に積極形成することにより、コンジットチューブ等を介した線材の送給性を大幅に向上することができ、例えばアーク溶接あるいはアーク溶射を行なう際のアークの安定性も良好である。その結果、具体的には、以下のような効果が達成される。
(1)コンジットチューブ内での線材の送給性が向上することにより、線材の詰まりや座屈が発生する心配が大幅に軽減され、工程中断等の発生頻度が少なくなるので、溶接あるいは溶射の作業能率が向上する。
(2)アークの安定性が向上することにより、得られる溶接部の機械強度や溶射層の品質を向上させることができる。特に、溶射の場合、2本のTi系線材を同時送給することから、線材送給性の影響を受けて、アークがより乱れやすい傾向にあるが、本発明のTi系線材を採用することにより、安定的にアーク溶射を継続することができる。
Since Ti is an active metal, a natural oxide film that forms a passive state on the surface in a room temperature atmosphere is formed. Since the natural oxide film suppresses corrosion inside the metal, Ti metal or Ti alloy containing Ti as a main component exhibits excellent corrosion resistance. However, the thickness of the natural oxide film is very thin, about 40 to 100 nm. What is formed on the surface of the wire in the present invention is a Ti-based oxide film that is thicker than the natural oxide film, specifically, having a thickness of 1 μm to 5 μm. Thus, by actively forming a Ti-based oxide film thicker than the natural oxide film on the surface of the wire, it is possible to greatly improve the feedability of the wire via a conduit tube, for example, arc welding or arc spraying. The stability of the arc when performing is also good. As a result, specifically, the following effects are achieved.
(1) By improving the feedability of the wire rod inside the conduit tube, the risk of clogging and buckling of the wire rod is greatly reduced and the frequency of process interruptions is reduced. Work efficiency is improved.
(2) By improving the stability of the arc, it is possible to improve the mechanical strength of the obtained welded portion and the quality of the sprayed layer. In particular, in the case of thermal spraying, since two Ti-based wires are fed simultaneously, the arc tends to be more disturbed due to the influence of the wire feeding property, but the Ti-based wire of the present invention should be adopted. Thus, arc spraying can be stably continued.

従って、酸素を含有しない不活性ガスにてアークを覆うアーク溶接の場合、アーク安定化を図る観点において(2)の効果が特に顕著に達成される。また、アーク溶射においては、噴射媒体として圧縮空気等の酸素を含有する媒体を用いる場合と、窒素やアルゴン等の不活性ガスを媒体として用いる場合との2通りがあるが、上記(2)によるアーク安定化効果は不活性ガスを媒体として用いる場合に特に顕著である。   Therefore, in the case of arc welding in which the arc is covered with an inert gas that does not contain oxygen, the effect (2) is particularly significantly achieved from the viewpoint of achieving arc stabilization. Moreover, in arc spraying, there are two types, a case where an oxygen-containing medium such as compressed air is used as an injection medium, and a case where an inert gas such as nitrogen or argon is used as a medium. The arc stabilizing effect is particularly remarkable when an inert gas is used as a medium.

ただし、線材の引張強度が過度に小さいと線材の剛性が不足して、送給時に線材が座屈変形を起しやすくなり、コンジットチューブ等の内部で線材詰まり等の不具合を引き起こす惧れがある。他方、線材の引張強度が過度に大きいと線材の可撓性が不足し、コンジットチューブ等による曲がった経路に沿った線材のスムーズな送給が妨げられる場合がある。また、コンジットチューブ等の経路形成部材の屈曲が特に大きくなる部分では、剛性の高い線材との干渉のため、経路形成部材の内面が齧られたりする不具合も生じやすくなる。そこで、本発明の溶融金属形成用Ti系線材においては、上記の不具合を抑制するために、Ti系金属にて構成される線材の長手方向の引張強度は、線材の座屈強度を考慮して、線径に応じた上記範囲に規定する。   However, if the tensile strength of the wire is excessively small, the rigidity of the wire will be insufficient, and the wire will tend to buckle and deform during feeding, which may cause problems such as clogging of the wire inside the conduit tube. . On the other hand, if the tensile strength of the wire is excessively large, the flexibility of the wire is insufficient, and smooth feeding of the wire along a curved path by a conduit tube or the like may be hindered. Further, in a portion where the bend of the route forming member such as a conduit tube is particularly large, a problem that the inner surface of the route forming member is crushed easily due to interference with a highly rigid wire. Therefore, in the Ti-based wire for forming a molten metal according to the present invention, the tensile strength in the longitudinal direction of the wire composed of the Ti-based metal is considered in consideration of the buckling strength of the wire in order to suppress the above problems. Stipulated in the above range according to the wire diameter.

Ti系線材においては、熱間加工材や焼鈍材では回復・再結晶により強度は低下するが、冷間伸線加工(回復・再結晶温度よりも低温での伸線加工を総称する)により強度を向上させることが可能である。従って、自然酸化膜よりも厚いTi系酸化膜を、線材本体表面の酸化熱処理により形成したのち、適切な加工率(減面率)で冷間伸線加工することにより線材長手方向の引張強度を前述のSmin以上Smax以下の範囲にコントロールすることが可能となる。また、酸化熱処理により加工前線材の表面に形成されたTi系酸化膜は、酸化時の体積膨張の影響により、比較的低密度で線材本体に対する密着力も低くなっていることが多い。しかし、その後に冷間伸線加工を施すとTi系酸化膜は、伸線ダイス内にて線材縮径方向に圧縮されて高密度化し、かつ、金属からなる線材本体への食い込み効果により密着力も高められる。   In Ti-based wire rods, the strength of hot-worked and annealed materials decreases due to recovery and recrystallization, but the strength is reduced by cold wire drawing (generally refers to wire drawing at a temperature lower than the recovery and recrystallization temperature). It is possible to improve. Therefore, after forming a Ti-based oxide film thicker than the natural oxide film by oxidative heat treatment on the surface of the wire body, cold drawing at an appropriate processing rate (area reduction rate) can increase the tensile strength in the longitudinal direction of the wire. It becomes possible to control within the range of Smin to Smax. Further, Ti-based oxide films formed on the surface of a wire before processing by oxidation heat treatment are often relatively low in density and have low adhesion to the wire body due to the effect of volume expansion during oxidation. However, when cold-drawing is performed after that, the Ti-based oxide film is compressed in the wire diameter reduction direction in the wire drawing die to increase the density, and also has an adhesion force due to the effect of biting into the metal wire body. Enhanced.

このとき、加工前線材の表面に形成してあるTi系酸化膜は、冷間伸線加工時において線材と伸線用ダイスとの間の潤滑機能を一部担うことにもなるが、該Ti系酸化膜が薄すぎると、この潤滑効果が不足して線材表面にダイスマークが深く刻まれやすくなり、不良の原因となる。他方、Ti系酸化膜が厚すぎると、Ti系酸化膜の延性は本来あまり高くないことから、伸線用ダイスを通したときにTi系酸化膜の剥離を生じやすくなり、線材の全長にわたって均一なTi系酸化膜の被覆状態を得にくくなる。Ti系酸化膜は、延性が低いことに加え、下地となる線材本体との間の熱膨張係数の差も大きいため、膜厚が増加したときの密着力の低下が著しく、また、加工前線材の表面に形成した段階で膜中に相当量のクラックを生じていることも多い。このような場合、伸線加工時のTi系酸化膜の剥離は一層起こりやすく、また、伸線加工後においても、残留しているTi系酸化膜と線材本体表面との密着性が低いために、線材の繰り出し時やコンジットチューブ内での送給時にTi系酸化膜の脱落が生じやすい。また、冷間伸線加工によって相当量のクラックを生じてしまうこともある。クラックが著しく発生するとクラック内部に伸線時の潤滑剤などが残留しやすくなり、溶融金属中にそれらの不純物が混入する恐れがある。そこで、本発明の溶融金属形成用Ti系線材は、上記の不具合を抑制するために、Ti系酸化膜の厚さを1μm以上5μm以下に規定する。   At this time, the Ti-based oxide film formed on the surface of the wire before processing is partly responsible for the lubrication function between the wire and the wire drawing die during the cold wire drawing. If the system oxide film is too thin, this lubrication effect is insufficient, and the dice mark is likely to be deeply etched on the surface of the wire, causing a defect. On the other hand, if the Ti-based oxide film is too thick, the ductility of the Ti-based oxide film is not so high by nature, and therefore, the Ti-based oxide film is easily peeled off when passing through a wire drawing die, and is uniform over the entire length of the wire. It becomes difficult to obtain a covered state of a Ti-based oxide film. Ti-based oxide film has low ductility and also has a large difference in thermal expansion coefficient with the underlying wire main body. Therefore, the decrease in adhesion when the film thickness increases is significant. In many cases, a considerable amount of cracks are formed in the film when it is formed on the surface of the film. In such a case, the Ti-based oxide film is more easily peeled off during the wire drawing process, and the adhesion between the remaining Ti-based oxide film and the wire body surface is low even after the wire drawing process. The Ti-based oxide film is likely to fall off when the wire is fed or fed in the conduit tube. Moreover, a considerable amount of cracks may be caused by cold drawing. When cracks are remarkably generated, lubricants and the like at the time of wire drawing tend to remain inside the cracks, and these impurities may be mixed into the molten metal. Therefore, in the Ti-based wire for forming a molten metal according to the present invention, the thickness of the Ti-based oxide film is specified to be 1 μm or more and 5 μm or less in order to suppress the above-described problems.

以上をまとめると、長手方向の引張強度が前述のSmin未満では、線材の剛性不足により送給時の座屈変形、ひいてはコンジットチューブ等の内部での線材詰まり等を招きやすくなる。また、線材の長手方向の引張強度が前述のSmaxを超えると、曲がった経路に沿った線材のスムーズな送給が妨げられ、特に屈曲の大きい部位では、コンジットチューブ等の経路形成部材の内面が齧られたりする不具合を生じやすくなる。従って、線材の引張強度はSmin以上Smax以下の範囲に調整する必要があるが、このような強度のTi系線材は冷間伸線加工の加工率(減面率)を調整してやれば製造可能である。そして、Ti系酸化膜の厚さが1μm未満になると、伸線加工時の潤滑効果が不足して、得られる線材表面にダイスマークが深く刻まれ、線材表面の摩擦係数を悪化させる原因となる。他方、Ti系酸化膜の厚さが5μmを超えると、伸線用ダイスを通したときにTi系酸化膜の剥離を生じやすくなり、線材の全長にわたって均一なTi系酸化膜の被覆状態を得にくくなる。また、Ti系酸化膜と線材本体表面との密着性が低下し、線材使用時にTi系酸化膜の脱落が生じやすくなったり、クラックが著しく発生して伸線時に潤滑剤が残留しやすくなる。従って、Ti系酸化膜の厚さは1μm以上5μm以下とされ、これによって線材本体の表面に平滑で均一なTi系酸化膜を形成することが可能となる。この場合、Ti系酸化膜(自然酸化膜よりも厚い部分)による金属本体表面の被覆面積率は70%以上、望ましくは80%以上となっているのがよい。   In summary, if the tensile strength in the longitudinal direction is less than the above-described Smin, the wire rod is insufficiently rigid, and buckling deformation at the time of feeding, and consequently, wire rod clogging inside the conduit tube or the like tends to occur. In addition, when the tensile strength in the longitudinal direction of the wire exceeds the above-described Smax, smooth feeding of the wire along the curved path is hindered, and the inner surface of the route forming member such as a conduit tube is particularly disturbed at a portion having a large bend. Prone to be struck. Therefore, it is necessary to adjust the tensile strength of the wire to a range between Smin and Smax, but a Ti-based wire having such a strength can be manufactured by adjusting the processing rate (area reduction) of cold drawing. is there. When the thickness of the Ti-based oxide film is less than 1 μm, the lubrication effect at the time of wire drawing is insufficient, and a dice mark is deeply carved on the surface of the obtained wire, which causes the friction coefficient of the wire surface to deteriorate. . On the other hand, if the thickness of the Ti-based oxide film exceeds 5 μm, the Ti-based oxide film is likely to be peeled off when passing through a wire drawing die, and a uniform Ti-based oxide film covering state is obtained over the entire length of the wire. It becomes difficult. Further, the adhesion between the Ti-based oxide film and the surface of the wire main body is lowered, and the Ti-based oxide film is likely to drop off when the wire is used, or cracks are remarkably generated and the lubricant tends to remain at the time of wire drawing. Therefore, the thickness of the Ti-based oxide film is set to 1 μm or more and 5 μm or less, which makes it possible to form a smooth and uniform Ti-based oxide film on the surface of the wire body. In this case, the coverage ratio of the surface of the metal main body by the Ti-based oxide film (the portion thicker than the natural oxide film) is 70% or more, preferably 80% or more.

なお、冷間伸線加工後において、線材本体に付加される熱履歴を300℃以下に留めることが望ましい。300℃を超える熱履歴が加わると、線材表面に密着性の劣る新たなTi系酸化膜が生成する惧れがある。また、熱履歴が300℃以下であれば、線材の引張強度はほとんど低下しない。線材本体に付加される熱履歴は、より望ましくは200℃以下に留めるのがよい。   In addition, it is desirable to keep the heat history added to a wire main body below 300 degreeC after cold wire drawing. If a thermal history exceeding 300 ° C. is applied, a new Ti-based oxide film with poor adhesion on the surface of the wire may be generated. Moreover, if a heat history is 300 degrees C or less, the tensile strength of a wire will hardly fall. More preferably, the heat history applied to the wire body is kept at 200 ° C. or lower.

また、加工前線材の表面にTi系酸化膜を形成後、減面率10%以上で前記冷間伸線加工することにより、加工前線材の縮径とともに該Ti系酸化膜を圧縮することができる。これにより、Ti系酸化膜の金属本体への食い込み力がさらに高まり、密着性をより向上することができる。そして、加工前線材の表面にTi系酸化膜形成後、減面率10%以上の減面率で前記冷間伸線加工を加えることにより、線材長手方向の引張強度をSmin以上Smax以下に容易にコントロールすることができる。   Further, after forming a Ti-based oxide film on the surface of the wire before processing, the Ti-based oxide film can be compressed together with the reduced diameter of the wire before processing by performing the cold wire drawing at a surface reduction rate of 10% or more. it can. Thereby, the biting force into the metal main body of the Ti-based oxide film is further increased, and the adhesion can be further improved. Then, after forming a Ti-based oxide film on the surface of the wire before processing, by applying the cold wire drawing at a surface reduction rate of 10% or more, the tensile strength in the longitudinal direction of the wire can be easily reduced from Smin to Smax. Can be controlled.

また、得られる線材のTi系酸化膜の厚さは1μm以上5μm以下と比較的薄いので、酸化熱処理による形成時間は短くて済む。従って、加工前線材をストランド状態で酸化処理炉内に搬送して、該加工前線材の表面を酸化処理することによりTi系酸化膜を形成する方法を採用することが可能である。線材を酸化処理炉内に比較的大きな速度で連続的に搬送しながら酸化熱処理を行なうことができるので、Ti系酸化膜の形成処理を能率的に行なうことができ、また、ストランド状態で酸化熱処理を行なうので、Ti系酸化膜を線材表面に均一に形成することができる。   Further, since the thickness of the Ti-based oxide film of the obtained wire is comparatively thin such as 1 μm or more and 5 μm or less, the formation time by the oxidation heat treatment can be shortened. Therefore, it is possible to adopt a method of forming a Ti-based oxide film by transporting the pre-processed wire in a strand state into an oxidation furnace and oxidizing the surface of the pre-processed wire. Since the oxidation heat treatment can be performed while continuously transporting the wire into the oxidation treatment furnace at a relatively high speed, the Ti-based oxide film can be efficiently formed, and the oxidation heat treatment can be performed in a strand state. Therefore, the Ti-based oxide film can be uniformly formed on the surface of the wire.

伸線加工時には、伸線ダイス内面と線材表面との潤滑を考慮する必要がある。Ti系酸化膜は、コンジットチューブとの内面摩擦低減効果を有していることから明らかな通り、表面が比較的平滑であり、伸線時の摩擦低減効果も有している。従って、自然酸化膜よりも厚いTi系酸化膜付きの状態で冷間伸線により製造される本発明の溶融金属形成用Ti系線材は、従来の溶融金属形成用Ti系線材と比較して、線材の全長にわたって線径分布がより一定で真円度も良好な線材を得ることができる。   At the time of wire drawing, it is necessary to consider lubrication between the inner surface of the wire drawing die and the surface of the wire. As is clear from the fact that the Ti-based oxide film has the effect of reducing internal friction with the conduit tube, the surface thereof is relatively smooth and also has the effect of reducing friction during wire drawing. Therefore, the Ti-based wire for forming a molten metal of the present invention manufactured by cold drawing in a state with a Ti-based oxide film thicker than a natural oxide film is compared with the conventional Ti-based wire for forming a molten metal, A wire rod having a more uniform wire diameter distribution and a good roundness can be obtained over the entire length of the wire rod.

具体的には、線径Dwの公称値を上限値とし、公称値よりも0.02mmを減じた値を下限値として、線材全長にわたって線径Dwが上記上限値と下限値との間に収まっており、かつ、線材断面の真円度が5μm以下に調整された線材を実現可能である。線径分布と断面の真円度を上記のように調整することで、線材の送給性が改善されるばかりでなく、伸線後の線材をリールやボビンなどの巻き取り部材に整列しつつ巻き取る際に、巻き乱れ等の不具合が生じにくくなり、巻き取り工程の作業性を改善することができる。なお、Ti系酸化膜は、単独では伸線時の潤滑性は必ずしも十分ではなく、潤滑剤や前処理皮膜の併用が必要となる。つまり、Ti系酸化膜の形成分だけ潤滑性が底上げされるので、同じ条件で潤滑剤を適用しても、Ti系酸化膜を形成したほうがより潤滑性能が向上するということである。また、同等の潤滑性を得る観点では潤滑剤の塗付量を削減できるという利点もあり、潤滑剤残留に伴う後述の種々の不具合を軽減する、という意味も持つ。   Specifically, the nominal value of the wire diameter Dw is set as the upper limit value, the value obtained by subtracting 0.02 mm from the nominal value is set as the lower limit value, and the wire diameter Dw falls between the upper limit value and the lower limit value over the entire length of the wire. In addition, it is possible to realize a wire whose roundness of the cross section of the wire is adjusted to 5 μm or less. By adjusting the wire diameter distribution and the roundness of the cross section as described above, not only the feeding performance of the wire is improved, but also the wire after drawing is aligned with a winding member such as a reel or bobbin. When winding, problems such as winding disturbance are less likely to occur, and the workability of the winding process can be improved. A Ti-based oxide film alone does not necessarily have sufficient lubricity at the time of wire drawing, and it is necessary to use a lubricant and a pretreatment film in combination. That is, since the lubricity is raised by the amount of Ti-based oxide film formed, even if a lubricant is applied under the same conditions, the lubrication performance is further improved by forming the Ti-based oxide film. In addition, from the viewpoint of obtaining equivalent lubricity, there is an advantage that the amount of lubricant applied can be reduced, and it also means that various problems described later due to remaining lubricant are reduced.

ところで、自然酸化膜よりも厚いTi系酸化膜を形成したTi系線材に冷間伸線加工を施すと、Ti系酸化膜にはクラックが生じやすく、このクラックに潤滑剤が保持されて残留しやすくなる。このような線材を用いて形成される溶接ビードや溶射層には、潤滑剤成分が不純物として混入し、強度や耐食性に悪影響を及ぼす可能性がある。また、こうした潤滑剤成分は、例えば金属せっけんの場合は、カルボン酸分子構造部分に酸素、炭素及び水素などを含む。従って、線材本体の酸素量を規制しても、該潤滑剤からの酸素が残留すれば、線材全体の酸素含有率を規格上限値内に収めることが難しくなる場合がある。また、Ti系酸化膜の形成とは無関係な、炭素や水素などの不純物が潤滑剤成分の形で残存すれば、線材全体の炭素含有率や水素含有率も規格上限値(表1参照:例えば水素の規格上限値は0.008質量%以上0.02質量%以下の範囲で設定され、炭素の規格上限値は0.03質量%以上0.1質量%以下の範囲で設定されている)内に収めることが難しくなる場合がある。   By the way, when cold drawing is performed on a Ti-based wire having a Ti-based oxide film thicker than a natural oxide film, cracks are likely to occur in the Ti-based oxide film, and a lubricant is retained and remains in this crack. It becomes easy. In a weld bead or a sprayed layer formed using such a wire, a lubricant component may be mixed as an impurity, which may adversely affect strength and corrosion resistance. In addition, in the case of metal soap, for example, such a lubricant component contains oxygen, carbon, hydrogen and the like in the carboxylic acid molecular structure portion. Therefore, even if the amount of oxygen in the wire main body is regulated, if oxygen from the lubricant remains, it may be difficult to keep the oxygen content of the entire wire within the upper limit limit. Further, if impurities such as carbon and hydrogen, which are irrelevant to the formation of the Ti-based oxide film, remain in the form of a lubricant component, the carbon content and the hydrogen content of the entire wire are also specified as upper limit values (see Table 1, for example: (The standard upper limit value of hydrogen is set in the range of 0.008 mass% to 0.02 mass%, and the standard upper limit value of carbon is set in the range of 0.03 mass% to 0.1 mass%) It may be difficult to fit inside.

従って、(伸線後に)Ti系酸化膜に形成されるクラックの面積率は20%以下となるように制御することが望ましい。該クラックの面積率は、形成するTi系酸化膜の厚さと、伸線加工の減面率とによって調整できる。クラックの面積率はなるべく小さいほうが望ましいが、そのためにTi系酸化膜の厚さを減らしすぎれば、線材の送給性やアークの安定性向上といった効果が不十分になるし、伸線加工の減面率を小さくしすぎれば線材の製造能率の大幅な低下を招くので、こうした不具合が生じないように下限値は適宜定められることとなる。   Therefore, it is desirable to control the area ratio of cracks formed in the Ti-based oxide film (after wire drawing) to be 20% or less. The area ratio of the crack can be adjusted by the thickness of the Ti-based oxide film to be formed and the area reduction ratio of the wire drawing. It is desirable that the crack area ratio be as small as possible. However, if the thickness of the Ti-based oxide film is reduced too much, the effect of improving the wire feedability and arc stability will be insufficient, and the wire drawing process will be reduced. If the area ratio is too small, the production efficiency of the wire rod will be significantly reduced, so that the lower limit value is appropriately determined so that such problems do not occur.

加工前線材の表面にTi系酸化膜を1μm以上5μm以下の厚さにて形成し、該Ti系酸化膜表面に潤滑剤を付与する潤滑剤付与工程を実施するとともに、冷間伸線加工工程において、潤滑剤付与した加工前線材を、伸線ダイスを通すことにより、該伸線ダイスの内面と加工前線材の表面とを潤滑剤により潤滑しつつ冷間伸線加工を行なう場合、冷間伸線加工が終了した加工済み線材において、Ti系酸化膜上に残留した潤滑剤を、冷間伸線加工時にクラック内に保持された潤滑剤とともに除去する潤滑剤除去工程を実施することができる。クラック内の潤滑剤を十分に除去すれば、該線材を用いて形成される溶接ビードや溶射層への不純物としての混入も抑制できるので、該溶接ビードや溶射層の強度や耐食性に悪影響を与えることがない。さらに、金属せっけんなどの潤滑剤成分の残留が少なくなることで、該潤滑剤からの残留酸素も少なくなり、線材全体の酸素含有率を規格上限値内に収めることがより容易になる。また、Ti系酸化膜の形成とは無関係な、炭素や水素などの潤滑剤に含まれる不純物も潤滑剤残留量が減ることで減少でき、線材全体の炭素含有率や水素含有率も規格上限値(表1参照:例えば水素は0.008質量%以上0.02質量%以下、炭素は0.03質量%以上0.1質量%以下)内に容易に収めることができる。   A Ti-based oxide film is formed on the surface of the wire before processing with a thickness of 1 μm or more and 5 μm or less, and a lubricant applying step for applying a lubricant to the surface of the Ti-based oxide film is performed, and a cold wire drawing step In the case of performing cold wire drawing while lubricating the inner surface of the wire drawing die and the surface of the wire before work with a lubricant by passing the wire rod before passing the wire to which the lubricant has been applied, In the finished wire after the wire drawing process, a lubricant removing step of removing the lubricant remaining on the Ti-based oxide film together with the lubricant held in the crack during the cold wire drawing process can be performed. . If the lubricant in the cracks is sufficiently removed, contamination as a weld bead or sprayed layer formed using the wire can be suppressed, which adversely affects the strength and corrosion resistance of the weld bead or sprayed layer. There is nothing. Furthermore, since the residual of the lubricant component such as metal soap is reduced, the residual oxygen from the lubricant is also reduced, and it becomes easier to keep the oxygen content of the entire wire within the upper limit of the standard. In addition, impurities contained in lubricants such as carbon and hydrogen, which are unrelated to the formation of Ti-based oxide films, can be reduced by reducing the residual amount of lubricant, and the carbon content and hydrogen content of the entire wire are also the upper limit of the standard. (Refer to Table 1: For example, hydrogen is 0.008% by mass or more and 0.02% by mass or less, and carbon is 0.03% by mass or more and 0.1% by mass or less).

クラック内に保持された潤滑剤を除去する際に、線材の表面に強い摩擦が作用すると、形成したTi系酸化膜に剥離を生ずる恐れがある。そこで、その剥離をなるべく抑制するために、加工済み線材を洗浄液中に浸漬して洗浄することが望ましい。潤滑剤除去工程は、より具体的には、加工済み線材を洗浄液中にて浸漬する洗浄工程と、洗浄液を除去する水洗または湯洗工程を有するものとして実施することが有効である。なお、洗浄効果を高めるために線材よりも軟質の拭き取り媒体にて摩擦することも可能であるが、酸化膜の剥離を招かないように十分に注意する必要がある。洗浄等が終了した最終的な線材は、前述の潤滑剤残留の不具合を顕在化させないために、潤滑剤の残留量が線材10kg当たり1g以下(ゼロgを含む)となっていることが望ましい。   When a strong friction acts on the surface of the wire when removing the lubricant held in the crack, the formed Ti-based oxide film may be peeled off. Therefore, in order to suppress the separation as much as possible, it is desirable to clean the processed wire by immersing it in a cleaning solution. More specifically, it is effective to carry out the lubricant removing step as having a cleaning step of immersing the processed wire in the cleaning liquid and a water washing or hot water washing step of removing the cleaning liquid. In order to enhance the cleaning effect, it is possible to rub with a wiping medium softer than the wire, but sufficient care must be taken so as not to cause peeling of the oxide film. It is desirable that the final wire after cleaning or the like has a residual amount of lubricant of 1 g or less (including zero g) per 10 kg of the wire in order not to make the above-described failure of the lubricant remaining.

本発明の溶融金属形成用Ti系線材においては、Ti系酸化膜の厚さTwと線径Dwとの比Tw/Dwが、0.3×10−3〜1×10−1の範囲に調整されていることが望ましい。Ti系酸化膜の厚さTwと線径Dwとの比Tw/Dwが0.3×10−3(線径Dwの0.03%)未満になると、送給性改善効果が不十分となる。また、アークが不安定化しやすくなり、均一な溶接ビードや溶射層を形成する上で不利となる。他方、Tw/Dwが1×10−1(線径Dwの10%)以上とすることは、溶融金属への酸素混入比率が高くなり、溶接継手の特性低下などの弊害につながる場合がある。なお、アーク安定化効果をより顕著なものとするためには、Ti系酸化膜の厚さTwと線径Dwとの比Tw/Dwを、1×10−3〜50×10−3の範囲に調整することがより望ましい。なお、Ti系酸化膜の厚さは以下のようにして特定することができる。すなわち、線材の断面を鏡面研磨し、EPMA(Electron Probe Micro Analysis)により酸素濃度分布を面分析するとともに、酸素濃度が7質量%以上となる周縁領域をTi系酸化膜として特定する。 In the Ti-based wire for forming a molten metal according to the present invention, the ratio Tw / Dw between the thickness Tw of the Ti-based oxide film and the wire diameter Dw is adjusted in the range of 0.3 × 10 −3 to 1 × 10 −1. It is desirable that When the ratio Tw / Dw between the thickness Tw of the Ti-based oxide film and the wire diameter Dw is less than 0.3 × 10 −3 (0.03% of the wire diameter Dw), the effect of improving the feedability becomes insufficient. . In addition, the arc tends to become unstable, which is disadvantageous in forming a uniform weld bead or sprayed layer. On the other hand, when Tw / Dw is 1 × 10 −1 (10% of the wire diameter Dw) or more, the oxygen mixing ratio into the molten metal is increased, which may lead to adverse effects such as deterioration of the characteristics of the welded joint. In order to make the arc stabilization effect more prominent, the ratio Tw / Dw between the thickness Tw of the Ti-based oxide film and the wire diameter Dw is in the range of 1 × 10 −3 to 50 × 10 −3 . It is more desirable to adjust to. The thickness of the Ti-based oxide film can be specified as follows. That is, the cross section of the wire is mirror-polished and the oxygen concentration distribution is subjected to surface analysis by EPMA (Electron Probe Micro Analysis), and the peripheral region where the oxygen concentration is 7% by mass or more is specified as the Ti-based oxide film.

本発明の溶融金属形成用Ti線材は、溶融金属として溶接金属を形成する溶接用Ti線材として使用することができる。また、溶融金属として溶射金属層を形成する溶射用Ti線材として使用することもできる。   The Ti wire for forming a molten metal of the present invention can be used as a Ti wire for welding that forms a weld metal as a molten metal. Moreover, it can also be used as a Ti wire for thermal spraying that forms a thermal spray metal layer as a molten metal.

また、本発明の溶融金属形成用Ti系線材はTiを主成分とするものである。Ti合金を採用する場合、得られる溶接部や溶射層の強度あるいは延性向上等を目的として、種々の添加元素を副成分として含有させることができる。以下、採用可能な添加元素の例と望ましい添加量の範囲とを示す。   Moreover, the Ti-based wire for forming a molten metal of the present invention is mainly composed of Ti. When a Ti alloy is employed, various additive elements can be contained as subcomponents for the purpose of improving the strength or ductility of the obtained welded part or sprayed layer. Hereinafter, examples of additive elements that can be employed and ranges of desirable addition amounts are shown.

(1)Al:9質量%以下
AlはTiの低温相であるα相を安定化させるとともに、α相中に固溶してこれを強化する働きを有する。ただし、その含有量が9質量%を超えると、TiAl等の中間相(金属間化合物)が多量に形成され、靭性あるいは延性が阻害されることにつながる。他方、上記効果を顕著なものとするためには、1質量%以上は添加することが望ましく、より望ましくは2〜8質量%の範囲で添加するのがよい。
(1) Al: 9 mass% or less Al has the function of stabilizing the α phase, which is a low temperature phase of Ti, and strengthening it by dissolving in the α phase. However, if the content exceeds 9% by mass, a large amount of intermediate phase (intermetallic compound) such as Ti 3 Al is formed, leading to inhibition of toughness or ductility. On the other hand, in order to make the above-mentioned effect remarkable, it is desirable to add 1% by mass or more, and more desirably in the range of 2 to 8% by mass.

(2)N及びOの少なくともいずれか:合計で0.5質量%以下
N及びOも、Alと同様のα相安定化及び強化元素として機能し、特にOの添加効果が顕著である。ただし、その合計含有量が0.5質量%を超えると、靭性あるいは延性が阻害されることにつながる。他方、上記効果を顕著なものとするためには、合計で0.03質量%以上は添加することが望ましく、より望ましくは、合計で0.08〜0.2質量%の範囲で添加するのがよい。なお、ここでの酸素含有量は、いずれも、Ti系酸化膜以外の内層部の酸素含有量を意味する。
(2) At least one of N and O: 0.5% by mass or less in total N and O also function as an α-phase stabilizing and reinforcing element similar to Al, and the effect of adding O is particularly remarkable. However, if the total content exceeds 0.5% by mass, toughness or ductility is hindered. On the other hand, in order to make the above effect remarkable, it is desirable to add 0.03% by mass or more in total, and more desirably, add in a range of 0.08 to 0.2% by mass in total. Is good. The oxygen content here means the oxygen content of the inner layer portion other than the Ti-based oxide film.

(3)V、Mo、Nb及びTaの1種又は2種以上:合計で45質量%以下
これらの元素は、いずれもTi高温相であるβ相の安定化元素であり、熱間加工性の向上と、熱処理性改善による高強度化を図る上で有効である。ただし、これらの元素はいずれも高比重かつ高融点であり、過剰な添加はTi合金特有の軽量及び高比強度の効果を損なわせることにつながるほか、合金融点の上昇により溶製による製造の困難化を招来するので、合計添加量の上限を45質量%とする。他方、上記効果を顕著なものとするためには、合計で1質量%以上は添加することが望ましい。また、MoやTaは、合金の耐食性改善のために少量添加される場合もある。
(3) One or more of V, Mo, Nb, and Ta: 45% by mass or less in total These elements are β-phase stabilizing elements that are Ti high-temperature phases, and have hot workability. This is effective in improving the strength and improving the heat treatment. However, all of these elements have a high specific gravity and a high melting point, and excessive addition leads to damage to the light weight and high specific strength characteristic of the Ti alloy. Since this will cause difficulty, the upper limit of the total addition amount is set to 45% by mass. On the other hand, in order to make the above effects remarkable, it is desirable to add 1% by mass or more in total. Mo and Ta may be added in a small amount to improve the corrosion resistance of the alloy.

(4)Cr、Fe、Ni、Mn及びCuの1種又は2種以上:合計で15質量%以下
これらの元素もβ相の安定化効果を有し、熱間加工性の向上と、熱処理性改善による高強度化を図る上で有効である。ただし、いずれもTiとの間に中間相(例えば、TiCr、TiFe、TiNi、TiMnあるいはTiCuなど)を形成しやすく、過剰な添加は延性及び靭性を損なわせることにつながるために、合計添加量の上限を15質量%とする。他方、上記効果を顕著なものとするためには、合計で0.5質量%以上は添加することが望ましい。また、Niは合金の耐食性改善のために少量添加される場合もある。
(4) One or more of Cr, Fe, Ni, Mn and Cu: 15% by mass or less in total These elements also have the effect of stabilizing the β phase, improving hot workability and heat treatment It is effective in increasing strength through improvement. However, any of them easily forms an intermediate phase (for example, TiCr 2 , TiFe, Ti 2 Ni, TiMn, or Ti 2 Cu) with Ti, and excessive addition leads to damage to ductility and toughness. The upper limit of the total addition amount is 15% by mass. On the other hand, in order to make the above effects remarkable, it is desirable to add 0.5% by mass or more in total. Ni may be added in a small amount to improve the corrosion resistance of the alloy.

(5)Sn及びZrの少なくともいずれか:合計で20質量%以下
これらの元素はα相とβ相との双方を強化する中性形添加元素として知られる。ただし、過剰な添加は効果の飽和を招くため、合計添加量の上限を20質量%とする。他方、上記効果を顕著なものとするためには、合計で0.5質量%以上は添加することが望ましい。
(5) At least one of Sn and Zr: 20% by mass or less in total These elements are known as neutral additive elements that strengthen both the α phase and the β phase. However, excessive addition causes saturation of the effect, so the upper limit of the total addition amount is 20% by mass. On the other hand, in order to make the above effects remarkable, it is desirable to add 0.5% by mass or more in total.

(6)Si:0.7質量%以下
合金の耐クリープ性(クリープラプチャ強度)を増し、耐熱性改善効果を有する。ただし、過剰な添加はTiSi等の金属間化合物の形成により、クリープラプチャ強度あるいは延性の低下を却って引き起こすため、添加量の上限を0.7質量%とする。他方、上記効果を顕著なものとするためには、0.03質量%以上は添加することが望ましく、より望ましくは、0.05〜0.5質量%の範囲で添加するのがよい。
(6) Si: 0.7% by mass or less Increases the creep resistance (creep rupture strength) of the alloy and has an effect of improving heat resistance. However, excessive addition causes a decrease in creep rupture strength or ductility due to the formation of an intermetallic compound such as Ti 5 Si 3, so the upper limit of the addition amount is 0.7 mass%. On the other hand, in order to make the above-mentioned effect remarkable, it is desirable to add 0.03% by mass or more, and more desirably 0.05% to 0.5% by mass.

(7)Pd及びRuの少なくともいずれか:合計で0.5質量%以下
合金の耐食性を改善する効果を有する。ただし、いずれも貴金属であり高価なことから、効果の飽和等も考慮して添加量の上限を0.5質量%とする。他方、上記効果を顕著なものとするためには、0.02質量%以上は添加することが望ましい。
(7) At least one of Pd and Ru: 0.5% by mass or less in total The effect of improving the corrosion resistance of the alloy. However, since both are precious metals and expensive, the upper limit of the addition amount is set to 0.5% by mass in consideration of saturation of the effect. On the other hand, in order to make the above effect remarkable, it is desirable to add 0.02% by mass or more.

具体的な合金組成として、以下のようなものを例示できる(なお、組成に関しては、主成分元素であるTiを先頭に、副成分元素を、質量%の単位を省略した組成数値とともにハイフンで結合して記載する(例えば、Ti−6質量%Al−4質量%V合金は、Ti−6Al−4Vと記載する))。
(1)α型合金
Ti−5Al−2.5Sn、Ti−5.5Al−3.5Sn−3Zr−1Nb−0.3Mo−0.3Si、Ti−2.5Cu
(2)ニアα型合金:Ti−6Al−2Sn−4Zr−2Mo−0.1Si、Ti−8Al−1Mo−1V、Ti−2.25Al−2Sn−4Zr−2Mo、Ti−6Al−2Sn−2Zr−2Mo−0.25Si、Ti−6Al−2Nb−1Ta−0.8Mo、Ti−6Al−2Sn−1.5Zr−1Mo−0.35Bi−0.1Si、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5Al−6Sn−2Zr−1Mo−0.25Si
(3)α+β型合金
Ti−8Mn、Ti−3Al−2.5V、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−7Al−4Mo、Ti−6Al−2Sn−4Zr−6Mo、Ti−6Al−2Sn−2Zr−2Mo−2Cr−0.25Si、Ti−10V−2Fe−3Al、Ti−4Al−2Sn−4Mo−0.2Si、Ti−4Al−4Sn−4Mo−0.2Si、Ti−2.25Al−11Sn−4Mo−0.2Si、Ti−5Al−2Zr−4Mo−4Cr、Ti−4.5Al−5Mo−1.5Cr、Ti−6Al−5Zr−4Mo−1Cu−0.2Si、Ti−5Al−2Cr−1Fe
(4)β型合金
Ti−13V−11Cr−3Al、Ti−8Mo−8V−2Fe−3Al、Ti−3Al−8V−6Cr−4Mo−4Zr、Ti−11.5Mo−6Zr−4.5Sn、Ti−11V−11Zr−2Al−2Sn、Ti−15Mo−5Zr、Ti−15Mo−5Zr−3Al、Ti−15V−3Cr−3Al−3Sn、Ti−22V−4Al、Ti−15V−6Cr−4Al
(5)ニアβ型合金:Ti−10V−2Fe−3Al、
(6)耐食合金(溶接用としても使用できるが、溶射により耐食被覆層を形成したい場合に、特に有用である)
Ti−0.15Pd、Ti−0.3Mo−0.8Ni、Ti−5Ta
Specific examples of the alloy composition include the following (in addition, regarding the composition, Ti, which is the main component element, and the subcomponent elements are combined with a hyphen together with a composition value in which the unit of mass% is omitted. (For example, a Ti-6 mass% Al-4 mass% V alloy is described as Ti-6Al-4V).
(1) α-type alloy Ti-5Al-2.5Sn, Ti-5.5Al-3.5Sn-3Zr-1Nb-0.3Mo-0.3Si, Ti-2.5Cu
(2) Near α type alloy: Ti-6Al-2Sn-4Zr-2Mo-0.1Si, Ti-8Al-1Mo-1V, Ti-2.25Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-2Zr- 2Mo-0.25Si, Ti-6Al-2Nb-1Ta-0.8Mo, Ti-6Al-2Sn-1.5Zr-1Mo-0.35Bi-0.1Si, Ti-6Al-5Zr-0.5Mo-0. 2Si, Ti-5Al-6Sn-2Zr-1Mo-0.25Si
(3) α + β type alloy Ti-8Mn, Ti-3Al-2.5V, Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-7Al-4Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti- 6Al-2Sn-2Zr-2Mo-2Cr-0.25Si, Ti-10V-2Fe-3Al, Ti-4Al-2Sn-4Mo-0.2Si, Ti-4Al-4Sn-4Mo-0.2Si, Ti-2. 25Al-11Sn-4Mo-0.2Si, Ti-5Al-2Zr-4Mo-4Cr, Ti-4.5Al-5Mo-1.5Cr, Ti-6Al-5Zr-4Mo-1Cu-0.2Si, Ti-5Al- 2Cr-1Fe
(4) β-type alloys Ti-13V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, Ti-3Al-8V-6Cr-4Mo-4Zr, Ti-11.5Mo-6Zr-4.5Sn, Ti- 11V-11Zr-2Al-2Sn, Ti-15Mo-5Zr, Ti-15Mo-5Zr-3Al, Ti-15V-3Cr-3Al-3Sn, Ti-22V-4Al, Ti-15V-6Cr-4Al
(5) Near β type alloy: Ti-10V-2Fe-3Al,
(6) Corrosion resistant alloy (Can also be used for welding, but is particularly useful when you want to form a corrosion resistant coating layer by thermal spraying)
Ti-0.15Pd, Ti-0.3Mo-0.8Ni, Ti-5Ta

本発明の溶融金属形成用Ti系線材においてTi系酸化膜は、Ti系金属線材を、酸素を含有した雰囲気中にて熱酸化処理することにより形成できる。酸素を含有した雰囲気としては、酸素含有窒素雰囲気(大気雰囲気を含む)あるいは酸素含有不活性ガス雰囲気のほか、水蒸気など、酸素化合物を含有した気体雰囲気を用いてもよい。必要十分な厚さのTi系酸化膜を効率的に形成するには、酸素分圧が5〜21×10Paの酸素含有雰囲気を用いるのがよく、処理温度は例えば500〜800℃に設定するのがよい。また、熱酸化処理以外に、電気化学的に表層を酸化する方法も採用可能である。具体的には、リン酸溶液中での陽極酸化法が有効である。 In the Ti-based wire for forming a molten metal of the present invention, the Ti-based oxide film can be formed by subjecting the Ti-based metal wire to a thermal oxidation treatment in an atmosphere containing oxygen. As the atmosphere containing oxygen, in addition to an oxygen-containing nitrogen atmosphere (including an air atmosphere) or an oxygen-containing inert gas atmosphere, a gas atmosphere containing an oxygen compound such as water vapor may be used. In order to efficiently form a Ti-based oxide film having a necessary and sufficient thickness, it is preferable to use an oxygen-containing atmosphere having an oxygen partial pressure of 5 to 21 × 10 3 Pa, and the processing temperature is set to, for example, 500 to 800 ° C. It is good to do. In addition to the thermal oxidation treatment, a method of electrochemically oxidizing the surface layer can be employed. Specifically, an anodic oxidation method in a phosphoric acid solution is effective.

以下、本発明の実施の形態について図面を用いて説明する。
図1は、本発明の溶融金属形成用Ti系線材を用いてMIG溶接を行なう装置系の一例を示すものである。この装置300は、母材として例えば純チタン製又はチタン合金製のエンジン用エキゾーストパイプEPのMIG溶接を行なうものとして例示しているが、本発明はもちろん、これに限定されるものではない。また、溶融金属形成用Ti系線材(以下、単に線材ともいう)は、TiもしくはTi合金(例えば、Ti−6%Al−4%V等)より構成される。リール50から巻き出された線材301は、矯正ローラ303により線癖を矯正された後、送給ローラ302により可撓性を有するコンジットチューブ304内に導かれる。コンジットチューブ304の先端にはトーチ305が設けられ、コンジットチューブ304の後端側から導入されたアルゴン等の不活性ガスIGは、トーチ305の先端から被溶接部材であるエキゾーストパイプEPの溶接部位に吹き付けられてこれをガスシールドする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an apparatus system for performing MIG welding using a Ti-based wire for forming a molten metal according to the present invention. Although this apparatus 300 is illustrated as performing MIG welding of an exhaust pipe EP for engine made of pure titanium or titanium alloy as a base material, for example, the present invention is not limited to this. In addition, a Ti-based wire for forming a molten metal (hereinafter also simply referred to as a wire) is composed of Ti or a Ti alloy (for example, Ti-6% Al-4% V). The wire rod 301 unwound from the reel 50 is guided to a flexible conduit tube 304 by a feeding roller 302 after the wire wrinkles are corrected by a correction roller 303. A torch 305 is provided at the distal end of the conduit tube 304, and an inert gas IG such as argon introduced from the rear end side of the conduit tube 304 passes from the distal end of the torch 305 to the welded portion of the exhaust pipe EP that is a member to be welded. It is sprayed and this is gas-shielded.

トーチ305内には線材301の送りを許容した形でこれと導通する電極チップ306が設けられ、線材301の先端とエキゾーストパイプEPとの空隙に高圧を印加してアークARを発生させる。線材301はこのアークの熱エネルギーにより溶融し、溶接部位に滴下されて溶接ビードWMを形成する。なお、送給ローラ302は、線材301が溶融・消耗する速度に合わせてこれを連続的又は断続的にアークARに向けて送給する。なお、溶接ビードWMは、凝固直後は高温であり、すぐにシールドが破れると酸化が進行するので、溶接ビードWMの上方を覆うアフターシールド用ジグ307と、同じく溶接ビードWMの裏側を覆うバックシールド用ジグ308とが設けられている。   In the torch 305, an electrode tip 306 that is electrically connected to the wire 301 is provided in a form that allows the wire 301 to be fed, and an arc AR is generated by applying a high pressure to the gap between the tip of the wire 301 and the exhaust pipe EP. The wire 301 is melted by the thermal energy of this arc and is dropped onto the welding site to form a weld bead WM. The feeding roller 302 feeds the wire 301 toward the arc AR continuously or intermittently in accordance with the speed at which the wire 301 is melted and consumed. The weld bead WM is at a high temperature immediately after solidification, and oxidation proceeds immediately when the shield is broken. Therefore, an after shield jig 307 that covers the top of the weld bead WM and a back shield that also covers the back of the weld bead WM are used. A jig 308 is provided.

図2は、線材301の断面を模式的に示すものである。線材301は、線材本体3がTi金属にて構成され、線材長手方向の引張強度が
Smin=−230D+850 (単位:MPa)
Smax=−620D+2000 (単位:MPa)
にて表されるSmin以上Smax以下の範囲である。また、線材本体3の表面にTi系酸化膜2が1μm以上5μm以下の厚さにて形成されている。また、Ti系酸化膜2の厚さTwと線径Dwとの比Tw/Dwは、0.3×10−3〜1×10−1、より好ましくは、1×10−3〜50×10−3の範囲に調整されている。
FIG. 2 schematically shows a cross section of the wire 301. In the wire 301, the wire body 3 is made of Ti metal, and the tensile strength in the wire longitudinal direction is Smin = −230D + 850 (unit: MPa).
Smax = −620D + 2000 (unit: MPa)
The range is from Smin to Smax. A Ti-based oxide film 2 is formed on the surface of the wire main body 3 with a thickness of 1 μm or more and 5 μm or less. Further, the ratio Tw / Dw between the thickness Tw of the Ti-based oxide film 2 and the wire diameter Dw is 0.3 × 10 −3 to 1 × 10 −1 , more preferably 1 × 10 −3 to 50 × 10. -3 .

Ti系酸化膜2を有した線材301を用いることにより、アークの安定性が改善される。その理由は以下のように推察される。すなわち、線材301は、アーク発生時に表皮電流によって表層部から優先的に加熱され、温度的にも高温となる。その結果、表層部をなすTi系酸化膜2中に局在化した酸素は、アーク溶融の初期段階で蒸発してシールドガス雰囲気中に流出し、酸素を含有したシールドガスを用いた場合と同様の状態となって、アークが安定化するものと考えられる。また、従来のように、シールドガス自体に相当量の酸素が導入されるのと異なり、アーク安定化に必要十分な量の酸素が、Ti系酸化膜からの蒸発により直接補われるため、シールドガスへの酸素添加に比べ、少量でも有効に作用し、結果として溶接ビードに取り込まれる酸素量も従来の方法と比較して減ずることかでき、溶接継手強度の向上を図ることができるようになる。また、アークは酸化物を指向する性質があり、規則的な酸化物形成により、安定した陰極点と陽極点とを形成するため、アークが安定化するという説もある。   By using the wire 301 having the Ti-based oxide film 2, the arc stability is improved. The reason is guessed as follows. That is, the wire 301 is preferentially heated from the surface layer portion by the skin current when an arc is generated, and the temperature is also high. As a result, the oxygen localized in the Ti-based oxide film 2 forming the surface layer portion evaporates at the initial stage of arc melting and flows out into the shielding gas atmosphere, and is the same as in the case of using a shielding gas containing oxygen. This is considered to stabilize the arc. Also, unlike the conventional case where a considerable amount of oxygen is introduced into the shielding gas itself, the amount of oxygen necessary and sufficient for arc stabilization is directly compensated by evaporation from the Ti-based oxide film, so that the shielding gas Compared with the addition of oxygen to the steel, it works effectively even in a small amount. As a result, the amount of oxygen taken into the weld bead can be reduced as compared with the conventional method, and the weld joint strength can be improved. In addition, there is a theory that the arc is oriented toward the oxide, and the stable arc and anode points are formed by regular oxide formation, so that the arc is stabilized.

線材301は内層部3とTi系酸化膜2の合計の酸素量として得られる溶接部の継手特性確保の観点から、例えばJIS:H4600(2001)に規定された工業用純Tiの1種の板を溶接する場合には、酸素濃度を0.1%以下、2種の板を溶接する場合には、酸素濃度を0.15%以下にすることが望ましい。   From the viewpoint of securing the joint properties of the welded portion obtained as the total amount of oxygen of the inner layer portion 3 and the Ti-based oxide film 2, the wire 301 is, for example, a type of industrial pure Ti plate defined in JIS: H4600 (2001). When welding two types of plates, it is desirable that the oxygen concentration be 0.15% or less.

また、Ti系酸化膜2が形成された線材表面の表面粗さは、最大高さをRyとして、10μm以下にすることが、線材301のコンジットチューブ304内の送給性を向上させる観点において望ましい。そして、前記したような厚さ及び酸素濃度にてTi系酸化膜2を形成することは、表面粗さがこのような数値に調整された線材表面を得る上でも当然に有利に作用する。また、上記表面粗さにおいては、算術平均粗さRaが0.5μm以下となっていることが望ましい。また、最大高さRy及び算術平均粗さRaの下限値については特に制限はなく、コストとの兼ね合いにより適宜設定される(本発明者らは、Ryが少なくとも1.0μm程度まで、Raが少なくとも0.1μm程度まで小さくできることを確認している)。なお、本明細書において表面粗さは、JIS:B0601(2001)に規定された方法により測定されたものを意味する。   Further, the surface roughness of the surface of the wire rod on which the Ti-based oxide film 2 is formed is preferably 10 μm or less with the maximum height being Ry, from the viewpoint of improving the feedability in the conduit tube 304 of the wire rod 301. . The formation of the Ti-based oxide film 2 with the thickness and oxygen concentration as described above is naturally advantageous in obtaining a wire surface whose surface roughness is adjusted to such a numerical value. Moreover, in the said surface roughness, it is desirable that arithmetic mean roughness Ra is 0.5 micrometer or less. Further, the lower limit values of the maximum height Ry and the arithmetic average roughness Ra are not particularly limited, and are appropriately set in consideration of cost (the present inventors have at least Ra up to about 1.0 μm and Ra is at least about 1.0 μm. It has been confirmed that it can be reduced to about 0.1 μm). In addition, in this specification, surface roughness means what was measured by the method prescribed | regulated to JIS: B0601 (2001).

線材301は、上記のようなTi系酸化膜2の形成により、線材表面の動摩擦係数を大幅に低減できる。具体的には、表面を研磨した従来型のTi線材の表面動摩擦係数は0.5〜0.6程度であるが、本発明の採用により、その動摩擦係数を、0.4以下、例えば0.2〜0.3程度に軽減することができる。そして、線材301として一般に多用される線径Dwは、0.6〜2.0mm程度の範囲であるが、このような線径Dwを採用する場合、Ti系酸化膜2の形成により、具体的に達成可能な送給安定性のレベルとして、例えば、線材送給装置における反力を測定した送給反力測定プロファイルの平均振幅にて15N以下を実現できる。送給反力をこのように小さくできることで、コンジットチューブ304内での線材301の詰まり等の発生を効果的に抑制することができる。   The wire 301 can greatly reduce the dynamic friction coefficient on the surface of the wire by forming the Ti-based oxide film 2 as described above. Specifically, the surface dynamic friction coefficient of a conventional Ti wire rod whose surface is polished is about 0.5 to 0.6. However, by adopting the present invention, the dynamic friction coefficient is 0.4 or less, for example, 0. It can be reduced to about 2 to 0.3. The wire diameter Dw that is commonly used as the wire 301 is in the range of about 0.6 to 2.0 mm. When such a wire diameter Dw is employed, the Ti-based oxide film 2 is specifically formed. As a level of feed stability that can be achieved, for example, an average amplitude of a feed reaction force measurement profile obtained by measuring a reaction force in a wire feeding device can be 15 N or less. Since the feeding reaction force can be reduced in this manner, the occurrence of clogging of the wire 301 in the conduit tube 304 can be effectively suppressed.

また、コンジットチューブ内304での線材301の挫屈を防止するためには、線材長手方向の引張強度が前述のSmax以上Smin以下に調整されている必要がある。すなわち、長手方向の引張強度がSmin未満では、線材301の剛性不足により送給時の座屈変形、ひいてはコンジットチューブ304(図1)の内部での線材詰まり等を招きやすくなる。一方、線材301の長手方向の引張強度がSmaxを超えると、図1のごとく、自由に屈曲可能な可撓性のコンジットチューブ304内での線材のスムーズな送給が妨げられ、特に屈曲の大きい部位では、コンジットチューブ304の内面が齧られたりする不具合を生じやすくなる。従って、線材の引張強度はSmin以上Smax以下に調整する必要がある。   Further, in order to prevent the wire 301 from buckling in the conduit tube 304, the tensile strength in the longitudinal direction of the wire needs to be adjusted to the above-described Smax or more and Smin or less. That is, when the tensile strength in the longitudinal direction is less than Smin, the wire 301 is likely to be buckled and deformed at the time of feeding due to insufficient rigidity, and consequently the wire rod is clogged inside the conduit tube 304 (FIG. 1). On the other hand, when the tensile strength in the longitudinal direction of the wire 301 exceeds Smax, as shown in FIG. 1, smooth feeding of the wire in the flexible conduit tube 304 that can be bent freely is hindered, and particularly the bending is large. At the site, the inner surface of the conduit tube 304 is likely to be damaged. Therefore, it is necessary to adjust the tensile strength of the wire to Smin or more and Smax or less.

上記のような強度の線材301は、冷間伸線加工により製造することができる。以下、具体的に説明する。まず、Tiインゴット(例えば工業用純チタン1種又は2種からなるもの)を原料素材として線材圧延後、脱スケールすることにより加工前線材を得る。図3に示すように、この加工前線材301’は、ストランド状態で酸化処理炉46内に連続的に搬送され、表面が酸化処理されて、Ti系酸化膜が形成される。酸化処理は、例えば酸素分圧が5〜21×10Paの酸素含有雰囲気、例えば酸素含有窒素雰囲気(大気雰囲気を含む)が使用され、処理温度は500℃〜800℃(例えば750℃)に設定される。加工前線材301’の表面に形成するTi系酸化膜の厚さは1μm以上5μm以下であり、該厚さを得るためには、上記処理温度に設定された酸化処理炉46の加熱区間の、加工前線材301’の通過時間が1〜10分間(例えば6分間)となるように、上記加熱区間の長さに応じて加工前線材301’の搬送速度が調整される。この熱処理により加工前線材は回復・再結晶により展延性が向上し、後工程の冷間伸線加工等が容易になる。本実施形態では、送り側ロール47に巻かれた加工前線材301’を、モータ48mにより受け側ロール48によりコイル状に巻き取りつつ上記搬送を行なうようにしている。 The wire 301 having the above strength can be manufactured by cold drawing. This will be specifically described below. First, a wire before rolling is obtained by rolling a wire rod using a Ti ingot (for example, one or two types of industrial pure titanium) as a raw material and then descaling. As shown in FIG. 3, the pre-processed wire 301 ′ is continuously conveyed in a strand state into the oxidation treatment furnace 46, the surface is oxidized, and a Ti-based oxide film is formed. For the oxidation treatment, for example, an oxygen-containing atmosphere having an oxygen partial pressure of 5 to 21 × 10 3 Pa, for example, an oxygen-containing nitrogen atmosphere (including an air atmosphere) is used, and the treatment temperature is set to 500 ° C. to 800 ° C. (for example, 750 ° C.). Is set. The thickness of the Ti-based oxide film formed on the surface of the pre-processing wire 301 ′ is 1 μm or more and 5 μm or less, and in order to obtain the thickness, in the heating section of the oxidation processing furnace 46 set to the processing temperature, The conveyance speed of the pre-processing wire 301 ′ is adjusted according to the length of the heating section so that the passage time of the pre-processing wire 301 ′ is 1 to 10 minutes (for example, 6 minutes). This heat treatment improves the ductility of the pre-processed wire by recovery and recrystallization, and facilitates subsequent cold drawing and the like. In the present embodiment, the above-mentioned conveyance is performed while winding the pre-processing wire 301 ′ wound around the feed side roll 47 in a coil shape by the receiving side roll 48 by the motor 48m.

Ti系酸化膜を形成後の加工前線材301’は、図4に示すように、潤滑剤槽20内の潤滑剤21中を通過し、表面に潤滑剤が付与される。該潤滑剤は、次の伸線工程において伸線ダイスとの間に潤滑作用を付与し、伸線性を向上させる。なお、加工前線材301’に対する潤滑剤21の付与は、図5に示すように、コイル状の線材を潤滑剤槽20内に装入して行うこともできる。   As shown in FIG. 4, the pre-processing wire 301 ′ after forming the Ti-based oxide film passes through the lubricant 21 in the lubricant tank 20, and the lubricant is applied to the surface. The lubricant imparts a lubricating action between the wire drawing dies in the next wire drawing step and improves the wire drawing property. Note that the application of the lubricant 21 to the pre-processed wire 301 ′ can also be performed by charging a coiled wire into the lubricant tank 20 as shown in FIG. 5.

潤滑剤は、種々の金属セッケン類のほか、フッ化グラファイト、二硫化モリブデンなどを使用でき、2種以上のものを組み合わせて使用することもできる。線材表面には後述する洗浄を行っても微量の潤滑剤が残留することがあり、特に溶接用線材の場合には、潤滑剤成分混入による溶接継手強度の低下やばらつきなどにつながることもある。そこで潤滑剤は、線材を溶融させたときに分解ないし蒸発が進みやすく、溶接金属中への混入を生じにくいものを使用することがより望ましいといえる。この観点において特に望ましい潤滑剤は、ステアリン酸カルシウム及び水酸化カルシウムの少なくともいずれかを含有するものである。また、二硫化モリブデンを含有するものも採用できる。   As the lubricant, in addition to various metal soaps, graphite fluoride, molybdenum disulfide, and the like can be used, and two or more kinds can be used in combination. A trace amount of lubricant may remain on the surface of the wire even after the cleaning described later. In particular, in the case of a welding wire, it may lead to a decrease or variation in weld joint strength due to mixing of the lubricant component. Therefore, it can be said that it is more desirable to use a lubricant that is easy to decompose or evaporate when the wire is melted and is less likely to be mixed into the weld metal. Particularly desirable lubricants in this respect are those containing at least one of calcium stearate and calcium hydroxide. Moreover, what contains molybdenum disulfide can also be employ | adopted.

なお、加工前線材301’の表面に形成したTi系酸化膜は平滑で摩擦係数も小さく、潤滑剤の付着性もそれほど良好でない。従って、加工前線材301’をそのまま潤滑剤粉末中に埋没させても、十分な量の潤滑剤を付着できないことがある。そこで、図7に示すように、散点状の凸部が一様に分散した形態を有する前処理皮膜49を形成し、その状態で該加工前線材301’を潤滑剤粉末21中にて長手方向へ移動させる方法を採用することが有効である。このようにすると、前処理皮膜49の凸部にて潤滑剤粉末21が連れ出されながら加工前線材301’の表面に付着し、潤滑剤粉末層321が形成される。前処理皮膜49の凸部により潤滑剤粉末21の引っ掛けによる連れ出し効果により、潤滑剤粉末量の付着量が大幅に増加し、また、凸部を線材表面に分散形成することで、潤滑剤粉末21を線材表面に一様に付着させることができる。   The Ti-based oxide film formed on the surface of the pre-processed wire 301 'is smooth and has a small coefficient of friction, and the adhesion of the lubricant is not so good. Therefore, even if the pre-processed wire 301 ′ is buried in the lubricant powder as it is, a sufficient amount of lubricant may not be adhered. Therefore, as shown in FIG. 7, a pretreatment film 49 having a form in which scattered projections are uniformly dispersed is formed, and in this state, the preprocessed wire 301 ′ is elongated in the lubricant powder 21. It is effective to adopt a method of moving in the direction. In this way, the lubricant powder 21 is taken out by the convex portion of the pretreatment film 49 and adhered to the surface of the pre-processed wire 301 ′, thereby forming the lubricant powder layer 321. Due to the take-out effect of the lubricant powder 21 by the protrusions of the pretreatment film 49, the amount of adhesion of the lubricant powder greatly increases, and the lubricant powder 21 is formed by dispersing and forming the protrusions on the surface of the wire. Can be uniformly attached to the surface of the wire.

前処理皮膜49は、例えば前処理皮膜形成剤の溶液を加工前線材の表面に塗布し、これを乾燥させることにより、容易にかつ簡便に形成することができる。前処理皮膜形成剤としては、水溶性の金属硫酸塩、水溶性の金属炭酸塩、脂肪酸カルシウム及び水酸化カルシウムのいずれかを使用し、該前処理皮膜形成剤の水溶液を加工前線材の表面に塗布する方法を採用するとよい。上記の前処理皮膜形成剤は、線材を溶融させたときに分解ないし蒸発が進みやすく、溶接金属中への混入を生じにくい利点がある。   The pretreatment film 49 can be easily and easily formed by, for example, applying a solution of a pretreatment film forming agent to the surface of the wire before processing and drying it. As the pretreatment film-forming agent, any one of water-soluble metal sulfate, water-soluble metal carbonate, fatty acid calcium and calcium hydroxide is used, and the aqueous solution of the pretreatment film-forming agent is applied to the surface of the wire before processing. A method of applying may be adopted. The pretreatment film-forming agent has an advantage that decomposition or evaporation is likely to proceed when the wire is melted, and is less likely to be mixed into the weld metal.

本実施形態では、Ti系金属線材を、酸素を含有した雰囲気中にて熱酸化処理することによりTi系酸化膜を加工前線材301’の表面に形成しているが、これを利用して、前処理皮膜49は次のような方法により形成することができる。すなわち、図3に示すように、該熱酸化処理後において昇温状態の加工前線材301’の表面に前処理皮膜形成剤の溶液を塗布し、該線材301’の余熱で該溶液の溶媒を蒸発させて前処理皮膜を形成する。この方法によると、Ti系酸化膜形成の熱履歴により線材301’は例えば500℃以上800℃以下の高温状態で溶液塗布されるので、その余熱により溶媒(水分)が速やかに蒸発し、図6に示すように、塗付装置147の下流側に乾燥装置を特に設けなくとも、前処理皮膜49を均一に分散した形で簡便に形成できる。また溶媒の蒸発も速やかに進むので、線材表面に前処理皮膜49を強固に密着させることができる。   In this embodiment, the Ti-based metal wire is thermally oxidized in an oxygen-containing atmosphere to form a Ti-based oxide film on the surface of the pre-processing wire 301 ′. The pretreatment film 49 can be formed by the following method. That is, as shown in FIG. 3, after the thermal oxidation treatment, a solution of the pretreatment film forming agent is applied to the surface of the pre-processed wire 301 ′ that has been heated, and the solvent of the solution is removed by the residual heat of the wire 301 ′. Evaporate to form a pretreatment film. According to this method, the wire 301 ′ is applied with a solution at a high temperature of, for example, 500 ° C. or more and 800 ° C. or less due to the thermal history of the Ti-based oxide film formation, so that the solvent (water) quickly evaporates due to the residual heat. As shown in FIG. 5, the pretreatment film 49 can be easily formed in a uniformly dispersed form without providing a drying device on the downstream side of the coating device 147. Further, since the evaporation of the solvent proceeds promptly, the pretreatment film 49 can be firmly adhered to the surface of the wire.

この場合、図3に示すように、加工前線材301’の熱酸化処理炉46の直後に前処理皮膜形成剤の溶液の塗付装置147(本実施形態では溶液の噴霧ノズルを加工前線材301’の周囲に複数個配置したものとして構成している)を設け、加工前線材301’を長手方向に(ストランド状で)搬送しつつ熱酸化処理炉46内を通してTi系酸化膜を形成し、引き続き該Ti系酸化膜形成後の加工前線材301’を塗付装置147に搬送して前処理皮膜形成剤の溶液を塗布するようにすれば、線材301’の温度が十分高いうちに溶液の塗布を行なうことができるので、前処理皮膜をより確実に形成することができる。塗布装置147は、皮膜形成剤の溶液中に加工前線材301’を浸漬する方式で代用してもよい。   In this case, as shown in FIG. 3, immediately after the thermal oxidation furnace 46 of the pre-processed wire 301 ′, the pretreatment film-forming agent solution coating device 147 (in this embodiment, the solution spray nozzle is used as the pre-process wire 301 And a Ti-based oxide film is formed through the thermal oxidation furnace 46 while conveying the pre-processed wire 301 'in the longitudinal direction (in the form of a strand), If the pre-processing wire rod 301 ′ after the formation of the Ti-based oxide film is subsequently conveyed to the coating device 147 and the solution of the pretreatment film forming agent is applied, the solution of the wire rod 301 ′ while the temperature of the wire rod 301 ′ is sufficiently high. Since application | coating can be performed, a pre-processing film | membrane can be formed more reliably. The coating device 147 may be substituted by a method in which the pre-processing wire 301 ′ is immersed in a solution of the film forming agent.

前処理皮膜形成済みの加工前線材301’は、図3に示すように受け側ロール48により巻き取られ、一時保管される。その後、ロール48から加工前線材301’を繰り出しつつ、前処理皮膜形成済みの加工前線材301’を潤滑剤槽20に供給し、図7に示す潤滑剤粉末層321を形成する。このとき、前述の水溶性の金属硫酸塩、水溶性の金属炭酸塩、脂肪酸カルシウム及び水酸化カルシウムなどからなる前処理皮膜形成剤は吸湿性が比較的高いので、加工前線材301’を予備乾燥炉45(図4)にて予備乾燥した後、潤滑剤槽20に供給すると潤滑性能向上が期待できる。   The pre-processed wire 301 ′ with the pretreatment film formed is wound up by the receiving roll 48 and temporarily stored as shown in FIG. 3. Thereafter, the unprocessed wire 301 ′ with the pretreatment film formed thereon is supplied from the roll 48 to the lubricant tank 20 to form the lubricant powder layer 321 shown in FIG. 7. At this time, the pretreatment film-forming agent comprising the aforementioned water-soluble metal sulfate, water-soluble metal carbonate, fatty acid calcium, calcium hydroxide and the like has a relatively high hygroscopic property, so the pre-processed wire 301 ′ is pre-dried. After preliminary drying in the furnace 45 (FIG. 4), an improvement in lubrication performance can be expected by supplying the lubricant tank 20.

潤滑剤が付与された加工前線材301’(図8)は、図4に示すように、ダイスホルダ31と、該ダイスホルダ31に固定された伸線ダイス32(例えば超硬合金製のものである)とを有する冷間伸線装置30に導入される。具体的には、加工前線材301’を、入口側よりも出口側が小径となるように断面がほぼ円錐状に形成された伸線ダイス32に挿通し、常温下で出口側から引っ張ることにより、伸線ダイス32の出口の断面形状とほぼ同一断面を有する線材301が得られる。該線材301は、矯正部49を経て線材スプール50へ巻き取られ、前記したMIG溶接に使用される。なお、1回の伸線で望みの線径まで減面できないときは、ダイス径が順次縮小する複数のダイスを用いて、複数回の伸線を繰り返せばよい。   As shown in FIG. 4, the pre-processing wire 301 ′ (FIG. 8) to which the lubricant is applied includes a die holder 31 and a wire drawing die 32 (for example, made of cemented carbide) fixed to the die holder 31. Are introduced into a cold wire drawing device 30. Specifically, by inserting the wire rod 301 ′ before processing into a wire drawing die 32 having a substantially conical section so that the outlet side has a smaller diameter than the inlet side, and pulling from the outlet side at room temperature, A wire 301 having substantially the same cross section as that of the outlet of the wire drawing die 32 is obtained. The wire 301 is wound around the wire spool 50 through the straightening portion 49 and used for the MIG welding described above. In addition, when it is not possible to reduce the surface to the desired wire diameter with a single wire drawing, a plurality of wire drawing may be repeated using a plurality of dies whose die diameters are sequentially reduced.

酸化熱処理により加工前線材301’の表面に形成されたTi系酸化膜は、酸化時の体積膨張の影響などもあり、低密度で線材本体に対する密着力も低くなっていることが多い。しかし、上記のように冷間伸線加工を施すことにより、Ti系酸化膜2’は、伸線ダイス内にて線材縮径方向に圧縮されて高密度化し、かつ、金属からなる線材本体への食い込み効果により密着力が高められたTi系酸化膜2となる。   The Ti-based oxide film formed on the surface of the pre-processed wire 301 ′ by the oxidation heat treatment is often low in density and low in adhesion to the wire body due to the effects of volume expansion during oxidation. However, by performing the cold wire drawing process as described above, the Ti-based oxide film 2 'is compressed in the wire rod diameter reducing direction in the wire drawing die to increase the density, and to the wire main body made of metal. As a result, the Ti-based oxide film 2 with improved adhesion due to the biting effect is obtained.

ここで、図8に示すごとく、加工前線材301’において、Ti系酸化膜2’は、延性が低いことに加え、下地となる線材本体3’との間の熱膨張係数の差も大きいため、膜厚が増加したときの密着力の低下が著しく、また膜中に相当量のクラックCKを生じていることも多い。従って、Ti系酸化膜2’の厚さTw’が5μmを超えて大きくなっていると、伸線用ダイス30を通したときにTi系酸化膜2の剥離を生じやすくなり、線材の全長にわたって均一なTi系酸化膜の被覆状態が得られなくなる。また、Ti系酸化膜2’と線材本体3との密着性も低いので、線材使用時においても、Ti系酸化膜の脱落が生じやすくなる(例えば、ガイドロールなどとの接触時など)。   Here, as shown in FIG. 8, in the pre-processed wire 301 ′, the Ti-based oxide film 2 ′ has low ductility and also has a large difference in thermal expansion coefficient with the underlying wire main body 3 ′. When the film thickness is increased, the adhesion force is remarkably reduced, and a considerable amount of crack CK is often generated in the film. Accordingly, if the thickness Tw ′ of the Ti-based oxide film 2 ′ exceeds 5 μm, the Ti-based oxide film 2 is likely to be peeled off when passing through the wire drawing die 30 and extends over the entire length of the wire. A uniform Ti-based oxide film coating state cannot be obtained. Further, since the adhesion between the Ti-based oxide film 2 'and the wire main body 3 is low, the Ti-based oxide film is likely to fall off even when the wire is used (for example, at the time of contact with a guide roll or the like).

一方、加工前線材301’のTi系酸化膜2’の厚さTw’が1μm未満に小さくなっていると、図14に示すように、Ti系酸化膜2’伸線加工時の潤滑効果が不足して、得られる線材301の表面にダイスマークKが深く刻まれ、線材表面の摩擦係数を悪化させる原因となる。従って、Ti系酸化膜の厚さは1μm以上5μm以下とされ、これによって線材本体3の表面に平滑で均一なTi系酸化膜2を形成することが可能となる。   On the other hand, if the thickness Tw ′ of the Ti-based oxide film 2 ′ of the pre-processing wire 301 ′ is smaller than 1 μm, the lubrication effect during the Ti-based oxide film 2 ′ wire drawing process as shown in FIG. Insufficiently, the dice mark K is deeply etched on the surface of the obtained wire 301, which causes the friction coefficient of the wire surface to deteriorate. Therefore, the thickness of the Ti-based oxide film is set to 1 μm or more and 5 μm or less, whereby the smooth and uniform Ti-based oxide film 2 can be formed on the surface of the wire body 3.

図8においてTi系酸化膜2’は、コンジットチューブとの内面摩擦低減効果を有していることから明らかな通り、表面が比較的平滑であり、伸線時の摩擦低減効果も有している。従って、従来の溶融金属形成用Ti系線材と比較して、線材の全長にわたって線径分布がより一定で真円度も良好な線材を得ることができる。具体的には、線径Dwの公称値を上限値とし、公称値よりも0.02mmを減じた値を下限値として、線材全長にわたって線径Dwが上記上限値と下限値との間に収まっており、かつ、線材断面の真円度が5μm以下に調整された線材を実現可能である。これにより、図1の使用時において、線材301の送給性が改善されるばかりでなく、図4において、伸線後の線材301をリール50に整列しつつ巻き取る際に、巻き乱れ等の不具合が生じにくくなり、巻き取り工程の作業性を改善することができる。この場合、線材310の全長において線径Dwの最大値が公称値を表すことになる。   In FIG. 8, the Ti-based oxide film 2 ′ has a relatively smooth surface and has a friction reducing effect during wire drawing, as apparent from the fact that it has an internal friction reducing effect with the conduit tube. . Therefore, a wire rod having a more uniform wire diameter distribution and a good roundness can be obtained over the entire length of the wire rod as compared with a conventional Ti metal wire for forming a molten metal. Specifically, the nominal value of the wire diameter Dw is set as the upper limit value, the value obtained by subtracting 0.02 mm from the nominal value is set as the lower limit value, and the wire diameter Dw falls between the upper limit value and the lower limit value over the entire length of the wire. In addition, it is possible to realize a wire whose roundness of the cross section of the wire is adjusted to 5 μm or less. This not only improves the feedability of the wire 301 during use of FIG. 1, but also when winding the wire 301 after drawing in alignment with the reel 50 in FIG. Problems are less likely to occur, and the workability of the winding process can be improved. In this case, the maximum value of the wire diameter Dw in the entire length of the wire rod 310 represents a nominal value.

図8において、伸線ダイス32のダイス孔31hの孔径は、加工前線材301’の線径に応じ、冷間伸線加工の減面率が20%以上70%以下の範囲となるよう調整されている。該減面率は、Ti系酸化膜2の膜厚を考慮して、伸線後のクラックCKの面積率が20%以下となるように設定される。加工前線材301’の表面に付与された潤滑剤321’は、伸線の断面縮小時にTi系酸化膜2’にクラックCKが形成されると、そのクラックCK内に潤滑剤が押し込まれる。クラック内に残留した潤滑剤は線材表面に残留しやすいので、後述のごとく、Ti系酸化膜2の剥離抑制を考慮しつつ洗浄液中への浸漬により十分除去する必要がある。   In FIG. 8, the hole diameter of the die hole 31h of the wire drawing die 32 is adjusted so that the area reduction rate of the cold wire drawing is in the range of 20% to 70% according to the wire diameter of the pre-processing wire 301 ′. ing. The area reduction ratio is set so that the area ratio of the crack CK after drawing is 20% or less in consideration of the thickness of the Ti-based oxide film 2. When the crack CK is formed in the Ti-based oxide film 2 ′ when the cross section of the drawn wire is reduced, the lubricant 321 ′ applied to the surface of the pre-processing wire 301 ′ is pushed into the crack CK. Since the lubricant remaining in the crack is likely to remain on the surface of the wire, as described later, it is necessary to sufficiently remove the lubricant by dipping in the cleaning liquid in consideration of suppression of peeling of the Ti-based oxide film 2.

酸化熱処理により加工前線材301’の表面に形成されたTi系酸化膜は、酸化時の体積膨張の影響などもあり、低密度で線材本体に対する密着力も低くなっていることが多い。しかし、上記のように冷間伸線加工を施すことにより、Ti系酸化膜2’は、伸線ダイス内にて線材縮径方向に圧縮されて高密度化し、かつ、金属からなる線材本体への食い込み効果により密着力が高められたTi系酸化膜2となる。   The Ti-based oxide film formed on the surface of the pre-processed wire 301 ′ by the oxidation heat treatment is often low in density and low in adhesion to the wire body due to the effects of volume expansion during oxidation. However, by performing the cold wire drawing process as described above, the Ti-based oxide film 2 'is compressed in the wire rod diameter reducing direction in the wire drawing die to increase the density, and to the wire main body made of metal. As a result, the Ti-based oxide film 2 with improved adhesion due to the biting effect is obtained.

図13に示すごとく、加工前線材301’において、Ti系酸化膜2’は、延性が低いことに加え、下地となる線材本体3’との間の熱膨張係数の差も大きいため、Ti系酸化膜2’の厚さTw’が過度に増加するし、具体的には5μmを超えて大きくなっていると、膜中に相当量のクラックを生じていることも多い。このクラックは、潤滑剤を多量に保持するため、溶接ビードや溶射層へ混入する不純物量が増加するという悪影響を及ぼす。   As shown in FIG. 13, in the pre-processed wire 301 ′, the Ti-based oxide film 2 ′ has a low ductility and also has a large difference in thermal expansion coefficient with the underlying wire main body 3 ′. When the thickness Tw ′ of the oxide film 2 ′ increases excessively, specifically when it exceeds 5 μm, a considerable amount of cracks are often generated in the film. Since this crack holds a large amount of lubricant, it has an adverse effect of increasing the amount of impurities mixed into the weld bead or the sprayed layer.

図8に戻り、上記のごとく冷間伸線加工が終了した加工済み線材301は、クラック内に潤滑剤が残留しやすい。また、Ti系酸化膜2上にも多少の潤滑剤が残留する場合がある。そこで、図9に示すように、加工済み線材301を洗浄槽56に導き、洗浄液57中に加工済み線材301を浸漬して洗浄する(洗浄工程)。洗浄液としては、例えば前述の潤滑剤の主体をなす金属せっけん等に対し溶解性を有するアルカリ系洗浄液(例えば界面活性剤を主体とするもの)を使用できる。この洗浄により、クラックCK以外の領域に付着した水溶性の前処理皮膜と潤滑剤とが除去できる。前処理皮膜形成剤として、水溶性の金属硫酸塩、水溶性の金属炭酸塩、脂肪酸カルシウム及び水酸化カルシウムを用いれば、上記の洗浄及び補助洗浄にて前処理皮膜形成剤を容易に溶解・除去することができ、処理後の線材表面への残留量も少なくできる。その結果、前処理皮膜形成剤からの残留酸素も少なくなり、線材全体の酸素含有率を規格上限値内に収めることがより容易になる。また、Ti系酸化膜の形成とは無関係な、炭素や水素などの不純物も、前処理皮膜形成剤の残留が減ることで減少し、線材全体の炭素含有率や水素含有率も規格上限値内に容易に収めることができる。なお、洗浄後は、下流側に設けられたエアー吹付け等による乾燥装置65により洗浄後の線材301を乾燥する。   Returning to FIG. 8, in the processed wire 301 after the cold drawing as described above, the lubricant tends to remain in the crack. In addition, some lubricant may remain on the Ti-based oxide film 2. Therefore, as shown in FIG. 9, the processed wire 301 is guided to the cleaning tank 56, and the processed wire 301 is immersed in the cleaning liquid 57 for cleaning (cleaning step). As the cleaning liquid, for example, an alkaline cleaning liquid (for example, mainly composed of a surfactant) that is soluble in the above-described metal soap, which is the main component of the lubricant, can be used. By this cleaning, the water-soluble pretreatment film and the lubricant adhering to the region other than the crack CK can be removed. If water-soluble metal sulfate, water-soluble metal carbonate, fatty acid calcium and calcium hydroxide are used as the pretreatment film forming agent, the pretreatment film forming agent can be easily dissolved and removed by the above washing and auxiliary washing. It is possible to reduce the residual amount on the surface of the wire after the treatment. As a result, the residual oxygen from the pretreatment film-forming agent is also reduced, and it becomes easier to keep the oxygen content of the entire wire within the standard upper limit value. In addition, impurities such as carbon and hydrogen, which are unrelated to the formation of the Ti-based oxide film, are reduced by reducing the residual pre-treatment film forming agent, and the carbon content and hydrogen content of the entire wire are within the upper limit of the standard. Can be easily accommodated. In addition, after washing | cleaning, the wire 301 after washing | cleaning is dried with the drying apparatus 65 by the air spray etc. which were provided in the downstream.

他方、潤滑剤については、上記洗浄により、クラックCK以外の領域に付着したものは比較的容易に除去できるが、クラックCKの内部に保持されている潤滑剤は、洗浄のみで十分に除去することは困難な場合がある。そこで、洗浄工程後に、洗浄液にて湿潤した状態の加工済み線材301の表面を、線材よりも軟質の拭き取り媒体62にて摩擦することにより、クラックCK内に圧入された潤滑剤を拭き取り除去することが効果的である。この拭き取りにより、クラックCKからも潤滑剤が十分に除去され、線材301表面への潤滑剤残留量が大幅に減じられる。その結果、潤滑剤からの残留酸素が少なくなり、線材全体の酸素含有率を規格上限値内に収めることがより容易になる。また、Ti系酸化膜の形成とは無関係な、炭素や水素などの不純物も、潤滑剤の残留が減ることで減少し、線材全体の炭素含有率や水素含有率も規格上限値内に容易に収めることができる。この場合、拭き取り媒体62の材質、押し付け圧力を適切に選定し、Ti系酸化膜の剥離を招いてはならない。   On the other hand, with respect to the lubricant, those adhering to the region other than the crack CK can be removed relatively easily by the above cleaning, but the lubricant retained inside the crack CK should be sufficiently removed only by cleaning. Can be difficult. Therefore, after the cleaning process, the surface of the processed wire 301 wet with the cleaning liquid is rubbed with a wiping medium 62 softer than the wire to wipe off the lubricant press-fitted into the crack CK. Is effective. By this wiping, the lubricant is sufficiently removed from the crack CK, and the amount of lubricant remaining on the surface of the wire 301 is greatly reduced. As a result, the residual oxygen from the lubricant is reduced, and it becomes easier to keep the oxygen content of the entire wire within the standard upper limit. In addition, impurities such as carbon and hydrogen, which are unrelated to the formation of the Ti-based oxide film, are reduced by reducing the residual lubricant, and the carbon content and hydrogen content of the entire wire can be easily within the specified upper limit. Can fit. In this case, the material and pressing pressure of the wiping medium 62 should be appropriately selected, and the Ti-based oxide film should not be peeled off.

本実施形態では、洗浄槽56の下流側に温水噴霧による補助洗浄槽150を設け、さらに、洗浄槽56及び補助洗浄槽150を通過して搬送される線材301に対し、線材搬送を継続しつつこれに帯状の拭き取り媒体62を当接させて線材表面の拭き取り処理を行なう拭取り装置60を設けている。   In the present embodiment, an auxiliary cleaning tank 150 by spraying warm water is provided on the downstream side of the cleaning tank 56, and further, the wire rod 301 continues to be conveyed with respect to the wire 301 conveyed through the cleaning tank 56 and the auxiliary cleaning tank 150. A wiping device 60 is provided in which a strip-like wiping medium 62 is brought into contact with the wiping medium 60 to perform a wiping process on the surface of the wire.

図8に戻り、上記のようにしてクラックCK内の残留潤滑剤を減少させることで、該線材を用いて形成される溶接ビードへの不純物としての混入も抑制でき、該溶接ビードの強度や特性に悪影響を及ぼすことはない。潤滑剤の残留量は、線材10kg当たり1g以下、望ましくは0.5g以下であるのがよい(ゼロgを含む)。また、クラックの形成面積率は20%以下に調整するのがよい。   Returning to FIG. 8, by reducing the residual lubricant in the crack CK as described above, it is possible to suppress contamination as an impurity into the weld bead formed using the wire, and the strength and characteristics of the weld bead. Will not be adversely affected. The residual amount of lubricant should be 1 g or less, preferably 0.5 g or less per 10 kg of wire (including zero g). Further, the formation area ratio of cracks is preferably adjusted to 20% or less.

なお、上記の線材301は、溶射用線材として用いることもできる。図16は、その溶射装置の一例を模式的に示す。溶射装置400は、溶射ガン302と、溶射ユニット303とを有する。溶射ユニット303内において、各々リール312,312に巻き取られた2本の線材301,301が、各々コンジットチューブ310を経て溶射ガン302に送給される。この実施形態では、線材301,301の送給は、溶射ガン302に設けられた送給ローラ308,308により、溶射ユニット303から線材301,301を引き込む形にて行っているが、溶射ユニット303に設けられた送りロールにより線材301,301を溶射ガン302に向けて送出するようにしてもよいし、両者を併用してもよい。   In addition, said wire 301 can also be used as a wire for thermal spraying. FIG. 16 schematically shows an example of the thermal spraying apparatus. The thermal spraying device 400 includes a thermal spray gun 302 and a thermal spray unit 303. In the thermal spraying unit 303, the two wire rods 301 and 301 wound around the reels 312 and 312 are respectively fed to the thermal spray gun 302 through the conduit tube 310. In this embodiment, the wire rods 301 and 301 are fed in such a manner that the wire rods 301 and 301 are drawn from the thermal spray unit 303 by feed rollers 308 and 308 provided on the thermal spray gun 302. The wire rods 301 and 301 may be fed toward the thermal spray gun 302 by a feed roll provided in the above, or both may be used in combination.

溶射ガン302内において線材301,301は、それぞれ独立した通電用ホルダ304,304内を、電気的導通状態にて通過した後、先端部同士が互いに接近する向きに送り出される。そして、溶射ユニット303側の直流アーク電源314により通電用ホルダ304,304を介して線材301,301に通電すると、線材301,301の先端間に形成されたギャップGにアーク放電が生じ、線材301,301の先端部が溶融して溶融金属を発生する。ギャップGに臨む位置には噴射ノズル310が配置され、溶射ユニット303側のコンプレッサー313により噴射媒体通路309を経て該噴射ノズル310に、空気あるいは窒素・アルゴン等の不活性ガスからなる噴射媒体が供給される。すると、ギャップGに形成された溶融金属が、該噴射媒体とともに霧状となって被処理物307の表面に溶射され、溶射層306を堆積させる。線材301,301は、アーク放電により先端側から逐次溶融しながらギャップGに連続的に送給されるので、噴射ノズルに媒体を供給し続けることにより、溶射を継続することができる。   In the thermal spray gun 302, the wire rods 301 and 301 pass through the respective energizing holders 304 and 304 in an electrically conductive state, and then are sent out in a direction in which the tip portions approach each other. When the wire rods 301 and 301 are energized by the DC arc power source 314 on the thermal spraying unit 303 side via the energization holders 304 and 304, arc discharge is generated in the gap G formed between the tips of the wire rods 301 and 301, and the wire rod 301 , 301 is melted to generate molten metal. An injection nozzle 310 is disposed at a position facing the gap G, and an injection medium made of air or an inert gas such as nitrogen or argon is supplied to the injection nozzle 310 through the injection medium passage 309 by the compressor 313 on the thermal spraying unit 303 side. Is done. Then, the molten metal formed in the gap G is sprayed on the surface of the workpiece 307 together with the jetting medium, and the sprayed layer 306 is deposited. Since the wires 301 and 301 are continuously fed to the gap G while being sequentially melted from the tip side by arc discharge, spraying can be continued by continuing to supply the medium to the spray nozzle.

このように、溶射の場合は2本の線材301,301が並列送給され、その先端間のギャップGにアーク形成することから、一方の線材301の供給速度が他方に対して進んだり遅れたりすると、ギャップGの間隔が変動し、アーク不安定が生じやすい。しかし、本発明の採用により、ギャップGに対する線材301,301の送給速度を安定的に保持できるので、アークの安定性を飛躍的に向上することができ、ひいては高品質の溶射層306を形成できる。   Thus, in the case of thermal spraying, two wire rods 301 and 301 are fed in parallel, and an arc is formed in the gap G between the tips, so that the supply speed of one wire rod 301 advances or lags with respect to the other. Then, the gap G varies and arc instability is likely to occur. However, by adopting the present invention, the feeding speed of the wires 301 and 301 with respect to the gap G can be stably maintained, so that the stability of the arc can be greatly improved, and as a result, a high quality sprayed layer 306 is formed. it can.

なお、以上説明した実施形態では、図2に示すように線材301の全体をTi金属にて構成していたが、図2に一点鎖線で示すように、線材301の表層部のみをTi金属にて形成し、内部に別の金属層4を形成した複合線材とすることもできる。例えば、溶接部ないし溶射層をTi合金製のものとしたいとき、その合金成分からなる金属層4(例えば、Al、V、Al−V合金など)を設けておき、溶融金属を形成する際に、外層部をなすTi金属と合金化することができる。外層部がTi系酸化膜2の形成されたTi金属層とされることで、線材全体を単一合金層とする場合よりも、線材の送給安定性及びアーク安定性を良好に確保することができる。また、金属層4の代わりに、セラミック粉末を充填した線材を用いれば、金属−セラミック複合材料(例えば、サーメット)を溶射することもできる。さらに、溶射方法はアーク溶射に限定されるものではなく、線状の溶射材料を用いることが可能であれば、例えばフレーム溶射、レーザー溶射、ガス溶射、プラズマ溶射などを採用することもできる。これらの溶射方法においても、線材の送給を安定化させる効果は同様に達成され、均一な溶射層を形成することに寄与する。   In the embodiment described above, the entire wire 301 is made of Ti metal as shown in FIG. 2, but only the surface layer portion of the wire 301 is made of Ti metal as shown by a one-dot chain line in FIG. It is also possible to form a composite wire having another metal layer 4 formed therein. For example, when a welded part or sprayed layer is to be made of a Ti alloy, a metal layer 4 (for example, Al, V, Al-V alloy, etc.) made of the alloy component is provided to form a molten metal. It can be alloyed with the Ti metal forming the outer layer. By ensuring that the outer layer is a Ti metal layer on which the Ti-based oxide film 2 is formed, it is possible to ensure better feeding stability and arc stability of the wire than when the entire wire is made of a single alloy layer. Can do. If a wire filled with ceramic powder is used instead of the metal layer 4, a metal-ceramic composite material (for example, cermet) can be sprayed. Furthermore, the thermal spraying method is not limited to arc spraying, and flame spraying, laser spraying, gas spraying, plasma spraying, etc. can be adopted as long as a linear spraying material can be used. Also in these thermal spraying methods, the effect of stabilizing the feeding of the wire is similarly achieved, contributing to the formation of a uniform thermal spray layer.

以下、本発明の効果を確認するために行なった実験結果について説明する。
(実施例1)
まず、素材としてJIS:H4670(1993)に規定されたチタン線素材(工業用純チタン1種に相当:線径1.6mm)を、窒素雰囲気(酸素分圧21×10Pa)に維持された酸化処理炉を用いて、500〜800℃にて1分〜60分間酸化熱処理することにより、種々のTi酸化膜を有する加工前線材を得た。この素材に冷間伸線加工を施し(加工パス数:6回、1回当たりの減面率は約14.5%)、線径が1.0mm(最終段のダイス孔径による公称値)であって、表1に示す種々の厚さのTi酸化膜を有する溶融金属形成用Ti系線材を得た(番号1〜6)。また、比較のため、チタン線素材を600℃にて1時間真空焼鈍後、番号3と同じ厚さのTi酸化膜を形成するための酸化熱処理を伸線加工後に施した線材(番号6)を作成した。加工後の線材は、直径280mm、幅100mmのリールに巻き取った。これらの線材につき、以下の測定及び評価を行なった。
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
(Example 1)
First, a titanium wire material (corresponding to one type of industrial pure titanium: wire diameter 1.6 mm) defined in JIS: H4670 (1993) as a material is maintained in a nitrogen atmosphere (oxygen partial pressure 21 × 10 3 Pa). The pre-processing wire having various Ti oxide films was obtained by performing an oxidation heat treatment at 500 to 800 ° C. for 1 to 60 minutes using the oxidation treatment furnace. This material is cold-drawn (number of machining passes: 6 times, the area reduction rate per stroke is about 14.5%), and the wire diameter is 1.0 mm (nominal value depending on the die hole diameter in the final stage) Thus, Ti metal wires for forming a molten metal having Ti oxide films having various thicknesses shown in Table 1 were obtained (Nos. 1 to 6). In addition, for comparison, a wire (No. 6) subjected to a wire annealing (No. 6) after a titanium wire material is vacuum-annealed at 600 ° C. for 1 hour and then subjected to an oxidation heat treatment for forming a Ti oxide film having the same thickness as No. 3 is drawn. Created. The processed wire was wound on a reel having a diameter of 280 mm and a width of 100 mm. The following measurements and evaluations were performed on these wires.

(1)Ti系酸化膜の厚さTw
線材の断面(ランダムに抜き出した10箇所)を鏡面研磨し、EPMA(Electron Probe Micro Analysis)により酸素濃度分布を面分析するとともに、酸素濃度が7%以上となる周縁領域をTi系酸化膜として特定し、周方向及び線長方向の平均厚さとして算出した。
(1) Thickness Tw of Ti-based oxide film
The cross section of the wire (10 randomly extracted points) is mirror-polished, and the oxygen concentration distribution is analyzed by EPMA (Electron Probe Micro Analysis), and the peripheral region where the oxygen concentration is 7% or more is specified as a Ti-based oxide film The average thickness in the circumferential direction and the line length direction was calculated.

(2)引張強さ
線材から長さ100mmの試験片を切り出し、インストロン型引張試験機を用いてクロスヘッド速度1.0mm/分にて引張を行い、応力−歪曲線を測定するとともに、その最大応力値を引張強さとして読み取った。
(2) Tensile strength A test piece having a length of 100 mm was cut out from the wire, tensioned at a crosshead speed of 1.0 mm / min using an Instron type tensile tester, and a stress-strain curve was measured. The maximum stress value was read as the tensile strength.

(3)表面粗さ
線材長手方向に評価長さを設定する形で、JIS:B0601(2001)に規定された方法により粗さ曲線を測定し、最大高さRy(μm)と、算術平均粗さRa(μm)の値をそれぞれ読み取った。
(3) Surface roughness In the form of setting the evaluation length in the longitudinal direction of the wire, the roughness curve is measured by the method defined in JIS: B0601 (2001), and the maximum height Ry (μm) and the arithmetic average roughness Each value of Ra (μm) was read.

(4)送給安定性評価
線材を図1のMIG溶接装置300にセットして、線材送り速度75mm/秒、電流90Aにて溶接を実施した。コンジットチューブ304の長さは3mとし、線材送給にトラブルなく溶接可能な場合に○(送給性良好)、溶接開始時に線材に座屈が発生した場合に×(送給性不安定)として判定した。
(4) Feeding stability evaluation The wire was set in the MIG welding apparatus 300 of FIG. 1, and welding was performed at a wire feed speed of 75 mm / second and a current of 90 A. The length of the conduit tube 304 is 3 m. If the wire can be welded without any trouble, ○ (good feedability), and × (when feedability is unstable) when buckling occurs in the wire at the start of welding. Judged.

(5)動摩擦係数
バウデン−リーベン型摩擦試験機を用いて測定した。具体的には、線材試料を試料台上に取り付け、上から押圧用の鋼材を重ね、その鋼材を一定重量の分銅にて押圧しながら試料台を一定速度で移動させたときの摩擦力を、歪ゲージ式の荷重検出器により検出する。
(6)伸線後のTi酸化膜の被覆状態
伸線後の線材の全長にわたって含有酸素量の分布を調べ、線長方向の含有酸素量の変動率が5%以内に収まっているものを良(○)、5%を超え10%以下のものを可(△)、10%を超えるものを不良(×)として評価した。伸線時のTi酸化膜の脱落が大きい線材は、脱落箇所での含有酸素量が大幅に低下するため、含有酸素量の変動率は大となる。
(7)伸線傷の有無
伸線後の線材を倍率10倍の拡大鏡を用いて目視観察し、ダイスマークの形成が認められないものを良好(○)、認められたものを不良(×)として判定した。
(8)線材送給時のTi酸化膜の脱落の有無
(4)において、線材送給後のコンジット内に、脱落したTi酸化膜の堆積がほとんど認められなかったものを良好(○)、顕著に認められたものを不良(×)として判定した。
(9)伸線後の線材の断面真円度
JIS:B7451(1997)に規定の方法により、線材全長から任意の10箇所にて測定し、平均値を算出した。また、線径分布を全長にわたって測定し、最大値と最小値とを求めた。
(10)リール巻取り性評価
線材5kgをリールに巻き取り、整列巻取りが可能であったかどうかを確認した。
(5) Coefficient of dynamic friction It was measured using a Bowden-Leven type friction tester. Specifically, the wire sample is mounted on the sample table, the steel material for pressing is stacked from above, and the friction force when the sample table is moved at a constant speed while pressing the steel material with a weight of a constant weight, It is detected by a strain gauge type load detector.
(6) Covering state of Ti oxide film after wire drawing The distribution of oxygen content is investigated over the entire length of the wire after wire drawing, and the variation rate of oxygen content in the wire length direction is within 5%. (◯) A value exceeding 5% and 10% or less was acceptable (Δ), and a value exceeding 10% was evaluated as defective (x). A wire rod with a large dropout of the Ti oxide film at the time of wire drawing has a large variation rate of the oxygen content because the oxygen content at the dropout portion is greatly reduced.
(7) Presence or absence of wire-drawing flaws The wire after wire drawing was visually observed using a magnifying glass with a magnification of 10 times. ).
(8) Presence or absence of Ti oxide film falling off during wire feeding In (4), the deposit after the feeding of the wire rod was almost free from depositing Ti oxide film was good (O), notable Those that were found in the above were judged as bad (x).
(9) Sectional roundness of wire after wire drawing Measured at 10 arbitrary points from the wire full length by the method defined in JIS: B7451 (1997), and the average value was calculated. Further, the wire diameter distribution was measured over the entire length, and the maximum value and the minimum value were obtained.
(10) Reel winding property evaluation 5 kg of a wire was wound on a reel, and it was confirmed whether or not aligned winding was possible.

以上の結果を表1に示す。
The results are shown in Table 1.

この結果によると、線材の送給安定性は、線材の引張強さが620MPa(Dが約1mmのときの前述のSminの値である)以上の範囲において良好であることがわかる。そして、Ti酸化膜の膜厚が1μm以上5μm以下のとき、伸線後のTi酸化膜による被覆状態が良好となり、かつ伸線後のダイスマークの発生もなく、良好な性能の線材が得られていることがわかる。また、線径分布も公称値Dwを上限値とし、Dw−0.02(mm)を下限値として該範囲内に線径分布が収まっており、真円度も5μm以下となっている。これにより、送給安定性が改善されるばかりでなく、リール巻取り性も良好である。   According to this result, it can be seen that the feeding stability of the wire is good when the tensile strength of the wire is 620 MPa (the value of Smin described above when D is about 1 mm) or more. When the thickness of the Ti oxide film is 1 μm or more and 5 μm or less, the coated state with the Ti oxide film after wire drawing is good, and there is no generation of dice marks after wire drawing, and a wire with good performance is obtained. You can see that The wire diameter distribution also has a nominal value Dw as an upper limit value and Dw−0.02 (mm) as a lower limit value, and the wire diameter distribution is within this range, and the roundness is 5 μm or less. Thereby, not only the feeding stability is improved, but also the reel winding property is good.

本発明の適用対象となるTiのMIG溶接装置の概略を示す模式図。The schematic diagram which shows the outline of the MIG welding apparatus of Ti used as the application object of this invention. 本発明の溶融金属形成用Ti系線材の断面模式図。The cross-sectional schematic diagram of the Ti-type wire for molten metal formation of this invention. 本発明の溶融金属形成用Ti系線材の製造工程説明図。Explanatory drawing of the manufacturing process of the Ti-type wire for molten metal formation of this invention. 図3に続く説明図Explanatory drawing following FIG. 図4の別工程を示す説明図。Explanatory drawing which shows another process of FIG. 前処理皮膜の形成概念を説明する図。The figure explaining the formation concept of a pre-processing film. 前処理皮膜の効果説明図。The effect explanatory view of a pretreatment coat. Ti系酸化膜の性状に伸線加工が及ぼす効果を説明する図。The figure explaining the effect which wire drawing has on the property of Ti system oxide film. 伸線後の洗浄及び拭き取り工程の概念説明図。The conceptual explanatory drawing of the cleaning and wiping process after wire drawing. 加工前線材の断面真円度が潤滑剤分布に影響を与える様子を説明する図。The figure explaining a mode that the cross-sectional roundness of the wire before a process affects lubricant distribution. 断面真円度を高めるための予備工程の説明図。Explanatory drawing of the preliminary process for raising cross-sectional roundness. 伸線後のTi系酸化膜の表面正常の一例を、洗浄・拭き取りの工程の潤滑剤残留状態に与える影響とともに示すSEM観察画像及びEDX分析プロファイル。The SEM observation image and EDX analysis profile which show an example of the surface normality of Ti system oxide film after wire drawing with the influence which it has on the lubricant residual state of the process of washing and wiping off. Ti系酸化膜を過度に厚く形成した場合の問題点を説明する図。The figure explaining the problem at the time of forming a Ti-type oxide film too thickly. Ti系酸化膜を過度に薄く形成した場合の問題点を説明する図。The figure explaining the problem at the time of forming a Ti-type oxide film too thinly. MIG溶接装置の要部を示す模式図。The schematic diagram which shows the principal part of a MIG welding apparatus. 本発明の適用対象となるTiのアーク溶射装置の概略を示す模式図。The schematic diagram which shows the outline of the arc spraying apparatus of Ti used as the application object of this invention.

符号の説明Explanation of symbols

2 Ti系酸化膜
3 内層部
21 潤滑剤
CK クラック
46 熱酸化処理炉
147 塗付装置
49 前処理皮膜
62 ベルト(拭き取り媒体)
301 溶融金属形成用Ti系線材
321 潤滑剤粉末層
2 Ti-based oxide film 3 Inner layer 21 Lubricant CK crack 46 Thermal oxidation treatment furnace 147 Coating device 49 Pretreatment film 62 Belt (wiping medium)
301 Ti-based wire for forming molten metal 321 Lubricant powder layer

Claims (16)

先端側から順次加熱溶融してTi系金属からなる溶融金属を形成するための溶融金属形成用Ti系線材であって、線材本体がTi系金属にて構成され、線径をDwとして、前記線材長手方向の引張強度が、
Smin=−230Dw+850 (単位:MPa)
Smax=−620Dw+2000 (単位:MPa)
にて表されるSmin以上Smax以下の範囲にあり、前記線材本体の表面にTi系酸化膜が1μm以上5μm以下の厚さにて形成されたことを特徴とする溶融金属形成用Ti系線材。
A molten metal-forming Ti-based wire for forming a molten metal composed of a Ti-based metal by heating and melting sequentially from the tip side, wherein the wire body is composed of a Ti-based metal, and the wire diameter is Dw. The tensile strength in the longitudinal direction is
Smin = −230 Dw + 850 (unit: MPa)
Smax = −620Dw + 2000 (unit: MPa)
A Ti-based wire for forming a molten metal, characterized in that a Ti-based oxide film having a thickness of 1 μm or more and 5 μm or less is formed on the surface of the wire body.
前記Ti系酸化膜の厚さTwと線径Dwとの比Tw/Dwが、0.3×10−3〜1×10−1の範囲に調整されてなる請求項1記載の溶融金属形成用Ti系線材。 The ratio Tw / Dw of the thickness Tw of said Ti-type oxide film and the wire diameter Dw is adjusted to the range of 0.3 * 10 < -3 > -1 * 10 < -1 >, For molten metal formation of Claim 1 Ti wire. 前記線材表面の表面粗さは、最大高さRyが10μm以下である請求項1又は請求項2に記載の溶融金属形成用Ti系線材。   The molten metal-forming Ti-based wire according to claim 1 or 2, wherein the surface roughness of the surface of the wire has a maximum height Ry of 10 µm or less. 前記線材表面の動摩擦係数が0.4以下である請求項1ないし請求項3のいずれか1項に記載の溶融金属形成用Ti系線材。   The Ti-based wire for forming a molten metal according to any one of claims 1 to 3, wherein a dynamic friction coefficient of the surface of the wire is 0.4 or less. 前記線径Dwが0.6mm以上2.0mm以下であり、かつ送給反力の平均振幅が15N以下である請求項1ないし請求項4のいずれか1項に記載の溶融金属形成用Ti系線材。   The Ti system for forming a molten metal according to any one of claims 1 to 4, wherein the wire diameter Dw is 0.6 mm or more and 2.0 mm or less, and an average amplitude of a feeding reaction force is 15 N or less. wire. 前記線径Dwの公称値を上限値とし、前記公称値よりも0.02mmを減じた値を下限値として、線材全長にわたって前記線径Dwが前記上限値と下限値との間に収まっており、かつ、線材断面の真円度が5μm以下に調整されてなる請求項1ないし請求項5のいずれか1項に記載の溶融金属形成用Ti系線材。   The nominal value of the wire diameter Dw is the upper limit value, the value obtained by subtracting 0.02 mm from the nominal value is the lower limit value, and the wire diameter Dw is within the upper limit value and the lower limit value over the entire length of the wire. The Ti-based wire for forming a molten metal according to any one of claims 1 to 5, wherein the roundness of the cross section of the wire is adjusted to 5 µm or less. 前記Ti系酸化膜に形成されるクラックの面積率を20%以下とする請求項1ないし請求項6のいずれか1項に記載の溶融金属形成用Ti系線材。   The Ti-based wire for forming a molten metal according to any one of claims 1 to 6, wherein an area ratio of cracks formed in the Ti-based oxide film is 20% or less. 前記潤滑剤の残留量が線材10kg当たり1g以下である請求項7記載の溶融金属形成用Ti系線材。   The Ti-based wire for forming a molten metal according to claim 7, wherein a residual amount of the lubricant is 1 g or less per 10 kg of the wire. 先端側から順次加熱溶融してTi系金属からなる溶融金属を形成するための溶融金属形成用Ti系線材の製造方法であって、Ti系金属にて構成された加工前線材の表面にTi系酸化膜を形成し、該加工前線材を前記Ti系酸化膜とともに冷間伸線加工することにより、Ti系金属からなる線材本体の表面にTi系酸化膜が1μm以上5μm以下の厚さにて形成された溶融金属形成用Ti系線材を得ることを特徴とする溶融金属形成用Ti系線材の製造方法。   A method of manufacturing a molten metal-forming Ti-based wire for forming a molten metal composed of a Ti-based metal by sequentially heating and melting from the tip side, and a Ti-based material on the surface of a pre-processed wire composed of the Ti-based metal By forming an oxide film and cold drawing the pre-processed wire together with the Ti-based oxide film, the Ti-based oxide film has a thickness of 1 μm or more and 5 μm or less on the surface of the wire body made of Ti-based metal. A method for producing a Ti-based wire for forming a molten metal, comprising: forming a Ti-based wire for forming a molten metal. 前記冷間伸線加工後に前記線材本体に付加される熱履歴が300℃以下である請求項9記載の溶融金属形成用Ti系線材の製造方法。   The manufacturing method of the Ti type | system | group wire for molten metal formation of Claim 9 whose heat history added to the said wire main body after the said cold wire drawing is 300 degrees C or less. 前記加工前線材の表面に前記Ti系酸化膜を形成後、減面率10%以上で前記冷間伸線加工することにより、前記加工前線材の縮径とともに該Ti系酸化膜を圧縮する請求項9又は請求項10に記載の溶融金属形成用Ti系線材の製造方法。   Claims: The Ti-based oxide film is compressed together with the reduced diameter of the pre-processed wire rod by forming the Ti-based oxide film on the surface of the unprocessed wire rod and then cold-drawing at a surface reduction rate of 10% or more. The manufacturing method of the Ti-type wire for molten metal formation of claim | item 9 or claim | item 10. 前記加工前線材をストランド状態で酸化処理炉内に搬送して、該加工前線材の表面を酸化処理することにより前記Ti系酸化膜を形成する請求項9ないし請求項11のいずれか1項に記載の溶融金属形成用Ti系線材の製造方法。   12. The Ti-based oxide film is formed according to claim 9, wherein the Ti-based oxide film is formed by conveying the pre-processed wire in a strand state into an oxidation furnace and oxidizing the surface of the pre-processed wire. The manufacturing method of the Ti-type wire for molten metal formation of description. 前記加工前線材の表面に前記Ti系酸化膜形成後、減面率10%以上の減面率で前記冷間伸線加工を加えることにより、線材長手方向の引張強度を、線径をDwとして、
Smin=−230Dw+850 (単位:MPa)
Smax=−620Dw+2000 (単位:MPa)
にて表されるSmin以上Smax以下の範囲にコントロールした請求項9ないし請求項12のいずれか1項に記載の溶融金属形成用Ti系線材の製造方法。
After forming the Ti-based oxide film on the surface of the pre-processed wire, the cold drawing is performed at a surface reduction rate of 10% or more, thereby obtaining the tensile strength in the longitudinal direction of the wire as the wire diameter Dw. ,
Smin = −230 Dw + 850 (unit: MPa)
Smax = −620Dw + 2000 (unit: MPa)
The manufacturing method of the Ti type | system | group metal wire for molten metal formation of any one of Claim 9 thru | or 12 controlled to the range of Smin or more and Smax or less represented by these.
前記加工前線材の表面にTi系酸化膜を1μm以上5μm以下の厚さにて形成し、該Ti系酸化膜表面に潤滑剤を付与する潤滑剤付与工程を有し、前記冷間伸線加工工程において、潤滑剤付与した加工前線材を、伸線ダイスを通すことにより、該伸線ダイスの内面と前記加工前線材の表面とを前記潤滑剤により潤滑しつつ冷間伸線加工を行なうとともに、前記冷間伸線加工が終了した加工済み線材において、前記Ti系酸化膜上に残留した潤滑剤を、前記冷間伸線加工時に前記クラック内に保持された潤滑剤とともに除去する潤滑剤除去工程を有する請求項9ないし13のいずれか1項に記載の溶融金属形成用Ti系線材の製造方法。   Forming a Ti-based oxide film with a thickness of 1 μm to 5 μm on the surface of the pre-processed wire, and applying a lubricant to the Ti-based oxide film surface; In the process, the cold-drawn wire is processed while lubricating the inner surface of the wire drawing die and the surface of the wire before working with the lubricant by passing the wire before drawing with a lubricant through a wire drawing die. In the processed wire after the cold wire drawing, the lubricant remaining on the Ti-based oxide film is removed together with the lubricant retained in the crack during the cold wire drawing. The manufacturing method of the Ti type | system | group wire for molten metal formation of any one of Claim 9 thru | or 13 which has a process. 前記潤滑剤は、ステアリン酸カルシウム、水酸化カルシウム及び二硫化モリブデンのいずれかを含有するものが使用される請求項14記載の溶融金属形成用Ti系線材の製造方法。   The method for producing a molten metal-forming Ti-based wire according to claim 14, wherein the lubricant contains any one of calcium stearate, calcium hydroxide, and molybdenum disulfide. 前記線径Dwの公称値を上限値とし、前記公称値よりも0.02mmを減じた値を下限値として、線材全長にわたって前記線径Dwを前記上限値と下限値との間に調整し、かつ、線材断面の真円度を5μm以下に調整する請求項9ないし請求項15のいずれか1項に記載の溶融金属形成用Ti系線材の製造方法。   The nominal value of the wire diameter Dw is the upper limit value, the value obtained by subtracting 0.02 mm from the nominal value is the lower limit value, the wire diameter Dw is adjusted between the upper limit value and the lower limit value over the entire length of the wire, And the manufacturing method of the Ti type | system | group wire for molten metal formation of any one of Claim 9 thru | or 15 which adjusts the roundness of a wire cross section to 5 micrometers or less.
JP2004106814A 2003-06-12 2004-03-31 Pure Ti wire for forming molten metal and method for producing the same Expired - Lifetime JP4380392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106814A JP4380392B2 (en) 2003-06-12 2004-03-31 Pure Ti wire for forming molten metal and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003167999 2003-06-12
JP2004106814A JP4380392B2 (en) 2003-06-12 2004-03-31 Pure Ti wire for forming molten metal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005021983A true JP2005021983A (en) 2005-01-27
JP4380392B2 JP4380392B2 (en) 2009-12-09

Family

ID=34197018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106814A Expired - Lifetime JP4380392B2 (en) 2003-06-12 2004-03-31 Pure Ti wire for forming molten metal and method for producing the same

Country Status (1)

Country Link
JP (1) JP4380392B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089024A1 (en) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same, and method for manufacturing organic electroluminescent device and method for producing charge-transporting film
JP2007009285A (en) * 2005-06-30 2007-01-18 Hokkaido Univ Anodized coating-formed titanium member, method for producing the same, and valve spring for internal combustion engine
KR20210080520A (en) 2019-04-17 2021-06-30 닛폰세이테츠 가부시키가이샤 A titanium alloy plate, a manufacturing method of a titanium alloy plate, a copper foil manufacturing drum, and a manufacturing method of a copper foil manufacturing drum
CN113351677A (en) * 2021-05-17 2021-09-07 西部超导材料科技股份有限公司 Preparation method of TC10 titanium alloy wire rod
WO2022168568A1 (en) * 2021-02-08 2022-08-11 大同特殊鋼株式会社 Wire rod for forming molten metal, and welding product
CN117327945A (en) * 2023-12-01 2024-01-02 北京中科万德创新科技有限公司 Surgical staple wire with low friction coefficient and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089024A1 (en) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same, and method for manufacturing organic electroluminescent device and method for producing charge-transporting film
EP2325191A1 (en) 2004-03-11 2011-05-25 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same
EP2325190A1 (en) 2004-03-11 2011-05-25 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same
JP2007009285A (en) * 2005-06-30 2007-01-18 Hokkaido Univ Anodized coating-formed titanium member, method for producing the same, and valve spring for internal combustion engine
JP4697629B2 (en) * 2005-06-30 2011-06-08 国立大学法人北海道大学 Valve spring for internal combustion engine, method for producing the same, and method for producing anodized film-formed titanium member
KR20210080520A (en) 2019-04-17 2021-06-30 닛폰세이테츠 가부시키가이샤 A titanium alloy plate, a manufacturing method of a titanium alloy plate, a copper foil manufacturing drum, and a manufacturing method of a copper foil manufacturing drum
WO2022168568A1 (en) * 2021-02-08 2022-08-11 大同特殊鋼株式会社 Wire rod for forming molten metal, and welding product
CN113351677A (en) * 2021-05-17 2021-09-07 西部超导材料科技股份有限公司 Preparation method of TC10 titanium alloy wire rod
CN117327945A (en) * 2023-12-01 2024-01-02 北京中科万德创新科技有限公司 Surgical staple wire with low friction coefficient and preparation method thereof
CN117327945B (en) * 2023-12-01 2024-03-08 苏州森锋医疗器械有限公司 Surgical staple wire with low friction coefficient and preparation method thereof

Also Published As

Publication number Publication date
JP4380392B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP3888242B2 (en) Ti wire for forming molten metal
JP3959380B2 (en) Manufacturing method of seamed flux-cored welding wire
JP3959385B2 (en) Manufacturing method of solid wire for welding
US6079243A (en) Method of production of welding wire
JP4380392B2 (en) Pure Ti wire for forming molten metal and method for producing the same
JP2005288485A (en) Ti BASED WIRE FOR WELDING
JP2005290467A (en) METHOD FOR PRODUCING Ti-BASED WIRE ROD FOR FORMING MOLTEN METAL AND Ti-BASED WIRE ROD FOR FORMING MOLTEN METAL
JP2009220146A (en) Drawing die and method of drawing plated steel wire
KR100918550B1 (en) Welding Wire
JP4285324B2 (en) Electrode wire for wire electric discharge machining and electric discharge machined product manufactured using the same
KR100508604B1 (en) Aluminium alloy welding wire
EP4289981A1 (en) Wire rod for forming molten metal, and welding product
JP2981928B2 (en) Copper plated steel wire for gas shielded arc welding
JPH07100687A (en) Wire for arc welding
JP2006136940A (en) Welding wire
JPH11104887A (en) Manufacture of welding wire
JP2005066622A (en) Wire and its manufacturing method for metal inert gas arc-welding used for aluminum or aluminum alloy
JP2001276997A (en) Mig welding wire
JP2776256B2 (en) Surface treatment tool for hot working
JP2003191093A (en) Aluminum alloy wire for welding
JP2000263229A (en) Production of steel wire for gas shield arc welding
JP2004217965A (en) Metal wire rod for producing molten metal
JP4504115B2 (en) Welding wire for gas shielded arc welding
JPH0747490A (en) Manufacturing of gas shielded welding solid wire being excellent in welding workability
JPH0740081A (en) Solid wire for gas shielded arc welding having good feedability and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4