JP2005021884A - Production method and production apparatus for inorganic spherical body - Google Patents

Production method and production apparatus for inorganic spherical body Download PDF

Info

Publication number
JP2005021884A
JP2005021884A JP2004166049A JP2004166049A JP2005021884A JP 2005021884 A JP2005021884 A JP 2005021884A JP 2004166049 A JP2004166049 A JP 2004166049A JP 2004166049 A JP2004166049 A JP 2004166049A JP 2005021884 A JP2005021884 A JP 2005021884A
Authority
JP
Japan
Prior art keywords
inorganic
emulsion
aqueous liquid
organic liquid
micropores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004166049A
Other languages
Japanese (ja)
Other versions
JP5037781B2 (en
Inventor
Toshiya Matsubara
俊哉 松原
Masaharu Tanaka
正治 田中
Kenji Yamada
兼士 山田
Hajime Katayama
肇 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004166049A priority Critical patent/JP5037781B2/en
Publication of JP2005021884A publication Critical patent/JP2005021884A/en
Application granted granted Critical
Publication of JP5037781B2 publication Critical patent/JP5037781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for an inorganic spherical body having substantially uniform particle size with good productivity over a long period, and an apparatus for the same. <P>SOLUTION: In the production method for the inorganic spherical body, an aqueous liquid containing an inorganic compound is extruded through a plurality of fine holes formed in one partition wall, into an organic liquid flowing in a laminar flow state at a rate of 0.001-2 m/s in a passage partitioned by the partition wall, and a W/O emulsion is formed with the organic liquid as a dispersion medium and the aqueous liquid containing the inorganic compound as a dispersion phase, then the aqueous liquid in the emulsion is solidified to form the inorganic spherical body. A metallic sheet with a surface subjected to water-repellent treatment is used as the partition wall with the lot of fine holes formed thereon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無機質球状体の製造方法に関する。特に、液体クロマトグラフフィー用充填材、化粧品用フィラー、触媒担体などに有用な実質的に均一な粒子径を持つ無機質球状体を連続的に得るための製造方法及び製造装置に関する。   The present invention relates to a method for producing an inorganic sphere. In particular, the present invention relates to a production method and a production apparatus for continuously obtaining inorganic spheres having a substantially uniform particle size useful for liquid chromatographic fillers, cosmetic fillers, catalyst carriers and the like.

従来、粒子径の均一な無機質球状体を得る方法として種々の方法が提案されている。特許文献1には、厚さ方向に貫通した孔を有する高分子膜を通して無機化合物水溶液を有機液体中に注入することでW/O型エマルジョンを作製し、該エマルジョン中の無機化合物水溶液の液滴から無機質球状体を得る方法が開示されている。この方法では、エマルジョンの粒子径分布を狭いものにできるが、粒子径が高分子膜の物性に左右されること、及び有機液体の流れが制御されていないことによるエマルジョン粒子径分布が生じるため、無機質球状体の粒子径の均一性という点では不十分であった。また、長期使用における高分子膜の耐久性にも問題があった。   Conventionally, various methods have been proposed as methods for obtaining inorganic spheres having a uniform particle size. In Patent Document 1, a W / O emulsion is prepared by injecting an inorganic compound aqueous solution into an organic liquid through a polymer film having a hole penetrating in the thickness direction, and droplets of the inorganic compound aqueous solution in the emulsion are prepared. Discloses a method for obtaining inorganic spheres from the above. In this method, the emulsion particle size distribution can be made narrow, but because the particle size depends on the physical properties of the polymer membrane and the flow of the organic liquid is not controlled, the emulsion particle size distribution occurs. In terms of the uniformity of the particle size of the inorganic sphere, it was insufficient. There was also a problem with the durability of the polymer film during long-term use.

近年、特許文献2に、歪みをもった形状の微小孔を通して、加圧された無機化合物水溶液を有機液体中に押し出して均質なエマルジョンを製造する方法とそのための装置が提案されている。最近ではさらに、粒子径の均一な無機質球状体を長期間にわたって効率よく、大量に、かつ安定に製造可能な方法及びそのための装置の開発が求められている。   In recent years, Patent Document 2 proposes a method for producing a homogeneous emulsion by extruding a pressurized aqueous solution of an inorganic compound into an organic liquid through micropores having a distorted shape and an apparatus therefor. Recently, there has been a demand for the development of a method and an apparatus therefor capable of producing an inorganic sphere having a uniform particle size efficiently over a long period, in a large amount and stably.

特開平5−23565号公報(特許請求の範囲、図1)JP-A-5-23565 (Claims, FIG. 1) 特開2002−119841号公報(特許請求の範囲、図1)JP 2002-119841 (Claims, FIG. 1)

本発明の目的は、実質的に均一な粒子径を有する無機質球状体を、長期間にわたって安定した連続プロセスにより、生産性よく得ることが可能な方法及び装置を提供することにある。   An object of the present invention is to provide a method and an apparatus capable of obtaining an inorganic sphere having a substantially uniform particle diameter with high productivity by a continuous process stable over a long period of time.

本発明は、無機化合物を含む水性液状体を、隔壁で区画された流路中を流速0.001〜2m/sかつ層流状態で流れる有機液体中に、1つの隔壁に形成された複数の微小孔を通して押し出して、有機液体が分散媒で無機化合物を含む水性液状体が分散相であるW/O型エマルジョンを形成した後、該W/O型エマルジョン中の無機化合物を含む水性液状体を固形化して無機質球状体を製造する方法において、前記複数の微小孔が形成された隔壁が、表面を撥水処理した金属シートであることを特徴とする無機質球状体の製造方法を提供する。   In the present invention, an aqueous liquid containing an inorganic compound is a plurality of organic liquids formed in one partition wall in an organic liquid flowing in a laminar flow state at a flow rate of 0.001 to 2 m / s in a flow path partitioned by the partition walls. After extruding through the micropores to form a W / O emulsion in which the organic liquid is a dispersion medium and the aqueous liquid containing the inorganic compound is the dispersed phase, an aqueous liquid containing the inorganic compound in the W / O emulsion is formed. In the method for producing an inorganic sphere by solidification, the method for producing an inorganic sphere is characterized in that the partition wall in which the plurality of micropores are formed is a metal sheet having a water-repellent surface.

また、本発明は、無機化合物を含む水性液状体が、隔壁で区画された流路中を流速0.001〜2m/sかつ層流状態で流れる有機液体中に、1つの隔壁に形成された複数の微小孔を通して押し出されてW/O型エマルジョンが形成され、該該W/O型エマルジョン中の無機化合物を含む水性液状体が固形化されて無機質球状体が形成されるように構成される無機質球状体の製造装置であって、前記複数の微小孔を有する隔壁が、表面を撥水処理された金属シートであることを特徴とする無機質球状体の製造装置を提供する。   Further, according to the present invention, an aqueous liquid containing an inorganic compound is formed in one partition wall in an organic liquid that flows in a laminar flow state at a flow rate of 0.001 to 2 m / s in a flow path partitioned by the partition walls. A W / O emulsion is formed by extrusion through a plurality of micropores, and an aqueous liquid containing an inorganic compound in the W / O emulsion is solidified to form inorganic spheres. An apparatus for producing an inorganic sphere, wherein the partition wall having a plurality of micropores is a metal sheet having a water repellent surface.

本発明では、加工が容易であり、酸性あるいは塩基性の水性液状体及び有機溶媒に対する高い耐久性を有し、機械的特性に優れた金属隔壁を用いているため、長期間の運転に用いても撓みや磨耗などの問題が生じにくく、量産設備としての使用に好適である。   In the present invention, it is easy to process, has high durability against acidic or basic aqueous liquids and organic solvents, and uses metal partition walls with excellent mechanical properties. Also, problems such as bending and wear hardly occur, and it is suitable for use as mass production equipment.

本発明により、実質的に粒子径が均一な無機質球状体を長期間にわたって安定した連続プロセスにより、生産性よく製造することが可能となる。特に、走査型電子顕微鏡写真から測定した個数平均粒子径が0.1〜100μmであり、粒子径分布の標準偏差を個数平均粒子径で割った値が0.20以下の無機質球状体を、長期間にわたって製造できる。   According to the present invention, an inorganic sphere having a substantially uniform particle size can be produced with high productivity by a continuous process that is stable over a long period of time. In particular, inorganic spheres having a number average particle diameter measured from a scanning electron micrograph of 0.1 to 100 μm and a standard deviation of the particle diameter distribution divided by the number average particle diameter of 0.20 or less are long. Can be manufactured over time.

本発明では、無機化合物を含む水性液状体を、層流で流れる有機液体中に、微小孔を通して押し出すことにより、有機液体が分散媒(連続相)となりこの中に前記無機化合物を含有する水溶液の液滴が分散相となったエマルジョン、すなわちW/O型エマルジョンを形成した後、該W/O型エマルジョン中の無機化合物を含む水性液状体を固形化して無機質球状体を製造する。   In the present invention, an aqueous liquid containing an inorganic compound is extruded through micropores into an organic liquid flowing in a laminar flow, whereby the organic liquid becomes a dispersion medium (continuous phase), and the aqueous solution containing the inorganic compound is contained therein. After forming an emulsion in which droplets are in a dispersed phase, that is, a W / O type emulsion, an aqueous liquid containing the inorganic compound in the W / O type emulsion is solidified to produce inorganic spheres.

まず、無機化合物を含む水性液状体としては、固形化によって沈殿物を形成することができるものであればいずれも適用可能であり、無機化合物の水溶液だけでなく、シリカゾル、アルミナゾルなどのコロイド溶液も採用できる。無機化合物の水溶液としては、具体的にはアルカリ金属のケイ酸塩、アルミン酸塩、アルカリ土類金属のハロゲン化物、銅の硫酸塩、塩酸塩及び硝酸塩、鉄、コバルト又はニッケルの硫酸塩、塩酸塩及び硝酸塩の水溶液が挙げられる。   First, any aqueous liquid containing an inorganic compound can be applied as long as it can form a precipitate by solidification, and not only an aqueous solution of an inorganic compound but also a colloidal solution such as silica sol or alumina sol. Can be adopted. Specific examples of aqueous solutions of inorganic compounds include alkali metal silicates, aluminates, alkaline earth metal halides, copper sulfates, hydrochlorides and nitrates, iron, cobalt or nickel sulfates, hydrochloric acid Examples include aqueous solutions of salts and nitrates.

本発明では、無機化合物としてケイ酸カリウム、ケイ酸ナトリウム、アルミン酸ナトリウム及びシリカからなる群より選ばれる1種以上を含む水性液状体を用いると好ましい。具体的には、水溶性シリカが溶解した水溶液、有機ケイ素化合物を加水分解して得られたシリカゾル及び市販のシリカゾルなどの固体シリカが分散した水性分散液(コロイド状シリカ)や、ケイ酸カリウム又はケイ酸ナトリウムの水溶液が好ましく使用される。なかでも入手の容易さ、経済的理由によりケイ酸ナトリウムが最も好ましい。ナトリウムとケイ酸の割合は、SiO/NaO(モル比)で2.0〜3.8が好ましく、さらには2.0〜3.5が好ましい。また、水性液状体中のケイ酸アルカリ又はシリカの濃度は、SiO濃度として5〜30質量%が好ましく、さらには5〜25質量%が好ましい。 In the present invention, it is preferable to use an aqueous liquid containing at least one selected from the group consisting of potassium silicate, sodium silicate, sodium aluminate and silica as the inorganic compound. Specifically, an aqueous solution in which water-soluble silica is dissolved, an aqueous dispersion (colloidal silica) in which solid silica is dispersed, such as silica sol obtained by hydrolyzing an organosilicon compound and commercially available silica sol, potassium silicate, An aqueous solution of sodium silicate is preferably used. Of these, sodium silicate is most preferred because of its availability and economic reasons. The ratio of sodium and silicic acid is preferably 2.0 to 3.8, more preferably 2.0 to 3.5 in terms of SiO 2 / Na 2 O (molar ratio). Further, the concentration of alkali silicate or silica in the aqueous liquid is preferably 5 to 30% by mass, more preferably 5 to 25% by mass as the SiO 2 concentration.

次に、有機液体としては、炭素数9〜12の飽和炭化水素が好ましく、操作性、火気への安全性、固形化した粒子と有機液体との分離性、無機質球状体粒子の形状特性、水への有機液体の溶解性などを総合的に考慮して選定される。炭素数が9〜12の飽和炭化水素は、単独で使用してもよいし、このうちの二種以上を混合して使用してもよい。また、炭素数が9〜12の飽和炭化水素は、その化学的安定性が良好であれば、直鎖状炭化水素であってもよいし、側鎖を有する炭化水素であってもよい。   Next, the organic liquid is preferably a saturated hydrocarbon having 9 to 12 carbon atoms, operability, safety to fire, separability between solidified particles and organic liquid, shape characteristics of inorganic spherical particles, water It is selected by comprehensively considering the solubility of the organic liquid in the water. The saturated hydrocarbon having 9 to 12 carbon atoms may be used alone, or two or more of them may be mixed and used. In addition, the saturated hydrocarbon having 9 to 12 carbon atoms may be a linear hydrocarbon or a hydrocarbon having a side chain as long as its chemical stability is good.

炭素数9〜12の飽和炭化水素の引火点としては、20〜80℃のものが好ましい。引火点が20℃未満の飽和炭化水素を有機液体とした場合、引火点が低すぎるため、防火上、作業環境上の対策が必要である。また、引火点が80℃を超えるものは、揮発性が低いことから、得られる無機質球状体に付着する炭化水素の量が多くなるおそれがある。   The flash point of the saturated hydrocarbon having 9 to 12 carbon atoms is preferably 20 to 80 ° C. When a saturated hydrocarbon having a flash point of less than 20 ° C. is used as an organic liquid, since the flash point is too low, measures for fire prevention and work environment are required. In addition, those having a flash point of more than 80 ° C. have low volatility, and therefore the amount of hydrocarbons adhering to the resulting inorganic spheres may increase.

本発明では、エマルジョンを固形化した後の無機質球状体と有機液体とは、通常固液分離される。分離後の無機質球状体に付着又は吸着している有機液体は、乾燥操作などにより気化、分離するのが好ましい。気化により分離しやすいという面では有機液体は沸点が200℃以下であることが好ましく、これらの条件を満たすものとしては、C20、C1022及びC1124からなる群より選ばれる1種以上が好ましい。 In the present invention, the inorganic sphere and the organic liquid after solidifying the emulsion are usually subjected to solid-liquid separation. The organic liquid adhering or adsorbing to the inorganic spheres after separation is preferably vaporized and separated by a drying operation or the like. In terms of being easily separated by vaporization, the organic liquid preferably has a boiling point of 200 ° C. or lower, and those satisfying these conditions are selected from the group consisting of C 9 H 20 , C 10 H 22 and C 11 H 24. One or more selected from the above are preferred.

本発明では、W/O型エマルジョンの形成にあたり、界面活性剤を使用することが好ましい。このときの界面活性剤としては、アニオン系界面活性剤又はカチオン系界面活性剤も使用可能であるが、親水性、親油性の調整が容易である点でノニオン系界面活性剤が好ましい。例えば、ポリエチレングリコール脂肪酸エステル、ポリエチレングリコールアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテルなどが望ましい。   In the present invention, it is preferable to use a surfactant in forming the W / O emulsion. As the surfactant at this time, an anionic surfactant or a cationic surfactant can be used, but a nonionic surfactant is preferable in terms of easy adjustment of hydrophilicity and lipophilicity. For example, polyethylene glycol fatty acid ester, polyethylene glycol alkyl ether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether and the like are desirable.

界面活性剤の使用量は、界面活性剤の種類、界面活性剤の親水性あるいは疎水性の程度を表す指標であるHLB(Hydrophile−lipophile balance)、目的とする無機質球状体の粒子径などの条件により異なるが、上記有機液体中に500〜50000ppm、好ましくは1000〜20000ppm含有させるのが好ましい。500ppm未満であると、乳化される水溶液の液滴が大きくなり、エマルジョンが不安定になるおそれがある。また、50000ppmを超えると、製品である無機質球状体粒子に付着する界面活性剤の量が多くなり好ましくない。   The amount of the surfactant used is a condition such as the type of the surfactant, HLB (Hydrophile-lipophile balance) which is an index indicating the degree of hydrophilicity or hydrophobicity of the surfactant, and the particle size of the target inorganic sphere. Depending on the case, it is preferable to contain 500 to 50000 ppm, preferably 1000 to 20000 ppm in the organic liquid. If it is less than 500 ppm, droplets of the aqueous solution to be emulsified become large and the emulsion may become unstable. Moreover, when it exceeds 50000 ppm, the quantity of surfactant adhering to the inorganic spherical body particle | grains which are products becomes large and is unpreferable.

本発明では、有機液体の流速を0.001〜2m/sとすることにより、粒子径分布の狭いエマルジョン液滴が形成され、得られる無機質球状体の粒子径分布も狭くできる。有機液体の流速が0.01〜1m/sである場合はさらに好ましい。   In the present invention, by setting the flow rate of the organic liquid to 0.001 to 2 m / s, emulsion droplets having a narrow particle size distribution are formed, and the particle size distribution of the obtained inorganic spherical body can be narrowed. More preferably, the flow rate of the organic liquid is 0.01 to 1 m / s.

流路中を流れる有機液体のレイノルズ数は2100以下とする。ここで、流路の断面が円形である場合のレイノルズ数は式1で計算され、流路の内径Dは流路の断面における最小径を使用する。ここで、D(流路の内径:m)、u(平均流速:m/s)、ρ(流体密度:kg/m)、μ(流体粘度:Pa・s)である。
レイノルズ数(−)=D・u・ρ/μ ・・・式1。
The Reynolds number of the organic liquid flowing in the flow path is 2100 or less. Here, the Reynolds number when the cross section of the flow path is circular is calculated by Equation 1, and the inner diameter D of the flow path uses the minimum diameter in the cross section of the flow path. Here, D (inner diameter of the channel: m), u (average flow velocity: m / s), ρ (fluid density: kg / m 3 ), μ (fluid viscosity: Pa · s).
Reynolds number (−) = D · u · ρ / μ Equation 1

また、流路の断面が円形でない場合のレイノルズ数は式2で計算される。ここで、rは流路動水半径(m)=流路の断面積(m)/流路断面の流体に接する周長(m)であり、u、ρ、μは式1と同様である。
レイノルズ数(−)=4×r・u・ρ/μ ・・・式2。
Further, the Reynolds number when the cross section of the flow path is not circular is calculated by Equation 2. Here, r is the flow path radius (m) = the cross-sectional area of the flow path (m 2 ) / the circumferential length (m) in contact with the fluid of the cross-section of the flow path, and u, ρ, and μ are the same as in Equation 1. is there.
Reynolds number (−) = 4 × r · u · ρ / μ Equation 2

レイノルズ数が2100以下の場合、有機液体の流れは層流状態であるため、有機液体の流れは安定したものとなる。その結果、微小孔を通して供給される無機化合物を含む水性液状体が、常に一定の粒子径を有するW/O型エマルジョンとなるため、実質的に粒子径が均一な無機質球状体が製造されやすい。逆に、レイノルズ数が2100を超える場合、有機液体の流れが乱流となるため、従来と同様に粒子径が不揃いなW/O型エマルジョンとなり、その結果、無機質球状体の粒子径も不揃いになる。また、より有機液体の流れを安定させるために、有機液体の流れのレイノルズ数が500以下であることが好ましい。なお、この有機液体の流路の形状については、特に限定されない。   When the Reynolds number is 2100 or less, the flow of the organic liquid is in a laminar state, and thus the flow of the organic liquid is stable. As a result, the aqueous liquid containing the inorganic compound supplied through the micropores always becomes a W / O type emulsion having a constant particle size, so that an inorganic sphere having a substantially uniform particle size is easily produced. On the other hand, when the Reynolds number exceeds 2100, the flow of the organic liquid becomes turbulent, so that the W / O emulsion has a nonuniform particle size as in the conventional case. As a result, the particle size of the inorganic spheres is also uneven. Become. In order to further stabilize the flow of the organic liquid, the Reynolds number of the flow of the organic liquid is preferably 500 or less. The shape of the organic liquid channel is not particularly limited.

以下、本発明の実施の形態について図面を用いて説明する。図中、1、5はアクリル樹脂製板、2はフッ素樹脂シート、3は金属隔壁、4はアクリル樹脂製板部品である。図1において、無機化合物を含む水性液状体はノズル8から導入され、微小孔9を通して、ノズル6から導入されてノズル7から排出されるように層流状態で流れる有機液体中に圧入される。なお、微小孔9より圧入される水性液状体は、界面張力に起因して、微小孔9の出口においてその孔径よりも大きく成長する。その後、液滴は、有機液体の流れにより切り離され、有機液体中でW/O型エマルジョンの液滴となる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the figure, 1, 5 are acrylic resin plates, 2 is a fluororesin sheet, 3 is a metal partition, and 4 is an acrylic resin plate component. In FIG. 1, an aqueous liquid containing an inorganic compound is introduced from a nozzle 8, and is pressed into an organic liquid flowing in a laminar flow so as to be introduced from a nozzle 6 and discharged from a nozzle 7 through a minute hole 9. In addition, the aqueous liquid material press-fitted from the micropores 9 grows larger than the pore diameter at the outlet of the micropores 9 due to the interfacial tension. Thereafter, the droplets are separated by the flow of the organic liquid and become droplets of the W / O emulsion in the organic liquid.

本発明において、隔壁を構成する材料としては、無機化合物を含む水性液状体及び有機液体に対する耐性を有するものを使用する。金属を主体とするものであると加工性及び機械的強度に優れるため好ましいが、金属隔壁3以外の隔壁を構成する材料としては、樹脂を主体とするものも好適に用いられる。樹脂としては、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、芳香族ポリエステル及びフッ素樹脂からなる1種以上を用いると加工性、寸法安定性に優れるため好ましい。   In the present invention, as a material constituting the partition, an aqueous liquid containing an inorganic compound and a material having resistance to an organic liquid are used. A metal-based material is preferable because it is excellent in workability and mechanical strength, but as a material constituting the partition walls other than the metal partition walls 3, a material mainly composed of a resin is also preferably used. As the resin, it is preferable to use one or more kinds of polyphenylene sulfide, polyether ether ketone, polyimide, polyamideimide, aromatic polyester, and fluororesin because of excellent workability and dimensional stability.

本発明では、水性液状体が通過する複数個の微小孔9を備えた金属隔壁3を、金属シートに複数個の微小孔を形成した後、表面を撥水処理して作製する。これは、無機化合物を含む水性液状体が微小孔9を通過した後の金属隔壁3からの液離れを促すためであり、金属隔壁3が親水性の場合、微小孔を出た後、金属隔壁3に沿って水性液状体が流れてしまい、エマルジョンの粒子径が不均一になりやすいことが、高速度カメラでの観察により明らかになっている。なお、この撥水処理は、金属シートの表面のうち、少なくとも有機液体と接触する部分に対して行う必要がある。   In the present invention, the metal partition 3 having a plurality of micropores 9 through which the aqueous liquid material passes is formed by forming a plurality of micropores in the metal sheet and then subjecting the surface to a water repellent treatment. This is to promote separation of the liquid from the metal partition 3 after the aqueous liquid containing the inorganic compound has passed through the micropores 9. When the metal partition 3 is hydrophilic, the metal partition is removed after exiting the micropores. It is clear from observation with a high-speed camera that the aqueous liquid flows along the line 3 and the particle diameter of the emulsion tends to be non-uniform. The water repellent treatment needs to be performed on at least a portion of the surface of the metal sheet that comes into contact with the organic liquid.

該金属シートは、無機化合物を含む水性液状体及び有機液体に対する耐性や微小孔形成時の加工性などに優れ、耐磨耗性及び耐撓み性を有し実用面で優れた特徴を発揮できる金属材料により構成されていればよく、該金属材料としてはニッケルやニッケル合金、ステンレス鋼などが好適である。なかでも、比較的安価で入手しやすく、優れた耐性や加工性を有する点からステンレス製のシートを用いると好ましい。   The metal sheet has excellent resistance to aqueous liquids and organic liquids containing inorganic compounds and processability when forming micropores, and is a metal that has wear resistance and flex resistance and can exhibit excellent characteristics in practical use. As long as it is comprised by material, nickel, nickel alloy, stainless steel, etc. are suitable as this metal material. Among these, it is preferable to use a stainless steel sheet because it is relatively inexpensive and easily available and has excellent resistance and workability.

該金属シートの厚さは10〜500μmであると好ましい。10μm未満の場合、折れ曲がりなどが生じやすく、シートの水平性が損なわれるおそれがあるほか、各微小孔から圧入された水性液状体の液滴同士の合一などが発生して均一な液滴の形成に支障をきたすおそれがあるため好ましくない。また、500μmを超える場合、加工の工程が複雑になりすぎたり、加工に時間がかかりすぎるおそれがあり、コストの上昇や加工精度の悪化につながりやすいため好ましくない。より好ましくは、シートの厚さを30〜200μmとする。   The thickness of the metal sheet is preferably 10 to 500 μm. If the thickness is less than 10 μm, the sheet is likely to be bent, and the horizontality of the sheet may be impaired. In addition, the liquid droplets that are press-fitted from the micropores may be coalesced to form uniform droplets. This is not preferable because it may hinder formation. On the other hand, if the thickness exceeds 500 μm, the processing step may be too complicated, or the processing may take a long time, which is not preferable because it tends to increase costs and deteriorate processing accuracy. More preferably, the thickness of the sheet is 30 to 200 μm.

微小孔の形成方法については特に限定されるものではなく、レーザー加工、エッチング加工、エレクトロフォーミング加工、プレス加工など種々の加工法が適用できるが、加工精度が優れている点からエキシマレーザーやUV−YAGレーザーなどのレーザー加工法を用いると好ましい。   There are no particular limitations on the method of forming the micropores, and various processing methods such as laser processing, etching processing, electroforming processing, and press processing can be applied. However, excimer laser and UV- It is preferable to use a laser processing method such as a YAG laser.

撥水処理は、金属表面の撥水効果を長期的に発現でき、かつ、微小孔を閉塞させない方法により行えばよく、具体的には疎水性樹脂又はシランカップリング剤を溶剤に溶解した撥水処理剤を用いて表面をコーティングすることが好ましい。疎水性樹脂としては熱可塑性樹脂を用いると好ましい。これはコーティングの際に微小孔が閉塞した場合であっても、加熱処理により孔を貫通させられるためである。また、疎水性樹脂として溶媒可溶型のフッ素樹脂を用いると、耐久性の観点で好ましい。コーティングには任意の方法を用いることができるが、撥水処理剤をディップコートすれば、薄く均一にコーティングできるので好ましい。また、撥水処理により0.001〜5μmの膜厚を有する撥水処理膜を形成することが好ましい。0.001μmより薄い場合には耐久性や機械的強度が不足し、また、ピンホールが形成されやすいので好ましくない。一方、5μmより厚い場合にはコーティングの際に微小孔が閉塞されやすいので好ましくない。   The water-repellent treatment may be performed by a method that can exhibit the water-repellent effect on the metal surface for a long period of time and does not block the micropores. Specifically, the water-repellent treatment is performed by dissolving a hydrophobic resin or a silane coupling agent in a solvent. It is preferable to coat the surface with a treating agent. A thermoplastic resin is preferably used as the hydrophobic resin. This is because even if the micropores are blocked during coating, the pores can be penetrated by heat treatment. In addition, it is preferable from the viewpoint of durability to use a solvent-soluble fluororesin as the hydrophobic resin. Any method can be used for coating, but it is preferable to dip coat a water repellent treatment agent because it can be thinly and uniformly coated. Further, it is preferable to form a water repellent film having a film thickness of 0.001 to 5 μm by the water repellent process. When the thickness is less than 0.001 μm, durability and mechanical strength are insufficient, and pinholes are easily formed. On the other hand, if it is thicker than 5 μm, the micropores are easily clogged during coating, which is not preferable.

微小孔は、断面の形状が円形のものが好ましいが、円形以外の形状のものでも構わない。内側に凸でない、長方形、楕円及び三角形からなる群より選ばれる1つ以上の形状とすると、加工が比較的容易であり、また、粒子径の均一な無機質球状体を安定して製造できることから好ましい。ただし、いずれの孔においても有機液体の流路幅より小さい孔であることが必須である。微小孔の形成方法としては、エキシマレーザーなどレーザーを用いる加工方法やプレス加工などの方法が挙げられるが、特に限定されるものではない。   The micropores preferably have a circular cross-sectional shape, but may have a shape other than a circular shape. One or more shapes selected from the group consisting of a rectangle, an ellipse, and a triangle that are not convex on the inside are preferable because processing is relatively easy and an inorganic sphere having a uniform particle diameter can be stably produced. . However, it is essential that any hole be smaller than the channel width of the organic liquid. Examples of the method for forming the micropores include a processing method using a laser such as an excimer laser and a method such as press working, but are not particularly limited.

ここで、微小孔の断面が円形状以外の形状である場合、孔の出口で液滴となった時点で液滴は曲率分布をもち、比較的早期に自発的に切り離され有機液体中で液滴になるものと推定している。そのため、円形状の孔を使用した場合と比べ、比較的エマルジョン粒子径が小さいものが得られやすいという利点を有する。また、このとき断面の形状に内接する円の直径に対する断面形状に外接する円の直径の比が20以下であることが好ましい。さらに好ましくは10以下とする。20を超える場合、長径方向で液滴が分割される傾向がみられ、その結果エマルジョン粒子が不均一なものとなりやすく好ましくない。特に、断面形状に内接する円の直径を1μm以上、断面形状に外接する円の直径を80μm以下とすると好ましい。   Here, when the cross-section of the micropore is a shape other than a circular shape, the droplet has a curvature distribution when it becomes a droplet at the exit of the hole, and is spontaneously separated relatively early and liquid in the organic liquid. Presumed to be drops. Therefore, compared with the case where circular holes are used, there is an advantage that a product having a relatively small emulsion particle diameter can be easily obtained. At this time, the ratio of the diameter of the circle circumscribing the cross-sectional shape to the diameter of the circle inscribed in the cross-sectional shape is preferably 20 or less. More preferably, it is 10 or less. When it exceeds 20, the tendency of the liquid droplets to be divided in the major axis direction is observed, and as a result, the emulsion particles tend to be non-uniform, which is not preferable. In particular, the diameter of the circle inscribed in the cross-sectional shape is preferably 1 μm or more, and the diameter of the circle inscribed in the cross-sectional shape is preferably 80 μm or less.

また、微小孔の断面の動水半径rの4倍値は0.1〜100μmとすることが好ましい。さらに好ましくは1〜80μmとする。ここで、rは式2と同様に、断面の動水半径r(m)=微小孔の断面積(m)/微小孔断面の流体に接する周長(m)である。したがって、微小孔の断面が円形の形状の場合、動水半径r=円の内径D/4となるから、動水半径rの4倍値は円の内径Dに相当する。微小孔の断面の動水半径rの4倍値が0.1μm未満では、無機化合物を含む水性液状体の供給量が小さく、生産性の点で好ましくない。また、100μmより大きい場合は、目的とする粒子径を逸脱するエマルジョン粒子が生成しやすくなるので好ましくない。 Moreover, it is preferable that the quadruple value of the dynamic radius r of the cross section of the micropore be 0.1 to 100 μm. More preferably, it is 1 to 80 μm. Here, like Equation 2, r is the hydrodynamic radius r (m) of the cross section = the cross sectional area of the micropore (m 2 ) / the perimeter of the microhole cross section (m). Therefore, when the cross section of the microhole is circular, the hydrodynamic radius r = the inner diameter D / 4 of the circle, and therefore, the quadruple value of the hydrodynamic radius r corresponds to the inner diameter D of the circle. When the value of four times the dynamic radius r of the cross section of the micropore is less than 0.1 μm, the supply amount of the aqueous liquid containing the inorganic compound is small, which is not preferable in terms of productivity. On the other hand, when it is larger than 100 μm, it is not preferable because emulsion particles deviating from the target particle diameter are easily generated.

本発明において、無機化合物を含む水性液状体を供給する微小孔9は、生産性の観点から、有機液体流路上の金属隔壁3の厚さ方向に貫通するように、複数個設ける。好ましくは100個以上、特に1000個以上設けると充分な生産性が得られやすい。   In the present invention, a plurality of micropores 9 for supplying an aqueous liquid containing an inorganic compound are provided so as to penetrate in the thickness direction of the metal partition 3 on the organic liquid channel from the viewpoint of productivity. Preferably, 100 or more, particularly 1000 or more, can provide sufficient productivity.

また、その際の微小孔9の配列については特に限定されるものではないが、生産性及び加工性の観点から、金属隔壁3の幅方向(有機液体流路の幅方向)及び長さ方向(有機液体流路の流れ方向)のそれぞれに一定のピッチで複数個の微小孔を設置してなる並列配列、又は並列配列した微小孔のうち、幅方向に隣接する2つの微小孔と、長さ方向に隣接する2つの微小孔とを選び、これらの孔の中心を結んで形成される長方形の対角線の中心にもう1個の微小孔を設置してなる千鳥配列とすると好ましい。なかでも千鳥配列とすると、微小孔を密に配列でき、開孔率を高くできるため、生産性向上の観点から特に好ましい。   In addition, the arrangement of the micropores 9 at that time is not particularly limited, but from the viewpoint of productivity and workability, the width direction of the metal partition wall 3 (width direction of the organic liquid channel) and the length direction ( A parallel arrangement in which a plurality of micropores are installed at a constant pitch in each of the flow directions of the organic liquid flow paths, or two micropores adjacent in the width direction among the micropores arranged in parallel, and the length It is preferable to select two micropores adjacent to each other in the direction and form a staggered arrangement in which another micropore is installed at the center of a rectangular diagonal line formed by connecting the centers of these holes. Among these, the staggered arrangement is particularly preferable from the viewpoint of improving productivity because the micropores can be densely arranged and the hole area ratio can be increased.

このとき、金属隔壁3の開孔率が1〜35%であることが好ましい。開孔率が1%以下の場合は、生産性が低く、設備費用が割高となるので好ましくない。一方、開孔率が35%以上では、各微小孔から水性液状体を圧入して形成されたエマルジョンの液滴が合一し、その結果粒子径が不均一になる可能性が高くなるため好ましくない。より好ましい開孔率は2〜25%である。   At this time, it is preferable that the porosity of the metal partition wall 3 is 1 to 35%. When the hole area ratio is 1% or less, productivity is low and equipment costs are expensive, which is not preferable. On the other hand, when the open area ratio is 35% or more, the emulsion droplets formed by press-fitting the aqueous liquid from the respective micropores are united, and as a result, there is a high possibility that the particle diameter becomes non-uniform. Absent. A more preferable aperture ratio is 2 to 25%.

ここで、一定面積の複数個の微小孔を一定の配列により設置する場合の開孔率は式3により算出する。このとき、S(微小孔の断面積:m)であり、P(幅方向のピッチ:m)、P(長さ方向のピッチ:m)である。
開孔率(%)=100×S/(P×P)・・・式3。
Here, the hole area ratio in the case where a plurality of micropores having a constant area are arranged in a fixed arrangement is calculated by Equation 3. At this time, it is S (cross-sectional area of the micropore: m 2 ), P 1 (pitch in the width direction: m), and P 2 (pitch in the length direction: m).
Opening ratio (%) = 100 × S / (P 1 × P 2 ) Equation 3

式3において、円形の微小孔を並列配列で設置した場合の開孔率は、式4で算出できる。ここで、D(微小孔径:m)であり、P、Pは式3と同様である。
開孔率(%)=78.5×D/(P×P)・・・式4。
In Equation 3, the aperture ratio when circular micro holes are installed in a parallel arrangement can be calculated by Equation 4. Here, it is D (micropore diameter: m), and P 1 and P 2 are the same as in Equation 3.
Opening ratio (%) = 78.5 × D 2 / (P 1 × P 2 ) (4)

また、式3において、円形の微小孔を千鳥配列で設置した場合、上記で定めた2本の対角線がなす角度が90゜の場合(角千鳥配列)の開孔率は式5で、60°の場合(60°千鳥配列)の開孔率は式6でそれぞれ算出できる。ここで、Dは式4と同様であり、Pはピッチ(m)である。なお、式6におけるPは幅方向、長さ方向のピッチのうち短い方(m)を指す。
開孔率(%)=157×D/P・・・式5。
開孔率(%)=91×D/P ・・・式6。
In Formula 3, when circular micro holes are installed in a staggered arrangement, when the angle formed by the two diagonal lines defined above is 90 ° (square staggered arrangement), the open area ratio is 60 ° in Formula 5. In the case of (60 ° staggered arrangement), the hole area ratio can be calculated by Expression 6. Here, D is the same as Equation 4, and P is the pitch (m). Note that P in Expression 6 indicates the shorter one (m) of the pitches in the width direction and the length direction.
Opening ratio (%) = 157 × D 2 / P 2 Formula 5
Opening ratio (%) = 91 × D 2 / P 2 Formula 6

また、微小孔9は、微小孔の断面形状に外接する円の直径の1/2以上の間隔を設けて金属隔壁3上に設置するのが好ましい。さらに好ましくは微小孔の断面形状に外接する円の直径以上の間隔を設ける。外接する円の直径の1/2より短い間隔しか設けずに微小孔を設置すると、エマルジョンの液滴が合一しやすくなり、その結果粒子径が不均一になる可能性があるため好ましくない。ただし、合一しない範囲でなるべく密接して設置したほうが、生産性を向上できるので好ましい。   Further, it is preferable that the micro holes 9 are provided on the metal partition wall 3 with an interval of 1/2 or more of the diameter of a circle circumscribing the cross-sectional shape of the micro holes. More preferably, an interval equal to or larger than the diameter of the circumscribed circle is provided in the cross-sectional shape of the micropore. If the micropores are provided with an interval shorter than ½ of the diameter of the circumscribed circle, the emulsion droplets are likely to coalesce, and as a result, the particle diameter may be non-uniform, which is not preferable. However, it is preferable to install them as close as possible within a range where they are not united, because productivity can be improved.

さらに、目標とする粒子径の無機質球状体を効率的に得る観点から、本発明では、微小孔の断面の動水半径rの4倍値に対する無機質球状体の平均粒子径の比を、0.1〜5.0とすると好ましい。より好ましくは0.3〜3.0である。この比が0.1未満では生産性が低下し、得られる無機質球状体の平均粒子径が目標値より大きくなる可能性が高くなるので好ましくない。また、逆に5.0を超えると粒子径を制御しにくくなり、目的とする粒子径を大きく逸脱する微粒状の粒子の副生を引き起こす可能性が高くなるので好ましくない。   Furthermore, from the viewpoint of efficiently obtaining an inorganic sphere having a target particle diameter, in the present invention, the ratio of the average particle diameter of the inorganic sphere to the four times the hydrodynamic radius r of the cross section of the micropore is set to 0. It is preferable to be 1 to 5.0. More preferably, it is 0.3-3.0. If this ratio is less than 0.1, productivity is lowered, and the average particle size of the resulting inorganic spheres is likely to be larger than the target value, which is not preferable. On the other hand, if it exceeds 5.0, it is difficult to control the particle diameter, and there is a high possibility of causing by-product of fine particles that greatly deviate from the target particle diameter.

なお、本発明の無機質球状体の製造装置は、図1のように、金属隔壁3が水平面に対して平行になるように設置してもよい。しかし、有機液体の密度が水性液状体の密度より小さい場合には、有機液体の流路が水平面に対して30°以上の角度を有するように設置し、かつ、有機液体を下方から上方に流すと、粒子径が均一な無機質球状体が得られやすくなり好ましい。特に、金属隔壁3が水平面に対して垂直になるように設置すると好ましい。一方、有機液体の密度が水性液状体の密度より大きい場合には、これらの装置を用い、有機液体を上方から下方に流せば、上記のような粒子径の均一化効果が得られやすくなり好ましい。   In addition, the manufacturing apparatus of the inorganic spherical body of this invention may be installed so that the metal partition 3 may become parallel with respect to a horizontal surface like FIG. However, when the density of the organic liquid is smaller than the density of the aqueous liquid, the organic liquid flow path is installed so as to have an angle of 30 ° or more with respect to the horizontal plane, and the organic liquid is allowed to flow upward from below. And it is easy to obtain an inorganic sphere having a uniform particle diameter, which is preferable. In particular, it is preferable to install the metal partition 3 so as to be perpendicular to the horizontal plane. On the other hand, when the density of the organic liquid is larger than the density of the aqueous liquid, it is preferable to use these devices and flow the organic liquid downward from above, because the effect of uniformizing the particle diameter as described above can be easily obtained. .

金属隔壁3が水平面に対して30°以上の角度を有するように設置した場合、高さ方向の所定水平面においては、水性液状体側及び有機液体側それぞれにおいて液深に起因する圧力が印加される。特定水平面において、水性液状体、有機液体の液深がほぼ同等と仮定すると、水性液状体と有機液体との密度差に起因し、(水性液状体密度−有機液体密度)×液深に相当する圧力が加わる。そのため、有機液体の密度が水性液状体の密度より小さい場合は有機液体を下方から上方へ、反対の場合は上方から下方へ流せば、有機液体の流路を水平面に対して平行に形成した場合と比較して、全流路における水性液状体側と有機液体側の圧力差の変化を相対的に狭くできる。その結果、金属隔壁3上の各微小孔からの水性液状体の供給量を安定化してエマルジョン液滴径を均一化できるため、得られる無機質球状体の粒子径の均一化に効果を発揮する。   When the metal partition 3 is installed so as to have an angle of 30 ° or more with respect to the horizontal plane, a pressure due to the liquid depth is applied to each of the aqueous liquid body side and the organic liquid side on the predetermined horizontal plane in the height direction. Assuming that the liquid depths of the aqueous liquid and the organic liquid are substantially the same in a specific horizontal plane, this results from the density difference between the aqueous liquid and the organic liquid, and corresponds to (aqueous liquid density−organic liquid density) × liquid depth. Pressure is applied. Therefore, if the density of the organic liquid is lower than the density of the aqueous liquid, the organic liquid is flowed from the bottom to the top. As compared with the above, the change in the pressure difference between the aqueous liquid body side and the organic liquid side in all channels can be made relatively narrow. As a result, the supply amount of the aqueous liquid material from each micropore on the metal partition wall 3 can be stabilized and the emulsion droplet diameter can be made uniform, which is effective in making the particle diameter of the resulting inorganic spherical body uniform.

本発明において、生成するW/O型エマルジョンの液滴径は、上記で定めた微小孔の設置条件のみならず、水性液状体の流れ方向の線速に対する有機液体の流れ方向の線速の比によっても影響を受ける。ここで、図1において、水性液状体の流れ方向の線速は微小孔9部分で測定すればよい。この線速の比は1〜500とすると好ましく、さらに好ましくは10〜300である。線速の比が500を超える場合は、有機液体を過剰に消費しすぎるおそれがあるため経済的観点から好ましくない。また、1未満では、有機液体の流れにより液滴が切り離される効果が得られにくくなり、エマルジョン粒子が不均一になるおそれがあるため好ましくない。   In the present invention, the droplet diameter of the generated W / O type emulsion is not limited to the micropore installation conditions defined above, but the ratio of the linear velocity in the flow direction of the organic liquid to the linear velocity in the flow direction of the aqueous liquid. Also affected by. Here, in FIG. 1, the linear velocity in the flow direction of the aqueous liquid may be measured at the micropore 9 portion. The linear speed ratio is preferably 1 to 500, and more preferably 10 to 300. When the linear velocity ratio exceeds 500, the organic liquid may be excessively consumed, which is not preferable from an economical viewpoint. On the other hand, if it is less than 1, it is difficult to obtain the effect of separating the droplets by the flow of the organic liquid, and the emulsion particles may become non-uniform, which is not preferable.

W/O型エマルジョン中の無機化合物を含む水性液状体を固形化して無機質球状体とする方法としては、沈殿剤を加えて無機化合物を沈殿させる方法を用いることができる。沈殿剤としては、アルカリ金属のハロゲン化物あるいは炭酸塩、無機酸、有機酸、無機酸のアンモニウム塩、有機酸のアンモニウム塩及びアルカリ土類金属のハロゲン化物からなる群より選ばれた少なくとも1種の水溶液が挙げられる。具体的には炭酸水素アンモニウム、硫酸アンモニウム、塩化カリウム、炭酸水素カリウム等の水溶液が挙げられるが、これらに限定されるものではない。   As a method of solidifying the aqueous liquid containing the inorganic compound in the W / O emulsion to form an inorganic sphere, a method of adding a precipitant to precipitate the inorganic compound can be used. The precipitant is at least one selected from the group consisting of alkali metal halides or carbonates, inorganic acids, organic acids, inorganic acid ammonium salts, organic acid ammonium salts and alkaline earth metal halides. An aqueous solution may be mentioned. Specific examples include aqueous solutions of ammonium hydrogen carbonate, ammonium sulfate, potassium chloride, potassium hydrogen carbonate and the like, but are not limited thereto.

無機化合物を含む水性液状体中の無機化合物がケイ酸アルカリ又はシリカの場合は、W/O型エマルジョンをゲル化することにより、球状である水溶液の分散液滴はこの形状を保持したままゲル化され、球状のシリカヒドロゲルが得られる。ゲル化には、エマルジョン中にゲル化剤を導入するのが好ましい。ゲル化剤としては、無機酸や有機酸などの酸が用いられ、特に無機酸である硫酸、塩酸、硝酸、炭酸などが好ましい。操作の容易性などの点で、最も簡便で好ましいのは、炭酸ガスを用いる方法である。炭酸ガスは、100%濃度の純炭酸ガスを導入してもよいし、空気や不活性ガスで希釈した炭酸ガスを導入してもよい。ゲル化に要する時間は、通常4〜30minが好ましく、ゲル化時の温度は5〜30℃が好ましい。   When the inorganic compound in the aqueous liquid containing the inorganic compound is alkali silicate or silica, the dispersed droplets of the spherical aqueous solution are gelled while maintaining this shape by gelling the W / O type emulsion. To obtain a spherical silica hydrogel. For gelation, it is preferable to introduce a gelling agent into the emulsion. As the gelling agent, an acid such as an inorganic acid or an organic acid is used, and sulfuric acid, hydrochloric acid, nitric acid, carbonic acid, etc., which are inorganic acids, are particularly preferable. From the standpoint of ease of operation, the most simple and preferred method is a method using carbon dioxide gas. As the carbon dioxide, pure carbon dioxide having a concentration of 100% may be introduced, or carbon dioxide diluted with air or an inert gas may be introduced. The time required for gelation is usually preferably 4 to 30 minutes, and the temperature during gelation is preferably 5 to 30 ° C.

ゲル化終了後は、反応系を静置して、有機液体の相とシリカヒドロゲルを含む水性相に2相分離させてシリカゲルを分離するのが好ましい。有機液体として飽和炭化水素を用いた場合は、上層に有機液体の相が、下部にシリカヒドロゲルを含む水性液状体相が分離するので、両者を公知の手段により分離する。その際には分離装置を用いて分離すると好ましい。   After the gelation is completed, it is preferable that the reaction system is allowed to stand to separate the silica gel by two-phase separation into an organic liquid phase and an aqueous phase containing silica hydrogel. When saturated hydrocarbon is used as the organic liquid, the organic liquid phase is separated in the upper layer and the aqueous liquid phase containing silica hydrogel is separated in the lower layer. In that case, it is preferable to separate using a separation device.

シリカヒドロゲルの水スラリーは、所望により硫酸などの酸を添加してpHを1〜5程度に調整してゲル化を完結させ、次に60〜150℃、好ましくは80〜120℃の温度で水蒸気蒸留して当該水スラリー中に残留している僅かの飽和炭化水素を留出して除去し、さらにはpH7〜9程度の適当なpHで加温してシリカヒドロゲルの熟成を行う。   The aqueous slurry of silica hydrogel is optionally adjusted to pH 1 to 5 by adding an acid such as sulfuric acid to complete the gelation, and then steamed at a temperature of 60 to 150 ° C, preferably 80 to 120 ° C. Distilling off and removing a few saturated hydrocarbons remaining in the water slurry, and further aging the silica hydrogel by heating at an appropriate pH of about pH 7-9.

必要に応じて、上記の熟成処理を行った後、水スラリーをろ過してシリカヒドロゲルを得、これを100〜150℃程度の温度で、1〜30h程度乾燥することにより、シリカ多孔質球状体粒子が得られる。   If necessary, after performing the above-mentioned aging treatment, the water slurry is filtered to obtain a silica hydrogel, and this is dried at a temperature of about 100 to 150 ° C. for about 1 to 30 hours, whereby a porous silica spherical body is obtained. Particles are obtained.

なお、水性液状体としてケイ酸アルカリ水溶液を用い、ゲル化剤として酸を用いた場合、アルカリ金属塩(例えばゲル化剤が炭酸であれば炭酸ナトリウムなど)を副生するので、この塩がシリカ多孔質球状体へ混入することを防止するため、ろ過した際のシリカヒドロゲル(ウエットケーキ)は十分水洗することが好ましい。場合によっては、水洗後のウエットケーキに再度水を添加してスラリーとして、再度ろ過、水洗を繰り返してもよい。なおこの際、所望により当該スラリーのpHを1〜5程度に調整して再度熟成する操作を行ってもよい。   In addition, when an alkali silicate aqueous solution is used as the aqueous liquid and an acid is used as the gelling agent, an alkali metal salt (for example, sodium carbonate if the gelling agent is carbonic acid) is by-produced. In order to prevent mixing into the porous spherical body, it is preferable to sufficiently wash the silica hydrogel (wet cake) when filtered. In some cases, water may be added again to the wet cake after washing to form a slurry to repeat filtration and washing again. At this time, if necessary, an operation of adjusting the pH of the slurry to about 1 to 5 and aging again may be performed.

[例1]
(1)(溶液の調製)
SiO濃度24.4質量%、NaO濃度8.14質量%(SiO/NaOモル比=3.09、密度1320kg/m)のケイ酸ナトリウム水溶液を調製した。有機液体はイソノナン(C20、密度730kg/m)を使用し、あらかじめ界面活性剤としてソルビタンモノオレイン酸エステルを5000ppm溶解したものを準備した。
[Example 1]
(1) (Preparation of solution)
A sodium silicate aqueous solution having a SiO 2 concentration of 24.4% by mass and a Na 2 O concentration of 8.14% by mass (SiO 2 / Na 2 O molar ratio = 3.09, density of 1320 kg / m 3 ) was prepared. As the organic liquid, isononane (C 9 H 20 , density 730 kg / m 3 ) was used, and 5000 ppm of sorbitan monooleate as a surfactant was prepared in advance.

(2)(乳化装置作製)
乳化装置は図1に断面図を示す。まず、厚さ2mm、1辺50mmの正方形のアクリル樹脂製板1に、内径3.2mmの貫通孔を2個形成し、外径3.2mmのゴムチューブ配管(ノートン社製、商品名:タイゴンチューブR−3603)をそれぞれ接続してノズル6、7とし、ノズル6より液の供給が、また、ノズル7より液の排出ができるようにした。もう1枚の厚さ2mm、1辺50mmの正方形のアクリル樹脂製板5の中央に、内径3.0mmの貫通孔を形成し、ジョイント部品を介して内径1mmのテトラフルオロエチレンチューブ配管を接続してノズル8とし、ノズル8より液が供給できるようにした。さらにもう1枚の厚さ2mm、1辺50mmの正方形のアクリル樹脂製板に対し、外縁部より10mmを残し内側30mm角をくり抜いてアクリル樹脂製板部品4を作製した。次いで、厚さ400μm、1辺50mmの正方形のフッ素樹脂シート2に幅3mm、長さ35mmのスリットを形成した。さらに厚さ50μm、1辺50mmの正方形のSUS304シートの中央部に、UV−YAGレーザーにて内径30μmの、断面の形状が円形の貫通孔を、幅方向に100μmピッチで28個、長さ方向に100μmピッチで230個の並列配列として合計6440個を穿孔した後、溶媒可溶型フッ素樹脂(旭硝子製、商品名:サイトップ)を溶媒(旭硝子製、商品名:CT−Solv100)に溶解した溶液を、乾燥後の被覆厚が0.1μmになるようにディップコート法により被覆して金属隔壁3を作製した。幅方向、長さ方向それぞれの最外部に設けた貫通孔の中心を結ぶ線で囲まれた範囲において、式4より計算した金属隔壁3の開孔率は7.1%であった。
(2) (Emulsification device production)
The emulsifying device is shown in cross section in FIG. First, two through holes with an inner diameter of 3.2 mm are formed in a square acrylic resin plate 1 having a thickness of 2 mm and a side of 50 mm, and an outer diameter of 3.2 mm rubber tube piping (product name: Tygon, manufactured by Norton). Tube R-3603) was connected to form nozzles 6 and 7, respectively, so that liquid could be supplied from nozzle 6 and liquid could be discharged from nozzle 7. A through hole with an inner diameter of 3.0 mm is formed at the center of another square acrylic resin plate 5 with a thickness of 2 mm and a side of 50 mm, and a tetrafluoroethylene tube pipe with an inner diameter of 1 mm is connected via a joint part. The nozzle 8 was used so that the liquid could be supplied from the nozzle 8. Further, an acrylic resin plate part 4 was produced by punching out an inner 30 mm square, leaving 10 mm from the outer edge of another square acrylic resin plate having a thickness of 2 mm and a side of 50 mm. Next, a slit having a width of 3 mm and a length of 35 mm was formed in a square fluororesin sheet 2 having a thickness of 400 μm and a side of 50 mm. Furthermore, in the center part of a square SUS304 sheet having a thickness of 50 μm and a side of 50 mm, 28 through-holes having a circular cross-sectional shape with an inner diameter of 30 μm using a UV-YAG laser and having a 100 μm pitch in the width direction, the length direction A total of 6440 holes were drilled as a parallel arrangement of 230 pieces at a pitch of 100 μm, and a solvent-soluble fluororesin (manufactured by Asahi Glass Co., Ltd., trade name: Cytop) was dissolved in a solvent (manufactured by Asahi Glass Co., Ltd., trade name: CT-Solv100). The solution was coated by a dip coating method so that the coating thickness after drying was 0.1 μm, and a metal partition wall 3 was produced. In a range surrounded by a line connecting the centers of the through holes provided at the outermost portions in the width direction and the length direction, the opening ratio of the metal partition wall 3 calculated from Equation 4 was 7.1%.

アクリル樹脂製板1、フッ素樹脂シート2、金属隔壁3、アクリル樹脂製板部品4及びアクリル樹脂製板5を順に積層し、クランプにて4辺を均等な力で締め付けて固定した。このとき、金属隔壁3に穿孔した貫通孔の幅方向及び長さ方向を、それぞれフッ素樹脂シート2に作製したスリットの幅方向及び長さ方向に合わせ、貫通孔がスリットの中心部に位置するように、また、アクリル樹脂製板1のノズル6の孔とノズル7の孔とがフッ素樹脂シート2のスリット上に位置するように設置した。さらに、作製した装置はあらかじめ水を供給することで液が漏洩しないことを確認した。   The acrylic resin plate 1, the fluororesin sheet 2, the metal partition 3, the acrylic resin plate component 4, and the acrylic resin plate 5 were sequentially laminated, and the four sides were clamped and fixed with an equal force. At this time, the width direction and the length direction of the through hole drilled in the metal partition wall 3 are aligned with the width direction and the length direction of the slit made in the fluororesin sheet 2 so that the through hole is positioned at the center of the slit. In addition, the holes of the nozzle 6 and the holes of the nozzle 7 of the acrylic resin plate 1 were installed so as to be positioned on the slits of the fluororesin sheet 2. Furthermore, it was confirmed that the liquid was not leaked by supplying water to the manufactured device in advance.

(3)(乳化)
(2)で作製した乳化装置を水平に置いて使用し、ノズル6より(1)で調製した界面活性剤を溶解したイソノナンを、ノズル8より(1)で調製したケイ酸ナトリウム水溶液を供給することで、ケイ酸ナトリウム水溶液が界面活性剤を溶解したイソノナン中に分散するW/O型エマルジョンを連続的に製造した。このとき界面活性剤を溶解したイソノナンの供給量は1350mL/hであった。実験は常温で行い、運転時間は2時間であった。
(3) (Emulsification)
The emulsifying device prepared in (2) is used in a horizontal position, and isononane prepared by dissolving the surfactant prepared in (1) is supplied from the nozzle 6 and the sodium silicate aqueous solution prepared in (1) is supplied from the nozzle 8. Thus, a W / O type emulsion in which an aqueous sodium silicate solution was dispersed in isononane in which a surfactant was dissolved was continuously produced. At this time, the supply amount of isononane in which the surfactant was dissolved was 1350 mL / h. The experiment was performed at room temperature and the operation time was 2 hours.

このとき、イソノナンの流れのレイノルズ数は、流路の動水半径:176.5μm、線速:0.31m/s、粘度:7.5×10−4Pa・sから計算したところ約213であり、層流状態であった。また、ケイ酸ナトリウム水溶液の供給量は32.2mL/hであり、微小孔9における流れ方向の線速は2.0×10−3m/sであった。 At this time, the Reynolds number of the flow of isononane was about 213 as calculated from the hydrodynamic radius of the flow path: 176.5 μm, the linear velocity: 0.31 m / s, and the viscosity: 7.5 × 10 −4 Pa · s. There was a laminar flow state. Moreover, the supply amount of the sodium silicate aqueous solution was 32.2 mL / h, and the linear velocity in the flow direction in the micropores 9 was 2.0 × 10 −3 m / s.

また、微小孔9から供給されるケイ酸ナトリウム水溶液の微小孔9部分での流れ方向の線速に対する、イソノナンの流れ方向の線速の比は159であった。アクリル樹脂製板1の正面に設置した図示しない高速度カメラにて、乳化の様子を連続的に確認したところ、ケイ酸ナトリウム水溶液は微小孔9出口で液滴化されており、またエマルジョン粒子は約60μmの実質的に均一な粒子径を有していた。   Further, the ratio of the linear velocity in the flow direction of isononane to the linear velocity in the flow direction at the micropore 9 portion of the sodium silicate aqueous solution supplied from the micropore 9 was 159. When the state of emulsification was continuously confirmed with a high-speed camera (not shown) installed in front of the acrylic resin plate 1, the sodium silicate aqueous solution was formed into droplets at the exit of the micropores 9, and the emulsion particles were It had a substantially uniform particle size of about 60 μm.

(4)(ゲル化)
(3)で作製したW/O型エマルジョンを採取した後、撹拌しながら100%濃度の炭酸ガスを300mL/minの供給速度で15分間吹き込んでゲル化を行った。生成したシリカヒドロゲルに対し、水200mLを加えて10分間静置させた後、比重差により2相分離してシリカヒドロゲルの水スラリー(水相)を得た。次いで、得られたシリカヒドロゲルの水スラリーに0.1規定の硫酸水溶液を加え、25℃でpH2に調整して30分間静置した。次いでろ過、水洗を行い、120℃で20時間乾燥することでシリカ多孔質球状体を得た。得られたシリカ多孔質球状体の収量は19.7gであった。
(4) (gelation)
After collecting the W / O type emulsion prepared in (3), gelation was performed by blowing carbon dioxide gas of 100% concentration at a supply rate of 300 mL / min for 15 minutes while stirring. To the produced silica hydrogel, 200 mL of water was added and allowed to stand for 10 minutes, and then two phases were separated due to the difference in specific gravity to obtain an aqueous slurry (aqueous phase) of silica hydrogel. Next, a 0.1 N aqueous sulfuric acid solution was added to the resulting silica hydrogel water slurry, adjusted to pH 2 at 25 ° C., and allowed to stand for 30 minutes. Next, filtration, washing with water and drying at 120 ° C. for 20 hours gave a porous silica spherical body. The yield of the obtained silica porous sphere was 19.7 g.

(5)(形状確認)
得られたシリカ多孔質球状体は走査型電子顕微鏡写真よりほぼ真球状であることが確認された。また、粒子の合計数が1000個以上となるように、複数枚の写真を使用し、写真内に確認できる全数を測定した結果を使用して粒子径分布を実測した。個数平均粒子径は50μmであり、標準偏差は6.4μmであった。このときの、粒子径分布の標準偏差を個数平均粒子径で割った値は0.128であった。
(5) (Shape confirmation)
The obtained porous silica spherical body was confirmed to be almost spherical from a scanning electron micrograph. Further, a plurality of photographs were used so that the total number of particles was 1000 or more, and the particle diameter distribution was measured using the results of measuring the total number that can be confirmed in the photographs. The number average particle diameter was 50 μm, and the standard deviation was 6.4 μm. The value obtained by dividing the standard deviation of the particle size distribution by the number average particle size was 0.128.

[例2(比較例)]
微小孔を作製した金属シートに対し、フッ素樹脂によるコートを行わなかったものを金属隔壁3に替えて使用した以外は例1と同様にして、W/O型エマルジョンを連続的に作製した。また、高速度カメラにて乳化の様子を確認したところ、200μmを超える液滴径のエマルジョンが生成しており、さらに該エマルジョン液滴の一部が分割して副生した微小液滴の存在も観察された。
[Example 2 (comparative example)]
A W / O type emulsion was continuously prepared in the same manner as in Example 1 except that a metal sheet with micropores that was not coated with a fluororesin was used instead of the metal partition wall 3. In addition, when the state of emulsification was confirmed with a high-speed camera, an emulsion having a droplet diameter exceeding 200 μm was generated, and there was also the presence of fine droplets by-produced by partial division of the emulsion droplets. Observed.

[例3]
乳化の運転時間を954時間とした以外は例1と同様にしてW/O型エマルジョンを連続的に作製し、運転終了直前の2時間の間に生成したW/O型エマルジョンを採取し、例1と同様にゲル化してシリカ多孔質球状体を得た。得られたシリカ多孔質球状体の収量は19.5gであった。
[Example 3]
A W / O type emulsion was continuously prepared in the same manner as in Example 1 except that the operation time of emulsification was 954 hours, and the W / O type emulsion produced during the 2 hours immediately before the end of the operation was collected. As in Example 1, gelation was performed to obtain a porous silica spherical body. The yield of the obtained silica porous sphere was 19.5 g.

該シリカ多孔質球状体は走査型電子顕微鏡写真よりほぼ真球状であることが確認され、例1と同様に測定した個数平均粒子径は51μmであり、標準偏差は6.8μmであった。このときの、粒子径分布の標準偏差を個数平均粒子径で割った値は0.133であり、実質的に均一な粒子径のシリカ多孔質球状体であった。   The silica porous sphere was confirmed to be almost spherical from a scanning electron micrograph, and the number average particle size measured in the same manner as in Example 1 was 51 μm, and the standard deviation was 6.8 μm. The value obtained by dividing the standard deviation of the particle size distribution by the number average particle size was 0.133, which was a porous silica spherical body having a substantially uniform particle size.

[例4(比較例)]
厚さ50μm、1辺50mmの正方形のポリフェニレンサルファイドシートの中心部に、例1と同様にして貫通孔を穿孔した。このシートを金属隔壁3に替えて使用し、また、乳化の運転時間を55時間とした以外は例1と同様にしてW/O型エマルジョンを連続的に作製した。運転終了直前の2時間の間に生成したW/O型エマルジョンを採取し、例1と同様にゲル化して19.4gのシリカ多孔質球状体を得た。
[Example 4 (comparative example)]
A through hole was drilled in the center of a square polyphenylene sulfide sheet having a thickness of 50 μm and a side of 50 mm in the same manner as in Example 1. A W / O emulsion was continuously prepared in the same manner as in Example 1 except that this sheet was used in place of the metal partition wall 3 and that the emulsifying operation time was 55 hours. The W / O type emulsion produced during 2 hours immediately before the end of the operation was collected and gelled in the same manner as in Example 1 to obtain 19.4 g of a porous silica sphere.

該シリカ多孔質球状体は走査型電子顕微鏡写真よりほぼ真球状であることが確認された。得られた粒子の粒子径分布を例1と同様に測定したところ、個数平均粒子径は46μmであり、標準偏差は18.3μmであった。このときの、粒子径分布の標準偏差を個数平均粒子径で割った値は0.396であり、例1、例3と比較して広い粒子径分布を有していた。この原因は必ずしも明確ではないが、ポリフェニレンサルファイドシートの表面が経時的に親水化したためであると予想される。   The porous silica sphere was confirmed to be almost spherical from a scanning electron micrograph. When the particle size distribution of the obtained particles was measured in the same manner as in Example 1, the number average particle size was 46 μm, and the standard deviation was 18.3 μm. At this time, the value obtained by dividing the standard deviation of the particle size distribution by the number average particle size was 0.396, which was wider than those of Examples 1 and 3. The cause of this is not necessarily clear, but it is expected that the surface of the polyphenylene sulfide sheet has become hydrophilic over time.

本発明により、実質的に均一な粒子径を有する無機質球状体を、安定した連続プロセスにより高生産性で製造することが可能となる。   According to the present invention, inorganic spheres having a substantially uniform particle size can be produced with high productivity by a stable continuous process.

例1で用いた乳化装置の断面図を示す図The figure which shows sectional drawing of the emulsification apparatus used in Example 1

符号の説明Explanation of symbols

1、5:アクリル樹脂製板
2:フッ素樹脂シート
3:金属隔壁
4:アクリル樹脂製板部品
6、7:アクリル樹脂製板1に形成されたノズル
8:アクリル樹脂製板5に形成されたノズル
9:金属隔壁3を貫通する微小孔
1, 5: Acrylic resin plate 2: Fluorine resin sheet 3: Metal partition wall 4: Acrylic resin plate component 6, 7: Nozzle formed on the acrylic resin plate 1 8: Nozzle formed on the acrylic resin plate 5 9: Micro hole penetrating the metal partition 3

Claims (7)

無機化合物を含む水性液状体を、隔壁で区画された流路中を流速0.001〜2m/sかつ層流状態で流れる有機液体中に、1つの隔壁に形成した複数個の微小孔を通して押し出して、有機液体が分散媒で無機化合物を含む水性液状体が分散相であるW/O型エマルジョンを形成した後、該W/O型エマルジョン中の無機化合物を含む水性液状体を固形化して無機質球状体を製造する方法において、
前記複数個の微小孔が形成された隔壁が、表面を撥水処理した金属シートであることを特徴とする無機質球状体の製造方法。
An aqueous liquid containing an inorganic compound is extruded through a plurality of micropores formed in one partition into an organic liquid flowing in a laminar flow state at a flow rate of 0.001 to 2 m / s through a flow path partitioned by the partition. After forming a W / O emulsion in which the organic liquid is a dispersion medium and the aqueous liquid containing the inorganic compound is the dispersed phase, the aqueous liquid containing the inorganic compound in the W / O emulsion is solidified to form an inorganic substance. In a method for producing a spherical body,
The method for producing an inorganic sphere, wherein the partition wall in which the plurality of micropores are formed is a metal sheet having a water repellent surface.
前記金属シートの厚さが10〜500μmである請求項1に記載の無機質球状体の製造方法。   The method for producing an inorganic sphere according to claim 1, wherein the metal sheet has a thickness of 10 to 500 μm. 前記金属シートの構成材料がニッケル、ニッケル合金及びステンレス鋼からなる群より選ばれるいずれか1種である請求項1又は2に記載の無機質球状体の製造方法。   The method for producing an inorganic sphere according to claim 1 or 2, wherein the constituent material of the metal sheet is any one selected from the group consisting of nickel, a nickel alloy, and stainless steel. 前記撥水処理を撥水処理剤の噴霧又は塗布により行う請求項1〜3のいずれかに記載の無機質球状体の製造方法。   The manufacturing method of the inorganic spherical body in any one of Claims 1-3 which perform the said water-repellent process by spraying or application | coating of a water-repellent agent. 前記撥水処理剤が疎水性樹脂又はシランカップリング剤を溶剤に溶解したものである請求項4に記載の無機質球状体の製造方法。   The method for producing an inorganic spheroid according to claim 4, wherein the water repellent treatment agent is obtained by dissolving a hydrophobic resin or a silane coupling agent in a solvent. 前記撥水処理により厚さ0.001〜5μmの撥水処理膜が形成される請求項1〜5のいずれかに記載の無機質球状体の製造方法。   The method for producing an inorganic sphere according to any one of claims 1 to 5, wherein a water repellent film having a thickness of 0.001 to 5 µm is formed by the water repellent process. 無機化合物を含む水性液状体が、隔壁で区画された流路中を流速0.001〜2m/sかつ層流状態で流れる有機液体中に、1つの隔壁に形成された複数個の微小孔を通して押し出されてW/O型エマルジョンが形成され、該W/O型エマルジョン中の無機化合物を含む水性液状体が固形化されて無機質球状体が形成されるように構成される無機質球状体の製造装置であって、前記複数個の微小孔を有する隔壁が、表面を撥水処理された金属シートであることを特徴とする無機質球状体の製造装置。
An aqueous liquid containing an inorganic compound passes through a plurality of micropores formed in one partition into an organic liquid flowing in a laminar flow state at a flow rate of 0.001 to 2 m / s through a flow path partitioned by the partition. An apparatus for producing inorganic spheres that is extruded to form a W / O emulsion, and an aqueous liquid containing an inorganic compound in the W / O emulsion is solidified to form an inorganic sphere. An apparatus for producing an inorganic sphere, wherein the partition wall having a plurality of micropores is a metal sheet having a water repellent surface.
JP2004166049A 2003-06-11 2004-06-03 Manufacturing method and manufacturing apparatus of inorganic spherical body Expired - Lifetime JP5037781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166049A JP5037781B2 (en) 2003-06-11 2004-06-03 Manufacturing method and manufacturing apparatus of inorganic spherical body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003166601 2003-06-11
JP2003166601 2003-06-11
JP2004166049A JP5037781B2 (en) 2003-06-11 2004-06-03 Manufacturing method and manufacturing apparatus of inorganic spherical body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010169292A Division JP2011026196A (en) 2003-06-11 2010-07-28 Method and apparatus for producing inorganic sphere

Publications (2)

Publication Number Publication Date
JP2005021884A true JP2005021884A (en) 2005-01-27
JP5037781B2 JP5037781B2 (en) 2012-10-03

Family

ID=34196973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166049A Expired - Lifetime JP5037781B2 (en) 2003-06-11 2004-06-03 Manufacturing method and manufacturing apparatus of inorganic spherical body

Country Status (1)

Country Link
JP (1) JP5037781B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026196A (en) * 2003-06-11 2011-02-10 Asahi Glass Co Ltd Method and apparatus for producing inorganic sphere
JP2014105126A (en) * 2012-11-28 2014-06-09 Asahi Glass Co Ltd Silica-containing particle production method
JP2014105127A (en) * 2012-11-28 2014-06-09 Asahi Glass Co Ltd Silica-containing particle production method
JP2015113277A (en) * 2013-12-16 2015-06-22 旭硝子株式会社 Method for manufacturing spherical silica

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264374A (en) * 1985-09-13 1987-03-23 テルモ株式会社 Production of membrane type artificial lung
JPH04154605A (en) * 1990-10-16 1992-05-27 Agency Of Ind Science & Technol Inorganic uniform fine sphere and preparation thereof
JPH04229852A (en) * 1990-12-27 1992-08-19 Fuji Photo Film Co Ltd Manufacturing equipment for photographing emulsified material and silver halide emulsion
WO1992013720A1 (en) * 1991-02-04 1992-08-20 Seiko Epson Corporation Ink-jet printing head and method of making said head
JPH1043577A (en) * 1996-08-05 1998-02-17 Sekisui Finechem Co Ltd Production of emulsion
JPH11244668A (en) * 1998-02-27 1999-09-14 Mitsubishi Rayon Co Ltd Crude oil treating device and treatment of crude oil using the device
JP2000015070A (en) * 1998-07-02 2000-01-18 Natl Food Res Inst Cross flow type microchannel apparatus and preparation or separation of emulsion thereby
JP2000507497A (en) * 1996-03-29 2000-06-20 ディスパーズ テクノロジーズ リミテッド Immiscible phase dispersion
JP2002035533A (en) * 2000-07-28 2002-02-05 Japan Gore Tex Inc Humidification/dehumidification element, humidification/ dehumidification unit and humidification/ dehumidification device
JP2002119841A (en) * 2000-10-13 2002-04-23 National Food Research Institute Method and device for manufacturing microsphere
JP2002210876A (en) * 2001-01-19 2002-07-31 Nippon Soda Co Ltd Water repellent layer supporting structure and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264374A (en) * 1985-09-13 1987-03-23 テルモ株式会社 Production of membrane type artificial lung
JPH04154605A (en) * 1990-10-16 1992-05-27 Agency Of Ind Science & Technol Inorganic uniform fine sphere and preparation thereof
JPH04229852A (en) * 1990-12-27 1992-08-19 Fuji Photo Film Co Ltd Manufacturing equipment for photographing emulsified material and silver halide emulsion
WO1992013720A1 (en) * 1991-02-04 1992-08-20 Seiko Epson Corporation Ink-jet printing head and method of making said head
JP2000507497A (en) * 1996-03-29 2000-06-20 ディスパーズ テクノロジーズ リミテッド Immiscible phase dispersion
JPH1043577A (en) * 1996-08-05 1998-02-17 Sekisui Finechem Co Ltd Production of emulsion
JPH11244668A (en) * 1998-02-27 1999-09-14 Mitsubishi Rayon Co Ltd Crude oil treating device and treatment of crude oil using the device
JP2000015070A (en) * 1998-07-02 2000-01-18 Natl Food Res Inst Cross flow type microchannel apparatus and preparation or separation of emulsion thereby
JP2002035533A (en) * 2000-07-28 2002-02-05 Japan Gore Tex Inc Humidification/dehumidification element, humidification/ dehumidification unit and humidification/ dehumidification device
JP2002119841A (en) * 2000-10-13 2002-04-23 National Food Research Institute Method and device for manufacturing microsphere
JP2002210876A (en) * 2001-01-19 2002-07-31 Nippon Soda Co Ltd Water repellent layer supporting structure and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026196A (en) * 2003-06-11 2011-02-10 Asahi Glass Co Ltd Method and apparatus for producing inorganic sphere
JP2014105126A (en) * 2012-11-28 2014-06-09 Asahi Glass Co Ltd Silica-containing particle production method
JP2014105127A (en) * 2012-11-28 2014-06-09 Asahi Glass Co Ltd Silica-containing particle production method
JP2015113277A (en) * 2013-12-16 2015-06-22 旭硝子株式会社 Method for manufacturing spherical silica

Also Published As

Publication number Publication date
JP5037781B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP2011026196A (en) Method and apparatus for producing inorganic sphere
US7022300B2 (en) Process for producing inorganic spheres
JP6210070B2 (en) Method for producing spherical particles
US7442356B2 (en) Process for producing inorganic spheres
JP6241252B2 (en) Method for producing spherical silica
JP4193626B2 (en) Method for producing inorganic spherical body
JP4122959B2 (en) Method for producing inorganic spherical body
JP5037781B2 (en) Manufacturing method and manufacturing apparatus of inorganic spherical body
KR100998462B1 (en) Process and apparatus for producing inorganic spheres
JP2006225226A (en) Spherical silica and its manufacturing method
JP5275329B2 (en) Method for producing inorganic spherical body
JP4767504B2 (en) Manufacturing method and manufacturing apparatus of inorganic spherical body
JP2004314063A (en) Method for manufacturing inorganic spherical body
JP2006027978A (en) Method and device for producing inorganic spherical body
JP2006192389A (en) Manufacturing method of inorganic spherical body
JP2005013842A (en) Method of producing inorganic spherical body
JP2005013810A (en) Method and apparatus of producing inorganic spherical body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100312

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100729

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100817

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5037781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250