JP2005021870A - Method for reducing carbon dioxide in the air, method for recovering and removing carbonic acid in sea water and its disposal method - Google Patents

Method for reducing carbon dioxide in the air, method for recovering and removing carbonic acid in sea water and its disposal method Download PDF

Info

Publication number
JP2005021870A
JP2005021870A JP2003271094A JP2003271094A JP2005021870A JP 2005021870 A JP2005021870 A JP 2005021870A JP 2003271094 A JP2003271094 A JP 2003271094A JP 2003271094 A JP2003271094 A JP 2003271094A JP 2005021870 A JP2005021870 A JP 2005021870A
Authority
JP
Japan
Prior art keywords
seawater
carbon dioxide
atmosphere
carbonic acid
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003271094A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Tadenuma
克嘉 蓼沼
Kosuke Yoshida
幸介 吉田
Osamu Arai
修 新井
Jun Suzuki
潤 鈴木
Kiyoko Kurosawa
きよ子 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Co Ltd
Original Assignee
Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Co Ltd filed Critical Kaken Co Ltd
Priority to JP2003271094A priority Critical patent/JP2005021870A/en
Publication of JP2005021870A publication Critical patent/JP2005021870A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Gas Separation By Absorption (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the global warming problem itself by globally reducing CO<SB>2</SB>which is released into the air and is accumulated therein by utilizing the ocean with respect to the production source countermeasure and the global countermeasure of CO<SB>2</SB>which is not realized as a fundamental reduction technology until now. <P>SOLUTION: Surface seawater is electrolyzed, bicarbonate ions and carbonate ions included in sea water are combined with calcium and magnesium and insoluble carbonate salt is produced, is precipitated to deep sea by self weight and is deposited on the sea bottom. Because the sea water which is allowed to lower a carbonate concentration in the surface layer absorbs CO<SB>2</SB>in the air, the global warming problem can be solved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地球温暖化問題となっている温室効果ガスの中で特にその人為的放出量が最も多いため温室効果が大きい二酸化炭素(CO2)の地球規模の削減方法に関するものである。 The present invention relates to a method for globally reducing carbon dioxide (CO 2 ), which has a large greenhouse effect among greenhouse gases, which are a problem of global warming, especially because the amount of anthropogenic emission is the largest.

CO2の大量発生源である火力発電所やセメント製造工場などから排出されるCO2の削減方法としては、アミン化合物による化学的吸収回収法、その回収したCO2を処分するために海洋へ注入処分する方法、CO2を化学的にメタンに変換して資源化する方法、その他の多くの大気中の二酸化炭素の削減方法が研究されている。さらに、大気中に放出され蓄積しているCO2をグローバルに削減する方法として、植林、藻類の育成、海洋への施肥(特に鉄散布)、サンゴ礁育成などの自然のCO2固定プロセスの利用が考えられ試みられている。しかし、これら従来の発生源でのCO2削減対策やグローバル削減対策は、コストやエネルギーの問題を抱え、環境への悪影響、海洋へ注入処分したCO2が将来再放出される懸念、あるいは削減効果そのものが期待できないなどの問題があり、CO2による地球温暖化問題を根本的に解決できる具体的な解決策はまだ見出されていない。
特開平11−29314号公報 特開200−262888号公報
As method of reducing CO 2 emissions from thermal power plants and cement production plants a large number generation source of CO 2 is injected, the chemical absorption method for recovering an amine compound, to the ocean in order to dispose of the recovered CO 2 Methods of disposal, methods of chemically converting CO 2 to methane and recycling it, and other methods of reducing atmospheric carbon dioxide have been studied. In addition, the use of natural CO 2 fixation processes such as afforestation, algae growth, fertilization to the ocean (especially iron spraying), and coral reef growth are methods of globally reducing the CO 2 released and accumulated in the atmosphere. Thinked and tried. However, CO 2 reduction measures and global reduction measures at these conventional sources have cost and energy problems, adverse effects on the environment, concern that CO 2 injected into the ocean will be released again in the future, or reduction effects There is a problem that it cannot be expected, and no specific solution has yet been found that can fundamentally solve the global warming problem caused by CO 2 .
Japanese Patent Laid-Open No. 11-29314 Japanese Patent Laid-Open No. 200-262888

本発明は、根本的なCO2の削減技術として実現していないこれまでのCO2 発生源対策及びグローバル対策に対し、大気中に放出され蓄積しているCO2を海洋を利用してグローバルに削減することによって、地球温暖化問題そのものを根本的に解決しようとするものである。 The present invention is, with respect to CO 2 source measures and global measures hitherto not been realized as a reduction technologies fundamental CO 2, the CO 2 that have accumulated is released to the atmosphere globally by utilizing ocean By reducing it, we try to fundamentally solve the global warming problem itself.

本発明は、地球規模でCO2の削減が可能な実用的なCO2の除去方法であり、これまで放出され蓄積されしかも今後放出されるCO2をグローバルに削減することが可能であり、CO2の除去量を制御でき、大気中に蓄積されている余剰のCO2を生物圏から安定に隔離でき、制御可能で暴走しない技術であり、処理による新たなCO2や無用な廃棄物が発生せず、低コストで省エネ型であり、環境への化学的・生物的な添加物を必要とせず、環境に優しく環境生態系のバランスを乱さない方法である。本発明は、CO2の削減のための社会的問題を解消することが可能でしかも経済的負担が少ない方法であり、さらに経済発展を抑制する考えを必要としない。 The present invention is a method for removing a global scale in the reduction can be practical CO 2 for CO 2, it is possible to reduce the CO 2 that is released accumulated yet future release far globally, CO 2 can control the amount of removal, excess CO 2 stored in the atmosphere can be stably isolated from the biosphere, is controllable and uncontrollable non technology, new CO 2 and unnecessary waste by processing occurs It is a low-cost, energy-saving method, does not require chemical and biological additives to the environment, is environmentally friendly and does not disturb the balance of the environmental ecosystem. The present invention is a method that can eliminate social problems for reducing CO 2 and has a low economic burden, and does not require the idea of suppressing economic development.

本発明は、実用的なグローバル大気中の二酸化炭素の削減方法に関するものであり、本発明によれば、経済抑制すること無く、しかも過去に放出され大気圏に蓄積されているCO2のみならず今後増え続けるCO2までも除去することが可能であり、生物圏に無理強いすること無くCO2を制御しながら適度に除去し、余剰に蓄積されている大気中のCO2を生物圏から安定に隔離することによって、地球大気環境を適正に保つことが可能となる。 The present invention relates to a practical method for reducing carbon dioxide in the global atmosphere. According to the present invention, not only CO 2 released in the past and accumulated in the atmosphere, but also in the future, without economic restraint. it is possible also to remove to growing CO 2, appropriately removed while controlling without CO 2 that strong-arm biosphere, stably sequester atmospheric CO 2 stored in the excess from the biosphere By doing so, it becomes possible to keep the global atmospheric environment appropriate.

本発明による大気中の二酸化炭素の削減方法は、海洋表層の海水中に含まれる重炭酸イオン及び炭酸イオンの炭酸を除去処理して生成する炭酸濃度が低下した除炭酸海水が大気と接触することによって、大気と海洋表層間の化学平衡効果により大気中の二酸化炭素が吸収され大気中から削減するものである。   In the method for reducing atmospheric carbon dioxide according to the present invention, decarboxylated seawater having a reduced carbonic acid concentration generated by removing bicarbonate ions and carbonate ions contained in seawater of the ocean surface is in contact with the atmosphere. Thus, carbon dioxide in the atmosphere is absorbed and reduced from the atmosphere due to the chemical equilibrium effect between the atmosphere and the ocean surface layer.

このようにして大気中の二酸化炭素を吸収した海洋表層海水から炭酸を除去する処理方法は、海水に含まれる炭酸を不溶性炭酸塩として生成させるために、海水に何らの添加物を加えることなく、海水に共存するカルシウム及びマグネシウムと炭酸を化合させるこものである。
さらに海水に溶解する炭酸の回収方法としては、炭酸を不溶性炭酸塩として沈殿分離させ、その炭酸塩沈殿を深海ならびに海底に沈降させ堆積処分することをあげることが出来る。
In this way, the treatment method for removing carbonic acid from the ocean surface seawater that has absorbed carbon dioxide in the atmosphere generates carbonic acid contained in seawater as an insoluble carbonate, without adding any additive to the seawater, This is a combination of calcium and magnesium coexisting with seawater and carbonic acid.
Further, as a method for recovering carbonic acid dissolved in seawater, carbonic acid can be precipitated and separated as insoluble carbonates, and the carbonate precipitates can be settled in the deep sea and the seabed and deposited.

海洋表層海水の中に含まれる炭酸を除去した除炭酸海水が大気と接触することによって大気、海洋表層間の化学平衡効果により大気中の二酸化炭素を吸収すること、海水中の炭酸と共存するカルシウム及びマグネシウム等を化合して不溶性炭酸塩として沈殿回収すること、さらにその不溶性炭酸塩を固体の状態で深層へ沈降させ海底に堆積させること、それらを一連のプロセスとする。   Decarbonized seawater from which carbon dioxide contained in ocean surface seawater has been removed comes into contact with the atmosphere, absorbs carbon dioxide in the atmosphere due to the chemical equilibrium effect between the ocean and ocean surface layers, and calcium coexists with carbon dioxide in seawater. And a combination of magnesium and the like to precipitate and recover as an insoluble carbonate, and further, the insoluble carbonate is settled to a deep layer in a solid state and deposited on the seabed, which is a series of processes.

この場合に、大気中の二酸化炭素の削減方法により海水中の炭酸を不溶性炭酸塩として回収し海洋表層海水中の炭酸濃度を低下させて大気と海洋間の化学平衡効果により大気中の二酸化炭素を削減するに当たり、海水に何らの添加物を加えることなく直接電解処理して不溶性炭酸塩を生成させる。   In this case, carbon dioxide in the seawater is recovered as insoluble carbonate by the method of reducing carbon dioxide in the atmosphere, and the carbon dioxide concentration in the ocean surface seawater is reduced to reduce atmospheric carbon dioxide by the chemical equilibrium effect between the atmosphere and the ocean. For reduction, insoluble carbonate is produced by direct electrolysis without adding any additive to seawater.

大気中の二酸化炭素の削減を目的とする海洋表層海水の炭酸を除去するための前記の電解処理においては、電解処理後の海水の水素イオン濃度が処理前の海水に比べ低くなり、そのためさらに二酸化炭素の吸収能力が増大する。また電解処理において、海水の電解処理の際に同時に生成する副産物としての水素ガスを回収し資源化する。   In the above-mentioned electrolytic treatment for removing carbon dioxide from the ocean surface seawater for the purpose of reducing carbon dioxide in the atmosphere, the hydrogen ion concentration in the seawater after the electrolytic treatment is lower than that in the seawater before the treatment, so that further Increases carbon absorption capacity. In addition, in the electrolytic treatment, hydrogen gas as a by-product generated simultaneously with the electrolytic treatment of seawater is recovered and recycled.

本発明によればグローバルに大気CO2を削減できるため、実現が危ぶまれているCO2の発生源における削減対策が不要となるため社会的に経済的に大きな効果をもたらす。本発明によるグローバルCO2 の削減対策によれば、今後の開発途上国を中心とする人口の激増、それに伴う経済発展、さらにそれに伴うCO2の放出量の増大を抑制する考えを必要としない。そのため本発明は、経済発展を抑制する考えを必要としない。なお、京都メカニズムにおける放出CO2の削減の義務化に関しては、本発明による海水の除炭酸量をCO2 の削減量とするための国際的な合意を得る必要がある。 According to the present invention, since atmospheric CO 2 can be reduced globally, a reduction measure at the source of CO 2 that is threatened to be realized becomes unnecessary, which brings about a great social and economic effect. According to the global CO 2 reduction measures according to the present invention, it is not necessary to think about suppressing the rapid increase of the population mainly in developing countries, the accompanying economic development, and the accompanying increase in CO 2 emission. Therefore, the present invention does not require the idea of suppressing economic development. In addition, regarding the obligation to reduce the emitted CO 2 in the Kyoto mechanism, it is necessary to obtain an international agreement to make the CO 2 reduction amount the decarboxylation amount of seawater according to the present invention.

以下、このような本発明の実施例について、図面を参照しながら具体例を挙げて詳細に説明する。
本発明の大気中のCO2を地球規模で削減する方法として、海洋表層海水中に重炭酸イオン及び炭酸イオン(以下、「炭酸」と記す)として平均2.0〜2.2mmol/kg含まれる炭酸を海水中に共存するカルシウム(Ca:10mmol/kg含まれる)ならびにマグネシウム(Mg:53mmol/kg含まれる)と反応させて、不溶性のCa−Mg炭酸塩を形成させる。これによって、沈殿物として炭酸を除去する。その除炭酸した海水が大気と海洋表層の化学平衡効果によって大気中のCO2を吸収し削減する。
Hereinafter, examples of the present invention will be described in detail with specific examples with reference to the drawings.
As a method for reducing CO 2 in the atmosphere of the present invention on a global scale, an average of 2.0 to 2.2 mmol / kg of bicarbonate ions and carbonate ions (hereinafter referred to as “carbonic acid”) is contained in ocean surface seawater. Carbonic acid is reacted with calcium (Ca: contained in 10 mmol / kg) and magnesium (Mg: contained in 53 mmol / kg) coexisting in seawater to form insoluble Ca-Mg carbonate. This removes carbonic acid as a precipitate. The decarboxylated seawater absorbs and reduces atmospheric CO 2 by the chemical equilibrium effect between the atmosphere and the ocean surface.

具体的な除炭酸処理の方法としては、海水に溶解している塩類のほとんどは電離あるいはイオン対の状態で存在しており、そのため海水は電気伝導度の高い電解質溶液である。この海水の性質を利用して、海水を直接電解して、その中に含まれる炭酸を不溶性の炭酸塩とする方法である。海水の電解反応としては、多孔質隔膜を有する2極式フロー型(流通型)電解槽で行うことにより、まずカソード(陰極)では水の分解反応式(1)の反応で生成したOH- によって式(2)の反応が進行し、海水に溶解している炭酸が不溶性の炭酸カルシウム(CaCO3)として沈殿する。なお、実際の沈殿物はMgを含む塩基性炭酸塩[CaCO3・Mg(OH)2]である。カソードでは、先に示した水分解反応式(1)によって水素ガスが同時に生成する。一方、アノード(陽極)においては水分解反応に比べ式(3)の反応が主に進行し、さらに式(4)の加水分解反応が進行する。以上の海水電解の全反応は式(5)となり、この反応式及び実験結果から電解反応に伴うCO2ガスの発生は無い。以上のカソード反応及びアノード反応それぞれの処理後の海水を混合するとその水素イオン濃度は処理前の海水に比べアルカリ化しており、そのためその除炭酸海水のCO2の吸収能力は処理前の海水に比べさらに上昇している。 As a specific decarboxylation method, most of the salts dissolved in seawater exist in the form of ionization or ion pairs, and therefore seawater is an electrolyte solution with high electrical conductivity. Using this property of seawater, seawater is directly electrolyzed to convert the carbonic acid contained therein into an insoluble carbonate. The electrolysis reaction of seawater is carried out in a bipolar flow type (circulation type) electrolytic cell having a porous diaphragm, and at the cathode (cathode), first, by OH generated by the reaction of water decomposition reaction formula (1). The reaction of the formula (2) proceeds, and carbonic acid dissolved in seawater is precipitated as insoluble calcium carbonate (CaCO 3 ). The actual precipitate is a basic carbonate [CaCO 3 · Mg (OH) 2 ] containing Mg. At the cathode, hydrogen gas is simultaneously generated by the water splitting reaction formula (1) shown above. On the other hand, in the anode (anode), the reaction of the formula (3) mainly proceeds compared to the water splitting reaction, and the hydrolysis reaction of the formula (4) further proceeds. The total reaction of seawater electrolysis described above is expressed by equation (5), and from this reaction equation and experimental results, there is no generation of CO 2 gas accompanying the electrolytic reaction. When the seawater after the above cathodic reaction and anodic reaction is mixed, the hydrogen ion concentration is alkalized compared to the seawater before the treatment, so the CO 2 absorption capacity of the decarbonated seawater is higher than that of the seawater before the treatment. It has risen further.

(1)2H2O+2e-→H2+OH-
(2)Ca2++Mg2++HCO3 -+OH-→Ca(Mg)CO3↓+H2
(3)2Cl-→Cl2+2e-
(4)Cl2+H2O→2H++ClO-+Cl-
(5)2H2O+2Cl-+(2Na++4Cl-)+Ca2-+xMg2++2HCO3 -
→2H2↑+CaCO3・xMg(OH)2↓+CO3 2-+2HClO(+2NaCl)
(1) 2H 2 O + 2e → H 2 + OH
(2) Ca 2+ + Mg 2+ + HCO 3 + OH → Ca (Mg) CO 3 ↓ + H 2 O
(3) 2Cl → Cl 2 + 2e
(4) Cl 2 + H 2 O → 2H + + ClO + Cl
(5) 2H 2 O + 2Cl + (2Na + + 4Cl ) + Ca 2 + xMg 2+ + 2HCO 3
→ 2H 2 ↑ + CaCO 3 · xMg (OH) 2 ↓ + CO 3 2− + 2HClO (+ 2NaCl)

さて、サンゴ礁における炭酸固定化反応は式(6)に示すようにCaCO3の生成の際に同量のCO2の放出が起こるため、サンゴ礁に大気中のCO2ガスを吸収する削減することをサンゴ礁に期待できないとされている。一方、本発明の場合は式(5)に示すように、海水電解反応に伴うCO2ガスの放出は起らず、そのためサンゴ礁における炭酸固定化反応とは異なるものである。
(6)Ca2++2HCO3 -→CaCO3↓+CO2+H2
Now, as carbon dioxide fixation reaction in coral reefs causes the same amount of CO 2 to be released during the generation of CaCO 3 as shown in equation (6), the CO 2 gas in the atmosphere will be absorbed and reduced. It is said that coral reefs cannot be expected. On the other hand, in the case of the present invention, as shown in the formula (5), the release of CO 2 gas accompanying the seawater electrolysis reaction does not occur, which is different from the carbon fixation reaction in the coral reef.
(6) Ca 2+ + 2HCO 3 → CaCO 3 ↓ + CO 2 + H 2 O

海水電解処理によって生成する固体の塩基性炭酸塩をフロー型電解槽内部で海流の流れを利用して集め、固体の状態で処分地とする海底へ自重で沈降させる。この結果、海洋表層から炭酸が除去され、大気CO2の海洋への吸収速度の律速因子であった表層から深層への炭酸成分の移動速度を速めることが可能となる。 Solid basic carbonate generated by seawater electrolysis is collected inside the flow-type electrolytic cell using the flow of the ocean current, and settled by its own weight in the solid state on the seabed as the disposal site. As a result, carbonic acid is removed from the ocean surface layer, and it becomes possible to increase the movement rate of the carbonic acid component from the surface layer to the deep layer, which was the rate-determining factor of the absorption rate of atmospheric CO 2 into the ocean.

以上のプロセスにより、海洋表層海水中に溶解している炭酸が、不溶性の炭酸塩化合物となり自重で深海へ沈降し海底に堆積する。この一連のプロセスによって、電解して生成する除炭酸海水が大気中のCO2を吸収する結果、温室効果をもたらしている大気中に蓄積された余剰のCO2の削減が促進される。本発明の原理を図1に示す。 Through the above process, carbonic acid dissolved in the ocean surface seawater becomes an insoluble carbonate compound and sinks to the deep sea by its own weight and deposits on the seabed. By this series of processes, decarboxylated seawater generated by electrolysis absorbs CO 2 in the atmosphere, and as a result, the reduction of excess CO 2 accumulated in the atmosphere causing the greenhouse effect is promoted. The principle of the present invention is shown in FIG.

上記したように、本発明による大気中の余剰CO2の削減方法は、化学的なあるいは生物的な添加物が不要であること、そのCO2の処分量が把握できることなど人為的な制御が可能であり、海水の電解処理によって海水の水素イオンがわずかに低下する程度であるため環境に優しい方法である。この方法によれば、従来提案されている火力発電所やセメント製造工場などの大量発生源からCO2を回収ししかもそのCO2をガス状やドライアイスとして処分する方法と違い、CO2の回収と処分に大きいエネルギーを必要としないこと、さらにそのようにして回収したCO2を直接海洋へ投入処分した場合に起る海水の酸性化の問題が無い。本発明による海水の除炭酸処理処分に必要となる電力を太陽光発電、太陽熱発電、風力発電、酸水素型燃料電池、海洋深層水利用温度差発電などの非化石燃料による発電でまかなった場合は、CO2の削減処分に伴う新たなCO2の排出は少なくCO2の放出量と固定削減量の比率は1/10〜1/20となる。 As described above, the method for reducing surplus CO 2 in the atmosphere according to the present invention can be artificially controlled such that a chemical or biological additive is unnecessary and the amount of CO 2 disposed of can be grasped. This is an environmentally friendly method because the seawater hydrogen ions are slightly reduced by seawater electrolysis. According to this method, unlike the conventional method of recovering CO 2 from a large-scale source such as a thermal power plant or a cement manufacturing factory and disposing the CO 2 as gaseous or dry ice, CO 2 recovery In addition, there is no problem of acidification of seawater that occurs when disposal does not require a large amount of energy, and when the CO 2 thus recovered is directly thrown into the ocean. When the power required for the decarbonation treatment of seawater according to the present invention is generated by power generation using non-fossil fuels such as solar power generation, solar thermal power generation, wind power generation, oxyhydrogen fuel cell, and deep sea water temperature difference power generation , the ratio of emission and the fixed reduction of the emissions is small CO 2 new CO 2 due to reduction disposal of CO 2 is 1 / 10-1 / 20.

本発明を下記の実施例により、さらに詳細に説明する。
海水の電解処理としては、筒型電解槽(内径96mm、長さ500mm)の中に円筒状のチタン網上に白金コーティングした径の異なる2種類の筒型電極を約20mmの電極間距離でセットし、その電極の間に外径70mmφ、内径55mmφの円筒状の多孔質膜(ポリプロピレン製、孔径50−300μm)の隔膜をセットし、この電解槽に1〜4L/min.の範囲で一定の流量で海水を通液し、2枚の電極間に直流電圧を印加し電解処理を行った。
The invention is illustrated in more detail by the following examples.
For the electrolysis of seawater, two types of cylindrical electrodes with different diameters coated with platinum on a cylindrical titanium mesh in a cylindrical electrolytic cell (inner diameter 96 mm, length 500 mm) are set at a distance of about 20 mm between the electrodes. A cylindrical porous membrane (made of polypropylene, pore diameter 50-300 μm) having an outer diameter of 70 mmφ and an inner diameter of 55 mmφ is set between the electrodes, and 1 to 4 L / min. Then, seawater was allowed to flow at a constant flow rate within the range, and a direct current voltage was applied between the two electrodes to perform electrolytic treatment.

電解処理の実験結果から、海水中の炭酸が不溶性の炭酸塩として沈殿除去されており、本発明の有効性が確認できた。なお、海水の電解処理の条件として、電解電流密度が約6〜8mA/cm2以上で白色沈殿物の生成が始まり、約20〜30mA/cm2の電解条件で沈殿物生成が盛んとなった。この沈殿物は、CaCO3とMg(OH)2を含む塩基性炭酸塩であった。なお、電解処理の際の電解電流密度を制御させることによって、カソード処理海水中の炭酸を20〜70%の効率で炭酸塩に変換することが可能であった。これらの結果から、海水に何らの添加物を加えることなく、海水中の成分だけで不溶性の炭酸塩生成反応が進行し、本発明の目的とする海水の除炭酸処理の確証が得られた。この固体炭酸塩は、海水に対する溶解度が低いため深海へ沈降させ海底に堆積させれば大気中の余剰CO2を生物圏から完全に隔離でき、しかも長期間の堆積によって岩石化する期待がもてる。このことから、本発明は、これまで提案されている海水中へCO2ガス注入処分やドライアイス処分することに比べ、大気へのCO2の再放出の心配が無い。 From the experimental results of the electrolytic treatment, carbonic acid in seawater was precipitated and removed as an insoluble carbonate, and the effectiveness of the present invention could be confirmed. In addition, as conditions for the electrolysis treatment of seawater, the generation of white precipitates started when the electrolysis current density was about 6 to 8 mA / cm 2 or more, and the generation of precipitates became active under the electrolysis conditions of about 20 to 30 mA / cm 2 . . This precipitate was a basic carbonate containing CaCO 3 and Mg (OH) 2 . In addition, by controlling the electrolytic current density during the electrolytic treatment, it was possible to convert the carbonic acid in the cathode-treated seawater into a carbonate with an efficiency of 20 to 70%. From these results, the insoluble carbonate formation reaction proceeded with only the components in the seawater without adding any additive to the seawater, and confirmation of the seawater decarboxylation treatment of the present invention was obtained. Since this solid carbonate has low solubility in seawater, surplus CO 2 in the atmosphere can be completely isolated from the biosphere by sinking it to the deep sea and depositing it on the seabed, and it can be expected to be rocked by long-term deposition. . For this reason, the present invention has no concern about the re-release of CO 2 into the atmosphere as compared with the CO 2 gas injection disposal and the dry ice disposal proposed in the seawater.

前記実施例1と同様の条件で海水の電解処理を行い、その際カソードから生成する水素ガスの回収を行った。その結果、電解によってカソードから盛んと非常に細かいガスが生成するが、そのガスが水素であること、さらにその水素ガスは電解処理のクーロン量にほぼ比例して生成し、電力投入量に対する水素ガス生成量は2〜4mol/kWhであった。なお、その生成水素ガスは容易にガス分離膜を透過するため回収は容易であり、回収した水素ガスの純度は95%以上と高く、そのままでも酸水素燃料電池用の原料ガスとして充分に利用できる。   Seawater was electrolyzed under the same conditions as in Example 1, and the hydrogen gas produced from the cathode was recovered. As a result, a very fine gas is generated from the cathode by electrolysis. The gas is hydrogen, and the hydrogen gas is generated almost in proportion to the amount of coulomb of the electrolysis process. The amount produced was 2-4 mol / kWh. The produced hydrogen gas easily permeates the gas separation membrane and is easily recovered. The purity of the recovered hydrogen gas is as high as 95% or more, and it can be sufficiently used as a raw material gas for an oxyhydrogen fuel cell. .

海水の電解処理によって生成した不溶性炭酸塩は、その電解処理条件によって組成や形状が異なる。その傾向としては、電流密度が低い弱い電解処理の場合には塩基度の低い炭酸カルシウム含有率の高い炭酸塩(低塩基性炭酸塩)が生成し、電流密度が高く強い電解処理の場合には塩基度の高い炭酸カルシウム含有率の低い炭酸塩(高塩基性炭酸塩)が生成する。これら炭酸塩の形態やその粒径などによってその物性は異なるが、大気圧状態における生成炭酸塩の海水中の沈降速度は概算1〜10m/時間であり、表層海水中の成分の深海への移動速度(1年間で1cmオーダー)に比べはるかに速い。しかも、生成した炭酸塩を300〜500気圧の高圧海水で加圧処理した結果、高圧海水状態でその炭酸塩に含まれるMg(OH)2の溶脱が時間とともに起るが、この溶脱によって炭酸塩のCaCO3の含有率が高まり比重が増大するため、深海への自重による沈降性はさらに増大ししかもその岩石化も進み易い状態となる。 The insoluble carbonate produced by seawater electrolytic treatment varies in composition and shape depending on the electrolytic treatment conditions. The tendency is that in the case of weak electrolytic treatment with low current density, carbonate with low basicity and high calcium carbonate content (low basic carbonate) is formed, and in the case of electrolytic treatment with high current density and strong A carbonate having a high basicity and a low calcium carbonate content (a highly basic carbonate) is produced. Although the physical properties of these carbonates vary depending on their form and particle size, the sedimentation rate of the produced carbonate in seawater at atmospheric pressure is approximately 1-10 m / hour, and the components in the surface seawater move to the deep sea. Much faster than the speed (on the order of 1 cm per year). In addition, as a result of pressurizing the produced carbonate with high-pressure seawater at 300 to 500 atmospheres, leaching of Mg (OH) 2 contained in the carbonate occurs with time in the high-pressure seawater state. Since the content ratio of CaCO 3 increases and the specific gravity increases, the subsidence due to its own weight in the deep sea further increases, and its petrification is likely to proceed.

先の式(3)?式(4)で示した海水のアノード電解によって20〜30ppm程度のClO-が生成するが、この物質は海洋生物にとって有害な物質であり、そのためこれを含む除炭酸海水は放流できない。しかし、このClO-は活性炭と接触させることによって完全に分解することが可能であり、活性炭による分解処理に伴う一酸化炭素COやCO2の生成や放出は無い。ClO-を含む除炭酸海水を活性炭処理すると、式(7)に示す反応によってさらにアルカリ化が促進されるが、この現象はClO-の分解反応に伴う水素イオンの消失が起ったためである。
式(7) ClO-+2H+−2e-→活性炭処理→Cl-+H2
About 20 to 30 ppm of ClO - is generated by the anodic electrolysis of seawater shown in the above formulas (3) to (4), but this substance is harmful to marine organisms, and therefore, decarbonated seawater containing it. Cannot be released. However, the ClO - is can be completely decomposed by contacting with activated carbon, there is no generation and release of carbon monoxide CO and CO 2 due to decomposition treatment with activated carbon. When the decarbonated seawater containing ClO is treated with activated carbon, alkalinization is further promoted by the reaction shown in the formula (7). This phenomenon is caused by the disappearance of hydrogen ions accompanying the decomposition reaction of ClO .
Formula (7) ClO + 2H + −2e → activated carbon treatment → Cl + H 2 O

海水中の炭酸を不溶性炭酸塩として分離回収する処理とその固体炭酸塩を深海へ沈降処分するための具体策が必要となる。さて、炭酸2mmol/kg濃度の表層海水を大量に処分しなければならないが、その機能をもつ図2に示すフロー型電解槽を、海流が常時流れている処に設置してその流れを利用して電解槽へ導入し処理を行う。この電解処理で不溶性の炭酸塩が電解槽の内部に生成するが、これが海流の流れで電解槽内部を流動し集まりながら深海へ沈降する管へ導かれる構造にしておく。このシステムを、例えば日本近海の黒潮の流れ(平均1m/sの流速とする)の中に設置すると仮定した場合、海水中の炭酸1GtonC(GtonCギガトン炭素 G=109;1GtonCは化石燃料の消費によって大気中に排出されている量の1/6に相当し、大気中の蓄積を防ぐための削減すべきCO2の排出量の1/3相当)を1年間で処理するのに、除炭酸効率を25〜50%とした場合、海流の取入れ有効面積として2.28〜4.56x1062が必要となる。海深100mまでの大気海洋平衡層を使う場合、海流取入れ口のサイズは100m(深さ)x 22,800〜45,600m(幅)に相当する。海水除炭酸システムを図3に示す。 A process for separating and recovering carbonic acid in seawater as an insoluble carbonate and a specific measure for sinking the solid carbonate into the deep sea are required. Now, a large amount of surface seawater with a concentration of 2 mmol / kg of carbonic acid must be disposed. The flow-type electrolytic cell shown in FIG. 2 having the function is installed in a place where the ocean current always flows and the flow is used. Introducing into the electrolytic cell and processing. An insoluble carbonate is generated inside the electrolytic cell by this electrolytic treatment, and this is led to a pipe that sinks into the deep sea while flowing and gathering inside the electrolytic cell by the flow of the ocean current. If this system is installed, for example, in the Kuroshio current near Japan (with an average flow rate of 1 m / s), 1GtonC of carbon dioxide in the seawater (GtonC gigaton carbon G = 10 9 ; 1GtonC is the consumption of fossil fuels. Is equivalent to 1/6 of the amount discharged into the atmosphere by the CO2 and 1/3 of the amount of CO 2 emission to be reduced to prevent accumulation in the atmosphere). When the efficiency is 25 to 50%, 2.28 to 4.56 × 10 6 m 2 is necessary as an effective area for taking in the ocean current. When using an atmospheric ocean equilibrium layer up to a sea depth of 100 m, the size of the ocean current inlet corresponds to 100 m (depth) x 22,800 to 45,600 m (width). The seawater decarboxylation system is shown in FIG.

このシステムの主なものとしては電解槽と電解に必要な電力を得るための発電設備であるが、このシステムが必要とする電力を得る方法としては、太陽光発電、風力発電、電解によって生成する水素ガスを原料ガスとする酸水素型燃料電池あるいは温度差発電などのCO2の放出が少ないクリーンな発電が望ましい。海水中の炭酸を電解処理し炭酸塩に変換するための電力量としては、1年間の炭酸処理量1GtonC当り約1〜4x109kW程度の電力(除炭酸効率を25〜50%と仮定)が必要となる。CO2による地球温暖化をグローバルに解決するための世界全体でのCO2の削減量として1年に3GtonCとした場合、前記した除炭酸能力を有するシステムの必要数は3つあれば良いことになる。なお、このシステムは、海流の流れの大きな力と風・雨・波に常時曝され、しかも非常に長期間にわたり稼働させることが必要なため、このシステムは強度的にも材質的にも高い堅牢さが要求される。 The main system is an electrolytic cell and a power generation facility for obtaining the power required for electrolysis, but the method for obtaining the power required by this system is generated by solar power generation, wind power generation, or electrolysis. Clean power generation with low CO 2 emission, such as an oxyhydrogen fuel cell using hydrogen gas as a raw material gas or temperature difference power generation, is desirable. The amount of electric power for electrolytically converting carbonic acid in seawater into carbonate is about 1 to 4 × 10 9 kW per 1 ton of carbonic acid treatment per year (assuming that the carbonation efficiency is 25 to 50%). Necessary. If the 3GtonC a year global warming due to CO 2 as reduction of CO 2 throughout the world to solve the global needs of the system having the above-mentioned dividing carbonate capability that may be at three Become. In addition, the system is constantly exposed to wind power, rain, and waves due to the strong currents of the ocean currents, and must be operated for a very long period of time. Is required.

本発明の実施形態として海水電解除炭酸処理による大気CO2のグローバル削減方法の原理を示す概念図である。It is a conceptual diagram illustrating the principle of a global reduction method of atmospheric CO 2 by seawater electrostatic cancellation carbonate treated as an embodiment of the present invention. 本発明の実施形態としてフロー型電解槽による海水電解の原理を示す概念図である。It is a conceptual diagram which shows the principle of the seawater electrolysis by a flow type electrolytic cell as embodiment of this invention. 本発明の実施形態として海水炭酸除去システムによる海水炭酸除去処理のプロセスを示す概念図である。It is a conceptual diagram which shows the process of the seawater carbonic acid removal process by the seawater carbonic acid removal system as embodiment of this invention.

Claims (7)

大気中の二酸化炭素の削減方法として、海洋表層の海水中に含まれる重炭酸イオン及び炭酸イオンの炭酸を除去処理して生成する炭酸濃度が低下した除炭酸海水が大気と接触することによって、大気と海洋表層間の化学平衡効果により大気中の二酸化炭素が吸収され大気中から削減されることを特徴とする大気中の二酸化炭素の削減方法。   As a method of reducing carbon dioxide in the atmosphere, when decarbonated seawater with reduced carbonate concentration produced by removing bicarbonate ions and carbonate ions contained in seawater on the surface of the ocean is in contact with the atmosphere, A method for reducing carbon dioxide in the atmosphere, characterized in that atmospheric carbon dioxide is absorbed and reduced from the atmosphere by the chemical equilibrium effect between the ocean and the ocean surface layer. 海洋表層海水の除炭酸処理方法として、海水に含まれる炭酸を不溶性炭酸塩として生成させるために、海水に何らの添加物を加えることなく、海水に共存するカルシウム及びマグネシウムと炭酸を化合させることを特徴とする海水中の炭酸の回収除去方法。   As a method of decarbonation treatment of ocean surface seawater, in order to generate carbonic acid contained in seawater as insoluble carbonate, it is possible to combine calcium and magnesium coexisting in seawater with carbonic acid without adding any additive to seawater. A method for recovering and removing carbonic acid from seawater. 海水に溶解する炭酸の回収方法として、炭酸を不溶性炭酸塩として沈殿分離させ、その炭酸塩沈殿を深海ならびに海底に沈降させ堆積処分することを特徴とする海水中の炭酸の処分方法。   As a method for recovering carbonic acid dissolved in seawater, a method for disposing carbonic acid in seawater, comprising precipitating and separating carbonic acid as insoluble carbonates, and depositing the carbonated precipitates in the deep sea and the seabed and depositing them. 海洋表層海水の中に含まれる炭酸を除去した除炭酸海水が大気と接触することによって大気と海洋表層間の化学平衡効果により大気中の二酸化炭素を吸収すること、海水中の炭酸と共存するカルシウム及びマグネシウム等を化合して不溶性炭酸塩として沈殿回収すること、さらにその不溶性炭酸塩を固体の状態で深層へ沈降させ海底に堆積させること、それらを一連のプロセスとすることを特徴とする大気中の二酸化炭素の削減方法。   Decarbonized seawater from which carbon dioxide contained in ocean surface seawater has been removed comes into contact with the atmosphere to absorb atmospheric carbon dioxide by the chemical equilibrium effect between the atmosphere and the ocean surface layer, and calcium coexists with carbon dioxide in seawater. In the atmosphere characterized by combining and collecting magnesium and the like as an insoluble carbonate, and further precipitating the insoluble carbonate into a deep layer in a solid state and depositing it on the seabed, and making them a series of processes. How to reduce carbon dioxide. 前記請求項1または4に記載の大気中の二酸化炭素の削減方法により海水中の炭酸を不溶性炭酸塩として回収し海洋表層海水中の炭酸濃度を低下させて大気?海洋間の化学平衡効果により大気中の二酸化炭素を削減する方法において、海水に何らの添加物を加えることなく直接電解処理して不溶性炭酸塩を生成させることを特徴とする大気中の二酸化炭素の削減方法。   The carbon dioxide in the seawater is recovered as an insoluble carbonate by the method for reducing carbon dioxide in the atmosphere according to claim 1 or 4, and the carbon concentration in the ocean surface seawater is lowered to reduce the atmospheric concentration by the chemical equilibrium effect between the atmosphere and the ocean. A method for reducing carbon dioxide in an atmosphere, characterized in that insoluble carbonate is generated by direct electrolytic treatment without adding any additive to seawater. 大気中の二酸化炭素の削減を目的とする海洋表層海水の炭酸を除去するための電解処理において、電解処理後の海水の水素イオン濃度が処理前の海水に比べ低くなり、そのためさらに二酸化炭素の吸収能力が増大することを特徴とする記請求項5に記載の大気中の二酸化炭素の削減方法。   In the electrolytic treatment for removing carbon dioxide from the ocean surface seawater for the purpose of reducing carbon dioxide in the atmosphere, the hydrogen ion concentration in the seawater after the electrolytic treatment is lower than that in the seawater before the treatment. 6. The method for reducing carbon dioxide in the atmosphere according to claim 5, wherein the capacity increases. 大気中の二酸化炭素の削減を目的とする海洋表層海水の炭酸を除去するための前記請求項5の電解処理において、海水の電解処理の際に同時に生成する水素ガスを回収し資源化することを特徴とする海水中の炭酸の処分方法。   In the electrolytic treatment according to claim 5 for removing carbon dioxide from marine surface seawater for the purpose of reducing carbon dioxide in the atmosphere, recovering and recycling hydrogen gas generated simultaneously with the electrolytic treatment of seawater. Disposal method of carbonic acid in seawater.
JP2003271094A 2003-06-10 2003-07-04 Method for reducing carbon dioxide in the air, method for recovering and removing carbonic acid in sea water and its disposal method Pending JP2005021870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271094A JP2005021870A (en) 2003-06-10 2003-07-04 Method for reducing carbon dioxide in the air, method for recovering and removing carbonic acid in sea water and its disposal method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003164794 2003-06-10
JP2003271094A JP2005021870A (en) 2003-06-10 2003-07-04 Method for reducing carbon dioxide in the air, method for recovering and removing carbonic acid in sea water and its disposal method

Publications (1)

Publication Number Publication Date
JP2005021870A true JP2005021870A (en) 2005-01-27

Family

ID=34196917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271094A Pending JP2005021870A (en) 2003-06-10 2003-07-04 Method for reducing carbon dioxide in the air, method for recovering and removing carbonic acid in sea water and its disposal method

Country Status (1)

Country Link
JP (1) JP2005021870A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535198A (en) * 2006-04-27 2009-10-01 プレジデント アンド フェロウズ オブ ハーバード カレッジ Carbon dioxide capture and related processes
JP2013517121A (en) * 2010-01-14 2013-05-16 メスザロス,フェレンク Method for reducing exhaust gas and CO2 content in the atmosphere, and apparatus for applying the method
KR102119030B1 (en) * 2019-04-09 2020-06-04 김종욱 Carbon dioxide concentration reducing method using sea water
CN115487660A (en) * 2022-11-01 2022-12-20 浙江海暨核生科技有限公司 Method and device for carbon neutralization by using seawater
WO2023181794A1 (en) * 2022-03-22 2023-09-28 住友重機械工業株式会社 Carbon dioxide fixation method and carbon dioxide fixation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535198A (en) * 2006-04-27 2009-10-01 プレジデント アンド フェロウズ オブ ハーバード カレッジ Carbon dioxide capture and related processes
JP2013517121A (en) * 2010-01-14 2013-05-16 メスザロス,フェレンク Method for reducing exhaust gas and CO2 content in the atmosphere, and apparatus for applying the method
KR102119030B1 (en) * 2019-04-09 2020-06-04 김종욱 Carbon dioxide concentration reducing method using sea water
WO2023181794A1 (en) * 2022-03-22 2023-09-28 住友重機械工業株式会社 Carbon dioxide fixation method and carbon dioxide fixation system
CN115487660A (en) * 2022-11-01 2022-12-20 浙江海暨核生科技有限公司 Method and device for carbon neutralization by using seawater
CN115487660B (en) * 2022-11-01 2023-10-17 浙江海暨核生科技有限公司 Method and device for carbon neutralization by utilizing seawater

Similar Documents

Publication Publication Date Title
US20050011770A1 (en) Reduction method of atmospheric carbon dioxide, recovery and removal method of carbonate contained in seawater, and disposal method of the recovered carbonate
US8764964B2 (en) Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution
Mustafa et al. Simultaneous treatment of reject brine and capture of carbon dioxide: A comprehensive review
KR101048281B1 (en) Removal of Carbon Dioxide from Waste Streams Through Simultaneous Production of Carbonate and / or Bicarbonate Minerals
AU2008209322B2 (en) Carbon dioxide sequestration and capture
RU2449828C2 (en) Method to reduce co2 concentration in fluid and device to this end
KR101549980B1 (en) Manufacturing method carbonates of alkali metal ion or alkali earth metal ion using Electrolysis Unit
WO2012029757A1 (en) Carbon dioxide fixation method and carbon dioxide fixation apparatus
WO2021149284A1 (en) Carbon dioxide fixation device, energy circulation-type power generation device, carbon dioxide fixation method, and energy circulation-type power generation method
US20100200419A1 (en) Low-voltage alkaline production from brines
JP2009535198A (en) Carbon dioxide capture and related processes
JP5865495B2 (en) Salt drainage treatment method and apparatus
US20120244053A1 (en) Staged absorber system and method
JP2010125354A (en) Method of capturing carbon dioxide
JP2002273163A (en) Method for removing carbon dioxide included in combustion exhaust gas
KR20220022055A (en) Alkaline cation enrichment and water electrolysis to provide carbon dioxide mineralization and global-scale carbon management
KR101938424B1 (en) Device for Inorganic Carbonation of Carbon Dioxide
EP2655261A1 (en) Unit for desalination and greenhouse gas sequestration
US20120183462A1 (en) Electrochemical Production of Metal Hydroxide Using Metal Silicates
JP2009112996A (en) Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor
JP2003326155A (en) Method for reducing carbon dioxide in atmosphere and its device
CN216129402U (en) Deep sea off-grid type electric power energy and chemical production integrated system
JP6906111B1 (en) Carbon fixation device, energy circulation type power generation device, carbon dioxide fixation method, and energy circulation type power generation method
JP2005021870A (en) Method for reducing carbon dioxide in the air, method for recovering and removing carbonic acid in sea water and its disposal method
CN103055682A (en) Waste comprehensive treatment process and equipment for solid fuel generating station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090917