JP2005021853A - Exhaust gas control device in internal combustion engine - Google Patents

Exhaust gas control device in internal combustion engine Download PDF

Info

Publication number
JP2005021853A
JP2005021853A JP2003270269A JP2003270269A JP2005021853A JP 2005021853 A JP2005021853 A JP 2005021853A JP 2003270269 A JP2003270269 A JP 2003270269A JP 2003270269 A JP2003270269 A JP 2003270269A JP 2005021853 A JP2005021853 A JP 2005021853A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
gas
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003270269A
Other languages
Japanese (ja)
Inventor
Tomoyuki Nakada
朋之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003270269A priority Critical patent/JP2005021853A/en
Publication of JP2005021853A publication Critical patent/JP2005021853A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate CO<SB>2</SB>in exhaust gas from an internal combustion engine as a measure against global warming. <P>SOLUTION: A CO<SB>2</SB>, H<SB>2</SB>O, N<SB>2</SB>-separator is shown as item 101 in the figure. The exhaust gas from the internal combustion engine is cooled below 100°C by a heat exchanger and introduced into a cyclone type centrifuge to selectively separate and eliminate H<SB>2</SB>O and N<SB>2</SB>, respectively, to take out only CO<SB>2</SB>by this device. CO<SB>2</SB>is separated into CO+O<SB>2</SB><SP>-</SP>plasma by an AC high voltage plasma (atmospheric pressure, 1,200-2,500°C)generator (item 102 of the figure). Only O<SB>2</SB><SP>-</SP>is caught and separated by an electric field type separator (item 103 of the figure). C is separated from CO and fixed by a catalytic filter (item 104 of the figure, filter temperature 500-1,000°C) of iron (or metal strip, rare earth metal with spattering-evaporated Ni, Pt and carbon thin film). CO gas passing through the catalytic filter and 1/2 O<SB>2</SB>separated from CO are returned to a combustion part(item 105 of the figure) of the engine and subjected to recombustion to increase the efficiency. Thus, CO<SB>2</SB>can be removed from the exhaust gas of the internal combustion engine. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,その運転によりCO2を発生する内燃機関等の排気中のCO2を大幅に削減する技術である。. The present invention is a technique for significantly reducing CO2 in the exhaust of an internal combustion engine or the like that generates CO2 by its operation. .

従来の自動車他の内燃機関は燃焼方法の改善(リーンバーン),車体軽量化(Al,Mgの採用)等で燃費向上をさせCO2を削減してきたが今後はダイナミックな技術革新は望めない。 Conventional internal combustion engines such as automobiles have improved fuel efficiency and reduced CO2 by improving combustion methods (lean burn), reducing vehicle weight (using Al, Mg), etc., but dynamic technological innovation cannot be expected in the future.

燃料電池式電気自動車も開発されつつあるが水素を作る段階で,電力を(水の電気分解)使いひいてはCO2を多く排出している。 Fuel cell electric vehicles are also being developed, but at the stage of producing hydrogen, they use electricity (electrolysis of water) and emit a lot of CO2.

ハイブリッド車も燃費の上ではCO2削減に貢献しているように見えるが実は水素蓄電池電極材の希土類金属粉の製造(真空溶解,ガスアトマイズ)段階で電力を多く使用しCO2を多く発生している. Hybrid vehicles also seem to contribute to CO2 reduction in terms of fuel consumption, but in fact, they use a lot of electric power and generate a lot of CO2 at the stage of manufacturing rare earth metal powder (vacuum melting, gas atomization) of hydrogen storage battery electrode materials.

電力供給業界ではコンバインドサイクル,揚水発電等へのシフトや,燃料電池,太陽光発電,風力発電等の新エネルギーの開発が思うように進まず,原子力から脱皮しきれていない
特開2002-129949 特開2002-266626.
In the power supply industry, the shift to the combined cycle, pumped-storage power generation, etc., and the development of new energy such as fuel cells, solar power generation, wind power generation, etc. have not progressed as expected, and they have not completely separated from nuclear power
JP2002-129949 JP2002-266626.

地球温暖化の原因となっている温室効果ガスのCO2排出量を低減する.このCO2は内燃機関等の運転によりその大部分が発生している。したがって削減はこの内燃機関等に適用できるCO2削減装置であることが必要である. Reduce CO2 emissions of greenhouse gases that cause global warming. Most of this CO2 is generated by the operation of an internal combustion engine or the like. Therefore, the reduction is required to be a CO2 reduction device applicable to this internal combustion engine.

装置構成は先ず図2に示す202,207排ガスよりの,H2O,N2分離機でH2Oをコンデンサ(ラジエータ式熱交換器で排ガスを100℃未満に降温)で液化分離。次にサイクロン式分離機でN2を分離する。これによりCO2,H2O,N2からなる排出ガスのうちH2O,N2を分離,大気排出し,CO2のみを選択的に取り出し次工程に送れる。 First, H2O was liquefied and separated from the 202,207 exhaust gas shown in Fig. 2 using a H2O, N2 separator with a condenser (the temperature of the exhaust gas was lowered to less than 100 ° C using a radiator heat exchanger). Next, N2 is separated with a cyclone separator. As a result, H2O and N2 are separated from the exhaust gas composed of CO2, H2O, and N2, and are discharged into the atmosphere.

図3に高圧CO2プラズマ(大気圧,1,000~2,000℃)発生装置を示し、CO2をCO+O2−に分離する。301の棒状(例えばW+Ta製)電極と304円筒型電極の間にCO2分解に適した周波数の交番電界302(周波数0〜10kHz可変)を印加し、303のCO2を306のCO+O2−プラズマに変換する。 High pressure CO2 plasma (atmospheric pressure, 1,000 ~ 2,000 ° C.) in FIG. 3 shows a generator to separate the CO2 to CO + O 2-. An alternating electric field 302 (frequency variable from 0 to 10 kHz) suitable for CO2 decomposition is applied between 301 rod-shaped (for example, W + Ta) electrodes and 304 cylindrical electrodes, and 303 CO2 is converted to 306 CO + O 2− plasma. Convert to

図4に示す電界方式O2−分離装置は,電源401により正電位に帯電させた電極402によりCOとO2−の混合プラズマガスよりO2−を分離トラップしてO2ガスとして大気排出する。 The electric field system O 2 -separation apparatus shown in FIG. 4 separates and traps O 2− from a mixed plasma gas of CO and O 2− by an electrode 402 charged to a positive potential by a power supply 401 and discharges it as an O 2 gas to the atmosphere.

図5に示す温度調節機501は触媒503の効率が最も高くなる温度にCOを加熱・冷却する。 A temperature controller 501 shown in FIG. 5 heats and cools CO to a temperature at which the efficiency of the catalyst 503 is highest.

図5に示す鉄(またはPt,Ni,カーボン蒸着線材,希土類金属)触媒フィルタ503はCOガスからCを析出固定する。502のH2フラッシング装置付。 An iron (or Pt, Ni, carbon deposition wire, rare earth metal) catalyst filter 503 shown in FIG. 5 precipitates and fixes C from CO gas. With 502 H2 flushing devices.

以下の作用により内燃機関等の排出ガスからCO2を無くし、0012-1内燃機関等の排出ガスを本装置に導入し図2の分離機でH2O,N2を分離排出し,0012-2残ったCO2ガスを図3のプラズマ発生装置にてCOとO2−プラズマに分離し,0012-3このCOとO2−の混合プラズマを図4の電界式分離装置にてO2−を1/2O2として系外に排出し0012-4残ったCOガスを図5の501温度調節機で触媒反応適正温度にし続いて同図503触媒フィルタに導きCを析出固定化する。また反応残のCOと炭素析出により発生した1/2O2を内燃機関入力に戻して再燃するので、サイクルからはCO2,COガスを排出しない。 The following action eliminates CO2 from the exhaust gas of the internal combustion engine, etc., introduces the exhaust gas of the internal combustion engine etc. into this apparatus, separates and discharges H2 O and N2 with the separator of FIG. gas separated into CO and O 2- plasma by a plasma generating apparatus of FIG. 3, 0012-3 O 2- as 1 / 2O2 at field separation system of FIG. 4 the CO and O 2- mixed plasma The CO gas discharged from the system and remaining in 0012-4 is brought to an appropriate catalytic reaction temperature by the 501 temperature controller shown in FIG. 5, and then led to the catalyst filter shown in FIG. In addition, CO2 and CO gas are not discharged from the cycle because residual CO and 1 / 2O2 generated by carbon deposition are returned to the input of the internal combustion engine and reburned.

図2のCO2,H2O,N2分離機は内燃機関等の排気ガスからH2O,N2を分離排出する装置である。排気ガスからH2Oを分離するにあたり内燃機関等の熱効率を下げないために,熱交換方式(従来のラジエータ)H2O分離機を使用する。N2を分離するのにサイクロン式分離機を使用する。能力は排気ガスを100℃未満に降温して排気ガス中の水蒸気を露点分離しうる水冷熱交換部とN2をCO2から遠心分離しうるサイクロン部からなる。 The CO2, H2O, N2 separator shown in Fig. 2 is a device that separates and discharges H2O, N2 from exhaust gas from an internal combustion engine or the like. In order to keep H2O from exhaust gas, the heat exchange system (conventional radiator) H2O separator is used in order not to reduce the thermal efficiency of internal combustion engines. A cyclonic separator is used to separate N2. The capacity consists of a water-cooled heat exchanger that can cool the exhaust gas below 100 ° C to separate the water vapor in the exhaust gas by dew point, and a cyclone that can centrifuge N2 from CO2.

図3に示す高圧(大気圧)プラズマ発生装置で302のCO2ガスを306のCO,Oプラズマに分解する.また発振周波数は0〜10kHz(各装置の電極形状,配置によって変化する)でプラズマ変換率70%以上の装置を選定する.装置の寿命を考慮し,またこの部分でのすすの析出を避けるためハーステロイ等のハイアロイ合金で構成する。高周波プラズマ発生装置入力電源302の出力は1〜3kW程度(必要に応じて水冷他の冷却装置をつけること)。
トーチ(301,304)には,直流プラズマトーチの他に電極を必要としない誘導結合プラズマトーチ,マイクロ波プラズマトーチも使用できる.
ここでは,持続したグロー放電を安定させるためパルス放電,高周波放電型を採用した。
The high-pressure (atmospheric pressure) plasma generator shown in Fig. 3 decomposes 302 CO2 gas into 306 CO, O - plasma. The oscillation frequency is 0 to 10 kHz (varies depending on the electrode shape and arrangement of each device). Select a device with a conversion rate of 70% or more. Consider the life of the device and make it from high alloy alloys such as Hastelloy to avoid soot precipitation in this part. The output of the high-frequency plasma generator input power supply 302 is about 1 to 3 kW (with water cooling or other cooling device if necessary).
In addition to DC plasma torches, inductively coupled plasma torches and microwave plasma torches that do not require electrodes can be used for torches (301, 304).
Here, pulse discharge and high frequency discharge type were adopted to stabilize the sustained glow discharge.

電界式O2−分離装置(図4)。直流電源401の出力は0.1〜1kw(自動車の場合)程度。ここでも構成材にはハーステロイ等のハイアロイ合金を推奨する Electric field type O 2 -separator (Figure 4). The output of the DC power supply 401 is about 0.1 to 1 kw (for automobiles). Again, high alloy alloys such as Hastelloy are recommended for the components.

図5にCOガス温度調節機と触媒(C固定装置)を示す、501は水冷熱交換方式でCOガスを500~1,000℃の範囲で最も触媒の能力が発揮できる温度に設定する.
図5の503は触媒式C析出装置。価格面からFe網の積層式またはFe条のコルゲート加工品を複数縦列配置したものを推奨するが,Pt,Niや他希土類元素の網,又はこれらの材料にCをスパッタ蒸着したものも使用できる.網は50メッシュ程度に作りこれを何枚か重ねてフィルタとする。フィルタを交換した場合新フィルタの表面のスケールを落とすために使用温度でH2フラッシングする機構を有する.ここでもフィルタ以外の構成材にはハーステロイ等のハイアロイ合金を使用する。C析出装置は複数式持ち,1式が目詰まりすると自動的(圧力検出等)に次の触媒フィルタ装置に回路を切替える機構を有する。
Fig. 5 shows the CO gas temperature controller and catalyst (C fixing device). 501 is a water-cooled heat exchange system, and CO gas is set to a temperature where the ability of the catalyst can be exerted most in the range of 500 to 1,000 ° C.
503 in FIG. 5 is a catalytic C deposition apparatus. In terms of price, it is recommended to use multiple layers of Fe nets or corrugated products of Fe strips, but Pt, Ni, other rare earth elements, or C sputter-deposited on these materials can also be used. The net is made about 50 mesh, and this is layered and used as a filter. In order to reduce the scale of the surface of the new filter when the filter is replaced, it has a mechanism that performs H2 flushing at the operating temperature. Here again, a high alloy alloy such as Hastelloy is used for components other than the filter. The C precipitation device has a plurality of types, and when one set is clogged, it has a mechanism that automatically switches the circuit to the next catalytic filter device (pressure detection etc.).

各種センサおよび制御装置(図示せず)。排気中のCO,CO2濃度,温度をセンサにて検出し,各部の条件をコントロールする装置(ECU)を有する. Various sensors and control devices (not shown). It has a device (ECU) that detects the CO, CO2 concentration and temperature in the exhaust gas and controls the conditions of each part.

テスト装置には500cc排気量のディーゼルエンジン,10kW三蔵同期発電機,2〜5図に示す本発明装置,および各種センサを使用した。また排気系統は本発明の系統(図1),および排ガス処理装置を経由しない系統(図示せず)を使用した. A 500cc displacement diesel engine, a 10kW Sanzo synchronous generator, the device of the present invention shown in Fig. 2-5, and various sensors were used as test equipment. The exhaust system used was the system of the present invention (Fig. 1) and a system that does not go through the exhaust gas treatment device (not shown).

.内燃機関等出力とCO2排出量。図6に示すように従来の装置ではCO2の排出量はエンジン出力の増加とともに増加する.これに対して本発明品のCO2排出量は出力の大小にかかわらず低いレベルでほぼ一定して推移する. . Output from internal combustion engines and CO2 emissions. As shown in Fig. 6, in the conventional apparatus, the CO2 emission increases as the engine output increases, whereas the CO2 emission of the present invention changes substantially at a low level regardless of the output level. .

コンデンサ温度と排ガス中の水分捕獲率。図7に示すようにガス温度を下げるほど水分捕獲率は増加するがガス温度を下げすぎるとラジエータの能力を上げなければならず合理的でない.今回は排ガス温度30度の設定でテストした。 Capacitor temperature and moisture capture rate in exhaust gas. As shown in Fig. 7, the moisture trapping rate increases as the gas temperature is lowered, but if the gas temperature is lowered too much, the ability of the radiator has to be increased, which is not reasonable.

.プラズマ電流とCOへの変換効率。図8に示すようにプラズマ電流増加に伴いCOプラズマは増加する.本テストはプラズマ電流150A,周波数60Hzで行った。 .Plasma current and CO conversion efficiency. As shown in Fig. 8, the CO plasma increases as the plasma current increases. This test was performed at a plasma current of 150A and a frequency of 60Hz.

電界式O2−分離装置の効率。図9に示すように100Vでサーチレートするので本テストは100Vで行った。 Efficiency of electric field O 2 -separator. Since the search rate is 100V as shown in FIG. 9, this test was conducted at 100V.

COからCが析出する条件。図10に示すように500〜1,000℃の間にピークがある特性を示す。テストは700℃で行った。 Conditions for C to precipitate from CO. As shown in FIG. 10, a characteristic having a peak between 500 and 1,000 ° C. is shown. The test was conducted at 700 ° C.

本発明使用時のエンジン出力を図11に示す。本発明使用時は従来の50%程度の出力に落ちている(これは原理上いたし方が無い)。 FIG. 11 shows the engine output when the present invention is used. When using the present invention, the output is reduced to about 50% of the conventional value (this is not possible in principle).

請求項1-1〜7に示した分野.特に自動車に適用した場合ガソリン又はディーゼルがそのまま使えるので現在のインフラ(燃料精油所,スタンド等)をそのまま使用できる。これに対して燃料電池車,電気自動車は新たなインフラを必要とする。 Fields shown in claims 1-1 to 7. Especially when applied to automobiles, gasoline or diesel can be used as they are, so the current infrastructure (fuel refinery, stand, etc.) can be used as it is. In contrast, fuel cell vehicles and electric vehicles require new infrastructure.

装置構成概要;排気ガスからCOを取り出し触媒でCを析出固定。Outline of equipment configuration; CO is extracted from exhaust gas and C is deposited and fixed with a catalyst. CO2,H2O,N2分離機;排気ガスからH2O,N2を選択分離して排出。CO2, H2O, N2 separator; Selectively separate H2O, N2 from exhaust gas and discharge. CO+ O2−分離プラズマ発生器;CO2を放電中に通過させてCOとO2−プラズマとする。CO + O2 - separated plasma generator; CO2 is passed during discharge to form CO and O2 - plasma. 電界式O2分離装置;上記図3のCOとO2−プラズマからO2−を電界により選択分離する。Electric field type O2 separator; O 2− is selectively separated from the CO and O 2− plasma of FIG. 3 by an electric field. 温度調節機と触媒C固定化装置;触媒の最もよくはたらく温度にCOガス温度を調整する。触媒はフィルタ式に複数層配列しCの捕獲を確実にする。Temperature controller and catalyst C immobilizer; adjust the CO gas temperature to the best working temperature of the catalyst. The catalyst is arranged in multiple layers in a filter manner to ensure capture of C. エンジン回転数とCO2排出量(従来と本発明)Engine speed and CO2 emissions (conventional and present invention) 上記図2におけるコンデンサ温度と水分捕獲効率Capacitor temperature and moisture capture efficiency in Figure 2 above 上記図3におけるプラズマ電流とCOへの変換効率Conversion efficiency to plasma current and CO in Figure 3 above 上記図4における電界電圧とO2−分離量Electric field voltage and O 2- separation amount in Fig. 4 above 上記図5におけるCOガス温度とC析出量CO gas temperature and C precipitation in Figure 5 above 本発明使用時のエンジン出力Engine output when using the present invention

符号の説明Explanation of symbols

101.ラジエータ,サイクロン式分離機
102.高圧プラズマ発生装置
103.電界式O2−分離装置
104.触媒(Feほか)フィルタ
105未反応COと反応で発生したO2を燃焼部に戻す回路。
201.CO2,H2O,N2ガス入力
202.排気ガス冷却チャンバ
203.冷却水
204.H2O捕集ネット
205.H2O(L)
206.CO2ガス
207.サイクロン
208.N2(排気)
301.棒状電極
302.交流電源
303.CO2ガス
304.円筒形電極
305.ノズル
306.CO+O2−プラズマ
401.直流電源
402.電極
501.温度調節機
502.H2フラッシング装置
503.C析出用触媒
101.Radiator, cyclone separator
102. High pressure plasma generator
103. Electric field type O 2- separator
104.Catalyst (Fe etc.) filter
A circuit that returns unreacted CO and O2 generated by the reaction to the combustion section.
201.CO2, H2O, N2 gas input
202.Exhaust gas cooling chamber
203.Cooling water
204.H2O collection net
205.H2O (L)
206.CO2 gas
207.Cyclone
208.N2 (Exhaust)
301.Bar electrode
302.AC power supply
303.CO2 gas
304.Cylindrical electrode
305.Nozzle
306.CO + O 2− Plasma
401 DC power supply
402.Electrode
501. Temperature controller
502.H2 flushing device
503.C Precipitating catalyst

Claims (7)

図1に示す内燃機関等の排気ガス中のH2O,N2を図1中101のラジエータ,サイクロンで選択的に分離し,大気放出する事を特徴とする装置。 An apparatus characterized by selectively separating H2O and N2 in exhaust gas of the internal combustion engine or the like shown in FIG. 1 with a radiator and a cyclone 101 in FIG. 上記請求項1で残ったCO2ガスを図1中102の交流高圧プラズマ発生装置でCO+ O2−に分解する事を特徴とする装置。 And wherein the decomposed into CO + O 2-in AC high voltage plasma generating apparatus of said claim 1 1 in 102 remaining CO2 gas. 上記請求項2で高圧プラズマ電源の発振周波数が0から10kHzであることを特徴とする装置(プラズマ電極の形状,位置関係で最適周波数が変化する)。 3. The apparatus according to claim 2, wherein the oscillation frequency of the high-voltage plasma power supply is 0 to 10 kHz (the optimum frequency varies depending on the shape and position of the plasma electrode). 上記請求項2で分解したCO+ O2−の内, O2−を図1の103で電界捕獲,系外排出する事を特徴とする装置。 The claim 2 decomposed CO + O 2-of in 103 electric field captured in the Figure 1 a O 2-, device characterized in that it outside the system exhaust. 上記請求項3で残ったCOガスを図1中104の触媒(Feあるいは,Pt,Ni又はこれらの金属にCをスパッタリング蒸着した線材または,希土類金属のフィルタ)でCを析出固定化し1/2 O2と分離することを特徴とする装置。 The CO gas remaining in claim 3 is precipitated and fixed with the catalyst 104 in FIG. 1 (Fe, Pt, Ni, or a wire obtained by sputtering C on these metals, or a rare earth metal filter). A device characterized by separation from O2. 上記請求項5の装置で未分解のCOと1/2 O2を燃焼部へ帰還する装置105。 An apparatus 105 for returning undecomposed CO and 1/2 O 2 to the combustion section in the apparatus of claim 5. 下記7-1〜7-6の燃焼設備(以下「内燃機関等」と言う)においてCO2排出削減を目的として上記請求項の2つ以上又は全部の本発明の請求項を使用する設備。
7-1.内燃機関
7-2.焼却炉
7-3.化石燃料燃焼ボイラー
7-4.化石燃料燃焼加熱炉
7-5.金属還元炉
7-6.化石燃料燃焼暖房機
Equipment that uses two or more of the above-mentioned claims or all of the claims of the present invention for the purpose of reducing CO2 emissions in the following combustion equipment of 7-1 to 7-6 (hereinafter referred to as “internal combustion engine etc.”).
7-1.Internal combustion engine
7-2. Incinerator
7-3. Fossil fuel fired boiler
7-4. Fossil fuel combustion furnace
7-5. Metal reduction furnace
7-6. Fossil fuel combustion heater
JP2003270269A 2003-07-02 2003-07-02 Exhaust gas control device in internal combustion engine Withdrawn JP2005021853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270269A JP2005021853A (en) 2003-07-02 2003-07-02 Exhaust gas control device in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270269A JP2005021853A (en) 2003-07-02 2003-07-02 Exhaust gas control device in internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005021853A true JP2005021853A (en) 2005-01-27

Family

ID=34190270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270269A Withdrawn JP2005021853A (en) 2003-07-02 2003-07-02 Exhaust gas control device in internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005021853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964169B2 (en) 2007-02-15 2011-06-21 De Souza Ivan Goncalves Molecular conversion processing of greenhouse gases of global warming effect and conversion units employing a solid particle trap
KR20220152762A (en) * 2021-05-10 2022-11-17 주식회사 엔티아이 Particulate Matter Removal device of waste Incinerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964169B2 (en) 2007-02-15 2011-06-21 De Souza Ivan Goncalves Molecular conversion processing of greenhouse gases of global warming effect and conversion units employing a solid particle trap
KR20220152762A (en) * 2021-05-10 2022-11-17 주식회사 엔티아이 Particulate Matter Removal device of waste Incinerator
KR102517079B1 (en) * 2021-05-10 2023-04-03 주식회사 엔티아이 Particulate Matter Removal device of waste Incinerator

Similar Documents

Publication Publication Date Title
Takaki et al. Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal
CN113048469A (en) Ammonia boiler for real-time cracking of ammonia fuel by using plasma based on energy storage of molten salt
KR102251314B1 (en) System for producing carbon monoxide and hydrogen from carbon dioxide and steam through a redox process and the method thereof
US20080245749A1 (en) Powerplant and method using a triple helical vortex reactor
Kuwahara et al. Continuous reduction of cyclic adsorbed and desorbed NOx in diesel emission using nonthermal plasma
US20140356744A1 (en) Energy storage and conversion with hot carbon deposition
JP2008045409A (en) Exhaust emission control system
Okubo et al. Improvement of NOx reduction efficiency in diesel emission using nonthermal plasma-exhaust gas recirculation combined aftertreatment
JP2005021853A (en) Exhaust gas control device in internal combustion engine
US20210162339A1 (en) High temperature co2 steam and h2 reactions for environmental benefits.
Ozalp et al. A critical assessment of present hydrogen production techniques: is solar cracking a viable alternative?
Yoshioka et al. Automatic control method of NO removal by a combination of ozone injection and exhaust gas recirculation
TWI600825B (en) Emission-free devices and methods for performing mechanical work and producing electric and thermal energy
RU2142905C1 (en) Method of producing hydrogen and oxygen from water
KR20150065386A (en) Catalyst/plasma fuel reformer for production of hydrogen and vehicle engine system using wasted heat of exhaust gas for vehicle
RU70963U1 (en) POWER INSTALLATION
CN204386773U (en) A kind of gas generator and gas supply system and automotive power
US20210215073A1 (en) Mitigating particulate matter emission in engine exhaust
JP2005305412A (en) Exhaust gas treatment apparatus in internal combustion engine
CN219640720U (en) Silicomanganese ore furnace tail gas cascade utilization system
WO2010123391A1 (en) An apparatus for utilizing flue gases
KR20200100364A (en) Electric power generation system that can generate electricity through superheated steam pyrolyzed by induction current
JP6574183B2 (en) Process of combustion in a heat engine of solid, liquid or gaseous hydrocarbon (HC) raw materials, heat engine and system for producing energy from hydrocarbon (HC) material
CN219346520U (en) Plasma-assisted combustion coupling tail gas waste heat ammonia cracking device
WO2024062384A1 (en) Cogeneration plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070713