JP2005021796A - Absorption/desorption apparatus - Google Patents

Absorption/desorption apparatus Download PDF

Info

Publication number
JP2005021796A
JP2005021796A JP2003189613A JP2003189613A JP2005021796A JP 2005021796 A JP2005021796 A JP 2005021796A JP 2003189613 A JP2003189613 A JP 2003189613A JP 2003189613 A JP2003189613 A JP 2003189613A JP 2005021796 A JP2005021796 A JP 2005021796A
Authority
JP
Japan
Prior art keywords
adsorption
damper
desorption
switching
switched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003189613A
Other languages
Japanese (ja)
Other versions
JP4452974B2 (en
Inventor
Toshiaki Hayashi
敏明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003189613A priority Critical patent/JP4452974B2/en
Publication of JP2005021796A publication Critical patent/JP2005021796A/en
Application granted granted Critical
Publication of JP4452974B2 publication Critical patent/JP4452974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a batch adsorption/desorption apparatus in which the fluctuation of the volume of the gas to be sucked when the operation is switched between an adsorption step and a desorption step can be minimized. <P>SOLUTION: An adsorption inlet switching dumper can be stably operated at fixed low speed by adopting a hydraulic system in a cylinder for driving the adsorption inlet switching dumper. After the adsorption inlet switching dumper of an adsorption tank the operation of which is switched from the adsorption step to the desorption step is started to be closed, the adsorption inlet switching dumper of another adsorption tank the operation of which is switched from the desorption step to the adsorption step is opened while being adjusted. As a result, the resistance of the gas to be treated in a flow passage can be kept constant when the operation is switched between the adsorption step and the desorption step and the fluctuation of the volume of the gas to be sucked can be made as small as possible. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、溶剤含有ガスのバッチ式吸脱着装置の運転方法に関するものである。
【0002】
更に詳しくは、上記のバッチ式吸脱着装置の運転にあたり、吸着工程と脱着工程とを切り替える時に原ガスの切換ダンパーの動作速度を可変にすることと、切換ダンパーの動作タイミングを変えることで、処理ガスの風量の変動を抑えることが出来る溶剤含有ガスのバッチ式吸脱着装置の運転方法に関するものである。
【0003】
【従来の技術】
従来、繊維状活性炭、粒状活性炭あるいはゼオライトからなる吸着材を搭載した2基以上の吸着槽を具備しバッチ式吸脱着装置は吸着と脱着を交互に切替えることにより有機溶剤ガスの連続処理を行ってきた。もっとも基本型である吸着槽2基を具備したバッチ式吸脱着装置の基本処理フローを図1に示す。まず溶剤が含有した処理ガスAは送風機1にて開状態である吸着入口切換ダンパー2を介して通過し吸着工程となっている吸着槽4内の吸着エレメント5にて溶剤が吸着される。その後、開状態である吸着出口切換ダンパー6を介して清浄空気Bとなり装置外に排出される。一方、脱着工程となっている吸着槽4での吸着入口切換ダンパー2及び吸着出口切換ダンパー6は閉状態であり、水蒸気弁8が開となり水蒸気Cが吸着エレメント5内に噴出し吸着エレメント5に吸着されていた溶剤を脱着する。この脱着された溶剤及び水蒸気は脱着ガス弁9を通って脱着ガスDとなり、回収装置または燃焼装置などに送られて処理される。吸着工程と脱着工程とを切り替える時のダンパー動作の基本タイムチャートは図3に示すとおりであり、脱着工程が終了し吸着工程に切り替わる吸着槽4でのダンパー動作順序としては吸着出口切換ダンパー6がまずは開き、その後吸着入口切換ダンパー2が開く。さらにもう一方の吸着工程が終了し脱着工程に切り替わる吸着槽の吸着入口切換ダンパー2が閉じ、その後吸着出口切換ダンパー6が閉じる。吸着入口切換ダンパー2が全閉状態から開動作を開始する直後に風が流れ出し、動作が進むにつれ流路抵抗の変化が無くなり処理ガスAの風量は増加した状態を保つ。逆に吸着入口切換ダンパー2が全開状態から閉動作を開始しても初期は風量の変化は少なく、動作が進むにつれ流路抵抗が増し最終的にこの吸着入口切換ダンパー2は全閉となり処理ガスは流れなくなる。よって、送風機1が一定回転で運転しているので、この切替操作時においては、装置内での流路抵抗が大きく変わることから、この流路抵抗の変化に従って処理ガスAの風量が変動し、処理ガスAの吸引元である工程の作業環境の悪化及び製品の不良発生の原因となることから、様々な対策が取られてきた。
【0004】
簡便な対策としては、吸着入口の閉じる切換ダンパーと開く切換ダンパーの動作を重ね合わせるとともに、これらの吸着入口切換ダンパー2の動作速度を遅くするなどの調整が行われてきたが、この動作速度を遅くすればするほど切替時間が延びることにより、出口濃度が上昇し処理性能が悪くなる可能性がある。ダンパーの駆動には安価で作業性が良いことからエアーシリンダーが一般的に使用されているが、低速での安定性に欠ける。
【0005】
また、処理ガス風量の変動抑制方法として、吸着槽を増やすことにより、吸着工程から脱着工程に切替わる槽の割合を少なくして、吸脱着槽切替時の通過風速の変動を抑える方法があるが、吸着槽を増やすことから、装置の大型化による設置スペースの増大やコストアップに繋がる等の問題に生じる。
(例えば、特許文献1参照)
【0006】
【特許文献1】
特許第2616778号明細書
【0007】
【発明が解決しようとする課題】
吸脱着装置において吸着工程と脱着工程の切替時に発生する処理ガスの風量変動を抑えることが出来、吸引元である生産工程側の影響を無くすることが出来る吸脱着装置を提供する。
【0008】
【課題を解決するための手段】
まずは、ダンパーの駆動及び制御方式ですが一般的に多用されている空気圧使用でのエアーシリンダーとエアー電磁弁との組合せからダンパーの駆動用シリンダーを油圧タイプに変更し低速で安定した動作が行えるようにするとともに、空気圧を油圧に変換するユニット(エアーハイドロユニット)を前記油圧シリンダーとエアー電磁弁との間に挿入する。さらに、油圧シリンダーに変更したことによりダンパーの動作が低速のみでは切替時間が延びるため、油圧シリンダーとエアーハイドロユニットとの間にある速度調整器(流量調整弁と逆止弁との並列組合せ)と並列にスキップ弁を取り付けて油圧シリンダーの動作速度を低速及び高速の2段階にする。油圧シリンダーの動作速度の切替は、油圧シリンダーの切替時期の位置に位置検出用スイッチを取り付けてこのスイッチからの信号によるかまたは動作開始からのタイマー作動により切替スキップ弁をON/OFFによる。これらを吸着入口ダンパーのみに適用します。
つぎに、動作順序としては、脱着工程が終了し吸着工程に切り替わる吸着槽の吸着出口切換ダンパーがまずは開き、その後もう一方の吸着工程が終了し脱着工程に切り替わる吸着槽の吸着入口ダンパーが閉動作を開始しますが前半はスキップ弁がONであり高速、切替点からは低速に変わります。
脱着工程が終了し吸着工程に切り替わる吸着槽の吸着入口切換ダンパーが低速で開きだしが切替点からの後半はスキップ弁がONとなり、切替点から高速に変わります。また、吸着工程が終了し脱着工程に切り替わる吸着槽の吸着入口ダンパーが閉動作を開始し切替点を通過してから、一定時間が経過した後脱着工程が終了し吸着工程に切り替わる吸着槽の吸着入口切換ダンパーが開動作を開始する。
【0009】
【発明の実施の形態】
本発明の実施形態の基本処理フローを図2にてダンパー動作のタイムチャートを図4にて説明する。溶剤が含有した処理ガスAは送風機1にて開状態である吸着入口切換ダンパー2を介して通過し吸着工程となっている吸着槽4内の吸着エレメント5にて溶剤が吸着される。その後、開状態である吸着出口切換ダンパー6を介して清浄空気Bとなり装置外に排出される。一方、脱着工程となっている吸着槽4での吸着入口切換ダンパー2及び吸着出口切換ダンパー6は閉状態であり、水蒸気弁8が開となり水蒸気Cが吸着エレメント5内に噴出し吸着エレメント5に吸着されていた溶剤を脱着する。この脱着された溶剤及び水蒸気は脱着弁ガス9を通って脱着ガスDとなり、回収装置または燃焼装置などに送られて処理される。
吸着入口切換ダンパー用シリンダー3を油圧シリンダーとし、空気圧を油圧に変換するユニット(エアーハイドロユニット)を前記油圧シリンダーと圧縮空気電磁弁11との間に、さらに速度調整器10(流量調整弁と逆止弁との並列組合せ)と並列にスキップ弁14を取り付ける。油圧シリンダーの切替時期の位置に位置検出用スイッチを取り付けてこのスイッチからの信号によりスキップ弁14をON/OFFさせる。
吸着工程と脱着工程とを切り替える時のダンパー動作のタイムチャートは図4に示すとおりであり、脱着工程が終了し吸着工程に切り替わる吸着槽4でのダンパー動作順序としては吸着出口切換ダンパー6がまずは開き、もう一方の吸着工程が終了し脱着工程に切り替わる吸着槽4の吸着入口切換ダンパー2が閉動作を開始しますが前半はスキップ弁14がONであり高速、切替点からは低速に変わります。
吸着工程が終了し脱着工程に切り替わる吸着槽4の吸着入口切換ダンパー2が切替点を通過から一定時間後(0.1〜10sec)に脱着工程が終了し吸着工程に切り替わる吸着槽の吸着入口切換ダンパー2が低速で開きだし切替点からの後半はスキップ弁14がONとなり、切替点から高速に変わります。一定時間後脱着工程が終了し吸着工程に切り替わる吸着槽4の吸着出口切換ダンパー6が閉じて、吸脱着工程の切替動作が終了する。
【0010】
[実施例]
吸着材に繊維状活性炭を使用した基本型である吸着槽2基を具備したバッチ式吸脱着装置において、以下に示す条件により処理ガスの風量変動の測定を行った。処理ガスの風量変動と表す指標として、風量と相関がある送風機1の吸い込み口での静圧(以下吸引静圧とする)を使うこととする。処理風量は120m/min(at20℃)、1槽当たりの吸着材量は40kgとし、吸着と脱着との切替時間は8分を標準とした。吸着入口ダンパーは上下動作にて流路の開閉を行う形状を選定し、ダンパー口径は直径500mm、ダンパーの動作ストロークは600mmである。
以下に実施例を示す。
【0011】
[実施例1]
連続運転中において、吸着と脱着との切替後にて安定状態となり処理風量が120m/min(at20℃)である時の吸引静圧を測定すると−900Paであった。吸引静圧測定を継続し切替中には変動幅は−870〜−930Paの範囲であった。この実施例での吸引静圧の測定チャートを図9に示す。
【0012】
[比較例1]本発明を使用しない場合、すなわち吸着入口切換ダンパーの駆動用シリンダーが油圧式ではなく従来の空気圧式である図1のフローで示され、吸着工程と脱着工程とを切り替える時のダンパー動作のタイムチャートが図3に示されるバッチ式吸脱着装置にて、実施例同様に連続運転中において、吸着と脱着との切替後にて安定状態となり処理風量が120m3/min(at20℃)である時の吸引静圧を測定すると実施例と同様に−900Paであった。吸引静圧測定を継続し切替中には変動幅は−700〜−1180Paの範囲であった。この比較例での吸引静圧の測定チャートを図10に示す。
【0013】
実施例、比較例の処理結果を下記の表1に示す。
【表1】

Figure 2005021796
【0014】
【発明の効果】以上の様に本発明のバッチ式吸脱着装置の運転方法により、吸着工程と脱着工程の切替え時に発生する処理ガスの風量変動を最小限に出来るので、処理ガスの吸引元である工程の作業環境の悪化及び製品の不良発生が抑えられる。また、吸着入口切換ダンパーの駆動機構を変えるのみであることから、装置が大型化にする必要がなく、さらに現在稼働中であるバッチ式吸脱着装置において容易に適用出来る特徴をも持っている。
【図面の簡単な説明】
【図1】バッチ式吸脱着装置の従来の基本処理フロー図
【図2】バッチ式吸脱着装置の実施例の基本処理フロー図
【図3】吸着入口切換ダンパーの従来の基本タイムチャート
【図4】吸着入口切換ダンパーの実施例の基本タイムチャート
【図5】本発明のダンパー動作の速度可変制御にエアーハイドロユニットを使用し、ダンパー下げ方向の高速動作の一例である。
【図6】本発明のダンパー動作の速度可変制御にエアーハイドロユニットを使用し、ダンパー下げ方向の低速動作の一例である。
【図7】本発明のダンパー動作の速度可変制御にエアーハイドロユニットを使用し、ダンパー上げ方向の低速動作の一例である。
【図8】本発明のダンパー動作の速度可変制御にエアーハイドロユニットを使用し、ダンパー上げ方向の高速動作の一例である。
【図9】実施例における吸脱着装置の吸引静圧の測定チャート
【図10】従来方式における吸脱着装置の吸引静圧の測定チャート
【符号の説明】
A 処理ガス
B 清浄空気
C 水蒸気
D 脱着ガス
1 送風機
2 吸着入口切換ダンパー
3 吸着入口切換ダンパー用シリンダー
4 吸着槽
5 吸着エレメント
6 吸着出口切換ダンパー
7 吸着出口切換ダンパー用シリンダー
8 水蒸気弁
9 脱着ガス弁
10 速度調整器
11 圧縮空気電磁弁
12 エアーハイドロユニット
13 オイルタンク
14 スキップ弁[0001]
[Technical field to which the invention belongs]
The present invention relates to an operation method of a batch type adsorption / desorption device for a solvent-containing gas.
[0002]
More specifically, in the operation of the batch type adsorption / desorption device described above, by changing the operation speed of the raw gas switching damper and changing the operation timing of the switching damper when switching between the adsorption process and the desorption process, The present invention relates to a method for operating a batch-type adsorption / desorption device for a solvent-containing gas capable of suppressing fluctuations in gas flow rate.
[0003]
[Prior art]
Conventionally, a batch type adsorption / desorption device equipped with two or more adsorption tanks equipped with an adsorbent made of fibrous activated carbon, granular activated carbon or zeolite has been continuously treating organic solvent gas by alternately switching between adsorption and desorption. It was. FIG. 1 shows a basic processing flow of a batch type adsorption / desorption device equipped with two adsorption tanks, which is the most basic type. First, the processing gas A contained in the solvent passes through the suction inlet switching damper 2 that is open in the blower 1 and is adsorbed by the adsorption element 5 in the adsorption tank 4 in the adsorption process. Thereafter, the air becomes clean air B via the suction outlet switching damper 6 in the open state and is discharged out of the apparatus. On the other hand, the adsorption inlet switching damper 2 and the adsorption outlet switching damper 6 in the adsorption tank 4 in the desorption process are in a closed state, the water vapor valve 8 is opened, and the water vapor C is ejected into the adsorption element 5 to the adsorption element 5. Desorb the adsorbed solvent. The desorbed solvent and water vapor are desorbed gas D through the desorbed gas valve 9 and sent to a recovery device or a combustion device for processing. The basic time chart of the damper operation when switching between the adsorption process and the desorption process is as shown in FIG. 3, and as the damper operation sequence in the adsorption tank 4 where the desorption process ends and switches to the adsorption process, the adsorption outlet switching damper 6 is First, the suction inlet switching damper 2 is opened. Further, the adsorption inlet switching damper 2 of the adsorption tank that is switched to the desorption process after the other adsorption process is completed is closed, and then the adsorption outlet switching damper 6 is closed. Immediately after the suction inlet switching damper 2 starts the opening operation from the fully closed state, the wind begins to flow, and as the operation proceeds, the flow resistance does not change and the flow rate of the processing gas A remains increased. On the contrary, even if the adsorption inlet switching damper 2 starts the closing operation from the fully opened state, the change in the air volume is small at the initial stage, and as the operation proceeds, the flow resistance increases and finally the adsorption inlet switching damper 2 becomes fully closed. Will not flow. Therefore, since the blower 1 is operating at a constant rotation, the flow resistance of the processing gas A fluctuates in accordance with the change in the flow resistance because the flow resistance in the apparatus changes greatly during the switching operation. Various measures have been taken because it causes deterioration of the working environment of the process that is the source of the processing gas A and the occurrence of product defects.
[0004]
As a simple measure, while the operation of the switching damper that closes the suction inlet and the operation of the switching damper that opens are superimposed, adjustments such as slowing the operation speed of these suction inlet switching dampers 2 have been performed. The slower the delay, the longer the switching time, which may increase the outlet concentration and deteriorate the processing performance. An air cylinder is generally used for driving a damper because it is inexpensive and has good workability, but lacks stability at low speed.
[0005]
In addition, there is a method for suppressing fluctuations in the passing air speed when switching between adsorption and desorption tanks by increasing the number of adsorption tanks and reducing the ratio of tanks that are switched from the adsorption process to the desorption process as a method of suppressing fluctuations in the processing gas air volume. Since the number of adsorption tanks is increased, problems such as an increase in installation space and an increase in cost due to an increase in the size of the apparatus occur.
(For example, see Patent Document 1)
[0006]
[Patent Document 1]
Japanese Patent No. 2616778 specification
[Problems to be solved by the invention]
Provided is an adsorption / desorption device that can suppress fluctuations in the flow rate of processing gas generated when switching between an adsorption process and a desorption process in the adsorption / desorption apparatus, and can eliminate the influence of the production process side that is a suction source.
[0008]
[Means for Solving the Problems]
First of all, the damper drive and control system is changed from the combination of air cylinder and air solenoid valve, which is commonly used for pneumatics, to a damper type cylinder for driving the damper so that it can operate stably at low speed. In addition, a unit (air hydro unit) for converting air pressure into oil pressure is inserted between the hydraulic cylinder and the air solenoid valve. Furthermore, since the changeover time is extended only when the damper operates at a low speed due to the change to a hydraulic cylinder, a speed regulator (a parallel combination of a flow adjustment valve and a check valve) between the hydraulic cylinder and the air-hydro unit A skip valve is attached in parallel to reduce the operating speed of the hydraulic cylinder in two stages, low and high. The operation speed of the hydraulic cylinder is switched by attaching a position detection switch at the position of the switching timing of the hydraulic cylinder and by turning on / off the switching skip valve by a signal from this switch or by a timer operation from the start of the operation. These only apply to the suction inlet damper.
Next, as the operation sequence, the adsorption outlet switching damper of the adsorption tank that is switched to the adsorption process after the desorption process is completed is opened first, and then the adsorption inlet damper of the adsorption tank that is switched to the desorption process after the other adsorption process is closed However, in the first half, the skip valve is ON, so it changes to high speed and from the switching point to low speed.
The adsorption inlet switching damper of the adsorption tank that switches to the adsorption process after the desorption process is completed starts to open at low speed, but the skip valve turns on in the second half from the switching point, and changes from the switching point to high speed. In addition, the adsorption tank damper, which is switched to the desorption process after the adsorption process is completed, starts the closing operation and passes through the switching point, and then the adsorption tank is switched to the adsorption process after the desorption process is completed after a certain time has passed. The inlet switching damper starts to open.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The basic processing flow of the embodiment of the present invention will be described with reference to FIG. 2 and the damper operation time chart will be described with reference to FIG. The processing gas A contained in the solvent passes through the suction inlet switching damper 2 that is open in the blower 1 and is adsorbed by the adsorption element 5 in the adsorption tank 4 in the adsorption process. Thereafter, the air becomes clean air B via the suction outlet switching damper 6 in the open state and is discharged out of the apparatus. On the other hand, the adsorption inlet switching damper 2 and the adsorption outlet switching damper 6 in the adsorption tank 4 in the desorption process are in a closed state, the water vapor valve 8 is opened, and the water vapor C is ejected into the adsorption element 5 to the adsorption element 5. Desorb the adsorbed solvent. The desorbed solvent and water vapor pass through the desorption valve gas 9 to become a desorption gas D, which is sent to a recovery device or a combustion device for processing.
The suction inlet switching damper cylinder 3 is a hydraulic cylinder, and a unit for converting air pressure to hydraulic pressure (air hydro unit) is further interposed between the hydraulic cylinder and the compressed air solenoid valve 11, and a speed regulator 10 (opposite to the flow rate adjusting valve). The skip valve 14 is mounted in parallel with the stop valve in parallel). A position detection switch is attached to the position of the switching timing of the hydraulic cylinder, and the skip valve 14 is turned ON / OFF by a signal from this switch.
The time chart of the damper operation when switching between the adsorption process and the desorption process is as shown in FIG. 4. As the damper operation sequence in the adsorption tank 4 where the desorption process is completed and switched to the adsorption process, the adsorption outlet switching damper 6 is the first. The suction inlet switching damper 2 of the adsorption tank 4 which opens and switches to the desorption process after the other adsorption process is finished starts to close, but the skip valve 14 is ON in the first half and changes to a low speed from the switching point. .
Adsorption inlet switching of the adsorption tank 4 after the adsorption process is completed and the adsorption inlet switching damper 2 of the adsorption tank 4 is switched to the desorption process after a certain time (0.1 to 10 sec) after passing through the switching point. The damper 2 opens at a low speed, and in the second half from the switching point, the skip valve 14 is turned on and the switching point changes to a high speed. The adsorption outlet switching damper 6 of the adsorption tank 4 that is switched to the adsorption process after the desorption process after a certain time is closed, and the switching operation of the adsorption / desorption process is completed.
[0010]
[Example]
In a batch type adsorption / desorption apparatus equipped with two adsorption tanks, which are basic types using fibrous activated carbon as an adsorbent, the flow rate variation of the processing gas was measured under the following conditions. As an index representing the flow rate variation of the processing gas, the static pressure (hereinafter referred to as suction static pressure) at the suction port of the blower 1 having a correlation with the flow rate is used. The amount of treatment air was 120 m 3 / min (at 20 ° C.), the amount of adsorbent per tank was 40 kg, and the standard switching time between adsorption and desorption was 8 minutes. The suction inlet damper has a shape that opens and closes the flow path by up and down movement, the damper diameter is 500 mm, and the operation stroke of the damper is 600 mm.
Examples are shown below.
[0011]
[Example 1]
During continuous operation, when the suction static pressure was measured when the state became stable after switching between adsorption and desorption and the treatment air flow rate was 120 m 3 / min (at 20 ° C.), it was −900 Pa. While the suction static pressure measurement was continued and changed, the fluctuation range was in the range of −870 to −930 Pa. A measurement chart of the suction static pressure in this example is shown in FIG.
[0012]
[Comparative Example 1] When the present invention is not used, that is, the driving cylinder of the suction inlet switching damper is shown in the flow of FIG. 1 which is not a hydraulic type but a conventional pneumatic type, and when the adsorption process and the desorption process are switched. In the batch type adsorption / desorption device shown in FIG. 3 for the damper operation time chart, during continuous operation as in the example, the state becomes stable after switching between adsorption and desorption, and the processing air volume is 120 m3 / min (at 20 ° C.). When the static suction pressure at a certain time was measured, it was −900 Pa as in the example. While the suction static pressure measurement was continued and changed, the fluctuation range was -700 to -1180 Pa. A measurement chart of the suction static pressure in this comparative example is shown in FIG.
[0013]
The processing results of Examples and Comparative Examples are shown in Table 1 below.
[Table 1]
Figure 2005021796
[0014]
As described above, according to the operation method of the batch type adsorption / desorption apparatus of the present invention, it is possible to minimize the variation in the flow rate of the processing gas generated when switching between the adsorption process and the desorption process. Deterioration of work environment and product defects in a certain process can be suppressed. Further, since only the drive mechanism of the adsorption inlet switching damper is changed, the apparatus does not need to be enlarged, and further has a feature that can be easily applied to a batch type adsorption / desorption apparatus currently in operation.
[Brief description of the drawings]
FIG. 1 is a flow chart of a conventional basic process of a batch type adsorption / desorption device. FIG. 2 is a flow chart of a basic process of an embodiment of a batch type adsorption / desorption device. FIG. 5 is an example of high-speed operation in the damper lowering direction using an air hydro unit for the variable speed control of the damper operation according to the present invention.
FIG. 6 is an example of a low speed operation in a damper lowering direction using an air hydro unit for the variable speed control of the damper operation of the present invention.
FIG. 7 is an example of a low speed operation in the direction of raising the damper using an air hydro unit for the variable speed control of the damper operation of the present invention.
FIG. 8 is an example of high-speed operation in the direction of raising the damper using an air hydro unit for variable speed control of the damper operation of the present invention.
FIG. 9 is a measurement chart of the suction static pressure of the adsorption / desorption device in the embodiment. FIG. 10 is a measurement chart of the suction static pressure of the adsorption / desorption device in the conventional method.
A Process gas B Clean air C Water vapor D Desorption gas 1 Blower 2 Adsorption inlet switching damper 3 Adsorption inlet switching damper cylinder 4 Adsorption tank 5 Adsorption element 6 Adsorption outlet switching damper 7 Adsorption outlet switching damper cylinder 8 Steam valve 9 Desorption gas valve DESCRIPTION OF SYMBOLS 10 Speed regulator 11 Compressed air solenoid valve 12 Air hydro unit 13 Oil tank 14 Skip valve

Claims (4)

吸着入口切替ダンパーの駆動方法が油圧式であり、流路抵抗が一定になるようにダンパー開閉動作速度及び開始タイミングを調整することにより、処理ガスの風量の変動を少なくすることが出来ることを特徴とするバッチ式吸脱着装置。The suction inlet switching damper is driven by a hydraulic method, and fluctuations in the flow rate of the processing gas can be reduced by adjusting the damper opening / closing operation speed and start timing so that the flow path resistance is constant. Batch type adsorption and desorption equipment. ダンパーの駆動を空気圧から油圧に変換することが出来るエアーハイドロユニットで行うことを特徴とする、請求項1記載のバッチ式吸脱着装置。The batch type adsorption / desorption device according to claim 1, wherein the damper is driven by an air hydro unit capable of converting air pressure to hydraulic pressure. ダンパーの開と閉なる位置の中間に設置したリミットスイッチ等の位置検出器もしくは動作開始後タイマーによりタイムアップにより動作速度を変えることを特徴とする、請求項1乃至2記載のバッチ式吸脱着装置の運転方法。The batch type adsorption / desorption device according to claim 1 or 2, wherein the operation speed is changed by time-up by a position detector such as a limit switch installed between the opening and closing positions of the damper or a timer after the operation is started. Driving method. ダンパーの動作速度可変を油圧ラインに設けたスキップ弁のON/OFFにより行う請求項3記載のバッチ式吸脱着装置。4. The batch type adsorption / desorption device according to claim 3, wherein the operation speed of the damper is varied by ON / OFF of a skip valve provided in the hydraulic line.
JP2003189613A 2003-07-01 2003-07-01 Adsorption / desorption device Expired - Lifetime JP4452974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189613A JP4452974B2 (en) 2003-07-01 2003-07-01 Adsorption / desorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189613A JP4452974B2 (en) 2003-07-01 2003-07-01 Adsorption / desorption device

Publications (2)

Publication Number Publication Date
JP2005021796A true JP2005021796A (en) 2005-01-27
JP4452974B2 JP4452974B2 (en) 2010-04-21

Family

ID=34187771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189613A Expired - Lifetime JP4452974B2 (en) 2003-07-01 2003-07-01 Adsorption / desorption device

Country Status (1)

Country Link
JP (1) JP4452974B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349784A (en) * 2020-04-09 2020-06-30 烟台金鹏矿业机械有限公司 Novel low formula is prevented segregation and is imitated high-efficient desorption column
KR102525754B1 (en) * 2022-04-29 2023-04-25 (주)듀어코리아 Voc concentrating system convertible of batch type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349784A (en) * 2020-04-09 2020-06-30 烟台金鹏矿业机械有限公司 Novel low formula is prevented segregation and is imitated high-efficient desorption column
KR102525754B1 (en) * 2022-04-29 2023-04-25 (주)듀어코리아 Voc concentrating system convertible of batch type

Also Published As

Publication number Publication date
JP4452974B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
KR100346487B1 (en) Pressure swing adsorption gas flow control method and system
US8715400B2 (en) Double vacuum pump apparatus, gas purification system provided with double vacuum pump apparatus, and exhaust gas vibration suppressing device in double vacuum pump apparatus
KR20190084067A (en) Organic solvent recovery system and organic solvent recovery method
JP4452974B2 (en) Adsorption / desorption device
CN106512646B (en) Method for oxygen concentration and device with function of removing condensed water
JPS63143921A (en) Gaseous mixture separation apparatus utilizing pressure variation
JP6229267B2 (en) Gas processing apparatus and gas processing method
KR101746625B1 (en) The method and apparatus for absoption for VOCs(volatile organic compound) in engine room of ship
JP5015831B2 (en) Oxygen concentrator
JP5864994B2 (en) Gas separation apparatus and method
JP7374925B2 (en) Gas separation equipment and gas separation method
CN110860184B (en) Vacuum pressure swing adsorption system operating under constant pressure and process thereof
JP4664444B1 (en) Dual vacuum pump device, gas purification system including the same, and control method of dual vacuum pump device
JPH05123524A (en) Separation and recovery of co2 from combustion exhaust gas
KR100484549B1 (en) Oxygen Concentrator Using Two Vacuum Sources
JPH07754A (en) Extremely low dew point air generator
JP2009006256A (en) Oxygen enricher
JPH11253737A (en) Operation method for recovering hydrocarbon vapor
JP3143758B2 (en) Weight loss operation method of pressure fluctuation adsorption device
JP2023061200A (en) Pressure fluctuation adsorption device and method for operating pressure fluctuation adsorption device
KR100360835B1 (en) A continuous oxygen concentrator with 3 tower-2 compressor and the method thereof
CN212581523U (en) Special energy-saving oxygen generation system for plateau
CN219344905U (en) Compressor limit structure with regulatory function
US20210039039A1 (en) Method for producing oxygen via o2 vsa, minimizing valve openings and closings
JP2010234345A (en) Gas separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4452974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term