JP2005021325A - Qd coil for magnetic resonance imaging equipment - Google Patents

Qd coil for magnetic resonance imaging equipment Download PDF

Info

Publication number
JP2005021325A
JP2005021325A JP2003189420A JP2003189420A JP2005021325A JP 2005021325 A JP2005021325 A JP 2005021325A JP 2003189420 A JP2003189420 A JP 2003189420A JP 2003189420 A JP2003189420 A JP 2003189420A JP 2005021325 A JP2005021325 A JP 2005021325A
Authority
JP
Japan
Prior art keywords
coil
power supply
magnetic resonance
feeding
balun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003189420A
Other languages
Japanese (ja)
Other versions
JP4149320B2 (en
JP2005021325A5 (en
Inventor
Shinichiro Suzuki
伸一郎 鈴木
Takahide Shimoda
隆秀 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003189420A priority Critical patent/JP4149320B2/en
Publication of JP2005021325A publication Critical patent/JP2005021325A/en
Publication of JP2005021325A5 publication Critical patent/JP2005021325A5/ja
Application granted granted Critical
Publication of JP4149320B2 publication Critical patent/JP4149320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a QD (Quadrature Detection) coil for magnetic resonance imaging equipment in which unstabilization of the impedance characteristic of a coil and lowering of a sharpness Q value of resonance due to influence of coaxial cables connected to the feeding points of the QD coil, multi-element coils in particular is prevented. <P>SOLUTION: Between two feeding points of the QD coil, the multi-element coils in particular and baluns provided on the coaxial cables connected there, inductance which connects the ground lines of the two coaxial cables is arranged. Thus, a circuit formed by the inductance and the capacitor of a coil in a parallel relation becomes a parallel resonance circuit to a signal with the nuclear magnetic resonance frequency of the MRI equipment for preventing the signal from being leaked from one of the feeding points to the other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、核磁気共鳴現象を利用して被検体である人体の所望部位の断層画像を撮影する磁気共鳴イメージング装置において使用されるQDコイルに関し、特にQDコイルにおける給電ラインの影響によるコイルの性能劣化を防止する技術に関
する。
【0002】
【従来の技術】
磁気共鳴イメージング装置は、被検体の生体組織を構成する原子核に高周波磁場を照射して磁気共鳴を起こさせるための送信コイルと、核磁気共鳴によって発生する核磁気共鳴信号を受信する受信コイルを備えており、一つのコイルで送信と受信を兼用する場合もある。
送信用と受信用のコイルには色々な型が知られているが、その中でも分布定数型コイルであるマルチエレメントコイルは、コイルの共振周波数で給電を行うと、コイル内に定在波が立つため、定在波の節にあたるところにもう一つ給電点を設けて、お互いに影響を及ぼさずに同時に送信もしくは受信することができるので、QD(Quadrature Detection)方式の送受信が可能となる。
【0003】
しかし、マルチエレメントコイルへの給電には、信号線とグランド線の間に100pF/m程度の容量を持つ同軸ケーブルを用いるので、給電ラインにも定在波電流が乗ってしまう。すると、給電ラインと周辺環境(例えば、他のケーブルや金属構造物)との間の浮遊容量の影響により、給電ライン上の定在波の共振条件が容易に変わってしまうので、マルチエレメントコイルのインピーダンス特性が非常に不安定になり、共振の鋭さQ値が低下してSNが劣化する場合がある。
【0004】
この問題は、マルチエレメントコイルに限らず、一般のQDコイルにおいても同様に成立する。つまり、一般のQDコイルでも、QDを構成する2つのコイル間に容量性結合が生じていれば、上記のマルチエレメントコイルの場合と同様の理由により、QDコイルのインピーダンス特性が非常に不安定になる場合がある。つまり、QDコイルの給電点からバランまでの給電ライン(100pF/m程度の容量を持つ同軸ケーブル)に定在波電流が乗るため、給電ラインと周辺環境との間の浮遊容量の影響により、給電ライン上の定在波の共振条件が容易に変わってしまう。
【0005】
上記の不安定化等を防ぐために、[特許文献1]や[特許文献2]に記載されているように、出来るだけマルチエレメントコイルに近い給電ライン上にバランを設けるなどして、給電ラインの影響を遮断している。
【0006】
【特許文献1】
特開平8−280652号公報
【特許文献2】
特開平10−127600号公報
【0007】
【発明が解決しようとする課題】
上記の様にバランをもちいたとしても、十分にマルチエレメントコイルに近い位置に配置しないと明確な効果は得られない。なぜならマルチエレメントコイルとバランの間の同軸ケーブルには定在波電流が乗っており、ここが長ければ、それだけ浮遊容量の影響を受けやすいからである。
【0008】
しかし、MRI装置の外観や操作性などの要求から、必ずしもバランをマルチエレメントコイルの近くに配置できるとは限らない。[特許文献1]や[特許文献2]には、この点が考慮されていない。
【0009】
そこで本発明の目的は、バランと併用してQDコイルの2つの給電点に接続された給電ラインの影響によるQDコイルのインピーダンス特性の不安定化と共振の鋭さQ値の低下を防ぐことが出来る磁気共鳴イメージング装置用のQDコイル、特にマルチエレメントコイルを提供することである。
【0010】
【課題を解決するための手段】
前記課題を解決するために、本発明は以下の様に構成される。
給電点を備えた2つの要素コイルを直交して配置することによって該2つの要素コイル間に結合容量が生じた磁気共鳴イメージング装置用QDコイルにおいて、
前記各給電点に接続された給電ライン上にバランをそれぞれ備え、前記給電点と前記バランとの間で前記2つの給電ラインのグランド線間が、並列関係となる前記結合容量との間で所望の周波数で並列共振するように調整されたインダクタで接続されたことを特徴とする。
【0011】
これにより、片方の給電点から他方へ信号が漏れ込まないようにすることができ、QDコイルの給電点の最も近くにバランを配置できない場合でも、2つの給電点に接続された給電ラインの影響によるQDコイルのインピーダンス特性の不安定化と共振の鋭さQ値の低下を防止できる。
【0012】
また、互いに同心円状の複数のリングと、前記各リングを放射状に結ぶ複数のエレメントと、前記各リングにおいて前記エレメントとの接続点間に共振用コンデンサを配置した磁気共鳴イメージング装置用マルチエレメントコイルにおいて、互いに直交する2つの給電点を備え、前記各給電点に接続された給電ライン上にバランをそれぞれ備え、前記給電点と前記バランとの間で前記2つの給電ラインのグランド線間が、並列関係となる前記共振用コンデンサとの間で所望の周波数で並列共振するように調整されたインダクタで接続する。
【0013】
これにより、片方の給電点から他方へ信号が漏れ込まないようにすることができ、マルチエレメントコイルの給電点の最も近くにバランを配置できない場合でも、2つの給電点に接続された給電ラインの影響によるマルチエレメントコイルのインピーダンス特性の不安定化と共振の鋭さQ値の低下を防止できる。
【0014】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0015】
図1は本発明に係るMRI装置の全体を示すブロック図である。本発明による磁気共鳴イメージング装置は、中央処理装置(CPU)1と、シーケンサ2と、送信系3、傾斜磁場発生系4と、受信系5、信号処理系6、静磁場発生領域22とを備えて構成されている。前記中央処理装置1は、あらかじめ定められたプログラムに従いシーケンサ2、送信系3、受信系5、信号処理系6の各々を制御するものである。
【0016】
シーケンサ2は中央処理装置1からの制御指令に基づいて動作し、被検体11の断層像のデータ収集に必要な種々の命令を送信系3、傾斜磁場発生系4、受信系5に送っている。
【0017】
送信系3は高周波発振器7と変調器8と送信コイル10a,10bを有し、シーケンサ2の指令により、変調器8で変調された高周波発振器7からの高周波パルスを、高周波増幅器9a〜9dで増幅して送信コイル10a,10bに供給することにより、所定のパルス状の電磁波を被検体11に照射している。
【0018】
傾斜磁場発生系4は互いに直交するデカルト座標軸方向、すなわちX軸方向、Y軸方向およびZ軸方向ににそれぞれ独立に傾斜磁場を印加できる構成を有する傾斜磁場コイル13a,13bと、傾斜磁場コイル13a,13bに電流を供給する傾斜磁場電源12と、傾斜磁場電源12を制御するシーケンサ2より構成する。
【0019】
受信系5は、前記受信コイル14と、プリアンプ15と、直交位相検波器16とA/D変換器17とを有し、被検体11からの核磁気共鳴信号を受信コイル14が検出すると、その信号をプリアンプ15、直交位相検波器16を介してA/D変換器17でデジタル量に変換し、中央処理装置(CPU)1に送っている。
【0020】
信号処理系6は、磁気ディスク18、光ディスク19などの外部記憶装置と、CRT20、キーボード21などを有している。
【0021】
受信系5からのデータが中央処理装置(CPU)1に入力されると、この中央処理装置CPU1が信号処理、画像再構成処理などを実行し、その結果である被検体11の所望の断面像を前記CRT20に表示するとともに、前記外部記憶装置のたとえば磁気ディスク18に記憶する。
【0022】
静磁場発生領域22は、被検体11の周りに所定の方向に均一な静磁場を発生させるためのものである。
静磁場発生領域22の内部には、傾斜磁場を発生させる傾斜磁場コイル13a,13bと、送信コイル10a,10bと、受信コイル14が設置されている。
【0023】
以下、マルチエレメントコイルの場合について説明する。
図2に送信コイル10aに対する給電ラインの概略構成を示す。図2の送信コイル10aは、2つの給電点を有するマルチエレメント型である。第1リング上に互いに直列に共振容量素子25a〜25l、第2リング上に互いに直列に共振容量素子26a〜26l、第3リング上に互いに直列に共振容量素子27a〜27lを配置し、共振容量素子25a,25jを給電点とする送信コイル10aを構成する。さらに給電点25a,25jに接続されたケーブルに直列にバラン28a,28bが配置されている。
【0024】
今、図2の送信コイル10a上の2つの給電点25a、25j間が完全にアイソレートされており、互いに信号の漏れ込みが無いと仮定する。図6は、図2の送信コイル10aの第1リング上において、給電点25aに対する給電が作り出す定在波の腹と節及び給電点25jの位置関係を示した図である。
【0025】
マルチエレメントコイルが共振しているときは、コイル上に定在波が立っており、定在波の腹と節は1/4波長ごとに交互に並んでいる。そして、給電点25jは給電点25aに対する給電が作り出す定在波の節に位置している。また同様に、給電点25aは給電点25 jに対する給電が作り出す定在波の節に位置していることになる。
【0026】
しかし、図6の状態は2つの給電点25a,25j間が完全にアイソレートされた理想状態であり、実際には給電点25a,25jが、お互いが作り出す定在波の節の位置からずれることがある。なぜなら、給電点25a,25jに対する給電ラインは同軸ケーブルであり、同軸ケーブルそのものが信号線とグランド線の間に100pF/m程度の容量を持つため、給電点25a,25jからバラン28a,28bまでの同軸ケーブルも、コイルの共振容量の一部となり、定在波電流が乗ってしまう。その様な状況ではケーブルと周辺環境(例えば、別のケーブルや金属構造物)との間に存在する浮遊容量の影響によって、ケーブル上に乗っている定在波の共振条件が容易に変化してしまう。
【0027】
図7は、その様な不安定な浮遊容量の影響を受けているときの、図2の送信コイル10aの第1リング上において、給電点25aに対する給電が作り出す定在波の腹と節と、給電点25jの位置関係を示した図である。図7では、給電点25aに対する給電が作り出す定在波の節と給電点25jが、同一の位置からずれている。そのため、給電点25jは給電点25aが作り出す定在波電流の電圧を受けることになる。また同様に、給電点25aが給電点25jに対する給電が作り出す定在波電流の電圧を受けることも考えられる。
【0028】
このような状況では、図2の給電点25a,25jに接続された給電ライン間に信号の漏れ込みが起こり、RF Power Amp(パワーアンプ)9a,9bから見たコイルのインピーダンス特性が不安定化する。図3は、給電ラインに存在する浮遊容量、及び2つのグランド線間に生じた電位差V1により、グランド線間に信号の漏れ込みI1が生じる様子を示した図である。
【0029】
図3のRF Power Amp 9a,9bから見たコイルのインピーダンス特性を安定化するためには、このグランド線間の信号の漏れ込みI1を遮断しなければならない。図4は、本発明の第一の実施態様である送信コイル10aに対する給電ラインの概略構成図であり、図2の構成との相違は、給電点25a,25jとバラン28a,28bとの間に、2つの給電ライン(同軸ケーブル)のグランド線同士を接続するインダクタンス29を配置した点である。
【0030】
図5は、図4のグランド線間の等価回路図である。図5の回路はLC並列共振回路であり、共振周波数がMRI装置の核磁気共鳴周波数と一致するようにインダクタンスを決めることにより、その周波数でのグランド線間のインピーダンスを非常に大きくすることができる。
【0031】
すなわち、図4において給電点25a,25jとバラン28a,28bとの間に、給電ラインのグランド線同士を接続する最適な値を持つインダクタンス29を配置することにより、給電点25a,25jに接続された給電ライン間の信号の漏れ込みを防ぐことが可能になる。また、最適なインダクタンスとは、図5のLC並列共振回路をMRI装置の核磁気共鳴周波数で共振させるインダクタンスである。
【0032】
これにより、送信コイルの給電ラインと周辺環境(例えば、別のケーブルや金属構造物)との間に存在する浮遊容量の影響によって、同軸ケーブル上に乗っている定在波の共振条件が変化しても、RF Power Ampから見たコイルのインピーダンス特性の不安定化と共振の鋭さQ値の低下を防ぐことができる。
【0033】
以上の説明は、マルチエレメントコイルを送信コイルとして用いた場合であるが、受信コイルとして用いた場合も同様である。受信コイルとして用いた場合は、上記RF Power Amp が信号増幅用のプリアンプに換わる。上記と同様のことを受信コイルにも適用することにより、プリアンプから見たコイルのインピーダンス特性の不安定化と共振の鋭さQ値の低下を防ぐことができる。
【0034】
次に、一般のQDコイルに対して本発明を適用した第二の実施形態を説明する。図8は2つのループコイル30a(実線),30b(点線)を直交して重ねたQDコイルの簡単な例である(図8では、わかりやすくするために要素コイルを異なる大きさで記載しているが、必要に応じて略同一とする場合もある)。それぞれの要素コイルが共振容量素子31a,31bを給電点としている。これら2つの要素コイルの間は理想的には電気的に独立となる必要があるが、現実的には僅かな結合容量(コンデンサ)31cが残る。
【0035】
2つの給電ライン(同軸ケーブル)のグランド線同士をインダクタンス29で接続し、上記の結合容量31cとでMRI装置の核磁気共鳴周波数で並列共振するようにインダクタンス29を調整する。これにより、QDコイルのインピーダンス特性の不安定化と共振の鋭さQ値の低下を防ぐことができる。この様なQDコイルを受信コイルとして用いた場合も上記のマルチエレメントコイルの場合と同様である。
【0036】
【発明の効果】
以上、本発明によれば、QDコイル、特にマルチエレメントコイルにおいて、2つの給電点と、そこに接続された各々の給電ライン上に設けられたバランとの間に、2つのライン(同軸ケーブル)のグランド線間を接続するインダクタンスを配置することにより、そのインダクタンスと並列関係にあるコイルのコンデンサとが形成する回路が、MRI装置の核磁気共鳴周波数を持つ信号にとって、並列共振回路となるようにし、片方の給電点からもう一方へ信号が漏れ込まないようにすることができる。
【0037】
これにより、コイルの給電点の最も近くにバランを配置できない場合でも、2つの給電点に接続された給電ラインの影響によるコイルのインピーダンス特性の不安定化と共振の鋭さQ値の低下を防ぎ、高周波パルスの照射もしくは受信効率の低下を防ぐことができる。
【図面の簡単な説明】
【図1】本発明におけるMRI装置の一実施例のブロック図。
【図2】送信コイル10aと給電ラインの概略構成図。
【図3】送信コイル10aの給電ラインに存在する浮遊容量、及びグランド線間に生じた電位差V1により、グランド線間に信号の漏れ込みI1が生じる様子を示した図。
【図4】送信コイル10aの給電点25a、25jとバラン28a,28bとの間に、給電ラインのグランド線同士を接続するインダクタンス29を配置(第一の実施形態)した図。
【図5】図4のグランド線間の等価回路図である。
【図6】送信コイル10aに上立つ定在波の腹と節と給電点の位置関係を示した図である。但し給電点25a,25j間のアイソレートが十分な場合。
【図7】送信コイル10aに上立つ定在波の腹と節と給電点の位置関係を示した図である。但し給電点25a、25j間のアイソレートが不十分な場合。
【図8】QDコイルの給電点31a,31bとバランとの間に、給電ラインのグランド線同士を接続するインダクタンス29を配置(第二の実施形態)した図。
【符号の説明】
1 中央処理装置(CPU)、2 シーケンサ、3 送信系、4 傾斜磁場系、5 受信系、6 信号処理系、7 高周波発信器、8 変調機、9a〜d 高周波増幅器(RF Power Amp)、10 送信コイル、11 被検者、12 傾斜磁場電源、13a〜b 傾斜磁場コイル、14 受信コイル、15 Pre Amp、16 検波回路、17 A/D Converter、18 磁気ディスク、19 光ディスク、20 CRT、21 キーボード、22 磁気回路による静磁場発生領域、25a〜l コンデンサ、26a〜l コンデンサ、27a〜l コンデンサ、28a〜b バラン(Bulun)、29 インダクタンス、30a〜b QDコイルを構成する要素コイル、31a〜b コンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a QD coil used in a magnetic resonance imaging apparatus that takes a tomographic image of a desired part of a human body that is a subject using a nuclear magnetic resonance phenomenon, and in particular, the performance of the coil due to the influence of a power supply line in the QD coil. The present invention relates to technology for preventing deterioration.
[0002]
[Prior art]
A magnetic resonance imaging apparatus includes a transmission coil for causing a magnetic resonance to occur by irradiating a high-frequency magnetic field to a nucleus constituting a biological tissue of a subject, and a reception coil for receiving a nuclear magnetic resonance signal generated by the nuclear magnetic resonance. In some cases, one coil can be used for both transmission and reception.
Various types of transmitting and receiving coils are known. Among them, a multi-element coil, which is a distributed constant type coil, generates a standing wave in the coil when power is supplied at the resonance frequency of the coil. For this reason, another feeding point is provided at a position corresponding to the standing wave node, and transmission or reception can be performed simultaneously without affecting each other, so that transmission / reception in the QD (Quadrature Detection) system is possible.
[0003]
However, since a coaxial cable having a capacity of about 100 pF / m is used between the signal line and the ground line for power supply to the multi-element coil, a standing wave current is also carried on the power supply line. Then, the resonance condition of the standing wave on the feeder line easily changes due to the stray capacitance between the feeder line and the surrounding environment (for example, other cables and metal structures). In some cases, the impedance characteristic becomes very unstable, and the sharpness Q value of resonance is lowered to deteriorate SN.
[0004]
This problem is not limited to a multi-element coil, but also applies to general QD coils. In other words, even if a general QD coil has capacitive coupling between the two coils constituting the QD, the impedance characteristic of the QD coil becomes very unstable for the same reason as in the case of the multi-element coil. There is a case. In other words, a standing wave current rides on the power supply line (coaxial cable having a capacity of about 100 pF / m) from the power supply point of the QD coil to the balun, so that the power supply is caused by the influence of stray capacitance between the power supply line and the surrounding environment. The resonance condition of the standing wave on the line easily changes.
[0005]
In order to prevent the above destabilization and the like, as described in [Patent Literature 1] and [Patent Literature 2], a balun is provided on the feeding line as close to the multi-element coil as possible, so that The influence is cut off.
[0006]
[Patent Document 1]
JP-A-8-280652 [Patent Document 2]
Japanese Patent Laid-Open No. 10-127600
[Problems to be solved by the invention]
Even if a balun is used as described above, a clear effect cannot be obtained unless the balun is sufficiently placed close to the multi-element coil. This is because a standing wave current is carried on the coaxial cable between the multi-element coil and the balun, and the longer this is, the more susceptible to stray capacitance.
[0008]
However, the balun cannot always be arranged near the multi-element coil because of the demands on the appearance and operability of the MRI apparatus. This point is not considered in [Patent Document 1] and [Patent Document 2].
[0009]
Accordingly, an object of the present invention is to prevent instability of impedance characteristics of the QD coil and decrease in sharpness Q of resonance due to the influence of a feeding line connected to two feeding points of the QD coil in combination with the balun. It is to provide a QD coil, in particular a multi-element coil, for a magnetic resonance imaging apparatus.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is configured as follows.
In a QD coil for a magnetic resonance imaging apparatus in which a coupling capacitance is generated between two element coils by arranging two element coils provided with feeding points orthogonally,
A balun is provided on each of the power supply lines connected to each of the power supply points, and between the power supply point and the balun, between the ground lines of the two power supply lines is desired between the coupling capacitors having a parallel relationship. It is connected by the inductor adjusted so that it may resonate in parallel with the frequency of.
[0011]
This prevents a signal from leaking from one feeding point to the other, and even if the balun cannot be placed closest to the feeding point of the QD coil, the influence of the feeding lines connected to the two feeding points. It is possible to prevent the impedance characteristics of the QD coil from becoming unstable and the resonance sharpness Q from being lowered.
[0012]
Further, in a multi-element coil for a magnetic resonance imaging apparatus in which a plurality of concentric rings, a plurality of elements that radiate the rings, and a resonance capacitor disposed between connection points of the elements in each ring , Two feeding points orthogonal to each other, each provided with a balun on a feeding line connected to each feeding point, and between the feeding point and the balun, between the ground lines of the two feeding lines in parallel An inductor adjusted so as to resonate in parallel at a desired frequency is connected to the resonance capacitor concerned.
[0013]
This prevents the signal from leaking from one feeding point to the other, and even when the balun cannot be placed closest to the feeding point of the multi-element coil, the feeding lines connected to the two feeding points It is possible to prevent the impedance characteristics of the multi-element coil from being unstable and the resonance sharp Q value from being lowered due to the influence.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment of the invention, and the repetitive description thereof is omitted.
[0015]
FIG. 1 is a block diagram showing the entire MRI apparatus according to the present invention. The magnetic resonance imaging apparatus according to the present invention includes a central processing unit (CPU) 1, a sequencer 2, a transmission system 3, a gradient magnetic field generation system 4, a reception system 5, a signal processing system 6, and a static magnetic field generation region 22. Configured. The central processing unit 1 controls each of the sequencer 2, the transmission system 3, the reception system 5, and the signal processing system 6 in accordance with a predetermined program.
[0016]
The sequencer 2 operates based on a control command from the central processing unit 1 and sends various commands necessary for collecting tomographic image data of the subject 11 to the transmission system 3, the gradient magnetic field generation system 4, and the reception system 5. .
[0017]
The transmission system 3 includes a high-frequency oscillator 7, a modulator 8, and transmission coils 10a and 10b, and a high-frequency pulse from the high-frequency oscillator 7 modulated by the modulator 8 according to a command from the sequencer 2 is amplified by high-frequency amplifiers 9a to 9d. Then, by supplying the transmission coils 10a and 10b to the transmitting coil 10a and 10b, the subject 11 is irradiated with a predetermined pulsed electromagnetic wave.
[0018]
The gradient magnetic field generating system 4 includes gradient magnetic field coils 13a and 13b having a configuration capable of independently applying gradient magnetic fields in Cartesian coordinate axis directions orthogonal to each other, that is, in the X axis direction, the Y axis direction, and the Z axis direction, and the gradient magnetic field coil 13a. , 13b and a gradient magnetic field power source 12 for supplying current to the magnetic field generator 13b and a sequencer 2 for controlling the gradient magnetic field power source 12.
[0019]
The receiving system 5 includes the receiving coil 14, a preamplifier 15, a quadrature detector 16 and an A / D converter 17, and when the receiving coil 14 detects a nuclear magnetic resonance signal from the subject 11, The signal is converted into a digital quantity by an A / D converter 17 via a preamplifier 15 and a quadrature detector 16 and sent to a central processing unit (CPU) 1.
[0020]
The signal processing system 6 includes an external storage device such as a magnetic disk 18 and an optical disk 19, a CRT 20, a keyboard 21, and the like.
[0021]
When data from the receiving system 5 is input to the central processing unit (CPU) 1, the central processing unit CPU1 executes signal processing, image reconstruction processing, and the like, and a desired cross-sectional image of the subject 11 as a result. Is displayed on the CRT 20 and stored in, for example, the magnetic disk 18 of the external storage device.
[0022]
The static magnetic field generation region 22 is for generating a uniform static magnetic field around the subject 11 in a predetermined direction.
Inside the static magnetic field generation region 22, gradient magnetic field coils 13a and 13b for generating a gradient magnetic field, transmission coils 10a and 10b, and a reception coil 14 are installed.
[0023]
Hereinafter, the case of a multi-element coil will be described.
FIG. 2 shows a schematic configuration of a power supply line for the transmission coil 10a. The transmission coil 10a in FIG. 2 is a multi-element type having two feeding points. Resonant capacitive elements 25a to 25l in series with each other on the first ring, resonant capacitive elements 26a to 26l in series with each other on the second ring, and resonant capacitive elements 27a to 27l in series with each other on the third ring. A transmission coil 10a having the elements 25a and 25j as feed points is configured. Further, baluns 28a and 28b are arranged in series with the cables connected to the feeding points 25a and 25j.
[0024]
Now, it is assumed that the two feeding points 25a and 25j on the transmission coil 10a in FIG. 2 are completely isolated, and there is no signal leakage. FIG. 6 is a diagram showing the positional relationship between the antinodes and nodes of the standing wave created by the power feeding to the feeding point 25a and the feeding point 25j on the first ring of the transmission coil 10a of FIG.
[0025]
When the multi-element coil is resonating, a standing wave is standing on the coil, and antinodes and nodes of the standing wave are alternately arranged every ¼ wavelength. The feeding point 25j is located at a node of a standing wave created by feeding to the feeding point 25a. Similarly, the feeding point 25a is located at the node of the standing wave created by the feeding to the feeding point 25j.
[0026]
However, the state of FIG. 6 is an ideal state in which the two feeding points 25a and 25j are completely isolated, and in fact, the feeding points 25a and 25j are deviated from the positions of the standing wave nodes created by each other. There is. This is because the feeding line for the feeding points 25a and 25j is a coaxial cable, and the coaxial cable itself has a capacity of about 100 pF / m between the signal line and the ground line, and therefore, from the feeding points 25a and 25j to the baluns 28a and 28b. The coaxial cable also becomes a part of the resonance capacity of the coil, and the standing wave current rides on it. In such a situation, the resonance condition of the standing wave on the cable easily changes due to the effect of stray capacitance existing between the cable and the surrounding environment (for example, another cable or metal structure). End up.
[0027]
FIG. 7 shows the antinodes and nodes of the standing wave created by the power supply to the power supply point 25a on the first ring of the transmission coil 10a of FIG. 2 under the influence of such an unstable stray capacitance. It is the figure which showed the positional relationship of the feeding point 25j. In FIG. 7, the node of the standing wave created by the power supply to the power supply point 25a and the power supply point 25j are shifted from the same position. Therefore, the feeding point 25j receives the voltage of the standing wave current generated by the feeding point 25a. Similarly, it is conceivable that the feeding point 25a receives a voltage of a standing wave current generated by feeding to the feeding point 25j.
[0028]
In such a situation, signal leakage occurs between the power supply lines connected to the power supply points 25a and 25j in FIG. 2, and the impedance characteristics of the coil as viewed from the RF power amplifiers 9a and 9b become unstable. To do. FIG. 3 is a diagram illustrating a state in which signal leakage I1 occurs between the ground lines due to the stray capacitance existing in the power supply line and the potential difference V1 generated between the two ground lines.
[0029]
In order to stabilize the impedance characteristics of the coil viewed from the RF Power Amps 9a and 9b in FIG. 3, the signal leakage I1 between the ground lines must be cut off. FIG. 4 is a schematic configuration diagram of a power supply line for the transmission coil 10a according to the first embodiment of the present invention. The difference from the configuration of FIG. 2 is that between the power supply points 25a and 25j and the baluns 28a and 28b. This is that an inductance 29 for connecting the ground lines of the two power supply lines (coaxial cables) is arranged.
[0030]
FIG. 5 is an equivalent circuit diagram between the ground lines in FIG. The circuit in FIG. 5 is an LC parallel resonance circuit, and by determining the inductance so that the resonance frequency matches the nuclear magnetic resonance frequency of the MRI apparatus, the impedance between the ground lines at that frequency can be made very large. .
[0031]
That is, in FIG. 4, an inductance 29 having an optimum value for connecting the ground lines of the power supply line is arranged between the power supply points 25 a and 25 j and the baluns 28 a and 28 b, thereby connecting to the power supply points 25 a and 25 j. It is possible to prevent signal leakage between the power supply lines. The optimum inductance is an inductance that causes the LC parallel resonance circuit of FIG. 5 to resonate at the nuclear magnetic resonance frequency of the MRI apparatus.
[0032]
As a result, the resonance condition of the standing wave riding on the coaxial cable changes due to the influence of stray capacitance existing between the feeding line of the transmission coil and the surrounding environment (for example, another cable or metal structure). However, it is possible to prevent the impedance characteristics of the coil from being unstable and the sharpness Q of the resonance from being lowered as viewed from the RF Power Amp.
[0033]
The above description is a case where a multi-element coil is used as a transmission coil, but the same applies to the case where it is used as a reception coil. When used as a receiving coil, the RF Power Amp is replaced with a preamplifier for signal amplification. By applying the same as the above to the receiving coil, it is possible to prevent the impedance characteristics of the coil from becoming unstable and the sharpness Q of the resonance from decreasing as seen from the preamplifier.
[0034]
Next, a second embodiment in which the present invention is applied to a general QD coil will be described. FIG. 8 is a simple example of a QD coil in which two loop coils 30a (solid line) and 30b (dotted line) are orthogonally stacked (in FIG. 8, element coils are shown in different sizes for the sake of clarity). But may be approximately the same if necessary). Each element coil uses the resonance capacitive elements 31a and 31b as feeding points. Ideally, these two element coils need to be electrically independent, but in reality, a slight coupling capacitance (capacitor) 31c remains.
[0035]
The ground lines of the two power supply lines (coaxial cables) are connected by an inductance 29, and the inductance 29 is adjusted so as to resonate in parallel with the coupling capacitor 31c at the nuclear magnetic resonance frequency of the MRI apparatus. This can prevent the impedance characteristics of the QD coil from becoming unstable and the sharpness Q of the resonance from decreasing. The case where such a QD coil is used as a receiving coil is the same as the case of the multi-element coil.
[0036]
【The invention's effect】
As described above, according to the present invention, in a QD coil, particularly a multi-element coil, two lines (coaxial cables) are provided between two feeding points and a balun provided on each feeding line connected thereto. By arranging the inductance connecting between the ground lines, the circuit formed by the coil capacitor in parallel with the inductance becomes a parallel resonant circuit for signals having the nuclear magnetic resonance frequency of the MRI apparatus. The signal can be prevented from leaking from one feeding point to the other.
[0037]
As a result, even when the balun cannot be arranged closest to the feeding point of the coil, instability of the impedance characteristic of the coil due to the influence of the feeding line connected to the two feeding points and the decrease in the sharpness Q value of the resonance are prevented. It is possible to prevent a high-frequency pulse irradiation or a decrease in reception efficiency.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of an MRI apparatus according to the present invention.
FIG. 2 is a schematic configuration diagram of a transmission coil 10a and a power supply line.
FIG. 3 is a diagram showing a state in which signal leakage I1 occurs between ground lines due to stray capacitance existing in the power supply line of the transmission coil 10a and a potential difference V1 generated between the ground lines.
FIG. 4 is a diagram in which an inductance 29 for connecting ground lines of a power feeding line is disposed between power feeding points 25a and 25j of the transmission coil 10a and baluns 28a and 28b (first embodiment).
5 is an equivalent circuit diagram between the ground lines in FIG. 4;
FIG. 6 is a diagram showing a positional relationship between antinodes and nodes of a standing wave standing on a transmission coil 10a and a feeding point. However, when the isolation between the feeding points 25a and 25j is sufficient.
FIG. 7 is a diagram showing a positional relationship between antinodes, nodes, and feeding points of standing waves standing on the transmission coil 10a. However, when the isolation between the feeding points 25a and 25j is insufficient.
FIG. 8 is a diagram in which an inductance 29 for connecting ground lines of a power feeding line is arranged (second embodiment) between power feeding points 31a and 31b of the QD coil and a balun.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Central processing unit (CPU), 2 Sequencer, 3 Transmission system, 4 Gradient magnetic field system, 5 Reception system, 6 Signal processing system, 7 High frequency transmitter, 8 Modulator, 9a-d High frequency amplifier (RF Power Amp), 10 Transmitting coil, 11 Subject, 12 Gradient magnetic field power supply, 13a-b Gradient magnetic field coil, 14 Receiving coil, 15 Pre Amp, 16 Detection circuit, 17 A / D Converter, 18 Magnetic disk, 19 Optical disk, 20 CRT, 21 Keyboard , 22 Static magnetic field generation region by magnetic circuit, 25a-l capacitor, 26a-l capacitor, 27a-l capacitor, 28a-b balun, 29 inductance, 30a-b Element coil constituting QD coil, 31a-b Capacitor

Claims (2)

給電点を備えた2つの要素コイルを直交して配置することによって該2つの要素コイル間に結合容量が生じた磁気共鳴イメージング装置用QDコイルにおいて、
前記各給電点に接続された給電ライン上にバランをそれぞれ備え、前記給電点と前記バランとの間で前記2つの給電ラインのグランド線間が、並列関係となる前記結合容量との間で所望の周波数で並列共振するように調整されたインダクタで接続されたことを特徴とする磁気共鳴イメージング装置用QDコイル。
In a QD coil for a magnetic resonance imaging apparatus in which a coupling capacitance is generated between two element coils by arranging two element coils provided with feeding points orthogonally,
A balun is provided on each of the power supply lines connected to each of the power supply points, and between the power supply point and the balun, between the ground lines of the two power supply lines is desired between the coupling capacitors having a parallel relationship. A QD coil for a magnetic resonance imaging apparatus, wherein the QD coil is connected by an inductor adjusted so as to resonate in parallel at a frequency of.
互いに同心円状の複数のリングと、前記各リングを放射状に結ぶ複数のエレメントと、前記各リングにおいて前記エレメントとの接続点間に共振用コンデンサを配置した磁気共鳴イメージング装置用マルチエレメントコイルにおいて、
互いに直交する2つの給電点を備え、前記各給電点に接続された給電ライン上にバランをそれぞれ備え、前記給電点と前記バランとの間で前記2つの給電ラインのグランド線間が、並列関係となる前記共振用コンデンサとの間で所望の周波数で並列共振するように調整されたインダクタで接続されたことを特徴とする磁気共鳴イメージング装置用マルチエレメントコイル。
In a multi-element coil for a magnetic resonance imaging apparatus in which a plurality of concentric rings, a plurality of elements that radiate the rings, and a resonance capacitor disposed between connection points of the elements in the rings,
Two feed points that are orthogonal to each other, each provided with a balun on a feed line connected to each feed point, and a parallel relationship between the ground lines of the two feed lines between the feed point and the balun A multi-element coil for a magnetic resonance imaging apparatus, wherein the multi-element coil is connected to an inductor adjusted so as to resonate in parallel at a desired frequency.
JP2003189420A 2003-07-01 2003-07-01 Coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus Expired - Lifetime JP4149320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189420A JP4149320B2 (en) 2003-07-01 2003-07-01 Coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189420A JP4149320B2 (en) 2003-07-01 2003-07-01 Coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus

Publications (3)

Publication Number Publication Date
JP2005021325A true JP2005021325A (en) 2005-01-27
JP2005021325A5 JP2005021325A5 (en) 2006-08-17
JP4149320B2 JP4149320B2 (en) 2008-09-10

Family

ID=34187638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189420A Expired - Lifetime JP4149320B2 (en) 2003-07-01 2003-07-01 Coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP4149320B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022562A (en) * 2007-07-20 2009-02-05 Hitachi Medical Corp High frequency coil for magnetic resonance imaging device and magnetic resonance imaging device using the same
US7576541B2 (en) 2006-11-15 2009-08-18 Ge Medical Systems Global Technology Company, Llc RF coil for MRI apparatus, method of using RF coil for MRI apparatus, and MRI apparatus
WO2014034370A1 (en) * 2012-08-29 2014-03-06 株式会社 東芝 Radio frequency coil unit and magnetic resonance imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576541B2 (en) 2006-11-15 2009-08-18 Ge Medical Systems Global Technology Company, Llc RF coil for MRI apparatus, method of using RF coil for MRI apparatus, and MRI apparatus
JP2009022562A (en) * 2007-07-20 2009-02-05 Hitachi Medical Corp High frequency coil for magnetic resonance imaging device and magnetic resonance imaging device using the same
WO2014034370A1 (en) * 2012-08-29 2014-03-06 株式会社 東芝 Radio frequency coil unit and magnetic resonance imaging device
JP2014061266A (en) * 2012-08-29 2014-04-10 Toshiba Corp High-frequency coil unit and magnetic resonance imaging apparatus
CN103796582A (en) * 2012-08-29 2014-05-14 株式会社东芝 Radio frequency coil unit and magnetic resonance imaging device
CN103796582B (en) * 2012-08-29 2017-04-26 东芝医疗系统株式会社 Radio frequency coil unit and magnetic resonance imaging device
US10006976B2 (en) 2012-08-29 2018-06-26 Toshiba Medical Systems Corporation Radio frequency coil unit and magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP4149320B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US7414402B2 (en) Coil apparatus and nuclear magnetic resonance apparatus using the same
JP4844310B2 (en) High frequency coil and magnetic resonance imaging apparatus
KR100677021B1 (en) Rf body coil
US4751464A (en) Cavity resonator with improved magnetic field uniformity for high frequency operation and reduced dielectric heating in NMR imaging devices
JP4625834B2 (en) RF surface resonator
WO2020000818A1 (en) Dual-core radio frequency coil device and dual-core radio frequency array coil device
US20040155656A1 (en) Transmission and receiving coil for mr apparatus
JP2007325826A (en) Double-tuned rf coil
EP0132338B1 (en) Apparatus and method for reducing spurious currents in nmr imaging apparatus induced by pulsed gradient fields
WO2012141106A1 (en) High frequency coil unit and magnetic resonance imaging apparatus
US10060994B2 (en) Z-segmented radio frequency antenna device for magnetic resonance imaging
JP2588552B2 (en) Magnetic resonance imaging device
CN102498410A (en) Multi-element transmit rf chain with local automatic tune and match device
US10859647B2 (en) Magnetic resonance imaging (MRI) transmit (Tx)/ receive (Rx) coil using the same array coil
WO2006057395A1 (en) Magnetic resonance imaging device
JPH07265278A (en) Rf probe
US7688132B2 (en) Method and apparatus for RF input coupling for inductive output tubes and other emission gated devices
US9207297B2 (en) System and method for a mode balanced parametric amplifier
JP2012510846A (en) Magnetic resonance imaging system with satellite gradient coils
JP4149320B2 (en) Coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus
CN110988762A (en) Radio frequency power amplifier and radio frequency signal excitation circuit of magnetic resonance imaging system
JP2002159471A (en) Magnetic resonance imaging and its method
US11193994B2 (en) Single-stage amplifier with active feedback compensation
JP3615617B2 (en) MRI RF coil and MRI apparatus
KR101562703B1 (en) Activation of transmit/receive arrays for decoupling during transmission

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4149320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term