JP2005019699A - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP2005019699A
JP2005019699A JP2003182762A JP2003182762A JP2005019699A JP 2005019699 A JP2005019699 A JP 2005019699A JP 2003182762 A JP2003182762 A JP 2003182762A JP 2003182762 A JP2003182762 A JP 2003182762A JP 2005019699 A JP2005019699 A JP 2005019699A
Authority
JP
Japan
Prior art keywords
light
light receiving
solid
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182762A
Other languages
Japanese (ja)
Inventor
Kazushi Kodama
一志 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003182762A priority Critical patent/JP2005019699A/en
Publication of JP2005019699A publication Critical patent/JP2005019699A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging device where occurrence of shading is suppressed. <P>SOLUTION: A light-receiving surface consists of a plurality of light-receiving parts 16 whose light-entering side ends are respectively opened and which are arranged on a substrate 12 in the state of being surrounded by partitions 14. Light entering to the openings is guided to the disposed positions of the light-receiving parts 16 through the light guide paths 22 inside of the partitions 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各々光の入射側端部が開口された隔壁により囲まれた状態で半導体基板上に配設された複数の受光素子により受光面が構成された固体撮像素子に関する。
【0002】
【従来の技術】
近年、CCD(Charge Coupled Device)エリアセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージ・センサ等の固体撮像素子の高解像度化が進んでいる。
【0003】
この種の固体撮像素子では、高解像度化を実現するために、撮像素子自体の受光面の面積を変えずに、受光素子毎の受光面積を狭くすることにより受光素子の数を多くすることが一般に行われている。
【0004】
このような技術においては、各受光素子の受光面積が狭いため、受光素子に入射する光量が少ないと感度低下を招くことになる。よって、受光素子にできるだけ多くの光を入射させることが課題となっている。
【0005】
このような近年の高解像度化が進む固体撮像素子に関する技術として、従来、半導体基板の表面部に受光素子が多数配設され、各受光素子の周囲が隆起し、半導体基板表面上に受光素子外への光の入射を阻み、かつセンサー開口を有する遮光膜が形成され、該遮光膜上にセンサー開口の形成を高精度に行なうための反射防止膜が形成された固体撮像素子において、各受光素子の感度低下を伴なうことなく遮光膜の加工精度を高めることを目的として、反射防止膜の少なくとも各受光素子の周囲部上にある隆起部の内側面上に当たる部分をぬき部とした技術があった(例えば、特許文献1参照。)。
【0006】
すなわち、この技術により、各受光素子の周囲部上にある隆起部の内面に入射した光の多くが遮光膜の内側面にてセンサー開口へ向けて反射され、該反射光も含めて受光素子により受光されるため、各受光素子の感度を向上させることができる。また、センサー開口を形成するために行なわれる露光処理において、露光光線の遮光膜での反射が反射防止膜により防止できるので、遮光膜の加工精度が高まる。
【0007】
【特許文献1】
特開平8−250691号公報
【0008】
【発明が解決しようとする課題】
ところで、固体撮像素子においては、受光面の外周部に近づくほど受光光量が減少することに起因して、撮像画像の周辺部が暗くなる、いわゆるシェーディングが生じることがある。
【0009】
しかしながら、上記特許文献1の技術では、受光面の位置により受光光量が異なることについては何ら考慮されておらず、シェーディングの発生を防止することができない、という問題点があった。
【0010】
本発明は上記問題点を解決するためになされたものであり、シェーディングの発生を抑制できる固体撮像素子を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の固体撮像素子は、各々光の入射側端部が開口された隔壁により囲まれた状態で半導体基板上に配設された複数の受光素子により受光面が構成された固体撮像素子であって、前記隔壁内に前記開口に入射された光を前記受光素子の配設位置まで導くための導光手段を設けたことを特徴としている。
【0012】
請求項1に記載の固体撮像素子によれば、各々光の入射側端部が開口され、かつ受光面を構成する複数の受光素子を囲む状態とされている隔壁内に設けられた導光手段により、前記開口に入射された光が前記受光素子の配設位置まで導かれる。
【0013】
これにより、隔壁の開口に入射された光が効率よく受光素子の配設位置まで導かれ、導光手段を設けない場合に比較して、より多くの光を各受光素子にて受光することができるようになり、この結果としてシェーディングの発生を抑制することができる。
【0014】
このように、請求項1に記載の固体撮像素子によれば、各々光の入射側端部が開口された隔壁により囲まれた状態で半導体基板上に配設された複数の受光素子により受光面を構成し、前記開口に入射された光を前記受光素子の配設位置まで導光手段により導くようにしているので、シェーディングの発生を抑制できる。
【0015】
ところで、導光手段は、受光面を構成する全ての受光素子を囲む隔壁内に設けてもよいが、シェーディングが、固体撮像素子の受光面の外周部に近づくほど受光光量が減少することに起因して生じる、撮像画像の周辺部が暗くなる現象であることを考慮すると、請求項2に記載の発明のように、前記導光手段を、前記受光面の外周部を含む一部領域を構成する受光素子に対応する隔壁内のみに設ける形態とすることもできる。
【0016】
これにより、中心部に位置する受光素子と外周部に位置する受光素子との受光光量の差が小さくなり、シェーディングの発生を効果的に抑制できる。
【0017】
また、請求項3に記載の発明のように、前記導光手段を、前記受光面の中心部から外周部に近づくほど配設密度が高くなるように設ける形態とすることもできる。
【0018】
これにより、受光面の中心部から外周部に近づくほど受光素子による受光光量を増加させることができ、外周部に近づくほど受光光量が減少することに起因するシェーディングの発生を、より高精度に抑制することができる。
【0019】
ところで、本発明において隔壁内に導光手段を設ける方法としては、隔壁内面に高反射率の金属材料や樹脂、塗料等を塗布する方法や、隔壁内に光透過性に優れた樹脂やガラス等の材料を複数種類充填し、隔壁内面と隔壁内の中心部分とで反射率の異なる層を形成する方法等を例示することができる。
【0020】
また、請求項4に記載の固体撮像素子のように、前記導光手段を、光ファイバーとしてもよい。
【0021】
請求項4に記載の固体撮像素子によれば、隔壁内に光ファイバーが設けられるので、隔壁開口に入射された光を光ファイバーの全反射特性により効率よく受光素子に導くことができ、シェーディングの発生を効果的に抑制できる。
【0022】
一方、請求項5に記載の固体撮像素子は、請求項1乃至請求項4の何れかに記載の発明において、前記複数の受光素子を、前記受光面の外周部に近い受光素子ほど受光面積が広いものとしている。
【0023】
これにより、本発明の導光手段による効果に加え、外周部に近い受光素子ほど増加する受光光量の不足分を受光素子の受光面積でも補うことができるので、より高精度でかつ効率的にシェーディングの発生を抑制することができる。
【0024】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、ここでは、本発明をCCDエリアセンサに適用した場合について説明する。
【0025】
まず、図1を参照して、本実施の形態に係るCCDエリアセンサ(以下、単に「CCD」という。)10の構成を説明する。
【0026】
CCD10は、半導体基板(以下、単に「基板」という。)12と、基板12と所定の間隔をおいて重ね合わされたマイクロレンズ20とを含んで構成されている。
【0027】
基板12には、表面に当該CCD10の受光面を構成する複数の受光部16が平面視マトリクス状(2次元状)に配設され、各受光部16を囲むように隔壁14が設けられている。
【0028】
また、マイクロレンズ20には、各受光部16に1対1で対応する集光部20Aが設けられており、CCD10に入射された光を効率よく集光させて受光部16に照射するようになっている。
【0029】
CCD10では、受光部16で光電変換により受光光量に応じた電荷(信号電荷)が蓄積され、各受光部16に蓄積された電荷がそれぞれ隔壁14内部に設けられた不図示の転送路によって転送されることにより、外部に読み出されるようになっている。
【0030】
ここで、図1に示すように、本実施の形態に係るCCD10は、撮像画像にシェーディングが発生することを防止するために、受光部16の受光面積が、CCD10の受光面における外周部(図1における左側)に近いほど広くなるようにしている。
【0031】
さらに、CCD10には、隔壁14内部に導光性に優れた光ファイバによって構成された導光路22及びカラーフィルタ18が設けられている。導光路22は、各々、一端が受光部16に接すると共に、他端がマイクロレンズ20の対応する集光部20Aに対向しており、当該対向面が光を採光する採光口となっている。そして、当該採光口には、対応する受光部16により受光すべき光の色を透過させるカラーフィルタ18が設けられている。また、当該採光口は、CCD10における受光面の中心方向に向けて傾斜すると共に、当該受光面における外周部に近いものほど、基板12の表面に対する傾斜角が大きくなるように設けられている。
【0032】
これにより、マイクロレンズ20の各集光部20Aにより集光された入射光は、それぞれカラーフィルタ18を介し、かつ上記採光口及び導光路22内を介して、効率よく受光部16の方向へ導かれる。
【0033】
以下、本実施の形態に係るCCD10の製造プロセスについて説明する。
【0034】
まず、シリコンウェハからなる基板12に対して各種不純物のドーピング及び酸化膜の積層を繰り返すことにより、受光部16、垂直転送路及び水平転送路を構成する層が含まれた積層物を構成する。
【0035】
次に、当該積層物に対してエッチングによって各画素毎の受光部16に至るまで掘り下げることにより隔壁14を形成する。
【0036】
なお、ここまでの製造プロセスは従来から行われているものであり、これ以上の詳細な説明は省略する。また、ここまでの製造プロセスは、以上のものに限らず、従来からCCDの製造プロセスとして適用されている他の既存手法を適用することができる。
【0037】
ここで、本実施の形態に係るCCD10の製造プロセスでは、以上の従前から行われているプロセスに加え、各隔壁14の内部に別工程により製作した光ファイバを挿入し、エポキシ樹脂により隔壁14内面に固定して各受光部16に対する導光路22を形成する。
【0038】
その後、カラーフィルタの材料を光ファイバの採光口に層状に堆積させることによりカラーフィルタ18を形成し、更に、その上面にマイクロレンズ20を設ける。
【0039】
以上詳細に説明したように、本実施の形態に係るCCD10によれば、各々光の入射側端部が開口された隔壁14により囲まれた状態で基板12上に配設された複数の受光部16により受光面を構成し、導光路22により前記開口に入射された光を受光部16の配設位置まで導くようにしているので、シェーディングの発生を抑制できる。
【0040】
また、本実施の形態に係るCCD10によれば、導光路22を光ファイバーとしたので、隔壁14の開口に入射された光を光ファイバーの全反射特性により効率よく受光部16に導くことができ、シェーディングの発生を効果的に抑制できる。
【0041】
さらに、本実施の形態に係るCCD10によれば、受光面を構成する受光部16の中でも他の受光部16に比べて受光光量が不足する傾向にある、受光面の外周部に近い受光部16ほど受光面積が広くなるようにしているので、導光路22による効果に加え、外周部に近い受光部16ほど増加する受光光量の不足分を受光部16の受光面積でも補うことができ、より高精度でかつ効率的にシェーディングの発生を抑制することができる。
【0042】
なお、本実施の形態では、受光面を構成する全ての受光部16に対して導光路22を設ける形態について説明したが、本発明はこれに限定されるものではなく、受光面の中心部と外周部とで、外周部の方が導光路22の配設密度が高くなるように構成してもよい。
【0043】
例えば、一例として図2に示すように、受光面を同図の一点鎖線で示すような同心円により複数の領域(同図では、A、B、C、Dの4つの領域)に区分し、領域Aから領域Dにかけて、導光路22の配設密度が徐々に高くなるように構成してもよい。この構成により、導光路22を全ての受光部16に対応させて設ける場合に比較して、より高精度でかつ効率的にシェーディングの発生が抑制されるが、必要に応じて各領域における受光部16の受光面積及び採光口の向きを変えることでさらにシェーディング発生の抑制効果が得られる。
【0044】
また、受光面の外周部を含む一部領域における受光部16に対してのみ導光路22を設ける形態としてもよい。
【0045】
この場合、一例として図3に示すように、受光面の外周部(図3における左側)に近い受光部16にのみ導光路22が設けられ、隔壁14とマイクロレンズ20との間にシート状のカラーフィルタ19が設けられる。なお、同図に示す例では、各受光部16の受光面積及び採光口の向きを一定としているが、図1に示したCCD10のように、受光面の外周部に近づくものほど受光面積を広くしたり、採光口の傾斜角を大きくしたりすることができることは言うまでもない。
【0046】
このような構成によっても、中心部に位置する受光素子と外周部に位置する受光素子との受光光量の差が小さくなり、シェーディングの発生を抑制できる。
【0047】
また、本実施の形態では、本発明の導光手段として、別工程で製作した光ファイバを適用した場合について説明したが、本発明はこれに限定されるものではなく、本発明の導光手段として、例えば、CCDの製造プロセスにおいて各隔壁14内に光学硝子の材料を用いて導光路22を形成することにより、当該導光路22を適用してもよく、また、隔壁14の壁面に対して真空蒸着等の手法によりアルミニウム等の金属膜を形成することにより、当該金属膜を適用してもよい。
【0048】
また、以上のCCD10の構成(図1及び図3)は一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。
【0049】
例えば、マイクロレンズ20及びカラーフィルタ18は、それぞれ感度向上及びカラー画像取得の目的で適宜CCD10に含められるものであり、これらの少なくとも一方を含まない構成とすることも可能である。
【0050】
更に、本実施の形態では、本発明をCCDエリアセンサに適用した場合について説明したが、本発明はこれに限定されるものではなく、例えばCCDラインセンサに適用することもでき、CCD以外の、例えばCMOSイメージ・センサに適用することもできる。これらの場合にも、本実施の形態と同様の効果を奏することができる。
【0051】
【発明の効果】
以上説明したように、本発明に係る固体撮像素子によれば、各々光の入射側端部が開口された隔壁により囲まれた状態で半導体基板上に配設された複数の受光素子により受光面を構成し、前記開口に入射された光を前記受光素子の配設位置まで導光手段により導くようにしているので、シェーディングの発生を抑制できる、という優れた効果を有する。
【図面の簡単な説明】
【図1】実施の形態に係るCCDの構成を示す側面断面図である。
【図2】実施の形態に係るCCDの受光面を複数の領域に区分した状態を示す概略平面図(模式図)である。
【図3】CCDの他の構成例を示す側面断面である。
【符号の説明】
10 CCD
12 基板(半導体基板)
14 隔壁
16 受光部(受光素子)
18 カラーフィルタ
19 カラーフィルタ
20 マイクロレンズ
20A 集光部
22 導光路(導光手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-state imaging device in which a light receiving surface is constituted by a plurality of light receiving elements disposed on a semiconductor substrate in a state where each light incident side end portion is surrounded by an open partition.
[0002]
[Prior art]
In recent years, the resolution of solid-state imaging devices such as CCD (Charge Coupled Device) area sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors has been increasing.
[0003]
In this type of solid-state imaging device, in order to achieve high resolution, the number of light receiving elements may be increased by narrowing the light receiving area for each light receiving element without changing the area of the light receiving surface of the image sensor itself. Generally done.
[0004]
In such a technique, since the light receiving area of each light receiving element is narrow, if the amount of light incident on the light receiving element is small, the sensitivity is lowered. Therefore, it is a problem to make as much light as possible enter the light receiving element.
[0005]
As a technology related to such a solid-state imaging device that has recently been improved in resolution, conventionally, a large number of light receiving elements are arranged on the surface portion of the semiconductor substrate, and the periphery of each light receiving element is raised, and the outside of the light receiving element is formed on the surface of the semiconductor substrate. In each solid-state imaging device, a light-shielding film having a sensor opening is formed and an antireflection film for forming the sensor opening with high accuracy is formed on the light-shielding film. In order to increase the processing accuracy of the light-shielding film without lowering the sensitivity of the anti-reflection film, there is a technique in which at least the portion of the anti-reflection film that hits the inner surface of the raised portion on the periphery of each light receiving element (For example, see Patent Document 1).
[0006]
That is, by this technique, most of the light incident on the inner surface of the raised portion on the periphery of each light receiving element is reflected toward the sensor opening on the inner surface of the light shielding film, and the light receiving element including the reflected light is reflected by the light receiving element. Since the light is received, the sensitivity of each light receiving element can be improved. Further, in the exposure process performed to form the sensor aperture, the reflection of the exposure light beam on the light shielding film can be prevented by the antireflection film, so that the processing accuracy of the light shielding film is increased.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-250691
[Problems to be solved by the invention]
By the way, in a solid-state image sensor, so-called shading in which the peripheral portion of a captured image becomes dark may occur due to the amount of received light decreasing as it approaches the outer peripheral portion of the light receiving surface.
[0009]
However, the technique disclosed in Patent Document 1 does not take into consideration that the amount of received light varies depending on the position of the light receiving surface, and has a problem in that the occurrence of shading cannot be prevented.
[0010]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a solid-state imaging device capable of suppressing the occurrence of shading.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the solid-state imaging device according to claim 1 receives light by a plurality of light receiving elements disposed on a semiconductor substrate in a state where each light incident side end portion is surrounded by an opened partition wall. A solid-state imaging device having a surface, characterized in that light guide means for guiding light incident on the opening to the arrangement position of the light receiving element is provided in the partition.
[0012]
According to the solid-state imaging device according to claim 1, the light guide means provided in the partition wall in which the light incident side end portions are opened and the plurality of light receiving devices constituting the light receiving surface are surrounded. Thus, the light incident on the opening is guided to the arrangement position of the light receiving element.
[0013]
As a result, the light incident on the opening of the partition is efficiently guided to the position where the light receiving element is disposed, and more light can be received by each light receiving element than in the case where the light guiding means is not provided. As a result, the occurrence of shading can be suppressed.
[0014]
As described above, according to the solid-state imaging device of the first aspect, the light receiving surface is received by the plurality of light receiving devices arranged on the semiconductor substrate in a state where each light incident side end portion is surrounded by the opened partition. Since the light incident on the opening is guided by the light guide means to the position where the light receiving element is disposed, the occurrence of shading can be suppressed.
[0015]
By the way, the light guide means may be provided in a partition wall that surrounds all the light receiving elements that constitute the light receiving surface, but the amount of received light decreases as the shading approaches the outer peripheral portion of the light receiving surface of the solid-state imaging device. In consideration of the phenomenon in which the peripheral portion of the captured image is darkened, the light guide means is configured with a partial region including the outer peripheral portion of the light receiving surface. It is also possible to adopt a form provided only in the partition corresponding to the light receiving element.
[0016]
As a result, the difference in the amount of received light between the light receiving element located in the central portion and the light receiving element located in the outer peripheral portion is reduced, and the occurrence of shading can be effectively suppressed.
[0017]
Further, as in a third aspect of the present invention, the light guide means may be provided such that the arrangement density increases as the distance from the central portion of the light receiving surface approaches the outer peripheral portion.
[0018]
This makes it possible to increase the amount of light received by the light receiving element as it approaches the outer periphery from the center of the light receiving surface, and to suppress the occurrence of shading caused by the decrease in the amount of received light closer to the outer periphery. can do.
[0019]
By the way, as a method of providing the light guide means in the partition wall in the present invention, a method of applying a highly reflective metal material, resin, paint, etc. on the inner surface of the partition wall, resin or glass having excellent light transmittance in the partition wall, etc. A method of filling a plurality of types of materials and forming layers having different reflectivities between the inner surface of the partition wall and the central portion in the partition wall can be exemplified.
[0020]
Further, as in the solid-state imaging device according to claim 4, the light guiding means may be an optical fiber.
[0021]
According to the solid-state imaging device according to claim 4, since the optical fiber is provided in the partition wall, the light incident on the partition wall opening can be efficiently guided to the light receiving device by the total reflection characteristic of the optical fiber, and shading can be generated. It can be effectively suppressed.
[0022]
On the other hand, a solid-state imaging device according to a fifth aspect is the invention according to any one of the first to fourth aspects, wherein the light receiving area of the plurality of light receiving elements is closer to the outer periphery of the light receiving surface. It is wide.
[0023]
As a result, in addition to the effects of the light guiding means of the present invention, the shortage of the amount of received light that increases as the light receiving element closer to the outer peripheral portion can be compensated for by the light receiving area of the light receiving element, so shading can be performed more accurately and efficiently. Can be suppressed.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, a case where the present invention is applied to a CCD area sensor will be described.
[0025]
First, the configuration of a CCD area sensor (hereinafter simply referred to as “CCD”) 10 according to the present embodiment will be described with reference to FIG.
[0026]
The CCD 10 includes a semiconductor substrate (hereinafter simply referred to as “substrate”) 12 and a microlens 20 that is superimposed on the substrate 12 at a predetermined interval.
[0027]
On the surface of the substrate 12, a plurality of light receiving portions 16 constituting a light receiving surface of the CCD 10 are arranged in a matrix in a plan view (two-dimensional shape), and a partition wall 14 is provided so as to surround each light receiving portion 16. .
[0028]
Further, the microlens 20 is provided with a condensing part 20A corresponding to each light receiving part 16 on a one-to-one basis so that the light incident on the CCD 10 is efficiently condensed and irradiated to the light receiving part 16. It has become.
[0029]
In the CCD 10, charges (signal charges) corresponding to the amount of received light are accumulated by photoelectric conversion in the light receiving unit 16, and the charges accumulated in each light receiving unit 16 are transferred by transfer paths (not shown) provided inside the partition walls 14. As a result, it is read out to the outside.
[0030]
Here, as shown in FIG. 1, in the CCD 10 according to the present embodiment, the light receiving area of the light receiving unit 16 has an outer peripheral portion (see FIG. 1 (the left side in FIG. 1) is wider.
[0031]
Further, the CCD 10 is provided with a light guide path 22 and a color filter 18 formed of an optical fiber having excellent light guide properties inside the partition wall 14. Each of the light guide paths 22 is in contact with the light receiving unit 16 at one end and is opposed to the corresponding light collecting unit 20 </ b> A of the microlens 20, and the facing surface serves as a light collection port for collecting light. The light outlet is provided with a color filter 18 that transmits the color of light to be received by the corresponding light receiving unit 16. In addition, the light inlet is inclined toward the center direction of the light receiving surface of the CCD 10, and the inclination angle with respect to the surface of the substrate 12 increases as the distance from the outer peripheral portion of the light receiving surface increases.
[0032]
Thereby, the incident light condensed by each condensing unit 20A of the microlens 20 is efficiently guided to the light receiving unit 16 through the color filter 18 and the light collection port and the inside of the light guide path 22, respectively. It is burned.
[0033]
Hereinafter, a manufacturing process of the CCD 10 according to the present embodiment will be described.
[0034]
First, by repeating doping of various impurities and stacking of an oxide film on the substrate 12 made of a silicon wafer, a stack including layers constituting the light receiving unit 16, the vertical transfer path, and the horizontal transfer path is configured.
[0035]
Next, the barrier rib 14 is formed by digging up the stacked body to the light receiving portion 16 for each pixel by etching.
[0036]
The manufacturing process so far has been conventionally performed, and detailed description thereof will be omitted. Further, the manufacturing process so far is not limited to the above, and other existing methods conventionally applied as a manufacturing process of a CCD can be applied.
[0037]
Here, in the manufacturing process of the CCD 10 according to the present embodiment, in addition to the conventional processes described above, an optical fiber manufactured in a separate process is inserted into each partition 14 and the inner surface of the partition 14 is made of epoxy resin. The light guide path 22 for each light receiving portion 16 is formed.
[0038]
Thereafter, the color filter 18 is formed by depositing the material of the color filter in a layered manner on the light port of the optical fiber, and the microlens 20 is provided on the upper surface thereof.
[0039]
As described above in detail, according to the CCD 10 according to the present embodiment, a plurality of light receiving portions disposed on the substrate 12 in a state where each light incident side end portion is surrounded by the opened partition wall 14. Since the light receiving surface 16 is configured and the light incident on the opening is guided to the position where the light receiving unit 16 is disposed by the light guide path 22, the occurrence of shading can be suppressed.
[0040]
Further, according to the CCD 10 according to the present embodiment, since the light guide path 22 is an optical fiber, the light incident on the opening of the partition wall 14 can be efficiently guided to the light receiving unit 16 by the total reflection characteristics of the optical fiber, and shading is performed. Can be effectively suppressed.
[0041]
Furthermore, according to the CCD 10 according to the present embodiment, among the light receiving units 16 constituting the light receiving surface, the light receiving unit 16 close to the outer peripheral portion of the light receiving surface tends to be insufficient in comparison with the other light receiving units 16. In addition to the effect of the light guide path 22, in addition to the effect of the light guide path 22, the shortage of the received light amount that increases as the light receiving unit 16 is closer to the outer periphery can be compensated for by the light receiving area of the light receiving unit 16. The generation of shading can be suppressed accurately and efficiently.
[0042]
In the present embodiment, the mode in which the light guide path 22 is provided for all the light receiving portions 16 constituting the light receiving surface has been described. However, the present invention is not limited to this, and the central portion of the light receiving surface You may comprise so that the arrangement | positioning density of the light guide path 22 may become higher in the outer peripheral part.
[0043]
For example, as shown in FIG. 2 as an example, the light-receiving surface is divided into a plurality of regions (four regions A, B, C, and D in the same figure) by concentric circles as indicated by a dashed line in FIG. From A to the region D, the arrangement density of the light guide paths 22 may be gradually increased. This configuration suppresses the occurrence of shading with higher accuracy and efficiency compared to the case where the light guide path 22 is provided corresponding to all the light receiving portions 16, but the light receiving portions in each region are required as necessary. The effect of suppressing the occurrence of shading can be further obtained by changing the light receiving area of 16 and the direction of the lighting port.
[0044]
Moreover, it is good also as a form which provides the light guide path 22 only with respect to the light-receiving part 16 in the partial area | region including the outer peripheral part of a light-receiving surface.
[0045]
In this case, as shown in FIG. 3 as an example, a light guide path 22 is provided only in the light receiving portion 16 near the outer peripheral portion (left side in FIG. 3) of the light receiving surface, and a sheet-like shape is provided between the partition wall 14 and the microlens 20. A color filter 19 is provided. In the example shown in the figure, the light receiving area of each light receiving unit 16 and the direction of the lighting port are constant. However, as the CCD 10 shown in FIG. Needless to say, it is possible to increase the inclination angle of the daylighting port.
[0046]
Also with such a configuration, the difference in the amount of received light between the light receiving element located in the center and the light receiving element located in the outer peripheral part is reduced, and the occurrence of shading can be suppressed.
[0047]
Further, in the present embodiment, the case where an optical fiber manufactured in a separate process is applied as the light guide unit of the present invention has been described, but the present invention is not limited to this, and the light guide unit of the present invention. For example, the light guide path 22 may be applied by forming the light guide path 22 by using an optical glass material in each partition wall 14 in the manufacturing process of the CCD. The metal film may be applied by forming a metal film such as aluminum by a technique such as vacuum deposition.
[0048]
The above-described configuration of the CCD 10 (FIGS. 1 and 3) is merely an example, and it goes without saying that the configuration can be appropriately changed without departing from the gist of the present invention.
[0049]
For example, the microlens 20 and the color filter 18 are appropriately included in the CCD 10 for the purpose of improving sensitivity and acquiring a color image, respectively, and may be configured not to include at least one of them.
[0050]
Furthermore, in the present embodiment, the case where the present invention is applied to a CCD area sensor has been described. However, the present invention is not limited to this, and can be applied to, for example, a CCD line sensor. For example, it can be applied to a CMOS image sensor. In these cases, the same effects as in the present embodiment can be obtained.
[0051]
【The invention's effect】
As described above, according to the solid-state imaging device according to the present invention, the light receiving surface is received by the plurality of light receiving elements arranged on the semiconductor substrate in a state where each light incident side end is surrounded by the opened partition. Since the light incident on the opening is guided by the light guiding means to the position where the light receiving element is disposed, it is possible to suppress the occurrence of shading.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a configuration of a CCD according to an embodiment.
FIG. 2 is a schematic plan view (schematic diagram) showing a state in which the light receiving surface of the CCD according to the embodiment is divided into a plurality of regions.
FIG. 3 is a side sectional view showing another configuration example of a CCD.
[Explanation of symbols]
10 CCD
12 Substrate (semiconductor substrate)
14 Bulkhead 16 Light-receiving part (light-receiving element)
18 Color filter 19 Color filter 20 Micro lens 20A Condenser 22 Light guide path (light guide means)

Claims (5)

各々光の入射側端部が開口された隔壁により囲まれた状態で半導体基板上に配設された複数の受光素子により受光面が構成された固体撮像素子であって、
前記隔壁内に前記開口に入射された光を前記受光素子の配設位置まで導くための導光手段を設けた
ことを特徴とする固体撮像素子。
A solid-state imaging device in which a light receiving surface is constituted by a plurality of light receiving elements disposed on a semiconductor substrate in a state surrounded by a partition wall having an opening on each light incident side,
A solid-state imaging device, characterized in that light guide means for guiding the light incident on the opening to the arrangement position of the light receiving device is provided in the partition wall.
前記導光手段を、前記受光面の外周部を含む一部領域を構成する受光素子に対応する隔壁内のみに設けたことを特徴とする請求項1に記載の固体撮像素子。2. The solid-state imaging device according to claim 1, wherein the light guiding unit is provided only in a partition corresponding to a light receiving element constituting a partial region including an outer peripheral portion of the light receiving surface. 前記導光手段を、前記受光面の中心部から外周部に近づくほど配設密度が高くなるように設けたことを特徴とする請求項1又は請求項2に記載の固体撮像素子。3. The solid-state imaging device according to claim 1, wherein the light guide unit is provided such that the arrangement density increases as the distance from the center of the light receiving surface approaches the outer peripheral part. 4. 前記導光手段を、光ファイバーとしたことを特徴とする請求項1乃至請求項3の何れかに記載の固体撮像素子。The solid-state imaging device according to claim 1, wherein the light guiding unit is an optical fiber. 前記複数の受光素子を、前記受光面の外周部に近い受光素子ほど受光面積が広いものとしたことを特徴とする請求項1乃至請求項4の何れかに記載の固体撮像素子。5. The solid-state imaging device according to claim 1, wherein the plurality of light receiving elements have a larger light receiving area as a light receiving element closer to an outer peripheral portion of the light receiving surface.
JP2003182762A 2003-06-26 2003-06-26 Solid-state imaging device Pending JP2005019699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182762A JP2005019699A (en) 2003-06-26 2003-06-26 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182762A JP2005019699A (en) 2003-06-26 2003-06-26 Solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2005019699A true JP2005019699A (en) 2005-01-20

Family

ID=34183059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182762A Pending JP2005019699A (en) 2003-06-26 2003-06-26 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2005019699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311412A (en) * 2007-06-14 2008-12-25 Fujifilm Corp Solid-state imaging element
US9337113B2 (en) 2012-11-20 2016-05-10 Toyota Jidosha Kabushiki Kaisha Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311412A (en) * 2007-06-14 2008-12-25 Fujifilm Corp Solid-state imaging element
US9337113B2 (en) 2012-11-20 2016-05-10 Toyota Jidosha Kabushiki Kaisha Semiconductor device

Similar Documents

Publication Publication Date Title
JP6325620B2 (en) Semiconductor device and manufacturing method thereof
US8102460B2 (en) Solid-state imaging device
US7485906B2 (en) Colors only process to reduce package yield loss
US8053855B2 (en) CMOS image sensor for photosensitivity and brightness ratio
US20090189055A1 (en) Image sensor and fabrication method thereof
JP2011216896A (en) Optical system comprising solid-state image sensor with microlenses, and non-telecentric taking lens
KR19990013793A (en) Solid state imaging sensor, manufacturing method and imaging device
JP2007180157A (en) Solid-state imaging element
JP2009021379A (en) Solid-state imaging apparatus and camera equipped with the same, and manufacturing method of solid-state imaging apparatus
US20060086957A1 (en) CMOS image sensor using reflection grating and method for manufacturing the same
WO2019215986A1 (en) Image-capturing element, and method for manufacturing image-capturing element
KR100791842B1 (en) Image sensor having no shift of microlens and method thereof
US20090160002A1 (en) Image sensor and method for fabricating the same
CN110164897B (en) Phase focusing image sensor and forming method thereof
JP2017220657A (en) Imaging apparatus
JP2002280532A (en) Solid-state imaging device
JP2558389B2 (en) Solid-state imaging device
CN114497090A (en) Solid-state image sensor
JP2001077339A (en) Solid-state image sensing element
CN105762160A (en) Backside illumination global pixel unit structure and preparation method thereof
JP2005019699A (en) Solid-state imaging device
CN110365919A (en) Imaging sensor including the phase difference detection pixel with backing layer
CN110085613A (en) Imaging sensor and forming method thereof
JP2008016559A (en) Solid-state imaging apparatus
JP2008251985A (en) Solid-state imaging device