JP2005019526A - Method of manufacturing solenoid assembly - Google Patents

Method of manufacturing solenoid assembly Download PDF

Info

Publication number
JP2005019526A
JP2005019526A JP2003179567A JP2003179567A JP2005019526A JP 2005019526 A JP2005019526 A JP 2005019526A JP 2003179567 A JP2003179567 A JP 2003179567A JP 2003179567 A JP2003179567 A JP 2003179567A JP 2005019526 A JP2005019526 A JP 2005019526A
Authority
JP
Japan
Prior art keywords
bobbin
solenoid
cylindrical member
winding
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003179567A
Other languages
Japanese (ja)
Other versions
JP4269801B2 (en
Inventor
Yukikatsu Kaneda
至功 金田
Mikio Suzuki
幹夫 鈴木
Masaya Seki
正哉 瀬木
Koichi Takanishi
孝一 高西
Masaru Suzuki
勝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2003179567A priority Critical patent/JP4269801B2/en
Publication of JP2005019526A publication Critical patent/JP2005019526A/en
Application granted granted Critical
Publication of JP4269801B2 publication Critical patent/JP4269801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solenoid assembly which is capable of reducing the solenoid assembly in outer diameter so as to reduce it in size by thinning the winding part and the resin molded part of a bobbin. <P>SOLUTION: The method of manufacturing the solenoid assembly comprises an insertion process of inserting a non-magnetic cylindrical member 22 into the inside of the winding part 21a of the bobbin 21; a winding process of winding an insulating coated wire onto the bobbin 21 where the non-magnetic cylindrical member 22 has been inserted inside so as to form a solenoid 23; and a setting process of setting the bobbin 21 where the non-magnetic cylindrical member 22 is inserted inside, and the solenoid 23 formed by winding the insulating coated wire onto the bobbin 21 to be put in a molding die 50 where a shaft 52 is provided at its center, so as to insert the shaft 52 into the inside of the non-magnetic cylindrical member 22. Moreover, a molding process is provided to fill resin into a gap between the bobbin 21, the solenoid 23 and the molding die 50 to cover the peripheral parts of the bobbin 21 and the solenoid 23 for forming a molded part 24. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電磁弁などに使用するソレノイドアセンブリの製造方法に関する。
【0002】
【従来の技術】
自動車のクラッチやブレーキで用いられる電磁弁には、樹脂材料にて形成されたボビンの周りにソレノイドコイルが巻線され、その外周部がやはり樹脂材料にて形成されたモールド部(ハウジング)により閉塞され、ボビンの内部には非磁性円筒部材(スリーブ)を介してともに磁路を形成するコア(第1ヨーク)とヨーク(第2ヨーク)を同軸的に設置し、このコアとヨークの内側に摺動自在に案内支持したプランジャによりスプールバルブを移動させるようにしたものがある(特許文献1)。
【0003】
この特許文献1のソレノイドアセンブリによれば、ボビンの内部に設けた非磁性円筒部材を介してコアとヨークが設置されているので、プランジャの円滑な作動のために必要なヨークとコアの芯出しを容易にかつ確実に行うことができる。
【0004】
上述のようなボビンの内周に非磁性円筒部材を有するソレノイドアセンブリを製造する方法としては、図3に示すような巻線工程、セット工程、モールド工程、挿入工程からなる製造方法が先ず考えられる。先ず、巻線工程では、図3(a) に示すように、両側にフランジを備えた合成樹脂製のボビン11の巻線部11aに絶縁被覆導線を巻き付けてソレノイド12を形成する。次のセット工程では、図3(b) に示すように、巻線部11aにソレノイド12が形成されたボビン11をモールド型15の下型16に、中心に設けた軸17がボビン11の内周に挿入されるようにセットし、モールド型15の上型18により覆う。続くモールド工程では、図3(c) に示すように、セットされたボビン11及びソレノイド12の外周に樹脂を充填し、ボビン11とソレノイド12を被覆してモールド部13を形成する。最後の挿入工程では、図3(d) に示すように、ボビン11とソレノイド12とその外周に形成されたモールド部13をモールド型から取り外して、ボビン11の内周に非磁性円筒部材14を挿入する。
【0005】
【特許文献1】
特開平11−002354(段落番号[0012],[0014],図1)
【0006】
【発明が解決しようとする課題】
しかしながら、上述したソレノイドアセンブリの製造方法では、以下に述べるような問題があった。
【0007】
巻線工程において、ボビン11が絶縁被覆導線の巻き付け力により変形することを防ぐために、ボビン11の巻線部11aの厚みを薄くすることができない。また、巻線部11aに厚みを持たせた場合でも、合成樹脂は剛性が小さいので絶縁被覆導線の巻き付け力によってボビン11の内径が収縮変化するため、絶縁被覆導線が巻き付けられたボビン11の内径に相当な寸法のばらつきが生じる。
【0008】
上述のように、ボビン11の巻線部11aに相当な厚みをもたせたボビン11を使用した場合でもボビン11の内径に相当な寸法のばらつきが生じる。このため、セット工程でボビン11の内周に挿入するモールド型15の軸16の径は、ソレノイド12が形成されたボビン11の内径が最小の場合にそのモールド部13を形成するときに生じるボビン11の外径部の熱収縮による離型性を確保できるように合わせておく必要がある。そのため、モールド型15の軸16の径とボビン11の内径の差が大きくなり、軸16とボビン11の内径の間に隙間が生じ、モールド型15にソレノイド12が形成されたボビン11をセットした状態におけるモールド型15の軸16とボビン11の巻線部11aの内径の間の同軸度が低下する。
【0009】
この同軸度の低下のため、ソレノイド12が形成されたボビン11の内周がモールド型15の軸16に偏ってセットされることがあり、ボビン11とソレノイド12の外周に形成されるモールド部13の厚さに偏りが生じる。モールド部13の厚さに偏りが生じると、ソレノイド12がモールド部13から局部的に露出するおそれがあり、これを防ぐためにはモールド部13の厚さを増大させなければならない。
【0010】
このように、上述した従来の製造方法ではボビン11の巻線部11aの厚さ及びボビン11とソレノイド12の外側に形成するモールド部13の厚さを薄くすることができないので、ソレノイドアセンブリの外径を小さくして小型化することができなかった。本発明はこのような問題を解決することを目的とする。
【0011】
【課題を解決するための手段及び発明の作用・効果】
このために、本発明によるソレノイドアセンブリの製造方法は、巻線部に絶縁被覆導線が巻き付けられて外周部が樹脂にて被覆されたボビンと、このボビンの巻線部の内周に挿入された金属製の非磁性円筒部材からなるソレノイドアセンブリの製造方法において、ボビンの内周に非磁性円筒部材を挿入する挿入工程と、内周に非磁性円筒部材が挿入されたボビンに絶縁被覆導線を巻き付けてソレノイドを形成する巻線工程と、内周に非磁性円筒部材が挿入されソレノイドが形成されたボビンを中心に軸が設けられたモールド型内に軸が非磁性円筒部材の内周に挿入されるようにセットするセット工程と、ボビン及びソレノイドとモールド型の間に樹脂を充填することによりボビン及びソレノイドの外周を樹脂により被覆してモールド部を形成するモールド工程よりなるものである。
【0012】
このようなソレノイドアセンブリの製造方法によれば、ボビンの巻線部の内周に金属製の非磁性円筒部材をあらかじめ挿入した後にボビンに絶縁被覆導線を巻き付けるので、その巻き付け力によってボビンが変形してその内径にばらつきが生じることが僅かとなる。それにより、ボビンの巻線部を薄く成形したボビンを使用することができる。
【0013】
また、絶縁被覆導線が巻き付けられたボビンと内周にて一体化された非磁性円筒部材は剛性が大きいので、ボビンを巻き付ける絶縁被覆導線の巻き付け力でも実質的に変形することがなく、その内径の精度は高いものとなる。従って、セット工程でボビンの巻線部の内周に挿入された非磁性円筒部材とモールド型の中心の軸の間の隙間を極めて僅かとすることができるので、モールド型の軸とボビンに挿入した非磁性円筒部材の内径の間の同軸度は高くなる。
【0014】
このように、非磁性円筒部材の内径と軸との間の同軸度が高いために、非磁性円筒部材が挿入されたボビン及びこれに巻き付けられたソレノイドの外周とモールド型の内周の間で偏心もなくなり、モールド部の肉厚が一様となるのでソレノイドが局部的に露出するおそれが少なくなる。このように、モールド型にてボビンとソレノイドの外周に形成されるモールド部は、ソレノイドが局部的に露出するおそれが少なくなるので、図3に示す従来のソレノイドアセンブリの製造方法のモールド部よりも薄肉にすることができる。
【0015】
従って、本発明によるソレノイドアセンブリの製造方法によれば、ボビンの巻線部を薄肉にしたものを使用でき、ボビンとソレノイドの外周に設けたモールド部を薄肉にすることができるので、その分だけソレノイドアセンブリの外径を小さくして小型化することができる。
【0016】
【発明の実施の形態】
以下に、図1により、本発明によるソレノイドアセンブリの製造方法の説明をする。このソレノイドアセンブリの製造方法は挿入工程と、巻線工程と、セット工程及びモールド工程の4工程よりなるものである。
【0017】
図1(a) は、ボビン21の内周に金属製の非磁性円筒部材22を挿入する挿入工程を示す図である。ボビン21は、合成樹脂により予め成形されたもので、円筒形の巻線部21aの両端にフランジ21b,21cを備えており、巻線部21aの内径は、非磁性円筒部材22の外径と略同じであればよい。ボビン21は、内周に非磁性円筒部材22が挿入されることで補強されるので、図3に示す従来のソレノイドアセンブリの製造方法のボビン11よりも薄肉でよい。また、非磁性円筒部材22は、オーステナイト系ステンレスや黄銅のような金属製のものを用いる。
【0018】
図1(b) は、内周に非磁性円筒部材22が挿入されたボビン21の巻線部21aに絶縁被覆導線を巻き付けてソレノイド23を形成する巻線工程を示す図である。ボビン21は、巻線部21aに絶縁被覆導線を巻き付けられるが、合成樹脂に比して剛性の大きい金属製の非磁性円筒部材22が巻線部21aの内周に挿入されているので、巻線部21aは巻き付け力が加わっても、その内周が非磁性円筒部材22の外周に当接すれば、それ以上変形することはない。また、巻線部21aの内周に非磁性円筒部材22が挿入してあるので、巻線部21aに絶縁被覆導線を巻き付ける巻き付け力により、巻線部21aが内周の非磁性円筒部材22に向け収縮変形し、巻線部21aの内周が非磁性円筒部材22の外周に当接することによりボビン21は非磁性円筒部材22に当接固着される。非磁性円筒部材22は外周がボビン21の巻線部21aの内周に当接されるように軽く圧入してもよく、その場合は、絶縁被覆導線の巻き付けにより変形収縮することなく、ボビン21の巻線部21aの内周は非磁性円筒部材22の外周に当接固着される。なお、絶縁被覆導線は例えばエナメルにより被覆された銅線である。
【0019】
図1(c) は、巻線部21aにソレノイド23が形成されたボビン21及びその内周に挿入された非磁性円筒部材22をモールド型50にセットするセット工程を示す図である。モールド型50は、下型51と上型53よりなり、下型51には非磁性円筒部材22に挿入される軸52が下型51の成型穴と同軸的に形成されている。ボビン21の内周に挿入された非磁性円筒部材22の内周には、モールド型50の下型51の軸52が挿入され、上型53により押さえつけられる。非磁性円筒部材22は金属製であるので、前述の巻線工程でボビン21の巻線部21aに絶縁被覆導線を巻き付ける際の巻き付け力によって実質的に変形しないので、その内径の精度は高いものとなる。従って、非磁性円筒部材22の内径と軸52との隙間は極めて小さくなり、非磁性円筒部材22の内径と軸52との間の同軸度が高くなるので、ソレノイド23が形成されたボビン21はモールド型50内の軸52に対する同軸度が高くなり、ボビン21及びソレノイド23の外周と下型51の内周との間の隙間もほぼ一定となる。
【0020】
図1(d) は、モールド型50にセットされたボビン21とソレノイド23の外周を合成樹脂による被覆してモールド部24を形成するモールド工程を示す図である。上述のように、ボビン21とソレノイド22は、その外周と下型51の内周との間の隙間がほぼ一定となるようにモールド型50内に偏りなくセットされるので、モールド型50にてボビン21とソレノイド23の外周に形成されるモールド部24を図3に示す従来のソレノイドアセンブリの製造方法のモールド部13よりも薄肉にしてもソレノイド23が露出するおそれはない。
【0021】
このように、図1に示すソレノイドアセンブリの製造方法によれば、ボビン21の巻線部21aを薄肉にしたものを使用でき、ボビン21とソレノイド23の外周に設けたモールド部24を薄肉にすることができるので、図3に示す従来の製造方法よりもソレノイドアセンブリの外径を小さくして小型化することができる。
【0022】
次に、図2により、本発明の製造方法によるソレノイドアセンブリ20を使用した電磁弁の説明をする。この電磁弁は、電磁駆動部30と弁部40よりなるものである。
【0023】
電磁駆動部30は、ステータ31とプランジャ35よりなるものである。ステータ31は、前述のようにして製造されたソレノイドアセンブリ20と、その内部の金属製の非磁性円筒材22を介して同軸的に連結されたヨーク33とコア34よりなるものである。プランジャ35は、全体が磁性体よりなるもので、非磁性のコーティングが施されており、ステータ31のヨーク33の内孔により摺動自在に支持されている。また、ステータ31の外側に設けるカバー36は磁性体よりなる有底円筒状で、ヨーク33とコア34を覆うものである。
【0024】
弁部40は、カバー36によりステータ31にかしめ固定されたスリーブ42と、スリーブ42に同軸的に摺動自在に案内支持されたスプール41よりなるものである。スプール41は、スプール41の先端より突出する軸部41aがコア34の中心を通って、プランジャ35の弁部側端面と当接されている。
【0025】
プランジャ35は、カバー36の内底面側の一端面35aがカバー36の内底面に当接する後退位置(図2の下半部参照)と、弁部側となる他端面35bがコア34内のワッシャ37を介して当接する前進位置(図2の上半部参照)の間で移動可能である。
【0026】
電磁弁は、不作動状態では、スリーブ42の後端にあるスプリング(図示省略)によりスプール41が電磁駆動部30側に付勢され、スプール41の軸部41aに当接されてたプランジャ35は、一端面35aがカバー36の内底面に当接する後退位置(前述)となっている。ソレノイド23に通電される作動状態では、通電量に応じてヨーク33、コア34及びカバー36が磁化され、プランジャ35がコア34側に向かって引き寄せられ、プランジャ35に当接されているスプール41をスプリングに抗して移動させて弁部を作動させる。
【図面の簡単な説明】
【図1】本発明のソレノイドアセンブリの製造方法を示す図である。
【図2】本発明によるソレノイドアセンブリを適用した電磁弁の一部を示す縦断面図である。
【図3】従来のソレノイドアセンブリの製造方法を示す図である。
【符号の説明】
20…ソレノイドアセンブリ、21…ボビン、21a…巻線部、22…非磁性円筒部材、23…ソレノイド、24…モールド部、50…モールド型、51…下型、52…軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a solenoid assembly used for a solenoid valve or the like.
[0002]
[Prior art]
In solenoid valves used in automobile clutches and brakes, a solenoid coil is wound around a bobbin made of resin material, and its outer periphery is closed by a mold part (housing) also made of resin material. In the bobbin, a core (first yoke) and a yoke (second yoke), which form a magnetic path together through a nonmagnetic cylindrical member (sleeve), are coaxially installed. There is one in which a spool valve is moved by a plunger that is slidably guided and supported (Patent Document 1).
[0003]
According to the solenoid assembly of Patent Document 1, since the core and the yoke are installed via the nonmagnetic cylindrical member provided inside the bobbin, the yoke and the core are required for smooth operation of the plunger. Can be easily and reliably performed.
[0004]
As a method of manufacturing a solenoid assembly having a nonmagnetic cylindrical member on the inner periphery of the bobbin as described above, a manufacturing method including a winding process, a setting process, a molding process, and an insertion process as shown in FIG. 3 is first considered. . First, in the winding process, as shown in FIG. 3 (a), an insulation coated conductor is wound around a winding portion 11a of a synthetic resin bobbin 11 having flanges on both sides to form a solenoid 12. In the next setting step, as shown in FIG. 3B, the bobbin 11 having the solenoid 12 formed in the winding portion 11a is placed in the lower mold 16 of the mold 15 and the shaft 17 provided in the center is formed in the bobbin 11. It is set so as to be inserted around the periphery and covered with the upper mold 18 of the mold 15. In the subsequent molding step, as shown in FIG. 3C, the outer periphery of the set bobbin 11 and solenoid 12 is filled with resin, and the bobbin 11 and solenoid 12 are covered to form a mold part 13. In the final insertion step, as shown in FIG. 3D, the bobbin 11, the solenoid 12, and the mold part 13 formed on the outer periphery thereof are removed from the mold, and the nonmagnetic cylindrical member 14 is placed on the inner periphery of the bobbin 11. insert.
[0005]
[Patent Document 1]
JP-A-11-002354 (paragraph numbers [0012], [0014], FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the above-described method for manufacturing a solenoid assembly has the following problems.
[0007]
In the winding process, the thickness of the winding part 11a of the bobbin 11 cannot be reduced in order to prevent the bobbin 11 from being deformed by the winding force of the insulation coated conductor. Even when the winding portion 11a is made thick, since the synthetic resin has a small rigidity, the inner diameter of the bobbin 11 contracts and changes due to the winding force of the insulating coated conductor, so the inner diameter of the bobbin 11 around which the insulating coated conductor is wound. Considerable dimensional variations occur.
[0008]
As described above, even when the bobbin 11 having a considerable thickness is used for the winding portion 11a of the bobbin 11, a considerable dimensional variation occurs in the inner diameter of the bobbin 11. For this reason, the diameter of the shaft 16 of the mold 15 inserted into the inner periphery of the bobbin 11 in the setting process is the bobbin generated when the mold part 13 is formed when the inner diameter of the bobbin 11 on which the solenoid 12 is formed is the smallest. It is necessary to match so that the releasability by heat shrinkage of the outer diameter portion of 11 can be secured. Therefore, the difference between the diameter of the shaft 16 of the mold 15 and the inner diameter of the bobbin 11 is increased, a gap is generated between the shaft 16 and the inner diameter of the bobbin 11, and the bobbin 11 having the solenoid 12 formed on the mold 15 is set. In this state, the coaxiality between the shaft 16 of the mold 15 and the inner diameter of the winding portion 11a of the bobbin 11 is lowered.
[0009]
Due to the decrease in the coaxiality, the inner periphery of the bobbin 11 on which the solenoid 12 is formed may be set biased to the shaft 16 of the mold 15, and the mold part 13 formed on the outer periphery of the bobbin 11 and the solenoid 12. The thickness is uneven. If the thickness of the mold part 13 is biased, the solenoid 12 may be locally exposed from the mold part 13. To prevent this, the thickness of the mold part 13 must be increased.
[0010]
Thus, in the conventional manufacturing method described above, the thickness of the winding portion 11a of the bobbin 11 and the thickness of the mold portion 13 formed outside the bobbin 11 and the solenoid 12 cannot be reduced. The diameter could not be reduced to reduce the size. The present invention aims to solve such problems.
[0011]
[Means for solving the problems and functions and effects of the invention]
For this purpose, the method of manufacturing a solenoid assembly according to the present invention includes a bobbin in which an insulation-coated conductive wire is wound around a winding portion and an outer peripheral portion is coated with a resin, and the bobbin is inserted into the inner periphery of the winding portion. In a method of manufacturing a solenoid assembly made of a metal nonmagnetic cylindrical member, an insertion step of inserting a nonmagnetic cylindrical member into the inner periphery of the bobbin, and winding an insulation coated conductor around the bobbin with the nonmagnetic cylindrical member inserted into the inner periphery The winding process for forming the solenoid and the shaft is inserted into the inner periphery of the nonmagnetic cylindrical member in the mold provided with the shaft around the bobbin on which the nonmagnetic cylindrical member is inserted and formed on the inner periphery. And the mold part is formed by covering the outer periphery of the bobbin and solenoid with resin by filling the resin between the bobbin and solenoid and the mold. That it is made from the molding process.
[0012]
According to such a method of manufacturing a solenoid assembly, since a metal nonmagnetic cylindrical member is inserted in advance on the inner periphery of the winding portion of the bobbin and then the insulated coated conductor is wound around the bobbin, the bobbin is deformed by the winding force. As a result, variations in the inner diameter are minimal. Thereby, the bobbin which shape | molded the winding part of the bobbin thinly can be used.
[0013]
In addition, since the nonmagnetic cylindrical member integrated with the bobbin around which the insulation-coated conductor is wound has a high rigidity, the inner diameter of the non-magnetic cylindrical member does not substantially deform even by the winding force of the insulation-coated conductor around which the bobbin is wound. The accuracy of is high. Therefore, the gap between the non-magnetic cylindrical member inserted in the inner periphery of the bobbin winding portion in the setting process and the central shaft of the mold can be made extremely small, so that it can be inserted into the mold shaft and the bobbin. The degree of coaxiality between the inner diameters of the nonmagnetic cylindrical members is increased.
[0014]
As described above, since the coaxiality between the inner diameter and the shaft of the nonmagnetic cylindrical member is high, between the outer periphery of the bobbin in which the nonmagnetic cylindrical member is inserted and the solenoid wound around the bobbin and the inner periphery of the mold die. There is no eccentricity, and the thickness of the mold part is uniform, so that the possibility of the solenoid being locally exposed is reduced. As described above, the mold part formed on the outer periphery of the bobbin and the solenoid in the mold die is less likely to be exposed locally, so that the mold part of the conventional solenoid assembly manufacturing method shown in FIG. Can be thin.
[0015]
Therefore, according to the method for manufacturing a solenoid assembly according to the present invention, a thin bobbin winding part can be used, and the mold part provided on the outer periphery of the bobbin and the solenoid can be thinned. The outer diameter of the solenoid assembly can be reduced to reduce the size.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for manufacturing a solenoid assembly according to the present invention will be described with reference to FIG. This method for manufacturing a solenoid assembly is composed of four steps: an insertion step, a winding step, a setting step, and a molding step.
[0017]
FIG. 1A is a diagram illustrating an insertion process in which a metallic nonmagnetic cylindrical member 22 is inserted into the inner periphery of the bobbin 21. The bobbin 21 is pre-molded with a synthetic resin and includes flanges 21b and 21c at both ends of a cylindrical winding portion 21a. The inner diameter of the winding portion 21a is the same as the outer diameter of the nonmagnetic cylindrical member 22. It is sufficient if they are substantially the same. Since the bobbin 21 is reinforced by inserting the nonmagnetic cylindrical member 22 on the inner periphery, the bobbin 21 may be thinner than the bobbin 11 of the conventional method for manufacturing a solenoid assembly shown in FIG. The nonmagnetic cylindrical member 22 is made of a metal such as austenitic stainless steel or brass.
[0018]
FIG. 1B is a diagram illustrating a winding process in which a solenoid 23 is formed by winding an insulating coated wire around a winding portion 21a of a bobbin 21 in which a nonmagnetic cylindrical member 22 is inserted on the inner periphery. The bobbin 21 is wound around the winding portion 21a with an insulating coated conductor. However, since the metal nonmagnetic cylindrical member 22 having a rigidity higher than that of the synthetic resin is inserted into the inner periphery of the winding portion 21a, the bobbin 21 is wound. Even if the winding force is applied to the wire portion 21a, the wire portion 21a is not further deformed as long as its inner periphery comes into contact with the outer periphery of the nonmagnetic cylindrical member 22. Further, since the nonmagnetic cylindrical member 22 is inserted in the inner periphery of the winding portion 21a, the winding portion 21a is attached to the inner peripheral nonmagnetic cylindrical member 22 by a winding force that winds the insulating coated conductor around the winding portion 21a. The bobbin 21 abuts and is fixed to the nonmagnetic cylindrical member 22 when the inner periphery of the winding portion 21 a contacts the outer periphery of the nonmagnetic cylindrical member 22. The non-magnetic cylindrical member 22 may be lightly press-fitted so that the outer periphery is in contact with the inner periphery of the winding portion 21a of the bobbin 21, and in that case, the bobbin 21 is not deformed and contracted by winding of the insulating coated conductor. The inner circumference of the winding portion 21 a is abutted and fixed to the outer circumference of the nonmagnetic cylindrical member 22. Note that the insulation-coated conductive wire is, for example, a copper wire coated with enamel.
[0019]
FIG. 1C is a diagram showing a setting process in which the bobbin 21 in which the solenoid 23 is formed in the winding portion 21 a and the nonmagnetic cylindrical member 22 inserted in the inner periphery thereof are set in the mold 50. The mold 50 includes a lower mold 51 and an upper mold 53, and a shaft 52 inserted into the nonmagnetic cylindrical member 22 is formed coaxially with a molding hole of the lower mold 51. The shaft 52 of the lower mold 51 of the mold 50 is inserted into the inner periphery of the nonmagnetic cylindrical member 22 inserted in the inner periphery of the bobbin 21 and pressed by the upper mold 53. Since the non-magnetic cylindrical member 22 is made of metal, it is not substantially deformed by the winding force when the insulating coating conductor is wound around the winding portion 21a of the bobbin 21 in the above-described winding process, so that the accuracy of the inner diameter is high. It becomes. Accordingly, the gap between the inner diameter of the nonmagnetic cylindrical member 22 and the shaft 52 is extremely small, and the coaxiality between the inner diameter of the nonmagnetic cylindrical member 22 and the shaft 52 is increased, so that the bobbin 21 on which the solenoid 23 is formed is The coaxiality with respect to the shaft 52 in the mold 50 is increased, and the gap between the outer periphery of the bobbin 21 and the solenoid 23 and the inner periphery of the lower mold 51 is also substantially constant.
[0020]
FIG. 1D is a diagram illustrating a molding process in which the outer periphery of the bobbin 21 and the solenoid 23 set in the mold 50 is covered with a synthetic resin to form the mold portion 24. As described above, the bobbin 21 and the solenoid 22 are set in the mold 50 so that the gap between the outer periphery thereof and the inner periphery of the lower mold 51 is substantially constant. Even if the mold part 24 formed on the outer periphery of the bobbin 21 and the solenoid 23 is thinner than the mold part 13 of the conventional method for manufacturing a solenoid assembly shown in FIG. 3, the solenoid 23 is not exposed.
[0021]
As described above, according to the method of manufacturing the solenoid assembly shown in FIG. 1, the thinned winding portion 21 a of the bobbin 21 can be used, and the mold portion 24 provided on the outer periphery of the bobbin 21 and the solenoid 23 is thinned. Therefore, the outer diameter of the solenoid assembly can be made smaller and smaller than the conventional manufacturing method shown in FIG.
[0022]
Next, a solenoid valve using the solenoid assembly 20 according to the manufacturing method of the present invention will be described with reference to FIG. This electromagnetic valve includes an electromagnetic drive unit 30 and a valve unit 40.
[0023]
The electromagnetic drive unit 30 includes a stator 31 and a plunger 35. The stator 31 includes the solenoid assembly 20 manufactured as described above, and a yoke 33 and a core 34 that are coaxially connected to each other through a metallic non-magnetic cylindrical material 22 therein. The plunger 35 is entirely made of a magnetic material, is coated with a nonmagnetic material, and is slidably supported by the inner hole of the yoke 33 of the stator 31. The cover 36 provided outside the stator 31 has a bottomed cylindrical shape made of a magnetic material and covers the yoke 33 and the core 34.
[0024]
The valve portion 40 includes a sleeve 42 that is caulked and fixed to the stator 31 by a cover 36, and a spool 41 that is guided and supported coaxially and slidably on the sleeve 42. In the spool 41, a shaft portion 41 a that protrudes from the tip of the spool 41 passes through the center of the core 34 and is in contact with the valve portion side end surface of the plunger 35.
[0025]
The plunger 35 has a retracted position where the one end surface 35a on the inner bottom surface side of the cover 36 contacts the inner bottom surface of the cover 36 (see the lower half of FIG. 2), and the other end surface 35b on the valve portion side is a washer in the core 34. It can move between the advance positions (see the upper half of FIG. 2) that abut via 37.
[0026]
When the solenoid valve is in an inoperative state, the spool 41 is urged toward the electromagnetic drive unit 30 by a spring (not shown) at the rear end of the sleeve 42, and the plunger 35 abutted against the shaft portion 41a of the spool 41 is The one end surface 35a is in a retracted position (described above) in contact with the inner bottom surface of the cover 36. In the operating state in which the solenoid 23 is energized, the yoke 33, the core 34, and the cover 36 are magnetized according to the energization amount, the plunger 35 is pulled toward the core 34, and the spool 41 that is in contact with the plunger 35 is removed. The valve is actuated by moving it against the spring.
[Brief description of the drawings]
FIG. 1 is a view showing a method of manufacturing a solenoid assembly according to the present invention.
FIG. 2 is a longitudinal sectional view showing a part of a solenoid valve to which a solenoid assembly according to the present invention is applied.
FIG. 3 is a view showing a conventional method for manufacturing a solenoid assembly.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 20 ... Solenoid assembly, 21 ... Bobbin, 21a ... Winding part, 22 ... Nonmagnetic cylindrical member, 23 ... Solenoid, 24 ... Mold part, 50 ... Mold die, 51 ... Lower die, 52 ... Shaft

Claims (1)

巻線部に絶縁被覆導線が巻き付けられて外周部が樹脂にて被覆されたボビンと、前記ボビンの巻線部の内周に挿入された金属製の非磁性円筒部材からなるソレノイドアセンブリの製造方法において、
前記ボビンの内周に前記非磁性円筒部材を挿入する挿入工程と、
内周に前記非磁性円筒部材が挿入された前記ボビンに前記絶縁被覆導線を巻き付けてソレノイドを形成する巻線工程と、
内周に前記非磁性円筒部材が挿入され前記ソレノイドが形成された前記ボビンを中心に軸が設けられたモールド型内に前記軸が前記非磁性円筒部材の内周に挿入されるようにセットするセット工程と、
前記ボビン及び前記ソレノイドと前記モールド型の間に樹脂を充填することにより前記ボビン及び前記ソレノイドの外周を被覆してモールド部を形成するモールド工程よりなることを特徴とするソレノイドアセンブリの製造方法。
A method for manufacturing a solenoid assembly comprising a bobbin in which an insulation-coated conductive wire is wound around a winding portion and an outer peripheral portion is coated with a resin, and a metal nonmagnetic cylindrical member inserted into the inner periphery of the winding portion of the bobbin In
An insertion step of inserting the non-magnetic cylindrical member into the inner periphery of the bobbin;
A winding step in which a solenoid is formed by winding the insulation coated conductor around the bobbin in which the nonmagnetic cylindrical member is inserted on an inner periphery;
The non-magnetic cylindrical member is inserted into the inner periphery and the solenoid is formed. The bobbin is formed so that the shaft is inserted into the inner periphery of the non-magnetic cylindrical member. A set process;
A method of manufacturing a solenoid assembly, comprising: a molding step in which a resin is filled between the bobbin and the solenoid and the mold to cover the outer periphery of the bobbin and the solenoid to form a mold part.
JP2003179567A 2003-06-24 2003-06-24 Manufacturing method of solenoid assembly Expired - Fee Related JP4269801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179567A JP4269801B2 (en) 2003-06-24 2003-06-24 Manufacturing method of solenoid assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179567A JP4269801B2 (en) 2003-06-24 2003-06-24 Manufacturing method of solenoid assembly

Publications (2)

Publication Number Publication Date
JP2005019526A true JP2005019526A (en) 2005-01-20
JP4269801B2 JP4269801B2 (en) 2009-05-27

Family

ID=34180858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179567A Expired - Fee Related JP4269801B2 (en) 2003-06-24 2003-06-24 Manufacturing method of solenoid assembly

Country Status (1)

Country Link
JP (1) JP4269801B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973095A (en) * 2010-08-26 2011-02-16 安徽中鼎泰克汽车密封件有限公司 Armature rubber vulcanizing and spring assembling process for air-braking antilock brake system (ABS) electromagnetic valve
JP2022127874A (en) * 2021-02-22 2022-09-01 ソン チェ、ビョン Inner plunger of solenoid assembly for automobile differential clutch, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973095A (en) * 2010-08-26 2011-02-16 安徽中鼎泰克汽车密封件有限公司 Armature rubber vulcanizing and spring assembling process for air-braking antilock brake system (ABS) electromagnetic valve
JP2022127874A (en) * 2021-02-22 2022-09-01 ソン チェ、ビョン Inner plunger of solenoid assembly for automobile differential clutch, and its manufacturing method
JP7204241B2 (en) 2021-02-22 2023-01-16 ソン チェ、ビョン Inner plunger of solenoid assembly for automobile differential device clutch and manufacturing method thereof

Also Published As

Publication number Publication date
JP4269801B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
CN108150695B (en) Electromagnetic actuating mechanism, magnetic flux disk body for an electromagnetic actuating mechanism, and method for producing an electromagnetic actuating mechanism
JP4884461B2 (en) Solenoid unit, method for manufacturing solenoid unit, and magnet housing for solenoid unit
US8446239B2 (en) Electromagnetic switch
KR101720503B1 (en) Magnet assembly for a solenoid valve and corresponding solenoid valve
JP2014232769A (en) Oil-immersion type solenoid
JP3770081B2 (en) Magnetic switch for starter
CN111480024B (en) Electromagnetic valve
CN103206571B (en) Electromagnetic valve
JP2001035344A (en) Electromagnetic opening device
JP4269801B2 (en) Manufacturing method of solenoid assembly
JP2006234004A (en) Solenoid valve and method of producing the same
KR102094630B1 (en) Electromagnetic valve, especially for slip-regulated automotive brake systems
JP5585562B2 (en) Linear solenoid
JP2014190447A (en) Method for manufacturing solenoid valve drive device and solenoid valve drive device
JP7148953B2 (en) Molded coil and electrically driven valve
JP4808236B2 (en) Electromagnetic solenoid and manufacturing method thereof
JP6601171B2 (en) Solenoid valve and method for manufacturing solenoid valve
US9153370B2 (en) Linear solenoid
JP5792803B2 (en) electromagnet
JP7382823B2 (en) solenoid
JPH04129983U (en) electromagnetic actuator
JP2889679B2 (en) Manufacturing method of solenoid valve
JP2009290154A (en) Method of manuracturing solenoid valve
JP2023173945A (en) Solenoid actuator and method of manufacturing the same
US9865385B2 (en) Linear solenoid

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050629

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A977 Report on retrieval

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071030

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120306

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees