JP2005017251A - Fixture and method for measuring insulation resistance of insulated bearing - Google Patents

Fixture and method for measuring insulation resistance of insulated bearing Download PDF

Info

Publication number
JP2005017251A
JP2005017251A JP2003186471A JP2003186471A JP2005017251A JP 2005017251 A JP2005017251 A JP 2005017251A JP 2003186471 A JP2003186471 A JP 2003186471A JP 2003186471 A JP2003186471 A JP 2003186471A JP 2005017251 A JP2005017251 A JP 2005017251A
Authority
JP
Japan
Prior art keywords
film
outer ring
insulation resistance
jig
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003186471A
Other languages
Japanese (ja)
Other versions
JP4369692B2 (en
Inventor
Hideji Ito
秀司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2003186471A priority Critical patent/JP4369692B2/en
Priority to CNB031461735A priority patent/CN100416281C/en
Publication of JP2005017251A publication Critical patent/JP2005017251A/en
Application granted granted Critical
Publication of JP4369692B2 publication Critical patent/JP4369692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixture and a method capable of obtaining a sufficient contact ratio between an insulating film of the outer ring of an insulated bearing and each film touching object to be brought into contact with it, and capable of measuring the insulation resistance value of the insulated bearing precisely, and to prevent the insulating film of the outer ring and the film touching objects from being worn, when the insulated bearing is fitted into the jig. <P>SOLUTION: Film touching objects 4, 5 which touch the insulating film 32a of the outer ring 32 of the insulated bearing 30, and are connected to an ohm-meter 6 are provided. These touching objects 4, 5 are made of a conductive polymer such as conductive rubber or the like. The touching objects 4, 5 are fitted to the inside surfaces of the jig body 2 and a lid member 3. The jig body 2 is in the shape of a split-into-two ring. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、鉄道車両主電動機や発電機、汎用モータ等に使用される絶縁軸受の絶縁抵抗を測定する絶縁抵抗測定治具および測定方法に関する。
【0002】
【従来の技術】
電動機等のように、ハウジングと軸の間で大きな電位差が生じる箇所に使用される軸受では、電食を防止するために、外輪の外径面および幅面を絶縁皮膜で覆った絶縁軸受が用いられている。絶縁皮膜には樹脂やセラミックス等が用いられる。この種の絶縁軸受として、絶縁皮膜の外層に金属膜を形成したものがある。
このような金属膜を有する絶縁軸受の絶縁性能を測定する場合は、外輪最外層の金属層と外輪母材とに、抵抗計のアース側端子とライン側端子を接続することで、最外層の金属層が電極として利用でき、外輪の絶縁皮膜全域についての絶縁抵抗値が測定される。
一方、絶縁皮膜が表面に露出した絶縁軸受では、絶縁皮膜の一部に端子を接触させただけでは、絶縁皮膜の局部的な絶縁抵抗値しか測定することができない。
全体の絶縁抵抗値を測定するには、治具として、図8,図9に示すような外輪外径面に接触させるハウジング42、および幅面に接触させる蓋部材43を用い、その中に組み入れた状態で測定する必要がある。従来では、測定を容易に行うために、ハウジング42を2つ割りのものとし、180°位置でボルトによる締め付けを行い、側面から蓋部材43を取り付けるようにしている。抵抗計6の両端子は、ハウジング42と外輪母材32bとに接続する。このような治具を用いると、ハウジング42への軸受単体30の圧入や引き抜き作業が不要となり、プレス機等を用いることなく、手作業だけで絶縁抵抗値を測定できる。なお、図8(A)は、図8(B)におけるVIII−VIII矢視断面図に相当する断面図である。
【0003】
【発明が解決しようとする課題】
絶縁皮膜が溶射加工されたセラミックスによる1層構造の絶縁軸受の場合も図8,図9のような治具が用いられることになるが、その場合、以下のような問題がある。絶縁軸受として使用する場合、絶縁被膜32aの表面を研磨加工によって正規寸法、粗さに仕上げているが、正規寸法、粗さに仕上げている状態であっても2つ割ハウジング42をボルト締めする時に、ハウジング内面と絶縁被膜32aの接触部において微小な滑りが生じるが、ハウジング42の金属材料に比べてセラミックス製の絶縁被膜32aの方が硬度が高いことから、僅かではあるがハウジング42が摩耗する現象がみられる。この摩耗により、ハウジング42の内径寸法が繰返し使用によって変化し、絶縁被膜32aとの締め代が保てなくなると、接触不良が発生し、正確な絶縁抵抗値を測定することが出来なくなる。また、摩耗粉が絶縁被膜の表面にこびり付くので、その洗浄に非常に手間取るという問題点もある。蓋部材43の取付けにおいても、丁寧な締め付け作業をしないと、ハウジング42の場合と同様な現象が生じる。又、上記では絶縁被膜32aの表面を研磨加工した時の問題点について挙げたが、実際には研磨加工前の状態でも絶縁抵抗検査を実施する場合がある。この検査は万一溶射不良などによって絶縁不良となっているものを研磨加工前に確認し、不良品を研磨加工しない様に実施するものであるが、研磨加工されていない絶縁被膜32aの表面は一般的に粗面であり、ハウジング42と絶縁被膜32aの接触率が低くなり、精度の良い測定を行えないという問題がある。
尚、外輪の絶縁被膜32aが樹脂製の場合には、上記治具を用いて測定した場合に、上記の滑りが生じても、ハウジング42と絶縁被膜32aの両方に摩耗が生じることは無い。これは絶縁被膜32aが樹脂製である為、弾性があることから微小すべりに対し、追随出来る為である。
【0004】
この発明の目的は、軸受外輪の絶縁皮膜とこれに接触させる皮膜接触体との間の優れた接触率が得られて、絶縁軸受の絶縁抵抗値を正確に測定することのできる絶縁抵抗測定治具および絶縁抵抗測定方法を提供することである。
【0005】
【課題を解決するための手段】
この発明の絶縁軸受の絶縁抵抗測定治具は、外輪に絶縁皮膜を有する絶縁軸受の絶縁抵抗値を測定する治具であって、上記絶縁軸受の外輪の絶縁皮膜に接触して抵抗計と接続される皮膜接触体が導電性高分子からなるものとしている。上記導電性高分子は、導電性ゴム、または導電性プラスチック等である。
この構成によると、皮膜接触体が導電性高分子からなるため、皮膜接触体がその弾性変形により、絶縁皮膜の表面粗さによる凹凸に容易になじみ、凹凸に対して局部的な接触とならずに優れた接触率が得られる。そのため正確な絶縁抵抗値の測定が行える。特に、絶縁皮膜がセラミックス溶射層であり、溶射表面の状態である場合、研磨加工面と比較すれば一般的に粗面であり、皮膜接触体が金属材では接触率が低くて測定が困難があるが、このようなセラミックス溶射層からなる絶縁皮膜に対しても、導電性高分子の皮膜接触体を用いれば、高い接触率が得られて精度の良い絶縁抵抗値の測定が行える。また、皮膜接触体が弾性変形可能であるため、皮膜接触体を絶縁皮膜に押しつけるときに若干の滑りが生じたとしても、弾性変形することで摩耗が防止される。
皮膜接触体は、導電性高分子の中でも、弾性に優れた導電性ゴムが、絶縁皮膜の凹凸になじみ易いことで好ましいが、導電性プラスチックであっても、ある程度の弾性はあるため、皮膜接触体を金属材とした場合に比べて接触性が改善される。
【0006】
この発明において、絶縁抵抗測定治具が、絶縁軸受の外輪を内周に嵌合させかつ上記外輪の片方の幅面に対向する鍔部を有する2つ割りのリング状の治具本体と、この治具本体に着脱可能に取付けられ上記外輪のもう片方の幅面に対向する蓋部材と、上記治具本体の内周面および鍔部の内面、並びに上記蓋部材の内面に設けられて上記外輪の絶縁皮膜に接触し上記抵抗計と接続される皮膜接触体とを有するものとしても良い。
この構成の場合、外輪の外径面から幅面にわたる絶縁皮膜の略全体に皮膜接触体を接触させることができて、より精度の高い測定が行える。また、治具本体が2つ割りのリング状であるため、治具への絶縁軸受の出し入れが容易である。このような2つ割りの治具本体を用いた場合に、両側の治具本体を相互に締め付けるときに、絶縁皮膜表面と治具本体の内面との間で微小滑りを生じるが、この微小滑りに対し、皮膜接触体が導電性高分子であることで、その弾性によって追随できる。そのため、治具および絶縁皮膜が共に摩耗を生じることなく、絶縁抵抗値を測定することができる。
【0007】
この発明において、皮膜接触体が、絶縁軸受の外輪を内周に嵌合させかつ上記外輪の片方の幅面に接触する鍔部を有する2つ割りのリング状の治具本体と、この治具本体に着脱可能に取付けられ上記外輪のもう片方の幅面に接触する蓋部材とでなるものとしても良い。
この構成の場合、治具本体が皮膜接触体で構成されるため、別体の治具本体に皮膜接触体を取付けるものに比べて構成が簡単である。この構成の場合も、外輪の外径面から幅面にわたる絶縁皮膜の略全体に皮膜接触体を接触させることができて、精度の高い測定が行える。また、治具本体が2つ割りのリング状であるため、治具への絶縁軸受の出し入れが容易である。2つ割りの両側の治具本体を相互に締め付けるときに、上記と同様に絶縁皮膜表面と治具本体の内面との間で微小滑りを生じるが、この微小滑りに対し、治具本体となる皮膜接触体が導電性高分子であることで、その弾性によって追随できる。そのため、治具および絶縁皮膜が共に摩耗を生じることなく、絶縁抵抗値を測定することができる。
【0008】
この発明において、上記皮膜接触体が、上記絶縁軸受の外輪の幅面に接触するリング状の部材であっても良い。
この構成の場合、外輪の幅面の絶縁皮膜のみに皮膜接触体を接触させて測定することになるが、皮膜接触体が弾性変形により絶縁皮膜の表面の凹凸になじんで高い接触率が得られ、また全周に渡って接触させることになるため、精度良く絶縁抵抗を測定することができる。また、リング状の皮膜接触体の単体からなる絶縁抵抗測定治具であるため、構成が非常に簡素なものとなる。
【0009】
この発明において、上記皮膜接触体が、上記絶縁軸受の外輪の外径面に弾性的に被せられるリング状の部材であっても良い。
この構成の場合、外輪の外径面の絶縁皮膜のみに皮膜接触体を接触させて測定することになるが、皮膜接触体が弾性変形により絶縁皮膜の表面の凹凸になじんで高い接触率が得られ、また全周に渡って接触させることになるため、精度良く絶縁抵抗を測定することができる。外輪の外径面に弾性的に被せられるリング状の皮膜接触体の単体からなる絶縁抵抗測定治具であるため、この場合も、構成が非常に簡素なものとなる。
【0010】
この発明において、上記絶縁軸受の外輪の円周方向の一部が進入可能な凹部を有する治具本体と、この治具本体の上記凹部の開口に平面的に張られて上記外輪を接触させる膜状の皮膜接触体とでなるものとしても良い。
この構成の場合、平面的に張られた皮膜接触体に外輪を押しつけることで、皮膜接触体が外輪外径面に沿って弾性変形し、その外輪外径面の絶縁皮膜に接触することになる。この場合、絶縁皮膜の円周方向の一部における絶縁抵抗の測定となるが、その一部において、皮膜接触体と絶縁皮膜との高い接触率が得られ、絶縁抵抗値を精度良く測定できる。
【0011】
この発明の絶縁軸受の絶縁抵抗測定方法は、外輪に絶縁皮膜を有する絶縁軸受の絶縁抵抗値を測定する絶縁抵抗測定方法であって、導電性高分子からなる皮膜接触体を上記絶縁軸受の外輪の絶縁皮膜に接触させ、この皮膜接触体と上記外輪の絶縁皮膜で覆われていない部分との間に抵抗計を接続して上記絶縁軸受の絶縁抵抗値を測定する方法である。
この構成によると、皮膜接触体が導電性高分子からなるため、皮膜接触体がその弾性変形により、絶縁皮膜の表面粗さによる凹凸に容易になじみ、凹凸に対して局部的な接触とならずに優れた接触率が得られる。そのため正確な絶縁抵抗値の測定が行える。また、皮膜接触体が弾性変形可能であるため、皮膜接触体を絶縁皮膜に押しつけるときに若干の滑りが生じたとしても、弾性変形にすることが摩耗が防止される。
【0012】
【発明の実施の形態】
この発明の第1の実施形態を図1ないし図3と共に説明する。図1は絶縁抵抗測定治具の単独の状態を、図2は測定対象となる絶縁軸受を、図3は絶縁抵抗測定治具に絶縁軸受を組み込んだ状態をそれぞれ示す。図2に示すように、測定対象となる絶縁軸受30は、外輪32に絶縁皮膜32aを有するものである。この絶縁軸受30は、内輪31と外輪32の間に転動自在にボールからなる複数の転動体33を介在させた転がり軸受であって、外輪32の外径面から両幅面にわたって1層構造の絶縁皮膜32aが形成されている。これにより内輪31が嵌合する軸(図示せず)と、外輪32を支持するハウジング(図示せず)との間が電気的に絶縁分離される。絶縁皮膜32aは、セラミックス製の皮膜であり、外輪32の母材32bの表面にセラミックスを溶射することによって形成される。絶縁皮膜32aは樹脂製であっても良い。
【0013】
図1に示すように、この絶縁抵抗測定治具1は、治具本体2と、蓋部材3と、皮膜接触体4,5とを有する。治具本体2は、絶縁軸受30の外輪32を内周に嵌合させる2つ割りのリング状であって、かつ外輪32の片方の幅面に対向する鍔部2aを有する。蓋部材3は、治具本体2に着脱自在に取付けられ上記外輪32のもう片方の幅面に対向するリング状の部材である。皮膜接触体4,5は、治具本体2の内周面および鍔部2aの内面、並びに蓋部材3の内面にそれぞれ設けられ、絶縁軸受30の外輪32の絶縁皮膜32aに接触するものである。この皮膜接触体4,5と外輪32の母材32bとの間に、抵抗計6(図3)が接続される。
皮膜接触体4,5の材料は、導電性ゴムまたは導電性プラスチック等の導電性高分子であり、ここでは導電性ゴムが用いられる。皮膜接触体4,5となる導電性ゴムとしては、体積固有抵抗率1.7Ω・cm、厚さ2mmのものが使用される。上記導電性ゴムは、ニトリル系、アクリル系、フッ素系、シリコン系等のゴム材料に、カーボンパウダーやカーボン繊維等の導電物質を、製造過程で混入させることで、製造される。混入させる導電物質の形状は、必ずしもパウダー状や繊維状でなくても良く、例えばゴム加硫成形後に後述する所定の硬さや体積固有抵抗率が得られれば良い。
【0014】
治具本体2は、正面形状がC字状の2つの金属製の分割本体2A,2Bからなる。各分割本体2A,2Bの両端には、両分割本体2A,2Bを互いにボルト締めしてリング状に連結するための取付片2bがそれぞれ外径側に突出して設けられている。一方の分割本体2Aの両取付片2bにはボルト挿通孔7が設けられ、他方の分割本体2Bの両取付片2bには上記ボルト挿通孔7に整合するねじ孔8がそれぞれ設けられている。両分割本体2A,2Bは、ボルト挿通孔7に挿通させたボルト10を、対応するねじ孔8に螺合させることによりボルト締めされ、リング状の治具本体2とされる。治具本体2の鍔部2aを有する側面とは反対側の側面の周方向の複数箇所には、上記蓋部材3をボルト締めするためのねじ孔9が設けられる。この側面にボルト締めされる蓋部材3には、上記ねじ孔9に整合する複数のボルト挿通孔(図示せず)が設けられている。これらのボルト挿通孔に挿通させたボルト11を対応する各ねじ孔9に螺合させることにより、図1(A)のように治具本体2の鍔部2a側とは反対側の側面に蓋部材3がボルト締めされる。なお、図1(A)は、図1(B)におけるI−I矢視断面図に相当する断面図である。
【0015】
治具本体2を構成する両分割本体2A,2Bをボルト締めして、これら両分割本体2A,2Bの合わせ面12,13(図1(B))が全面接触した状態で、皮膜接触体4の内径寸法D1は、この絶縁抵抗測定治具1に組み込まれる絶縁軸受30の外輪絶縁皮膜32aの外径寸法より僅かに小さくなるように加工されている。また、治具本体2と蓋部材3の合わせ面14,15(図1(A))が全面接触した状態で、治具本体2側の皮膜接触体4の鍔部2aの内面の部分4aと、蓋部材3側の皮膜接触体5の間の寸法Wは、この絶縁抵抗測定治具1に組み込まれる絶縁軸受30の幅寸法より僅かに小さくなるように加工されている。このように加工されることにより、両分割本体2A,2Bをボルト締めして治具本体2を構成し、さらに治具本体2に蓋部材3をボルト締めして絶縁抵抗測定治具1内に絶縁軸受1を組み込むことで、皮膜接触体4,5と外輪32の絶縁皮膜32aとが所定の締め代をもって接触する。
【0016】
図3に示すように、絶縁軸受30を絶縁抵抗測定治具1に組み込んだ状態で、軸受外輪32の絶縁皮膜32aの表面全域は、治具本体2および蓋部材3の皮膜接触体4,5に接触する。この状態で、抵抗計6のアース端子を絶縁抵抗測定治具1の外表面に、ライン端子を外輪32の母材32bにそれぞれ接続して、絶縁抵抗測定治具1と外輪32の母材32bとの間の絶縁抵抗値を計測する。
【0017】
この実施形態の絶縁抵抗測定治具1を用いると、導電性ゴムからなる皮膜接触体4,5が絶縁軸受30の外輪絶縁皮膜32a表面に接触するので、絶縁抵抗測定治具1をボルト10,11で締め付けて絶縁軸受30を組み込む際に、絶縁皮膜32aの表面と絶縁抵抗測定治具1の内面との間に生じる微小滑りに対して、皮膜接触体4,5がその弾性変形により絶縁皮膜32aの表面に良く追従して接触することができる。そのため、上記微小滑りに起因して絶縁抵抗測定治具1および絶縁皮膜32aが摩耗することがなく、絶縁抵抗値を正確に測定できる。特に、絶縁皮膜32aが溶射によるセラミックス製である場合、その表面は粗面であるが、導電性ゴムからなる皮膜接触体4,5がその弾性変形でセラミックス製絶縁皮膜32aの表面の凹凸部に容易に追随するので、皮膜接触体4,5と絶縁皮膜32aの接触率が高くなり、正確な絶縁抵抗値を測定することができる。
【0018】
また、絶縁抵抗測定治具1は、皮膜接触体4を設けた2つ割りのリング状の治具本体2と、皮膜接触体5が設けられた蓋部材3とからなり、この絶縁抵抗測定治具1に絶縁軸受30を組み込んだ状態で絶縁軸受30の絶縁抵抗値を測定するので、外輪絶縁皮膜32aの外径面から幅面にわたる全面に接触して絶縁抵抗値を測定でき、より精度の良い測定が行える。
【0019】
この実施形態の絶縁抵抗測定治具1の性能を確認するため、上記測定系の場合と、図8および図9に示す従来の絶縁抵抗測定治具41を用いた測定系とで同じ絶縁軸受30の電気的特性を比較した。その結果を、次の表1に示す。
【0020】
【表1】

Figure 2005017251
【0021】
表1は、上記各測定系において、絶縁抵抗測定治具1,41の表面と外輪母材32bとの間に500Vの電圧を印加した場合に、絶縁軸受30を流れる電流値(A)を計測した場合の比較結果を示す。この表1の結果によると、皮膜接触体4,5を用いた実施形態の場合の方が、従来例の場合に比べて高い電流値となっている。絶縁抵抗値は、理論的には絶縁皮膜32aの表面積が大きくなるほど低くなることから、表1の結果は、絶縁抵抗測定治具1,41と絶縁皮膜32aの実接触面積が、皮膜接触体4,5を用いたこの実施形態の場合の方が大きく、より正確に絶縁抵抗値を測定できることを示している。
【0022】
また、この実施形態における皮膜接触体4,5自体の絶縁抵抗値への影響を確認するために、外輪の表面に絶縁皮膜を形成し、さらにその表面に金属層(導電体)を形成した別の絶縁軸受について、この実施形態の絶縁抵抗測定治具1と、図8および図9に示す従来例の絶縁抵抗測定治具41とで絶縁抵抗値を測定する試験を行った。この試験結果では、実施形態の場合も従来例の場合も共に50MΩ(500V印加時)となっていて、皮膜接触体4,5の影響は認められなかった。なお、この試験では、軸受外輪の最外層が導電体であるため、軸受外輪と絶縁抵抗測定治具の実接触率による抵抗値への影響は殆ど無い。
【0023】
また、この実施形態では皮膜接触体4,5となる導電性ゴムとして、体積固有抵抗率1.7Ω・cm、厚さ2mmのものを使用したが、絶縁軸受に要求される抵抗値は1MΩ以上であるから、1.7Ω・cmといった高い導電性は、皮膜接触体4,5に必ずしも必要ではない。図1において、皮膜接触体4の鍔部2aの内面の部分4aと絶縁皮膜32aの表面との接触面積をS1、蓋部材3の内面の皮膜接触体4と絶縁皮膜32aの表面との接触面積をS2、皮膜接触体4の治具本体2内径面の部分4bと絶縁皮膜32aの表面との接触面積をS3とした場合に、それぞれの接触面積での抵抗値は以下の式で表すことができる。
S1の抵抗R1=ρ×(T/S1)
S2の抵抗R2=ρ×(T/S2)
S3の抵抗R3=ρ/(2×π×B)×ln((D+2×T)/D)
但し、
ρ:体積固有抵抗率
T:絶縁皮膜32aの厚さ
B:軸方向接触幅
D:絶縁皮膜32aと外輪母材32bとの境界の直径寸法
【0024】
軸受全体の抵抗値Rは、1/R=1/R1+1/R2+1/R3の関係にあって、この場合の抵抗値を1MΩ以上に管理できれば良い。上式に皮膜接触体4,5の厚さを代入した場合、皮膜接触体4,5の抵抗値が測定誤差などの安全率を考慮した場合でも、10KΩ以下になる体積固有抵抗率を有する皮膜接触体4,5であれば良い。皮膜接触体4,5の体積固有抵抗率が低ければ低い程、求めようとする絶縁抵抗測定値の誤差を小さくできることは言うまでもない。
【0025】
また、皮膜接触体4,5はその硬度が低い程、絶縁皮膜32aの表面の凹凸に追随して接触し易くなるが、その硬度を必要以上に低くした場合、絶縁抵抗測定治具1をボルト締めするときの皮膜接触体4,5と絶縁皮膜32aとの間の締め代をそれだけ大きい側に設定しないと、皮膜接触体4,5と絶縁皮膜32aとが全面接触にならなくなる。逆に、皮膜接触体4,5の硬度が高すぎると、絶縁抵抗測定治具1をボルト締めするときの皮膜接触体4,5の絶縁皮膜32aの表面への追随性が低下したり、絶縁皮膜32aの表面の凹凸に対する皮膜接触体4,5の実接触率が低下したりする。これらのことから、皮膜接触体4,5の硬度は、HS55〜HS90程度が良く、さらにボルト締めの作業性の観点からはHS70±10程度が好ましい。
【0026】
図4は、この発明の他の実施形態を示す。この絶縁軸受の絶縁抵抗測定治具1Aは、図1に示した第1の実施形態の絶縁抵抗測定治具1において、治具本体2および蓋部材3を、皮膜接触体4,5と同じ導電性高分子で構成することで、治具本体2および蓋部材3を、それ自体が皮膜接触体となるものとし、別部材の皮膜接触体4,5を省略したものである。治具の内径および内幅寸法は、第1の実施形態における皮膜接触体4,5の内径および内幅寸法とされる。その他の構成、および絶縁軸受30の絶縁測定値を測定するときの態様は第1の実施形態の場合と同じである。
【0027】
この実施形態の絶縁抵抗測定治具1Aでは、これを構成する治具本体2および蓋部材3自体が導電性ゴムや導電性プラスチックなどの導電性高分子からなるので、絶縁抵抗測定治具1Aをボルト10,11で締め付けて絶縁軸受30を組み込む際に、絶縁皮膜32aの表面と絶縁抵抗測定治具1Aの内面との間に生じる微小滑りに対して、絶縁抵抗測定治具1Aの内面がその弾性変形により絶縁皮膜32aの表面に良く追従して接触でき、高い接触率が得られる。そのため、上記微小滑りに起因して絶縁抵抗測定治具1Aおよび絶縁皮膜32aが摩耗することなく、絶縁抵抗値を正確に測定できる。また、治具本体2および蓋部材3が皮膜接触体で構成されるため、図1の実施形態のように別体の治具本体2および蓋部材3に皮膜接触体4,5を取付けるものに比べて構成が簡単である。
【0028】
図5は、この発明のさらに他の実施形態を示す。この絶縁軸受の絶縁抵抗測定治具1Bは、絶縁軸受30の外輪32の幅面に接触するリング状の皮膜接触体16からなる。皮膜接触体16の材料が導電性高分子であることは第1の実施形態の場合と同様である。
【0029】
この絶縁抵抗測定治具1Bによる絶縁軸受30の絶縁抵抗値測定では、上記皮膜接触体16を外輪32の幅面、つまり絶縁皮膜32aの一方の幅面部分32abに接触させた状態で、抵抗計6のアース端子およびライン端子を、皮膜接触体16および外輪32の母材32bに接続して、皮膜接触体16と外輪母材32bとの間の絶縁抵抗値を測定する。
この実施形態の絶縁軸受の絶縁抵抗測定治具1Bによっても、皮膜接触体16が弾性変形により外輪絶縁皮膜32aの幅面部分32abに良く追従して接触するので、両部材間の実接触率が高くなり、絶縁抵抗値を正確に測定できる。
【0030】
図6は、この発明のさらに他の実施形態を示す。この絶縁軸受の絶縁抵抗測定治具1Cは、図6(A)のように絶縁軸受30の外輪32の外径面に弾性的に被せられるリング状の皮膜接触体17からなる。皮膜接触体17の材料が導電性高分子であることは第1の実施形態の場合と同様である。
【0031】
この絶縁抵抗測定治具1Cによる絶縁軸受30の絶縁抵抗値測定では、図6(B)のように上記皮膜接触体17を外輪32の外径面、つまり絶縁皮膜32aの外径面32aaに被せた状態で、抵抗計6のアース端子およびライン端子を、皮膜接触状態17および外輪32の母材32bに接続して、皮膜接触状態17と外輪母材32bの間の絶縁抵抗値を測定する。
この実施形態の絶縁軸受の絶縁抵抗測定治具1Cによっても、皮膜接触体17が弾性変形により外輪絶縁皮膜32aの外径部分32aaに良く追従して接触するので、両部材間の実接触率が高くなり、絶縁抵抗値を正確に測定できる。
【0032】
図7は、この発明のさらに他の実施形態を示す。この絶縁軸受の絶縁抵抗測定治具1Dは、絶縁軸受30の外輪32の円周方向の一部が進入可能な凹部20aを有する治具本体20と、この治具本体20の凹部20aの開口に平面的に張られて上記外輪32を接触させる膜状の皮膜接触体21とでなる。皮膜接触体21の材料が導電性高分子であることは第1の実施形態の場合と同様である。
【0033】
この絶縁抵抗測定治具1Dによる絶縁軸受30の絶縁抵抗値測定では、上記皮膜接触体21を絶縁軸受30の外輪32の円周方向の一部、つまり外輪絶縁皮膜32aの外径部分32aaの一部に接触させた状態で、抵抗計6のアース端子およびライン端子を、皮膜接触体21および外輪32の母材32bに接続して、皮膜接触体21と外輪母材32bの間の絶縁抵抗値を測定する。
この実施形態の絶縁軸受の絶縁抵抗測定治具1Dによっても、皮膜接触体21が弾性変形により外輪絶縁皮膜32aの外径部分32aaに良く追従して接触するので、両部材間の実接触率が高くなり、絶縁抵抗値を正確に測定することができる。
【0034】
【発明の効果】
この発明の絶縁軸受の絶縁抵抗測定治具は、外輪に絶縁皮膜を有する絶縁軸受の絶縁抵抗値を測定する治具であって、上記絶縁軸受の外輪の絶縁皮膜に接触して抵抗計と接続される皮膜接触体が導電性高分子からなるものとしたため、軸受外輪の絶縁皮膜とこれに接触して抵抗計と接続される皮膜接触体との優れた接触率が得られて、絶縁軸受の絶縁抵抗値を正確に測定することができる。
この発明の絶縁軸受の絶縁抵抗測定方法は、外輪に絶縁皮膜を有する絶縁軸受の絶縁抵抗値を測定する絶縁抵抗測定方法であって、導電性高分子からなる皮膜接触体を上記絶縁軸受の外輪の絶縁皮膜に接触させ、この皮膜接触体と上記外輪の絶縁皮膜で覆われていない部分との間に抵抗計を接続して上記絶縁軸受の絶縁抵抗値を測定する方法としたため、軸受外輪の絶縁皮膜とこれに接触して抵抗計と接続される皮膜接触体との優れた接触率が得られて、絶縁軸受の絶縁抵抗値を正確に測定することができる。
【図面の簡単な説明】
【図1】(A)はこの発明の第1の実施形態にかかる絶縁軸受の絶縁抵抗測定治具の断面図、(B)は同絶縁抵抗測定治具の蓋部材を取り除いた状態を示す正面図である。
【図2】同絶縁抵抗測定治具で測定される絶縁軸受の一例を示す要部断面図である。
【図3】同絶縁抵抗測定治具による絶縁抵抗値測定の説明図である。
【図4】この発明の他の実施形態にかかる絶縁軸受の絶縁抵抗測定治具による絶縁抵抗値測定の説明図である。
【図5】この発明のさらに他の実施形態にかかる絶縁軸受の絶縁抵抗測定治具による絶縁抵抗値測定の説明図である。
【図6】(A)はこの発明のさらに他の実施形態にかかる絶縁抵抗測定治具を絶縁軸受に取付けた状態を示す正面図、(B)は同絶縁抵抗測定治具による絶縁抵抗値測定の説明図である。
【図7】この発明のさらに他の実施形態にかかる絶縁軸受の絶縁抵抗測定治具による絶縁抵抗値測定の説明図である。
【図8】(A)は従来例の断面図、(B)はその従来例における蓋部材を取り除いた状態を示す正面図である。
【図9】その従来例による絶縁抵抗値測定の説明図である。
【符号の説明】
1,1A〜1D…絶縁抵抗測定治具
2…治具本体
2a…鍔部
3…蓋部材
4,5…皮膜接触体
6…抵抗計
16…皮膜接触体
17…皮膜接触体
20…治具本体
20a…凹部
21…皮膜接触体
30…絶縁軸受
32…外輪
32a…絶縁皮膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulation resistance measuring jig and a measuring method for measuring an insulation resistance of an insulating bearing used for a railway vehicle main motor, a generator, a general-purpose motor, and the like.
[0002]
[Prior art]
For bearings used in places where a large potential difference occurs between the housing and the shaft, such as an electric motor, an insulated bearing is used in which the outer diameter surface and the width surface of the outer ring are covered with an insulating film in order to prevent electrolytic corrosion. ing. Resins and ceramics are used for the insulating film. As this type of insulating bearing, there is one in which a metal film is formed on the outer layer of an insulating film.
When measuring the insulation performance of an insulated bearing having such a metal film, connect the earth side terminal and line side terminal of the resistance meter to the metal layer of the outer ring outermost layer and the outer ring base material. A metal layer can be used as an electrode, and the insulation resistance value of the entire outer insulating film is measured.
On the other hand, in an insulating bearing having an insulating film exposed on the surface, only a local insulation resistance value of the insulating film can be measured only by bringing a terminal into contact with a part of the insulating film.
In order to measure the entire insulation resistance value, a housing 42 that is in contact with the outer ring outer diameter surface and a lid member 43 that is in contact with the width surface as shown in FIGS. 8 and 9 were used as jigs. It is necessary to measure in the state. Conventionally, in order to perform measurement easily, the housing 42 is divided into two parts, tightened with bolts at a 180 ° position, and the lid member 43 is attached from the side surface. Both terminals of the ohmmeter 6 are connected to the housing 42 and the outer ring base material 32b. When such a jig is used, it is not necessary to press-fit or pull out the bearing unit 30 from the housing 42, and the insulation resistance value can be measured only by hand without using a press machine or the like. 8A is a cross-sectional view corresponding to the cross-sectional view taken along the line VIII-VIII in FIG. 8B.
[0003]
[Problems to be solved by the invention]
In the case of an insulating bearing having a one-layer structure made of ceramics with an insulating coating sprayed, jigs as shown in FIGS. 8 and 9 are used. However, in this case, there are the following problems. When used as an insulating bearing, the surface of the insulating coating 32a is finished to a normal size and roughness by polishing, but the split housing 42 is bolted even if it is finished to a normal size and roughness. Occasionally, a slight slip occurs at the contact portion between the inner surface of the housing and the insulating coating 32a. However, since the insulating coating 32a made of ceramic has higher hardness than the metal material of the housing 42, the housing 42 is slightly worn. The phenomenon to be seen is seen. Due to this wear, the inner diameter of the housing 42 changes with repeated use, and if the tightening allowance with the insulating coating 32a cannot be maintained, contact failure occurs and an accurate insulation resistance value cannot be measured. In addition, since the wear powder sticks to the surface of the insulating coating, there is a problem that it takes a lot of time for cleaning. Even when the lid member 43 is attached, the same phenomenon as in the case of the housing 42 occurs unless a careful tightening operation is performed. In the above description, problems have been described when the surface of the insulating coating 32a is polished. In practice, however, an insulation resistance test may be performed even before the polishing process. This inspection should be carried out so as to confirm that the insulation is defective due to defective spraying or the like before polishing, and not to polish the defective product, but the surface of the insulation coating 32a that has not been polished is In general, the surface is rough, and the contact rate between the housing 42 and the insulating coating 32a is low, and there is a problem that accurate measurement cannot be performed.
When the outer ring insulating coating 32a is made of resin, both the housing 42 and the insulating coating 32a are not worn even when the above slip occurs when measured using the jig. This is because the insulating coating 32a is made of resin and therefore has elasticity so that it can follow a minute slip.
[0004]
An object of the present invention is to provide an insulation resistance measuring process capable of accurately measuring the insulation resistance value of an insulated bearing by obtaining an excellent contact ratio between the insulation film of the bearing outer ring and the film contact body in contact with the insulation film. And providing an insulation resistance measuring method.
[0005]
[Means for Solving the Problems]
An insulation resistance measuring jig for an insulated bearing according to the present invention is a jig for measuring an insulation resistance value of an insulated bearing having an insulating film on an outer ring, and is connected to an ohmmeter in contact with the insulating film of the outer ring of the insulating bearing. The film contact body to be formed is made of a conductive polymer. The conductive polymer is conductive rubber, conductive plastic, or the like.
According to this configuration, since the film contact body is made of a conductive polymer, the film contact body easily adapts to unevenness due to the surface roughness of the insulating film due to its elastic deformation, and does not make local contact with the unevenness. Excellent contact rate can be obtained. Therefore, an accurate insulation resistance value can be measured. In particular, when the insulating coating is a ceramic sprayed layer and is in the state of the sprayed surface, it is generally rough compared to the polished surface, and the coating contact body has a low contact rate and is difficult to measure with a metal material. However, even with an insulating film composed of such a ceramic sprayed layer, if a coating contact body made of a conductive polymer is used, a high contact ratio can be obtained and an accurate insulation resistance value can be measured. Further, since the film contact body can be elastically deformed, even if a slight slip occurs when the film contact body is pressed against the insulating film, wear is prevented by elastic deformation.
As the film contact body, among conductive polymers, a conductive rubber excellent in elasticity is preferable because it easily conforms to the unevenness of the insulating film, but even a conductive plastic has a certain degree of elasticity. Compared with the case where the body is made of a metal material, the contact property is improved.
[0006]
In this invention, an insulation resistance measuring jig includes a ring-shaped jig body divided into two parts having a flange that fits the outer ring of an insulating bearing on the inner periphery and faces one width surface of the outer ring, and the jig. A lid member that is detachably attached to the tool body and faces the other width surface of the outer ring, an inner surface of the jig body, an inner surface of the flange, and an inner surface of the lid member to insulate the outer ring It is good also as what has a film contact body which contacts a film and is connected with the above-mentioned resistance meter.
In the case of this configuration, the film contact body can be brought into contact with substantially the entire insulating film extending from the outer diameter surface to the width surface of the outer ring, and more accurate measurement can be performed. Moreover, since the jig body is in the form of a ring split into two, it is easy to put in and out the insulated bearing to and from the jig. When such a split jig body is used, when the jig bodies on both sides are fastened to each other, a slight slip occurs between the insulating film surface and the inner surface of the jig body. On the other hand, since the film contact body is a conductive polymer, it can be followed by its elasticity. Therefore, the insulation resistance value can be measured without causing wear on both the jig and the insulating film.
[0007]
In this invention, the film contact body has a split ring-shaped jig body having a flange portion that fits the outer ring of the insulating bearing on the inner periphery and contacts one of the width surfaces of the outer ring, and the jig body. It is good also as what consists of a cover member attached to the other ring surface so that attachment or detachment is possible, and contacting the other width surface of the said outer ring | wheel.
In the case of this configuration, since the jig body is composed of a film contact body, the structure is simpler than that in which the film contact body is attached to a separate jig body. Also in this configuration, the film contact body can be brought into contact with substantially the entire insulating film extending from the outer diameter surface to the width surface of the outer ring, so that highly accurate measurement can be performed. Moreover, since the jig body is in the form of a ring split into two, it is easy to put in and out the insulated bearing to and from the jig. When the jig bodies on both sides divided into two are fastened to each other, a minute slip occurs between the insulating film surface and the inner surface of the jig body in the same manner as described above. Since the film contact body is a conductive polymer, it can be followed by its elasticity. Therefore, the insulation resistance value can be measured without causing wear on both the jig and the insulating film.
[0008]
In this invention, the said film contact body may be a ring-shaped member which contacts the width | variety surface of the outer ring | wheel of the said insulated bearing.
In this configuration, the film contact body is measured by contacting only the insulating film on the width surface of the outer ring, but the film contact body becomes familiar with the irregularities on the surface of the insulating film due to elastic deformation, and a high contact rate is obtained. Further, since the contact is made over the entire circumference, the insulation resistance can be measured with high accuracy. Moreover, since it is an insulation resistance measuring jig formed of a single ring-shaped film contact body, the configuration becomes very simple.
[0009]
In the present invention, the film contact body may be a ring-shaped member that elastically covers the outer diameter surface of the outer ring of the insulated bearing.
In this configuration, the film contact body is measured only by contacting the insulating film on the outer diameter surface of the outer ring, but the film contact body becomes familiar with the irregularities on the surface of the insulating film due to elastic deformation, and a high contact rate is obtained. In addition, since the contact is made over the entire circumference, the insulation resistance can be measured with high accuracy. Since this is an insulation resistance measuring jig consisting of a single ring-shaped film contact body that is elastically covered on the outer diameter surface of the outer ring, the configuration is very simple in this case as well.
[0010]
In this invention, a jig main body having a recess into which a part of the outer ring of the insulating bearing can enter in a circumferential direction, and a film that is stretched in a plane to the opening of the recess of the jig main body and makes contact with the outer ring It is good also as what consists of a film-like film contact body.
In this configuration, the outer ring is pressed against the planarly contacted film contact body, whereby the film contact body is elastically deformed along the outer ring outer diameter surface and comes into contact with the insulating film on the outer ring outer diameter surface. . In this case, the insulation resistance is measured in a part of the insulating film in the circumferential direction, and in that part, a high contact rate between the film contact body and the insulating film can be obtained, and the insulation resistance value can be measured with high accuracy.
[0011]
An insulation resistance measuring method for an insulated bearing according to the present invention is an insulation resistance measuring method for measuring an insulation resistance value of an insulated bearing having an insulation film on an outer ring, wherein a film contact made of a conductive polymer is used as the outer ring of the insulation bearing. This is a method of measuring the insulation resistance value of the insulated bearing by contacting the insulation film and connecting a resistance meter between the film contact body and the portion of the outer ring not covered with the insulation film.
According to this configuration, since the film contact body is made of a conductive polymer, the film contact body easily adapts to unevenness due to the surface roughness of the insulating film due to its elastic deformation, and does not make local contact with the unevenness. Excellent contact rate can be obtained. Therefore, an accurate insulation resistance value can be measured. In addition, since the film contact body can be elastically deformed, even if a slight slip occurs when the film contact body is pressed against the insulating film, the elastic deformation prevents wear.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. 1 shows an independent state of the insulation resistance measurement jig, FIG. 2 shows an insulation bearing to be measured, and FIG. 3 shows a state in which the insulation bearing is incorporated in the insulation resistance measurement jig. As shown in FIG. 2, the insulating bearing 30 to be measured has an insulating film 32 a on the outer ring 32. This insulating bearing 30 is a rolling bearing in which a plurality of rolling elements 33 made of balls are interposed between an inner ring 31 and an outer ring 32, and has a single layer structure from the outer diameter surface of the outer ring 32 to both width surfaces. An insulating film 32a is formed. As a result, a shaft (not shown) into which the inner ring 31 is fitted and a housing (not shown) that supports the outer ring 32 are electrically insulated and separated. The insulating film 32 a is a ceramic film, and is formed by spraying ceramics on the surface of the base material 32 b of the outer ring 32. The insulating film 32a may be made of resin.
[0013]
As shown in FIG. 1, the insulation resistance measuring jig 1 includes a jig body 2, a lid member 3, and film contact bodies 4 and 5. The jig body 2 has a ring-shaped ring shape that fits the outer ring 32 of the insulating bearing 30 on the inner circumference, and has a flange 2 a that faces one of the width surfaces of the outer ring 32. The lid member 3 is a ring-shaped member that is detachably attached to the jig body 2 and faces the other width surface of the outer ring 32. The film contact bodies 4 and 5 are provided on the inner peripheral surface of the jig body 2, the inner surface of the flange portion 2 a, and the inner surface of the lid member 3, respectively, and come into contact with the insulating film 32 a of the outer ring 32 of the insulating bearing 30. . An ohmmeter 6 (FIG. 3) is connected between the film contact bodies 4, 5 and the base material 32 b of the outer ring 32.
The material of the film contact bodies 4 and 5 is a conductive polymer such as conductive rubber or conductive plastic, and here, conductive rubber is used. As the conductive rubber to be the film contact bodies 4 and 5, a rubber having a volume resistivity of 1.7 Ω · cm and a thickness of 2 mm is used. The conductive rubber is manufactured by mixing a conductive material such as carbon powder or carbon fiber into a nitrile-based, acrylic-based, fluorine-based, or silicon-based rubber material in the manufacturing process. The shape of the conductive material to be mixed does not necessarily have to be powdery or fibrous. For example, it is sufficient if predetermined hardness and volume resistivity described later are obtained after rubber vulcanization molding.
[0014]
The jig body 2 is composed of two metal divided bodies 2A and 2B having a C-shaped front shape. At both ends of each of the divided main bodies 2A and 2B, mounting pieces 2b for connecting the divided main bodies 2A and 2B to each other by bolting and projecting to the outer diameter side are provided. Bolt insertion holes 7 are provided in both attachment pieces 2b of one divided main body 2A, and screw holes 8 that are aligned with the bolt insertion holes 7 are provided in both attachment pieces 2b of the other divided main body 2B. Both the split main bodies 2A and 2B are bolted by screwing the bolts 10 inserted through the bolt insertion holes 7 into the corresponding screw holes 8 to form the ring-shaped jig main body 2. Screw holes 9 for bolting the lid member 3 are provided at a plurality of locations on the side surface opposite to the side surface having the flange portion 2a of the jig body 2. The lid member 3 that is bolted to the side surface is provided with a plurality of bolt insertion holes (not shown) aligned with the screw holes 9. By screwing the bolts 11 inserted through these bolt insertion holes into the corresponding screw holes 9, a lid is placed on the side opposite to the flange 2a side of the jig body 2 as shown in FIG. The member 3 is bolted. 1A is a cross-sectional view corresponding to the cross-sectional view taken along the arrow I-I in FIG.
[0015]
Both the split main bodies 2A and 2B constituting the jig main body 2 are bolted so that the mating surfaces 12 and 13 (FIG. 1B) of the split main bodies 2A and 2B are in full contact with each other, and the film contact body 4 The inner diameter dimension D1 is processed to be slightly smaller than the outer diameter dimension of the outer ring insulating film 32a of the insulating bearing 30 incorporated in the insulation resistance measuring jig 1. In addition, in a state where the mating surfaces 14 and 15 (FIG. 1A) of the jig body 2 and the lid member 3 are in contact with each other, the inner surface portion 4a of the flange portion 2a of the film contact body 4 on the jig body 2 side The dimension W between the film contact bodies 5 on the lid member 3 side is processed so as to be slightly smaller than the width dimension of the insulating bearing 30 incorporated in the insulation resistance measuring jig 1. By being processed in this way, both the split main bodies 2A and 2B are bolted to form the jig main body 2, and the lid member 3 is bolted to the jig main body 2 to be placed in the insulation resistance measuring jig 1. By incorporating the insulating bearing 1, the coating contact bodies 4, 5 and the insulating coating 32 a of the outer ring 32 come into contact with each other with a predetermined allowance.
[0016]
As shown in FIG. 3, in the state in which the insulating bearing 30 is incorporated in the insulation resistance measuring jig 1, the entire surface of the insulating film 32 a of the bearing outer ring 32 is coated with the film contacts 4 and 5 of the jig body 2 and the lid member 3. To touch. In this state, the ground terminal of the resistance meter 6 is connected to the outer surface of the insulation resistance measuring jig 1, and the line terminal is connected to the base material 32b of the outer ring 32, so that the insulation resistance measuring jig 1 and the base material 32b of the outer ring 32 are connected. Measure the insulation resistance value between.
[0017]
When the insulation resistance measuring jig 1 of this embodiment is used, the film contact bodies 4 and 5 made of conductive rubber contact the surface of the outer ring insulating film 32a of the insulating bearing 30. When the insulating bearing 30 is assembled by tightening at 11, the coating contacts 4, 5 are elastically deformed by the coating contacts 4, 5 against the minute slip generated between the surface of the insulating coating 32 a and the inner surface of the insulation resistance measuring jig 1. It can follow the surface of 32a well and can contact. Therefore, the insulation resistance measurement jig 1 and the insulation film 32a are not worn due to the minute slip, and the insulation resistance value can be measured accurately. In particular, when the insulating film 32a is made of ceramics by thermal spraying, the surface thereof is rough, but the film contact bodies 4 and 5 made of conductive rubber are formed on the uneven portions on the surface of the ceramic insulating film 32a by elastic deformation. Since it follows easily, the contact rate of the film contact bodies 4 and 5 and the insulating film 32a becomes high, and an accurate insulation resistance value can be measured.
[0018]
The insulation resistance measuring jig 1 includes a split ring-shaped jig body 2 provided with a film contact body 4 and a lid member 3 provided with a film contact body 5. Since the insulation resistance value of the insulation bearing 30 is measured in a state where the insulation bearing 30 is incorporated in the tool 1, the insulation resistance value can be measured by contacting the entire surface from the outer diameter surface to the width surface of the outer ring insulation film 32a, and the accuracy is improved. Measurement is possible.
[0019]
In order to confirm the performance of the insulation resistance measuring jig 1 of this embodiment, the same insulation bearing 30 is used in the case of the above measurement system and the measurement system using the conventional insulation resistance measurement jig 41 shown in FIGS. The electrical characteristics of were compared. The results are shown in Table 1 below.
[0020]
[Table 1]
Figure 2005017251
[0021]
Table 1 shows the current value (A) flowing through the insulating bearing 30 when a voltage of 500 V is applied between the surface of the insulation resistance measuring jigs 1 and 41 and the outer ring base material 32b in each measurement system. The comparison result is shown. According to the results of Table 1, the current value in the embodiment using the film contact bodies 4 and 5 is higher than that in the conventional example. Since the insulation resistance value theoretically decreases as the surface area of the insulation film 32a increases, the results in Table 1 show that the actual contact area between the insulation resistance measuring jigs 1 and 41 and the insulation film 32a is the film contact body 4 , 5 is larger in this embodiment, indicating that the insulation resistance value can be measured more accurately.
[0022]
In addition, in order to confirm the influence on the insulation resistance value of the film contact bodies 4 and 5 themselves in this embodiment, an insulating film is formed on the surface of the outer ring, and a metal layer (conductor) is further formed on the surface. The insulation resistance measurement jig 1 of this embodiment and the insulation resistance measurement jig 41 of the conventional example shown in FIGS. 8 and 9 were subjected to a test for measuring the insulation resistance value. In this test result, both the embodiment and the conventional example were 50 MΩ (when 500 V was applied), and the influence of the coating contact bodies 4 and 5 was not recognized. In this test, since the outermost layer of the bearing outer ring is a conductor, there is almost no influence on the resistance value due to the actual contact ratio between the bearing outer ring and the insulation resistance measuring jig.
[0023]
In this embodiment, the conductive rubber used as the coating contact bodies 4 and 5 is one having a volume resistivity of 1.7 Ω · cm and a thickness of 2 mm, but the resistance value required for the insulated bearing is 1 MΩ or more. Therefore, high conductivity such as 1.7 Ω · cm is not necessarily required for the coating contact bodies 4 and 5. In FIG. 1, the contact area between the inner surface portion 4a of the flange 2a of the film contact body 4 and the surface of the insulating film 32a is S1, and the contact area between the film contact body 4 on the inner surface of the lid member 3 and the surface of the insulating film 32a. Where S3 is the contact area between the portion 4b of the inner surface of the jig body 2 of the film contact body 4 and the surface of the insulating film 32a, the resistance value at each contact area can be expressed by the following equation. it can.
S1 resistance R1 = ρ × (T / S1)
S2 resistance R2 = ρ × (T / S2)
S3 resistance R3 = ρ / (2 × π × B) × ln ((D + 2 × T) / D)
However,
ρ: Volume resistivity
T: thickness of the insulating film 32a
B: Axial contact width
D: Diameter dimension of the boundary between the insulating coating 32a and the outer ring base material 32b
[0024]
The resistance value R of the entire bearing has a relationship of 1 / R = 1 / R1 + 1 / R2 + 1 / R3, and the resistance value in this case may be managed to be 1 MΩ or more. When the thickness of the film contact bodies 4 and 5 is substituted into the above equation, the film having a volume resistivity of 10 KΩ or less even when the resistance value of the film contact bodies 4 and 5 takes into account the safety factor such as measurement error The contact bodies 4 and 5 may be used. It goes without saying that the lower the volume resistivity of the film contact bodies 4 and 5, the smaller the error of the measured insulation resistance value to be obtained.
[0025]
In addition, the lower the hardness of the film contact bodies 4 and 5, the easier it is to follow the surface irregularities of the insulating film 32a, but when the hardness is made lower than necessary, the insulation resistance measuring jig 1 is bolted. Unless the tightening allowance between the film contact bodies 4 and 5 and the insulating film 32a when tightening is set to the larger side, the film contact bodies 4 and 5 and the insulating film 32a will not be in full contact. On the other hand, if the hardness of the film contact bodies 4 and 5 is too high, the followability of the film contact bodies 4 and 5 to the surface of the insulating film 32a when bolting the insulation resistance measuring jig 1 is reduced, or the insulation is reduced. The actual contact rate of the film contact bodies 4 and 5 with respect to the irregularities on the surface of the film 32a may decrease. From these facts, the hardness of the film contact bodies 4 and 5 is preferably about HS55 to HS90, and more preferably about HS70 ± 10 from the viewpoint of bolting workability.
[0026]
FIG. 4 shows another embodiment of the present invention. The insulation resistance measuring jig 1A of the insulated bearing is the same as the film contact bodies 4 and 5 in the jig body 2 and the lid member 3 in the insulation resistance measuring jig 1 of the first embodiment shown in FIG. By using the conductive polymer, the jig body 2 and the lid member 3 are themselves film contact bodies, and the separate film contact bodies 4 and 5 are omitted. The inner diameter and inner width dimension of the jig are the inner diameter and inner width dimension of the film contact bodies 4 and 5 in the first embodiment. Other configurations and aspects when measuring the insulation measurement value of the insulating bearing 30 are the same as those in the case of the first embodiment.
[0027]
In the insulation resistance measuring jig 1A of this embodiment, since the jig body 2 and the lid member 3 constituting the same are made of a conductive polymer such as conductive rubber or conductive plastic, the insulation resistance measuring jig 1A is When the insulating bearing 30 is assembled by tightening with the bolts 10 and 11, the inner surface of the insulation resistance measuring jig 1A is against the minute slip generated between the surface of the insulating film 32a and the inner surface of the insulation resistance measuring jig 1A. Due to the elastic deformation, the surface of the insulating film 32a can be well tracked and contacted, and a high contact rate can be obtained. Therefore, the insulation resistance value can be accurately measured without the insulation resistance measuring jig 1A and the insulation film 32a being worn due to the minute slip. In addition, since the jig body 2 and the lid member 3 are formed of a film contact body, the film contact bodies 4 and 5 are attached to the separate jig body 2 and the lid member 3 as in the embodiment of FIG. The configuration is simpler than that.
[0028]
FIG. 5 shows still another embodiment of the present invention. The insulation resistance measuring jig 1 </ b> B of the insulated bearing includes a ring-shaped film contact body 16 that contacts the width surface of the outer ring 32 of the insulated bearing 30. The material of the film contact body 16 is a conductive polymer as in the case of the first embodiment.
[0029]
In the measurement of the insulation resistance value of the insulation bearing 30 by the insulation resistance measurement jig 1B, the resistance meter 6 is in a state where the film contact body 16 is in contact with the width surface of the outer ring 32, that is, one width surface portion 32ab of the insulation film 32a. The ground terminal and the line terminal are connected to the film contact 16 and the base material 32b of the outer ring 32, and the insulation resistance value between the film contact 16 and the outer ring base material 32b is measured.
Also with the insulation resistance measuring jig 1B of the insulated bearing of this embodiment, the film contact body 16 follows the width surface portion 32ab of the outer ring insulating film 32a well by elastic deformation, so that the actual contact ratio between both members is high. Thus, the insulation resistance value can be measured accurately.
[0030]
FIG. 6 shows still another embodiment of the present invention. As shown in FIG. 6A, the insulation resistance measuring jig 1C of the insulated bearing is composed of a ring-shaped film contact body 17 that is elastically placed on the outer diameter surface of the outer ring 32 of the insulated bearing 30. The material of the film contact body 17 is a conductive polymer as in the case of the first embodiment.
[0031]
In the measurement of the insulation resistance value of the insulation bearing 30 using the insulation resistance measurement jig 1C, as shown in FIG. 6B, the film contact body 17 is put on the outer diameter surface of the outer ring 32, that is, the outer diameter surface 32aa of the insulation film 32a. In this state, the ground terminal and line terminal of the resistance meter 6 are connected to the film contact state 17 and the base material 32b of the outer ring 32, and the insulation resistance value between the film contact state 17 and the outer ring base material 32b is measured.
Also with the insulation resistance measuring jig 1C of the insulated bearing of this embodiment, the film contact body 17 follows the outer diameter portion 32aa of the outer ring insulating film 32a well by elastic deformation, so that the actual contact ratio between the two members is high. The insulation resistance value can be accurately measured.
[0032]
FIG. 7 shows still another embodiment of the present invention. The insulation resistance measuring jig 1D of the insulated bearing has a jig body 20 having a recess 20a into which a part of the outer ring 32 of the insulated bearing 30 can enter and an opening of the recess 20a of the jig body 20. A film-like film contact body 21 which is stretched in a plane and contacts the outer ring 32 is formed. The material of the film contact 21 is a conductive polymer as in the case of the first embodiment.
[0033]
In the measurement of the insulation resistance value of the insulation bearing 30 by the insulation resistance measurement jig 1D, the film contact body 21 is part of the circumferential direction of the outer ring 32 of the insulation bearing 30, that is, one of the outer diameter portions 32aa of the outer ring insulation film 32a. The ground terminal and the line terminal of the ohmmeter 6 are connected to the base material 32b of the film contact body 21 and the outer ring 32 in a state of being in contact with the portion, and the insulation resistance value between the film contact body 21 and the outer ring base material 32b Measure.
Even with the insulation resistance measuring jig 1D of the insulated bearing of this embodiment, the film contact body 21 follows the outer diameter portion 32aa of the outer ring insulating film 32a well by elastic deformation, so that the actual contact ratio between the two members is high. The insulation resistance value can be accurately measured.
[0034]
【The invention's effect】
An insulation resistance measuring jig for an insulated bearing according to the present invention is a jig for measuring an insulation resistance value of an insulated bearing having an insulating film on an outer ring, and is connected to an ohmmeter in contact with the insulating film of the outer ring of the insulating bearing. The film contact body to be formed is made of a conductive polymer, so that an excellent contact rate between the insulating film of the bearing outer ring and the film contact body that is in contact with the film and connected to the resistance meter is obtained. The insulation resistance value can be accurately measured.
An insulation resistance measuring method for an insulated bearing according to the present invention is an insulation resistance measuring method for measuring an insulation resistance value of an insulated bearing having an insulation film on an outer ring, wherein a film contact made of a conductive polymer is used as the outer ring of the insulation bearing. In this method, the resistance of the outer bearing is measured by connecting a resistance meter between the outer surface of the outer ring and the portion of the outer ring not covered with the insulating film. An excellent contact rate between the insulating film and the film contact body that is in contact with the insulating film and is connected to the resistance meter is obtained, and the insulation resistance value of the insulating bearing can be accurately measured.
[Brief description of the drawings]
1A is a cross-sectional view of an insulation resistance measuring jig for an insulated bearing according to a first embodiment of the present invention, and FIG. 1B is a front view showing a state where a lid member of the insulation resistance measuring jig is removed. FIG.
FIG. 2 is a cross-sectional view of an essential part showing an example of an insulated bearing measured by the insulation resistance measuring jig.
FIG. 3 is an explanatory diagram of insulation resistance value measurement by the insulation resistance measurement jig.
FIG. 4 is an explanatory view of insulation resistance value measurement by an insulation resistance measurement jig of an insulated bearing according to another embodiment of the present invention.
FIG. 5 is an explanatory diagram of insulation resistance value measurement by an insulation resistance measurement jig of an insulated bearing according to still another embodiment of the present invention.
6A is a front view showing a state in which an insulation resistance measurement jig according to still another embodiment of the present invention is attached to an insulation bearing, and FIG. 6B is an insulation resistance value measurement using the insulation resistance measurement jig. It is explanatory drawing of.
FIG. 7 is an explanatory diagram of insulation resistance value measurement by an insulation resistance measurement jig of an insulated bearing according to still another embodiment of the present invention.
8A is a cross-sectional view of a conventional example, and FIG. 8B is a front view showing a state in which the lid member in the conventional example is removed.
FIG. 9 is an explanatory view of insulation resistance value measurement according to the conventional example.
[Explanation of symbols]
1, 1A-1D ... Insulation resistance measurement jig
2 ... Jig body
2a ... Buttocks
3 ... Lid member
4, 5 ... Film contact
6 ... Resistance meter
16 ... Film contact
17 ... Film contact
20 ... Jig body
20a ... recess
21 ... Film contact
30 ... Insulated bearing
32 ... Outer ring
32a ... Insulating film

Claims (8)

外輪に絶縁皮膜を有する絶縁軸受の絶縁抵抗値を測定する治具であって、上記絶縁軸受の外輪の絶縁皮膜に接触して抵抗計と接続される皮膜接触体が導電性高分子からなる絶縁軸受の絶縁抵抗測定治具。A jig for measuring an insulation resistance value of an insulating bearing having an insulating film on an outer ring, wherein the film contact body that is in contact with the insulating film of the outer ring of the insulating bearing and is connected to the resistance meter is made of a conductive polymer. Jig for measuring insulation resistance of bearings. 請求項1において、上記導電性高分子が導電性ゴムである絶縁軸受の絶縁抵抗測定治具。The insulation resistance measuring jig for an insulated bearing according to claim 1, wherein the conductive polymer is a conductive rubber. 請求項1または請求項2において、絶縁軸受の外輪を内周に嵌合させかつ上記外輪の片方の幅面に対向する鍔部を有する2つ割りのリング状の治具本体と、この治具本体に着脱可能に取付けられ上記外輪のもう片方の幅面に対向する蓋部材と、上記治具本体の内周面および鍔部の内面、並びに上記蓋部材の内面に設けられて上記外輪の絶縁皮膜に接触し上記抵抗計と接続される皮膜接触体とを有する絶縁軸受の絶縁抵抗測定治具。3. A split ring-shaped jig body having a flange that fits the outer ring of the insulating bearing on the inner periphery and faces one of the width surfaces of the outer ring, and the jig body A lid member that is detachably attached to the other width surface of the outer ring, an inner peripheral surface of the jig main body, an inner surface of the flange portion, and an inner surface of the lid member, and is provided on the insulating film of the outer ring. An insulation resistance measuring jig of an insulating bearing having a film contact body that contacts and is connected to the ohmmeter. 請求項1または請求項2において、皮膜接触体が、絶縁軸受の外輪を内周に嵌合させかつ上記外輪の片方の幅面に接触する鍔部を有する2つ割りのリング状の治具本体と、この治具本体に着脱可能に取付けられ上記外輪のもう片方の幅面に接触する蓋部材とでなる絶縁軸受の絶縁抵抗測定治具。The ring-shaped jig main body having a split ring structure according to claim 1 or 2, wherein the film contact body has a flange that fits the outer ring of the insulating bearing to the inner periphery and contacts one of the width surfaces of the outer ring. An insulation resistance measurement jig for an insulation bearing, which is detachably attached to the jig body and a lid member that contacts the other width surface of the outer ring. 請求項1または請求項2において、上記皮膜接触体が、上記絶縁軸受の外輪の幅面に接触するリング状の部材である絶縁軸受の絶縁抵抗測定治具。The insulation resistance measuring jig for an insulated bearing according to claim 1 or 2, wherein the film contact body is a ring-shaped member that contacts a width surface of the outer ring of the insulated bearing. 請求項1または請求項2において、上記皮膜接触体が、上記絶縁軸受の外輪の外径面に弾性的に被せられるリング状の部材である絶縁軸受の絶縁抵抗測定治具。The insulation resistance measuring jig for an insulated bearing according to claim 1 or 2, wherein the film contact body is a ring-shaped member that is elastically covered on an outer diameter surface of an outer ring of the insulated bearing. 請求項1または請求項2において、上記絶縁軸受の外輪の円周方向の一部が進入可能な凹部を有する治具本体と、この治具本体の上記凹部の開口に平面的に張られて上記外輪を接触させる膜状の皮膜接触体とでなる絶縁軸受の絶縁抵抗測定治具。3. The jig main body having a recess into which a part of the outer ring of the insulating bearing can be entered, and a planar extension of the opening of the recess of the jig main body. An insulation resistance measuring jig for an insulated bearing comprising a film-like film contact body for contacting an outer ring. 外輪に絶縁皮膜を有する絶縁軸受の絶縁抵抗値を測定する絶縁抵抗測定方法であって、導電性高分子からなる皮膜接触体を上記絶縁軸受の外輪の絶縁皮膜に接触させ、この皮膜接触体と上記外輪の絶縁皮膜で覆われていない部分との間に抵抗計を接続して上記絶縁軸受の絶縁抵抗値を測定する絶縁軸受の絶縁抵抗測定方法。An insulation resistance measurement method for measuring an insulation resistance value of an insulation bearing having an insulation film on an outer ring, wherein a film contact body made of a conductive polymer is brought into contact with the insulation film of the outer ring of the insulation bearing, and the film contact body and An insulation resistance measurement method for an insulated bearing, wherein an ohmmeter is connected between the outer ring and a portion not covered with an insulation film to measure an insulation resistance value of the insulated bearing.
JP2003186471A 2003-06-30 2003-06-30 Insulation resistance measurement jig for insulation bearing and measurement method Expired - Lifetime JP4369692B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003186471A JP4369692B2 (en) 2003-06-30 2003-06-30 Insulation resistance measurement jig for insulation bearing and measurement method
CNB031461735A CN100416281C (en) 2003-06-30 2003-07-25 Insulation resistance tester for insulation bearing and detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186471A JP4369692B2 (en) 2003-06-30 2003-06-30 Insulation resistance measurement jig for insulation bearing and measurement method

Publications (2)

Publication Number Publication Date
JP2005017251A true JP2005017251A (en) 2005-01-20
JP4369692B2 JP4369692B2 (en) 2009-11-25

Family

ID=34185583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186471A Expired - Lifetime JP4369692B2 (en) 2003-06-30 2003-06-30 Insulation resistance measurement jig for insulation bearing and measurement method

Country Status (2)

Country Link
JP (1) JP4369692B2 (en)
CN (1) CN100416281C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032127A (en) * 2006-07-28 2008-02-14 Ntn Corp Manufacturing method for raceway track member of bearing and manufacturing method for rolling bearing
JP2012006090A (en) * 2010-06-22 2012-01-12 Disco Corp Grinding device
WO2015146689A1 (en) * 2014-03-25 2015-10-01 Ntn株式会社 Bearing component internal defect inspection apparatus and internal defect inspection method
JP2017035986A (en) * 2015-08-10 2017-02-16 Ntn株式会社 Wheel bearing device
JP2019152532A (en) * 2018-03-02 2019-09-12 Ntn株式会社 Insulated bearings, insulation resistance measuring jig and insulation resistance measuring method
CN111041911A (en) * 2019-12-05 2020-04-21 中铁七局集团郑州工程有限公司 Method for testing resistance of steel bar of railway ballastless track bed
CN113759173A (en) * 2020-06-01 2021-12-07 中车永济电机有限公司 Bearing insulation resistance detection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214226B (en) * 2014-09-24 2016-09-07 如皋市非标轴承有限公司 A kind of manufacture method of glass fibre composite revolving bearing
CN105388404A (en) * 2015-11-19 2016-03-09 南车株洲电机有限公司 Insulated bearing electric testing tool
CN113702708B (en) * 2021-08-09 2024-01-16 武汉理工大学 Ring resistivity detection device and ring performance evaluation method based on resistivity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127922U (en) * 1983-02-16 1984-08-28 日本精工株式会社 rolling bearing assembly
JPS6166545A (en) * 1984-09-06 1986-04-05 Toshiba Corp Detector for defect in winding
JPS62114365U (en) * 1986-01-08 1987-07-21
JPH06147231A (en) * 1992-09-24 1994-05-27 Bando Chem Ind Ltd Electric insulating bearing
JPH1130239A (en) * 1997-05-12 1999-02-02 Nippon Seiko Kk Electrolytic corrosion preventive rolling bearing
JP2001149330A (en) * 1999-11-30 2001-06-05 Hioki Ee Corp Measuring device
JP2002048145A (en) * 2000-08-04 2002-02-15 Ntn Corp Anti-electrolytic corrosion rolling bearing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796262A (en) * 1996-02-14 1998-08-18 Westinghouse Electric Corporation Method and apparatus for diagnosing bearing insulation impedance of a rotating electrical apparatus
JP2000088901A (en) * 1998-09-08 2000-03-31 Advantest Corp Surface and volume electrical resistance measurement device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127922U (en) * 1983-02-16 1984-08-28 日本精工株式会社 rolling bearing assembly
JPS6166545A (en) * 1984-09-06 1986-04-05 Toshiba Corp Detector for defect in winding
JPS62114365U (en) * 1986-01-08 1987-07-21
JPH06147231A (en) * 1992-09-24 1994-05-27 Bando Chem Ind Ltd Electric insulating bearing
JPH1130239A (en) * 1997-05-12 1999-02-02 Nippon Seiko Kk Electrolytic corrosion preventive rolling bearing
JP2001149330A (en) * 1999-11-30 2001-06-05 Hioki Ee Corp Measuring device
JP2002048145A (en) * 2000-08-04 2002-02-15 Ntn Corp Anti-electrolytic corrosion rolling bearing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032127A (en) * 2006-07-28 2008-02-14 Ntn Corp Manufacturing method for raceway track member of bearing and manufacturing method for rolling bearing
JP2012006090A (en) * 2010-06-22 2012-01-12 Disco Corp Grinding device
WO2015146689A1 (en) * 2014-03-25 2015-10-01 Ntn株式会社 Bearing component internal defect inspection apparatus and internal defect inspection method
JP2017035986A (en) * 2015-08-10 2017-02-16 Ntn株式会社 Wheel bearing device
WO2017026311A1 (en) * 2015-08-10 2017-02-16 Ntn株式会社 Bearing device for wheels
US10302126B2 (en) 2015-08-10 2019-05-28 Ntn Corporation Bearing device for wheels
JP2019152532A (en) * 2018-03-02 2019-09-12 Ntn株式会社 Insulated bearings, insulation resistance measuring jig and insulation resistance measuring method
JP7022619B2 (en) 2018-03-02 2022-02-18 Ntn株式会社 Insulation resistance measuring jig and insulation resistance measuring method for insulated bearings
CN111041911A (en) * 2019-12-05 2020-04-21 中铁七局集团郑州工程有限公司 Method for testing resistance of steel bar of railway ballastless track bed
CN113759173A (en) * 2020-06-01 2021-12-07 中车永济电机有限公司 Bearing insulation resistance detection device

Also Published As

Publication number Publication date
JP4369692B2 (en) 2009-11-25
CN1576864A (en) 2005-02-09
CN100416281C (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP4369692B2 (en) Insulation resistance measurement jig for insulation bearing and measurement method
KR101428829B1 (en) A sensorized bearing unit
US9790995B2 (en) Bearing seal with integrated grounding brush
JP4658407B2 (en) Insulation type rotor coupling
JP2008185339A (en) Bearing state inspection device and bearing state inspection method
WO2016171929A1 (en) Shunt bearing with insulating coating
US11187265B2 (en) Rolling bearing having a sensor and drive unit
CN211905415U (en) Rotation detecting device
JP5771950B2 (en) Bearing test equipment
JPH0743488Y2 (en) Anti-corrosion type rolling bearing
JP2008298252A (en) Bearing device
JP5147528B2 (en) Bearing device
TW202224994A (en) Conducting wheel wherein there is no need to set a ground wire on the trolley through the structural design of directly arranging the conductive sheet in the wheel frame and the wheel body
JP4954136B2 (en) Bearing device
JP7022619B2 (en) Insulation resistance measuring jig and insulation resistance measuring method for insulated bearings
JP2008164585A (en) Testing device for insulated ball bearing
EP0872360A2 (en) &#34;Antistatic tire&#34;
JP2003206925A (en) Pre-load measuring method for bearing, pre-load measuring device, and spindle device
US20190267766A1 (en) Measuring Device for Measuring the Wear of Carbon Brushes
US10876988B2 (en) Wear indicating component and method of monitoring wear
JP4444921B2 (en) Ball joint
JPH06147231A (en) Electric insulating bearing
MX2022001986A (en) Resistivity measurement polar plate and manufacturing method.
JPH051983Y2 (en)
JPH0954125A (en) Apparatus and method for measurement of electric resistance of surface of sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4369692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term