JP2005017110A - Magnetic field sensing element - Google Patents

Magnetic field sensing element Download PDF

Info

Publication number
JP2005017110A
JP2005017110A JP2003182215A JP2003182215A JP2005017110A JP 2005017110 A JP2005017110 A JP 2005017110A JP 2003182215 A JP2003182215 A JP 2003182215A JP 2003182215 A JP2003182215 A JP 2003182215A JP 2005017110 A JP2005017110 A JP 2005017110A
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
magnetic
coil
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182215A
Other languages
Japanese (ja)
Inventor
Tomoaki Ueda
智章 上田
Makoto Takenaka
誠 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2003182215A priority Critical patent/JP2005017110A/en
Publication of JP2005017110A publication Critical patent/JP2005017110A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field sensing element which is operable in ambient temperature, be low cost and small in size, has a high magnetic resolution and spacial resolution and has wide band low noise characteristics. <P>SOLUTION: The magnetic field sensing element comprises 4 terminals on a thin film 1 constituted of a sensing material with high permeability and high conductivity and very small coersive force. With this magnetic field sensing element, a sufficiently high frequency current of a degree generating a bias of current density distribution in the thickness direction of the thin film by a skin effect is impressed in facing terminals 2 and 4, and a magnetic field is detected based on a high frequency voltage appearing between terminals 3 and 5 facing in the direction crossing to the current impressing direction due to Lorentz force received from an external magnetic field in the direction of normal to the thin film surface, or by supplying current for generating a magnetic field of reversed phase in the thin film surface to a coil 6 and the magnetic field in the normal direction of the magnetic sensing surface is maintained to be constant. By this manner, an element for detecting external magnetic field with high sensitivity can be realized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は磁界検出素子に関する。さらに詳しくは、この発明は、心筋内を流れる微弱な分布電流に伴って発生する地磁気の百万分の一程度の微弱な心磁界を計測したり、金属内部または表面付近の金属疲労や亀裂または腐食状態を調べる目的で検査対象に電流印加している際に発生する検査対象表面付近の磁界分布を計測する非破壊検査に用いたり、100フェムトテスラから1ナノテスラ程度の微弱な磁界変化を計測することができる磁界検出素子に関する。
【0002】
【従来の技術】
従来、磁界を検出する手段としては、半導体のホール効果を利用したホール素子、感磁性材料の電気抵抗が磁界に対して変化することを利用した磁気抵抗素子、フラックスゲート、感磁性線材を利用した磁気インピーダンス効果素子(特開平7−181239)、超電導量子干渉素子(SQUID:SuperconductingQUantum Interference Device)等が用いられている。
【0003】
図2に示すように、各センサの磁気分解能としては、ホール素子で10マイクロテスラ程度、磁気抵抗素子で3ナノテスラ程度、フラックスゲートまたは磁気インピーダンス効果素子で0.1ナノテスラ程度であり、0.1ナノテスラ未満の微弱磁界を計測できる能力を有する素子としては超伝導量子干渉素子に限られていた。超電導量子干渉素子は、地磁気の10億分の1程度の磁束を高感度に検出することができるため、さまざまな分野で応用されており、近年では液体窒素温度での冷却で利用できる高温超電導量子干渉素子が実用化されている。
【0004】
しかし、素子を超伝導状態に保つために液体窒素温度あるいは液体ヘリウム温度に冷却する必要があり、デュワーと呼ばれる液体窒素あるいは液体ヘリウムを入れるための保冷容器内に超伝導量子干渉素子を収容する必要があった。または冷凍機による直接冷却を行うものでも真空断熱層を設ける必要があった。そのため装置は大型化してしまう欠点があった。また、液体ヘリウムや液体窒素に超伝導量子干渉素子を浸す必要性から、測定方向に対する制約もあった。さらに超電導量子干渉素子は電磁波にさらされると、その周期的な感磁特性(磁束密度−出力電圧特性)を失ってしまう欠点があった。
【0005】
常温で利用できる磁気検出素子で最も感度が良いフラックスゲートと感磁性線材を利用した磁気インピーダンス効果素子には以下の欠点がある。
【0006】
フラックスゲートでは、大きな磁性コアを飽和磁束付近まで交流磁界で励磁する必要があり、励磁コイルに交流電流を印加する必要がある。磁性コアは高透磁率であるので励磁コイルの巻線回数を多くすると電流は低減できるが、コイルのインダクタンスは大きくなってしまい、計測可能な帯域が狭くなってしまう。また、反対に巻線回数を少なくすると励磁に大電流を流す必要が生じてしまい、同期検波回路の高周波残留ノイズを低減するためにローパスフイルタを用いるとやはり計測可能な帯域が狭くなってしまう。結果的に、0.1ナノテスラの磁気分解能を実現する設計では、DCから150Hz程度までの測定帯域しか達成することはできなかった。
【0007】
磁気インピーダンス効果素子はMIセンサとも呼ばれ、図3のa)に示すように感磁性線に4つの端子を設け、磁界フィードバック用のコイルを巻いた構造をしている。磁気インピーダンス効果素子では、磁界に対するインピーダンスの変化を捕捉する方式であるので、零磁界状態においても一定のインピーダンスが存在している。したがって、零磁界状態においても円周磁界励磁のための高周波電流に同期した高周波電圧が感磁性線の両端に出現してしまい、同期検波や全波整流等の振幅検出回路を通した後の波形が図3のb)のようにリップルの多い高周波電圧波形になってしまう。図3のc)に示すように感磁性線の軸方向磁界の変化を捉えるために同期検波や全波整流を行ってもリップルノイズ低減のためにはローパスフイルタを用いねばならず、どうしても測定帯域が制限されてしまう欠点がある。また、リップルノイズを減らすために印加する高周波電流の周波数を上げ表皮厚さを薄くして、感磁性線に流れる励磁電流密度を増加させる方法もあるが、感磁性線を製造する際に張力をかけて引っ張っているために表面に近い部分の導電率は低くなっており、電気抵抗が大きくなる結果、熱雑音が増加してしまい、印加する高周波電流の周波数を一定以上引き上げても感度が逆に劣化してしまう欠点が存在している。これを説明する図として図4を示す。図4のa)およびb)は感磁性線の断面を示した図であり、表面付近は製造時の張力のために状態欠陥があり、導電率が低い領域が存在している。図4のa)のように印加周波数が高いと表皮効果の表皮厚みが小さいので印加した電流の密度は高くなるが、同時に高抵抗領域を通るためにジョンソンノイズも大きくなってしまう。図4のb)のように印加周波数が低いと、ジョンソンノイズは低減できるものの、電流密度も低下するため、印加電流の周波数と磁気分解能は図4のc)に示すような関係になる。
【0008】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、常温で動作可能であり、安価かつ小型で磁気分解能と空間分解能が高く、広帯域かつ低雑音特性を有した磁気検出素子を提供することである。
【0009】
【課題を解決するための手段】
この発明による磁界検出素子によれば、4本の端子を有する、高透磁率かつ高導電率であり保磁力が極めて小さな感磁性材料で構成された薄膜1において、互いに対向する端子2および端子4を薄膜1に高周波電流を印加するための電流印加端子とし、前記高周波電流の印加方向に対して交差する方向に位置して互いに対向する端子3および端子5を高周波電圧を測定するための電圧測定端子とし、薄膜1の面の法線方向の外部磁界から受けるローレンツ力により比例的に発生する高周波電圧を測定することにより外部磁界を検出することを特徴としている。
【0010】
熱雑音の電圧振幅はジョンソンノイズとも呼ばれ、薄膜1の電気抵抗と温度で決まるが、線材に比して電気抵抗を低く抑えることができるために、磁気インピーダンス効果素子よりも低く抑えることができる。また、薄膜1の感磁面の法線方向の磁界成分が零である場合には、ローレンツ力の影響を受けないために、電圧測定端子には高周波電圧が出現せず、リップルノイズが発生しないようにできるため、磁気インピーダンス効果素子よりも測定帯域を広くとれる。さらに薄膜1の製造過程において大きな張力で引っ張る必要性がないため、薄膜表面付近の導電率も高く、印加する高周波電流の周波数を磁気インピーダンス効果素子の場合よりも高くしても感度の劣化現象を発生させることなく、磁気分解能をさらに高くすることができる。さらに薄膜1は小型かつ安価に製造でき、小型であるために空間分解能を高くすることができる。
【0011】
好ましくは、印加する高周波電流と直交する方向に出現する高周波電圧が測定できるように4つの端子を配置することである。これによって薄膜1の膜面の法線方向の磁界を精確に捉えることができる。
【0012】
さらに好ましくは、できる限り高透磁率かつ高導電率の感磁性材料を用いて、できる限り高い高周波電流を印加することである。導体に外部から高周波磁界が印加される場合に導体中に流れるうず電流は、表面で多く,導体の内部に行くにしたがって指数関数的に減少する性質があることが知られている。これは「表皮効果」として知られている。表面の電流値に対してちょうど自然対数の底eの逆数1/eになる深さの値を表皮の厚さδと呼び、磁性材料の透磁率をμ、導電率をσ、対象周波数f[Hz]とするとき表皮深さδ[m]は数1の式を用いて表される。
【数1】

Figure 2005017110
【0013】
できる限り高透磁率かつ高導電率の感磁性材料を用いて、できる限り高い高周波電流を印加すれば、式1で定まる表皮厚さを短くすることができ、印加する電流が微弱であっても、高い電流密度を達成することができ、クロストークを抑えることができる。あるいは同一の印加電流であった場合にはさらに高い電流密度を達成でき、磁気分解能を向上することができるのである。
【0014】
この発明の他の局面に従うと、前記磁界検出素子において、電圧測定端子で測定される信号に基づいて薄膜1の感磁面の法線方向の外部磁界とは逆位相の磁界を発生させる信号処理を行い、フィードバック電流を供給することにより感磁面の法線方向磁界を一定にすることができるコイル6を設けたことを特徴としている。これによって、感磁面の法線方向の磁界は常に零に保たれるので、磁界検出素子に印加される電流はローレンツ力の影響を受けることがなく、電圧測定端子には高周波電圧が発生しない。即ち、電圧測定端子で測定される信号を印加する高周波電流波形に同期させた検波を行っても同期検波出力にリップル電圧出力は発生しないので、電子回路ノイズを極めて低くすることができる。その結果、磁界検出素子の磁気分解能を極めて高くすることができる。また、コイル6にフィードバックする電流値は外部磁界に比例するために精確な磁気測定を行うことができる。
【0015】
この発明の他の局面に従うと、前記磁界検出素子において、コイル6が薄膜1の形成面上に一体的に構成されている小コイルであり、薄膜1の感磁面近傍の感磁面法線方向磁界を一定にすることを特徴としている。これによって、前記小コイルに流す電流値を極めて小さくとも感磁面における磁界を一定に保つことができ、コイルが小さいためにコイルを流れる電流が作る磁界も距離減衰効果のため遠方には到達しにくい性質がある。したがって、高い空間密度で本磁界検出素子を配置しても、磁界検出素子間での磁気結合が原因で発生する干渉を低く抑えることができる。したがってこの発明によれば、磁界検出素子の空間分解能を極めて高くすることができる。また、一体的に薄膜とコイルを形成するので、集積化に適しており、磁気感度が安定した磁界検出素子を実現することができる。
【0016】
この発明の他の局面に従うと、前記磁界検出素子において、コイル6が薄膜1の形成面上にはなく、薄膜1の大きさに比して数倍以上大きな大コイルであり、薄膜1の感磁面近傍だけでなく、より広い周辺部分に対しても感磁面法線方向磁界を一定に保持することを特徴としている。これによって、変動する外部磁界が存在する状態であっても、外部磁界が空間勾配を持たないか、空間勾配を持っていてもその勾配が極めて小さい場合には、コイル6が発生する磁界は磁界検出素子近傍だけでなく、その周辺のより広い空間においても一定の磁界に保持することができので、外部磁界の影響を受けないかまたは影響が少ない空間を実現することができる。したがってこの発明によれば、磁気検出素子から十分遠方に位置する環境磁気ノイズ源が発生する外乱を低減あるいは消去することができる部分空間を実現することができる。
【0017】
さらにこの発明の他の局面に従うと、1個または複数個の小コイルを有した磁界検出素子と1個または複数個の大コイルを有した磁界検出素子とにより構成され、大コイルを有した磁界検出素子が同一設置平面上にあり、大コイルを有する磁界検出素子の薄膜1の設置位置と前記設置平面を挟んで反対側に小コイルを有した磁界検出素子を配置し、小コイルを有した磁界検出素子の近傍に被測定対象を配置することを特徴としている。この発明によれば、1つまたは複数の大コイルを有する磁界検出素子で磁界検出を行うことによって、外部磁界の存在にも関わらず、1つまたは複数の大コイルが発生する磁界は感磁面のみでなく周囲の空間も一定の磁界に保持することができる。特に複数の大コイルを有する磁界検出素子を用いる場合には、各感磁面において磁界を一定値に保持するために外部磁界に大きな空間勾配がある場合であっても大コイルを有した磁界検出素子周辺の磁界を一定に保持することが可能である。さらに、各コイルの発生する磁界はコイル面を挟んでコイル面の法線方向に対して対称な磁界分布であるので、大コイルを有した磁界検出素子の感磁面と大コイル面を挟んで対称な位置の磁界も外部磁界の存在に関わらず一定に保持することが可能である。それ故、大コイルを有した磁界検出素子の感磁面と大コイル面を挟んで対称な位置に、小コイルを有した磁界検出素子を配置すれば、その周辺部分では外部磁界の影響が低減されていることになり、小コイルを有した磁界検出素子の近傍に被測定対象を配置することで、外部磁界の影響を受けることなく、小コイルを有した磁界検出素子は被測定対象からの微弱な磁界を検出することができるのである。
【0018】
【発明の実施の形態】
以下、この発明の実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0019】
【実施例】
(実施例1)
図1は、この発明の測定原理を説明する図である。
【0020】
本件発明者らは、先行技術であるホール素子や磁気抵抗素子、磁気インピーダンス効果素子は共通してデバイス中を流れる電子が外部磁界によるローレンツ力を受けて感磁性を持つ点に着目し、磁気感度がどのような制約条件により決定しているのかを鋭意追及した。
【0021】
その結果、ホール素子には、1/f雑音と呼ばれる結晶欠陥に依存する低周波領域の雑音と、ジョンソンノイズと呼ばれる導電率と温度に関係する熱雑音と、分配雑音と呼ばれる高周波特性に依存する雑音があり、導電率を十分高くできないことや寄生容量等により高周波特性を改善できないこと等の問題があることがわかった。
【0022】
また、磁気抵抗素子では外付けの電子回路を簡略化するためにできる限り大きな磁気抵抗を実現できるよう行路長を長くとっており、大きな直流抵抗分を有する。それ故、ジョンソンノイズ(熱雑音)が大きく、磁気分解能に制約を与えていることがわかった。
【0023】
さらに、磁気インピーダンス効果素子は前述したように、製造時の張力が原因で線表面近傍の導電率が低く、周波数を高くしても一定以上の周波数では磁気分解能が逆に劣化してしまうこと、さらに原理的に磁気インピーダンスの変化を捉えるためにリップル電圧に起因する電子回路ノイズが大きいことがわかった。
【0024】
試行錯誤の結果、パーマロイ薄膜やアモルファス薄膜でも磁性線と同様にローレンツ力によって磁気インピーダンス効果が生じることを見出し、ホール素子と同様の接続形態において高周波電流を印加すると電圧測定端子間に高周波電圧が発生し、薄膜面の法線方向の外部磁界に感応してこの電圧振幅が変化することを見出した。さらに、外部磁界の符号によって高周波電圧の位相が180度反転することも見出した。この出力電圧振幅は、薄膜の透磁率、導電率が高いほど大きく、印加する高周波電流の周波数が高いほど大きくなることについても明確になった。実験で使用した磁性材料においては、Co(コバルト)系アモルファスが高磁気分解能を得る上で最も好ましく、焼きなまし処理により残留磁化が殆どない材料が最適であることが判明した。
【0025】
図1は、4本の端子を有する、高透磁率かつ高導電率であり保磁力が極めて小さな感磁性材料で構成された薄膜1において、互いに対向する端子2および端子4を薄膜1に高周波電流を印加するための電流印加端子とし、前記高周波電流の印加方向に対して交差する方向に位置して互いに対向する端子3および端子5を高周波電圧を測定するための電圧測定端子とし、薄膜1の面の法線方向の外部磁界から受けるローレンツ力により比例的に発生する高周波電圧を測定することにより外部磁界を検出することを特徴とする磁界検出素子の基本的な3次元構造を示している。高透磁率かつ高導電率であり保磁力が極めて小さな感磁性材料としては、電磁波遮蔽用フィルムとして製造されているものが最も好ましい。
【0026】
上記の実施例であれば、磁気インピーダンス効果素子に比して、薄膜構造であるため導電率が同じ材料であっても、より小さな電気抵抗の素子が得られ、ジョンソンノイズの小さな素子が得られる。また、図5のa)およびb)に示すように印加する高周波電流の周波数を上げれば、式1で与えられる表皮厚みに依存して、薄膜の断面方向には電流密度分布が生じ、電流経路の電流密度が高くなるため、周波数を上げれば上げるほど、電圧測定端子間には薄膜面法線方向の磁界強度に対応してより高い振幅の高周波電圧が出力される。加えて、磁性線(アモルファスワイヤ)を製造する際には張力を加えて引っ張る必要が生じ、このためにワイヤ表面の導電率劣化をまねくが、薄膜では製造時に一切の応力をかけることなく製造することもプロセスによっては可能であり、薄膜のみ製造する場合でも応力分散の結果、表面状態を損なうことなく製造することが可能である。
【0027】
(実施例2)
図6は、この発明の別の実施の形態による磁気検出素子の基本構造を示す図である。電圧測定端子で測定される信号に基づいて、薄膜1の感磁面の法線方向の外部磁界とは逆位相の磁界を発生させ、フィードバック電流を供給することにより感磁面の法線方向磁界を一定にする制御を行うためにコイル6を設けた構造を有している。この発明の実施の形態における動作を図7を用いて説明する。図7左上に本発明の薄膜1とコイル6が示されている。図示されない高周波電圧発振器が周波数1MHz、出力振幅±1Vのサイン波状の電圧信号をボルテージフォロワ7に供給している。この電圧信号はさらにボルテージフォロワ8を経由して、電圧/電流変換器9により電圧を電流に変換して高周波電流を磁界検出素子の電流供給端子に印加している。磁界検出素子の薄膜1の面の法線方向の外部磁界から受けるローレンツ力に対応して、電圧測定端子間には高周波電圧が出力される。この高周波電圧信号は前置増幅器10において増幅された後、リミッターと呼ばれる振幅制限回路11に入り、大きな入力値に対しては振幅制限処理が施されたのち、乗算器12に供給される。図7下段左側に図示されているように、前置増幅器の出力信号は外部磁界の符号や振幅に応じて位相や振幅が変化する。この信号はボルテージフォロワ7が出力する信号に同期して変化しているので、位相シフタ17で位相調整を行った後、乗算器12に供給し、同期検波処理を行っている。乗算器12の出力信号は図7下段右側に図示されるように外部磁界の符号や振幅に応じて、直流成分の符号や振幅が変化することになる。磁界検出素子の薄膜1の感磁面の磁束が零でない場合には乗算器12の出力には印加電流の倍周波数のリップルが含まれるのでこれを除去するためにローパスフィルタ13を通して高調波をろ過したのち、積分器14に供給している。積分器14の出力電圧はボルテージフォロワ15を経由したのち、第2の電圧/電流変換器18に入力し、電圧を電流に変換したのち、コイル6に電流を供給することによりネガティブフィードバックループが構成される。したがって、薄膜1の面の法線方向の磁界は外部磁界とコイル6により発生された外部磁界に対して逆位相のキャンセル磁界の和となり、この和が零値となるように積分器14によるネガティブフィードバックループが構成されるのである。積分器14の積分値は感磁面の法線方向の磁界が零である限り増減は起こらず、コイル6が発生する磁界は供給電流に比例するので、この積分値も外部磁界に比例した値を取る。故にボルテージフォロワ15の出力を入力とするローパスフィルタ16の出力は外部磁界に比例した電圧出力が得られるのである。
【0028】
上記の実施例であれば、磁界検出素子の薄膜1の感磁面は常時ほぼ零に保持されるため、非常に小さなリップル出力しか出力せず、したがって図7の電子回路ノイズは非常小さな値に抑えることができる。全体として磁気インピーダンス効果素子に比べ、100倍から1000倍の磁気分解能を達成することができる。
【0029】
(実施例3)
図8は、この発明の別の実施の形態による磁気検出素子の機能を説明する図である。本実施例においては磁界検出素子の薄膜1の感磁面とコイル6の面とは同一平面上には位置していない。図8に示すように、コイル6に供給されている電流によって発生する磁界はコイル面の法線方向には波形19で示されるようなコイル面に対して対称な形をしている。さらに、コイル面と平行な平面上では波形20に示すようにほぼ均質な分布をしている。
【0030】
上記の実施例であれば、この磁界検出素子の周辺の外部磁界が瞬時を捉えて一様磁界である場合には、薄膜1の感磁面の法線方向の磁界が零になるようにコイル6に電流を供給する制御を行うことにより、太点線21で示した領域においても磁界を零にすることができる。
【0031】
(実施例4)
図9は、さらにこの発明の別の実施の形態による磁気検出素子の機能を説明する図である。本実施例においては、図9の右側に示すように、大きなコイルを有する第1の磁気検出素子を4個配置し、小型のコイルを薄膜を構成する面に一体化した第2の磁気検出素子を20個配置している。図9左側に示すように、複数の大きなコイルを有する第1の磁気検出素子を配置した場合には、複数の第1の磁気検出素子を各々独立に感磁面上の面の法線方向の磁界を零に保持する制御を行うことにより、外部磁界が空間勾配を有する場合においても、各大コイルが発生する磁界21が重なり合い、太破線22のような均質な磁界分布となる。この均質な太破線22上に小型のコイルを薄膜を構成する面に一体化した第2の磁気検出素子を配置することにより、上記の実施例であれば、外部磁界の存在にも関わらず、第2の磁気検出素子の近傍から発生する微弱な磁界を観測することができる。
【0032】
開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0033】
【発明の効果】
以上のように、この発明によれば、ジョンソンノイズを低く抑えるとともに、ローレンツ力を受けない状態ではリップルが出力されないため電子回路ノイズを小さくすることができ、磁気分解能を高くすることができる。それ故、従来常温で使用可能な磁界検出素子では捕捉することができなかった0.1ナノテスラ未満の微弱な磁界を検出することが可能な小型で軽量な磁界検出素子を安価に提供することができる。
【0034】
また、大きな環境磁気ノイズの存在下においても地磁気を含めた環境磁気ノイズの影響を受けることなく、近傍に位置する測定対象が発する微弱な磁界を捕捉することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態による磁界検出素子の構造を説明する図である。(実施例1)
【図2】先行技術の既存磁気センサの種類とその測定レンジを示す図である。
【図3】先行技術のひとつである感磁性線材を利用した磁気インピーダンス効果素子の原理と欠点を説明する図である。
【図4】先行技術のひとつである感磁性線材を利用した磁気インピーダンス効果素子の印加電流の周波数と磁気感度の関係を説明する図である。
【図5】この発明の実施の形態による磁界検出素子の印加電流の周波数と表皮効果の関係を示す図である。
【図6】この発明の実施の形態による磁界検出素子の構造を説明する図である。(実施例2)
【図7】この発明の実施の形態による磁界検出素子の制御方法の一例を説明する図である。
【図8】この発明の実施の形態による磁界検出素子の動作原理を説明する図である。(実施例3)
【図9】この発明の実施の形態による磁界検出素子の構造を説明する図である。(実施例4)
【符号の説明】
1 高透磁率かつ高導電率であり保磁力が極めて小さな感磁性材料で構成された薄膜
2 薄膜1に高周波電流を印加するための電流印加端子
3 ローレンツ力により比例的に発生する高周波電圧を測定する電圧測定端子
4 薄膜1に高周波電流を印加するための電流印加端子
5 ローレンツ力により比例的に発生する高周波電圧を測定する電圧測定端子
6 コイル
7 ボルテージフォロワ
8 ボルテージフォロワ
9 電圧/電流変換器
10 前置増幅器
11 電圧振幅制限回路
12 乗算器
13 ローパスフィルタ
14 積分器
15 ボルテージフォロワ
16 ローパスフィルタ
17 位相シフタ
18 電圧/電流変換器
19 コイル面法線方向の磁界分布波形
20 コイル面水平方向の磁界分布波形
21 零磁界制御面
22 零磁界制御面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic field detection element. More specifically, the present invention measures a weak cardiac magnetic field that is about 1 / 1,000,000 of the geomagnetism generated with a weak distributed current flowing in the myocardium, metal fatigue or cracks in or near the metal, Used for non-destructive inspection to measure the magnetic field distribution near the surface of the inspection object that occurs when current is applied to the inspection object for the purpose of investigating the corrosion state, or measuring weak magnetic field changes from 100 femtotesla to 1 nanotesla. The present invention relates to a magnetic field detection element capable of performing the above.
[0002]
[Prior art]
Conventionally, as a means for detecting a magnetic field, a Hall element utilizing a Hall effect of a semiconductor, a magnetoresistive element utilizing a change in electric resistance of a magnetic sensitive material with respect to the magnetic field, a flux gate, and a magnetic sensitive wire have been used. A magneto-impedance effect element (Japanese Patent Laid-Open No. 7-181239), a superconducting quantum interference element (SQUID: Superducting Quantum Interference Device), or the like is used.
[0003]
As shown in FIG. 2, the magnetic resolution of each sensor is about 10 micro tesla for the Hall element, about 3 nano tesla for the magnetoresistive element, about 0.1 nano tesla for the flux gate or magneto-impedance effect element, Devices having the ability to measure weak magnetic fields less than nano Tesla have been limited to superconducting quantum interference devices. Superconducting quantum interference devices can detect magnetic flux about 1 billionth of the geomagnetism with high sensitivity, and are therefore applied in various fields. In recent years, high-temperature superconducting quantum can be used for cooling at liquid nitrogen temperature. Interference elements have been put into practical use.
[0004]
However, in order to keep the device in a superconducting state, it is necessary to cool it to liquid nitrogen temperature or liquid helium temperature, and it is necessary to house the superconducting quantum interference device in a cold storage container for storing liquid nitrogen or liquid helium called Dewar. was there. Alternatively, it is necessary to provide a vacuum heat insulating layer even for those that are directly cooled by a refrigerator. For this reason, there is a drawback that the apparatus becomes large. In addition, there is a restriction on the measurement direction due to the necessity of immersing the superconducting quantum interference device in liquid helium or liquid nitrogen. Furthermore, when the superconducting quantum interference device is exposed to electromagnetic waves, it has a drawback of losing its periodic magnetosensitive characteristics (magnetic flux density-output voltage characteristics).
[0005]
A magneto-impedance effect element using a flux gate and a magnetic sensitive wire, which is the most sensitive magnetic detection element that can be used at room temperature, has the following drawbacks.
[0006]
In the flux gate, it is necessary to excite a large magnetic core with an alternating magnetic field to near the saturation magnetic flux, and it is necessary to apply an alternating current to the exciting coil. Since the magnetic core has a high magnetic permeability, the current can be reduced if the number of windings of the exciting coil is increased, but the inductance of the coil increases and the measurable bandwidth becomes narrow. On the other hand, if the number of windings is reduced, it becomes necessary to pass a large current for excitation. If a low-pass filter is used to reduce high-frequency residual noise of the synchronous detection circuit, the measurable bandwidth is also narrowed. As a result, in a design that achieves a magnetic resolution of 0.1 nanotesla, only a measurement band from DC to about 150 Hz could be achieved.
[0007]
The magneto-impedance effect element is also called an MI sensor, and has a structure in which four terminals are provided on a magnetic sensitive wire and a coil for magnetic field feedback is wound as shown in FIG. Since the magneto-impedance effect element is a method of capturing a change in impedance with respect to a magnetic field, a constant impedance exists even in a zero magnetic field state. Therefore, even in the zero magnetic field state, a high frequency voltage synchronized with the high frequency current for circumferential magnetic field excitation appears at both ends of the magnetic sensitive wire, and the waveform after passing through an amplitude detection circuit such as synchronous detection or full wave rectification However, a high-frequency voltage waveform with many ripples is obtained as shown in FIG. As shown in FIG. 3c), even if synchronous detection or full-wave rectification is performed in order to capture the change in the axial magnetic field of the magnetosensitive wire, a low-pass filter must be used to reduce ripple noise, and the measurement bandwidth is inevitably Has the disadvantage of being limited. In order to reduce ripple noise, there is a method to increase the frequency of the high-frequency current applied to reduce the skin thickness and increase the density of the excitation current flowing in the magnetic sensitive wire. As a result, the electrical conductivity increases, resulting in increased thermal noise. Even if the frequency of the applied high-frequency current is increased above a certain level, the sensitivity is reversed. There is a drawback that it deteriorates. FIG. 4 is a diagram for explaining this. FIGS. 4A and 4B are diagrams showing a cross section of the magnetic sensitive wire. In the vicinity of the surface, there is a state defect due to the tension at the time of manufacture, and there is a region with low conductivity. As shown in FIG. 4A, when the applied frequency is high, the skin thickness of the skin effect is small, so that the density of the applied current increases, but at the same time, the Johnson noise also increases because it passes through the high resistance region. When the applied frequency is low as shown in FIG. 4B, the Johnson noise can be reduced, but the current density is also lowered. Therefore, the frequency of the applied current and the magnetic resolution are as shown in FIG. 4C.
[0008]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a magnetic detection element that can operate at room temperature, is inexpensive and small in size, has high magnetic resolution and high spatial resolution, has a wide band and low noise characteristics.
[0009]
[Means for Solving the Problems]
According to the magnetic field detection element according to the present invention, in the thin film 1 made of a magnetically sensitive material having four terminals and having high magnetic permeability, high conductivity, and extremely small coercive force, the terminals 2 and 4 facing each other. Is a current application terminal for applying a high-frequency current to the thin film 1, and a voltage measurement for measuring a high-frequency voltage at terminals 3 and 5 which are located in a direction crossing the application direction of the high-frequency current and are opposed to each other. The terminal is characterized in that the external magnetic field is detected by measuring a high-frequency voltage proportionally generated by the Lorentz force received from the external magnetic field in the normal direction of the surface of the thin film 1.
[0010]
The voltage amplitude of thermal noise, also called Johnson noise, is determined by the electrical resistance and temperature of the thin film 1, but can be kept lower than the magneto-impedance effect element because the electrical resistance can be kept lower than that of the wire. . Further, when the magnetic field component in the normal direction of the magnetosensitive surface of the thin film 1 is zero, since it is not affected by the Lorentz force, no high frequency voltage appears at the voltage measurement terminal, and ripple noise does not occur. Therefore, the measurement band can be wider than that of the magneto-impedance effect element. Furthermore, since there is no need to pull with a large tension in the manufacturing process of the thin film 1, the conductivity near the surface of the thin film is high, and even if the frequency of the high-frequency current to be applied is higher than that in the case of the magneto-impedance effect element, the sensitivity deterioration phenomenon is caused. The magnetic resolution can be further increased without generating it. Furthermore, the thin film 1 can be manufactured in a small size and at a low cost, and the spatial resolution can be increased due to the small size.
[0011]
Preferably, four terminals are arranged so that a high-frequency voltage appearing in a direction orthogonal to the applied high-frequency current can be measured. As a result, the magnetic field in the normal direction of the film surface of the thin film 1 can be accurately captured.
[0012]
More preferably, a high-frequency current as high as possible is applied using a magnetic material having as high a magnetic permeability and high conductivity as possible. It is known that when a high-frequency magnetic field is applied to a conductor from outside, the eddy current flowing in the conductor is large on the surface and decreases exponentially as it goes inside the conductor. This is known as the “skin effect”. The value of the depth corresponding to the reciprocal 1 / e of the natural logarithm base e with respect to the surface current value is called the skin thickness δ, the magnetic material permeability is μ, the conductivity is σ, and the target frequency f [ Hz], the skin depth δ [m] is expressed using the equation (1).
[Expression 1]
Figure 2005017110
[0013]
If a high-frequency current as high as possible is applied using a magnetic material having a high permeability and high conductivity as much as possible, the skin thickness determined by Equation 1 can be shortened, and even if the applied current is weak High current density can be achieved and crosstalk can be suppressed. Alternatively, when the applied current is the same, a higher current density can be achieved and the magnetic resolution can be improved.
[0014]
According to another aspect of the present invention, in the magnetic field detection element, signal processing for generating a magnetic field having a phase opposite to that of the external magnetic field in the normal direction of the magnetic sensitive surface of the thin film 1 based on a signal measured at the voltage measurement terminal. And a coil 6 that can make the normal direction magnetic field of the magnetosensitive surface constant by supplying a feedback current is provided. As a result, the magnetic field in the normal direction of the magnetosensitive surface is always kept at zero, so that the current applied to the magnetic field detecting element is not affected by the Lorentz force and no high frequency voltage is generated at the voltage measuring terminal. . That is, even if detection synchronized with the high-frequency current waveform to which the signal measured at the voltage measurement terminal is applied, no ripple voltage output is generated in the synchronous detection output, so that electronic circuit noise can be made extremely low. As a result, the magnetic resolution of the magnetic field detection element can be extremely increased. Further, since the current value fed back to the coil 6 is proportional to the external magnetic field, accurate magnetic measurement can be performed.
[0015]
According to another aspect of the present invention, in the magnetic field detection element, the coil 6 is a small coil integrally formed on the surface on which the thin film 1 is formed, and a magnetic sensitive surface normal in the vicinity of the magnetic sensitive surface of the thin film 1. The directional magnetic field is made constant. As a result, the magnetic field on the magnetosensitive surface can be kept constant even if the value of the current flowing through the small coil is extremely small, and the magnetic field generated by the current flowing through the coil because of the small coil reaches far away due to the distance attenuation effect. There are difficult properties. Therefore, even if the magnetic field detection elements are arranged with a high spatial density, interference caused by magnetic coupling between the magnetic field detection elements can be suppressed to a low level. Therefore, according to the present invention, the spatial resolution of the magnetic field detection element can be extremely increased. In addition, since the thin film and the coil are integrally formed, a magnetic field detection element suitable for integration and having a stable magnetic sensitivity can be realized.
[0016]
According to another aspect of the present invention, in the magnetic field detection element, the coil 6 is not on the surface on which the thin film 1 is formed, and is a large coil several times larger than the size of the thin film 1. The magnetic field normal direction magnetic field is kept constant not only in the vicinity of the magnetic surface but also in a wider peripheral portion. As a result, even in a state where a fluctuating external magnetic field exists, if the external magnetic field does not have a spatial gradient or has a spatial gradient, the magnetic field generated by the coil 6 is a magnetic field. Since a constant magnetic field can be maintained not only in the vicinity of the detection element but also in a wider space around the detection element, it is possible to realize a space that is not affected by the external magnetic field or is less affected. Therefore, according to the present invention, it is possible to realize a partial space that can reduce or eliminate the disturbance generated by the environmental magnetic noise source located sufficiently far from the magnetic detection element.
[0017]
According to another aspect of the present invention, a magnetic field detection element having one or a plurality of small coils and a magnetic field detection element having one or a plurality of large coils, and having a large coil. The detection element is on the same installation plane, the magnetic field detection element having a small coil is disposed on the opposite side of the installation plane with the installation position of the thin film 1 of the magnetic field detection element having a large coil, and has a small coil It is characterized in that an object to be measured is arranged in the vicinity of the magnetic field detection element. According to the present invention, by performing magnetic field detection with a magnetic field detection element having one or a plurality of large coils, the magnetic field generated by the one or more large coils, regardless of the presence of an external magnetic field, is a magnetosensitive surface. In addition, the surrounding space can be maintained in a constant magnetic field. In particular, when using a magnetic field detection element having a plurality of large coils, a magnetic field detection having a large coil even when there is a large spatial gradient in the external magnetic field in order to keep the magnetic field constant at each magnetosensitive surface. It is possible to keep the magnetic field around the element constant. Furthermore, since the magnetic field generated by each coil has a magnetic field distribution symmetrical to the normal direction of the coil surface across the coil surface, the magnetic sensing surface of the magnetic field detection element having a large coil is sandwiched between the large coil surface. Symmetrically positioned magnetic fields can also be held constant regardless of the presence of an external magnetic field. Therefore, if the magnetic field detection element having a small coil is arranged at a symmetrical position across the magnetic sensing surface of the magnetic field detection element having a large coil and the large coil surface, the influence of the external magnetic field is reduced in the peripheral portion. By arranging the measurement target near the magnetic field detection element having the small coil, the magnetic field detection element having the small coil is separated from the measurement target without being affected by the external magnetic field. A weak magnetic field can be detected.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
[0019]
【Example】
(Example 1)
FIG. 1 is a diagram for explaining the measurement principle of the present invention.
[0020]
Inventors of the present invention pay attention to the fact that the Hall elements, magnetoresistive elements, and magneto-impedance effect elements, which are the prior art, commonly have electrons that flow through the device under the Lorentz force due to an external magnetic field, and are magnetically sensitive. Eagerly pursued what constraint conditions are determined.
[0021]
As a result, the Hall element depends on low-frequency noise called 1 / f noise that depends on crystal defects, thermal noise related to conductivity and temperature called Johnson noise, and high-frequency characteristics called distribution noise. It has been found that there are noises and problems such as the inability to sufficiently increase the conductivity and the improvement of high frequency characteristics due to parasitic capacitance and the like.
[0022]
Further, in order to simplify the external electronic circuit, the magnetoresistive element has a long path length so as to realize as large a magnetic resistance as possible, and has a large DC resistance. Therefore, it was found that Johnson noise (thermal noise) was large and limited the magnetic resolution.
[0023]
Furthermore, as described above, the magneto-impedance effect element has a low electrical conductivity near the surface of the wire due to the tension at the time of manufacture, and even if the frequency is increased, the magnetic resolution is deteriorated on the contrary at a certain frequency, Furthermore, it was found that electronic circuit noise caused by ripple voltage is large in order to capture changes in magnetic impedance in principle.
[0024]
As a result of trial and error, we found that a magnetic impedance effect occurs due to the Lorentz force in the same way as magnetic wires even in permalloy thin films and amorphous thin films. The present inventors have found that this voltage amplitude changes in response to an external magnetic field in the normal direction of the thin film surface. Furthermore, it has also been found that the phase of the high-frequency voltage is reversed by 180 degrees depending on the sign of the external magnetic field. It has also been clarified that the output voltage amplitude increases as the magnetic permeability and conductivity of the thin film increase, and increases as the frequency of the applied high-frequency current increases. Of the magnetic materials used in the experiment, Co (cobalt) -based amorphous was most preferable for obtaining high magnetic resolution, and it was found that the material having almost no residual magnetization by annealing treatment is optimal.
[0025]
FIG. 1 shows a thin film 1 made of a magnetic material having four terminals, high magnetic permeability, high conductivity, and extremely small coercive force. Of the thin film 1, the terminal 3 and the terminal 5 which are located in a direction crossing the application direction of the high-frequency current and are opposed to each other are used as voltage measurement terminals for measuring the high-frequency voltage. 3 shows a basic three-dimensional structure of a magnetic field detecting element characterized in that an external magnetic field is detected by measuring a high-frequency voltage proportionally generated by a Lorentz force received from an external magnetic field in the normal direction of the surface. As a magnetic material having high magnetic permeability and high electrical conductivity and extremely low coercive force, the one manufactured as an electromagnetic wave shielding film is most preferable.
[0026]
In the case of the above-described embodiment, an element having a smaller electrical resistance can be obtained and an element having a small Johnson noise can be obtained even if the material has the same conductivity because of the thin film structure as compared with the magneto-impedance effect element. . Further, if the frequency of the high frequency current to be applied is increased as shown in FIGS. 5A and 5B, the current density distribution is generated in the cross-sectional direction of the thin film depending on the skin thickness given by Equation 1, and the current path Therefore, the higher the frequency, the higher the high-frequency voltage with higher amplitude corresponding to the magnetic field strength in the direction normal to the thin film surface. In addition, when producing a magnetic wire (amorphous wire), it is necessary to apply tension to pull the wire, which leads to deterioration of the electrical conductivity of the wire surface. However, a thin film is produced without applying any stress during production. This is also possible depending on the process, and even when only a thin film is manufactured, it is possible to manufacture without damaging the surface state as a result of stress dispersion.
[0027]
(Example 2)
FIG. 6 is a diagram showing a basic structure of a magnetic detection element according to another embodiment of the present invention. Based on the signal measured at the voltage measurement terminal, a magnetic field having a phase opposite to that of the normal direction of the magnetic sensitive surface of the thin film 1 is generated, and a normal current magnetic field of the magnetic sensitive surface is provided by supplying a feedback current. In order to perform control to keep the constant, the coil 6 is provided. The operation in the embodiment of the present invention will be described with reference to FIG. The thin film 1 and the coil 6 of the present invention are shown in the upper left of FIG. A high-frequency voltage oscillator (not shown) supplies a voltage signal of a sine wave having a frequency of 1 MHz and an output amplitude of ± 1 V to the voltage follower 7. This voltage signal further passes through a voltage follower 8 and is converted into a current by a voltage / current converter 9 to apply a high-frequency current to the current supply terminal of the magnetic field detection element. Corresponding to the Lorentz force received from the external magnetic field in the normal direction of the surface of the thin film 1 of the magnetic field detection element, a high frequency voltage is output between the voltage measurement terminals. The high-frequency voltage signal is amplified by the preamplifier 10 and then enters an amplitude limiting circuit 11 called a limiter. After an amplitude limiting process is performed on a large input value, it is supplied to a multiplier 12. As shown in the lower left side of FIG. 7, the output signal of the preamplifier changes in phase and amplitude according to the sign and amplitude of the external magnetic field. Since this signal changes in synchronization with the signal output from the voltage follower 7, the phase is adjusted by the phase shifter 17 and then supplied to the multiplier 12 to perform synchronous detection processing. The output signal of the multiplier 12 changes the sign and amplitude of the DC component in accordance with the sign and amplitude of the external magnetic field as shown in the lower right part of FIG. When the magnetic flux on the magnetosensitive surface of the thin film 1 of the magnetic field detecting element is not zero, the output of the multiplier 12 includes a ripple having a frequency double that of the applied current. In order to remove this, the harmonics are filtered through the low-pass filter 13. After that, it is supplied to the integrator 14. The output voltage of the integrator 14 passes through the voltage follower 15 and then is input to the second voltage / current converter 18. After the voltage is converted into current, the current is supplied to the coil 6 to form a negative feedback loop. Is done. Therefore, the magnetic field in the normal direction of the surface of the thin film 1 is the sum of the external magnetic field and the canceling magnetic field having the opposite phase to the external magnetic field generated by the coil 6, and the negative by the integrator 14 is set so that this sum becomes zero. A feedback loop is constructed. The integral value of the integrator 14 does not increase or decrease as long as the magnetic field in the normal direction of the magnetosensitive surface is zero, and the magnetic field generated by the coil 6 is proportional to the supplied current. Therefore, the integral value is also proportional to the external magnetic field. I take the. Therefore, a voltage output proportional to the external magnetic field can be obtained from the output of the low-pass filter 16 that receives the output of the voltage follower 15 as an input.
[0028]
In the above embodiment, the magnetic sensitive surface of the thin film 1 of the magnetic field detecting element is always kept almost zero, so that only a very small ripple output is output, and therefore the electronic circuit noise in FIG. 7 has a very small value. Can be suppressed. Overall, a magnetic resolution of 100 to 1000 times can be achieved as compared with the magneto-impedance effect element.
[0029]
Example 3
FIG. 8 is a diagram for explaining the function of a magnetic detection element according to another embodiment of the present invention. In this embodiment, the magnetic sensitive surface of the thin film 1 of the magnetic field detecting element and the surface of the coil 6 are not located on the same plane. As shown in FIG. 8, the magnetic field generated by the current supplied to the coil 6 has a symmetrical shape with respect to the coil surface as shown by the waveform 19 in the normal direction of the coil surface. Further, on the plane parallel to the coil surface, the distribution is almost uniform as shown by the waveform 20.
[0030]
In the above embodiment, when the external magnetic field around the magnetic field detecting element is a uniform magnetic field that captures the moment, the coil is set so that the magnetic field in the normal direction of the magnetic sensitive surface of the thin film 1 becomes zero. By performing control to supply current to 6, the magnetic field can be made zero even in the region indicated by the thick dotted line 21.
[0031]
(Example 4)
FIG. 9 is a diagram for explaining the function of a magnetic detection element according to another embodiment of the present invention. In the present embodiment, as shown on the right side of FIG. 9, four first magnetic detection elements having large coils are arranged, and a second magnetic detection element in which a small coil is integrated on the surface constituting the thin film. 20 are arranged. As shown on the left side of FIG. 9, when the first magnetic detection elements having a plurality of large coils are arranged, the plurality of first magnetic detection elements are each independently in the normal direction of the surface on the magnetosensitive surface. By controlling the magnetic field to be zero, even when the external magnetic field has a spatial gradient, the magnetic fields 21 generated by the large coils are overlapped to form a homogeneous magnetic field distribution as shown by a thick broken line 22. By disposing the second magnetic detection element in which the small coil is integrated on the surface constituting the thin film on the uniform thick broken line 22, in the above embodiment, regardless of the presence of the external magnetic field, A weak magnetic field generated from the vicinity of the second magnetic detection element can be observed.
[0032]
The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0033]
【The invention's effect】
As described above, according to the present invention, Johnson noise can be kept low, and since no ripple is output in a state where the Lorentz force is not received, electronic circuit noise can be reduced, and magnetic resolution can be increased. Therefore, it is possible to provide a small and lightweight magnetic field detecting element that can detect a weak magnetic field of less than 0.1 nanotesla that could not be captured by a magnetic field detecting element that can be used at room temperature. it can.
[0034]
Further, even in the presence of large environmental magnetic noise, it is possible to capture a weak magnetic field generated by a measurement object located in the vicinity without being affected by environmental magnetic noise including geomagnetism.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the structure of a magnetic field detection element according to an embodiment of the present invention. (Example 1)
FIG. 2 is a diagram showing types of conventional magnetic sensors and their measurement ranges in the prior art.
FIG. 3 is a diagram for explaining the principle and drawbacks of a magneto-impedance effect element using a magnetosensitive wire, which is one of the prior arts.
FIG. 4 is a diagram for explaining the relationship between the frequency of applied current and the magnetic sensitivity of a magneto-impedance effect element using a magnetic sensitive wire which is one of the prior arts.
FIG. 5 is a diagram showing the relationship between the frequency of the applied current and the skin effect of the magnetic field detection element according to the embodiment of the present invention.
FIG. 6 is a diagram illustrating the structure of a magnetic field detection element according to an embodiment of the present invention. (Example 2)
FIG. 7 is a diagram illustrating an example of a method for controlling a magnetic field detection element according to an embodiment of the present invention.
FIG. 8 is a diagram for explaining the operation principle of the magnetic field detection element according to the embodiment of the present invention. Example 3
FIG. 9 is a diagram illustrating the structure of a magnetic field detection element according to an embodiment of the present invention. (Example 4)
[Explanation of symbols]
1 Thin film made of a magnetic material with high magnetic permeability and high conductivity and extremely low coercive force 2 Current application terminal for applying a high frequency current to thin film 1 3 Measure high frequency voltage proportionally generated by Lorentz force Voltage measuring terminal 4 Current applying terminal 5 for applying a high frequency current to the thin film 1 Voltage measuring terminal 6 for measuring a high frequency voltage proportionally generated by Lorentz force 6 Coil 7 Voltage follower 8 Voltage follower 9 Voltage / current converter 10 Preamplifier 11 Voltage amplitude limiting circuit 12 Multiplier 13 Low-pass filter 14 Integrator 15 Voltage follower 16 Low-pass filter 17 Phase shifter 18 Voltage / current converter 19 Magnetic field distribution waveform 20 in the coil surface normal direction Magnetic field distribution in the coil surface horizontal direction Waveform 21 Zero magnetic field control surface 22 Zero magnetic field control surface

Claims (5)

4本の端子を有する、高透磁率かつ高導電率であり保磁力が極めて小さな感磁性材料で構成された薄膜1において、互いに対向する端子2および端子4を薄膜1に高周波電流を印加するための電流印加端子とし、前記高周波電流の印加方向に対して交差する方向に位置して互いに対向する端子3および端子5を高周波電圧を測定するための電圧測定端子とし、薄膜1の面の法線方向の外部磁界から受けるローレンツ力により比例的に発生する高周波電圧を測定することにより外部磁界を検出することを特徴とする磁界検出素子。In order to apply a high-frequency current to the thin film 1, the terminals 2 and 4 facing each other in the thin film 1 made of a magnetically sensitive material having four terminals, high permeability, high conductivity, and extremely low coercive force. The terminal 3 and the terminal 5 which are located in a direction crossing the direction of applying the high-frequency current and are opposed to each other are used as voltage measuring terminals for measuring the high-frequency voltage, and the normal of the surface of the thin film 1 is used. A magnetic field detecting element that detects an external magnetic field by measuring a high-frequency voltage that is proportionally generated by a Lorentz force received from an external magnetic field in a direction. 請求項1に記載の磁界検出素子において、電圧測定端子で測定される信号に基づいて薄膜1の感磁面の法線方向の外部磁界とは逆位相の磁界を発生させ、フィードバック電流を供給することにより感磁面の法線方向磁界を一定にするためのコイル6を設けたことを特徴とする磁界検出素子。2. The magnetic field detection element according to claim 1, wherein a magnetic field having a phase opposite to that of the external magnetic field in the normal direction of the magnetosensitive surface of the thin film 1 is generated based on a signal measured at the voltage measurement terminal, and a feedback current is supplied. A magnetic field detecting element comprising a coil 6 for making the normal direction magnetic field of the magnetosensitive surface constant. 請求項2に記載の磁界検出素子において、コイル6が薄膜1の形成面上に一体的に構成されている小コイルであり、薄膜1の感磁面近傍の感磁面法線方向磁界を一定にすることを特徴とする磁界検出素子。3. The magnetic field detecting element according to claim 2, wherein the coil 6 is a small coil integrally formed on the surface on which the thin film 1 is formed, and the magnetic field normal direction magnetic field in the vicinity of the magnetic sensitive surface of the thin film 1 is constant. A magnetic field detection element characterized by comprising: 請求項2に記載の磁界検出素子において、コイル6が薄膜1の形成面上にはなく、薄膜1の大きさに比して数倍以上大きな大コイルであり、薄膜1の感磁面近傍だけでなく、より広い周辺部分に対しても感磁面法線方向磁界を一定に保持することを特徴とする磁界検出素子。3. The magnetic field detecting element according to claim 2, wherein the coil 6 is not on the surface on which the thin film 1 is formed, but is a large coil several times larger than the size of the thin film 1, and only in the vicinity of the magnetosensitive surface of the thin film 1. In addition, the magnetic field detecting element is characterized in that the magnetic field normal direction magnetic field is kept constant for a wider peripheral portion. 1個または複数個の請求項3に記載の磁界検出素子と1個または複数個の請求項4に記載の磁界検出素子とにより構成され、請求項4に記載の磁界検出素子が同一設置平面上にあり、請求項4に記載の磁界検出素子の薄膜1の設置位置と前記設置平面を挟んで反対側に請求項3に記載の磁界検出素子を配置し、請求項3に記載の磁界検出素子の近傍に被測定対象を配置することを特徴とする磁界検出素子。5. One or a plurality of magnetic field detection elements according to claim 3 and one or a plurality of magnetic field detection elements according to claim 4, wherein the magnetic field detection elements according to claim 4 are on the same installation plane. The magnetic field detection element according to claim 3, wherein the magnetic field detection element according to claim 3 is arranged on the opposite side of the installation plane with respect to the installation position of the thin film 1 of the magnetic field detection element according to claim 4. A magnetic field detecting element, characterized in that an object to be measured is arranged in the vicinity of the magnetic field detector.
JP2003182215A 2003-06-26 2003-06-26 Magnetic field sensing element Pending JP2005017110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182215A JP2005017110A (en) 2003-06-26 2003-06-26 Magnetic field sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182215A JP2005017110A (en) 2003-06-26 2003-06-26 Magnetic field sensing element

Publications (1)

Publication Number Publication Date
JP2005017110A true JP2005017110A (en) 2005-01-20

Family

ID=34182658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182215A Pending JP2005017110A (en) 2003-06-26 2003-06-26 Magnetic field sensing element

Country Status (1)

Country Link
JP (1) JP2005017110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133928A (en) * 2012-03-12 2014-11-20 페로텍 코포레이션 Current Sensor, Sensor Element, and Control Device
KR20150118956A (en) * 2013-07-30 2015-10-23 아사히 가세이 일렉트로닉스 가부시끼가이샤 Current sensor
KR20220094438A (en) * 2020-12-29 2022-07-06 한국전자기술연구원 Dual mode ReadOut Integrated Circuit (ROIC) for MI sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133928A (en) * 2012-03-12 2014-11-20 페로텍 코포레이션 Current Sensor, Sensor Element, and Control Device
KR101616854B1 (en) 2012-03-12 2016-04-29 페로텍 코포레이션 Current Sensor, Sensor Element, and Control Device
KR20150118956A (en) * 2013-07-30 2015-10-23 아사히 가세이 일렉트로닉스 가부시끼가이샤 Current sensor
KR101710818B1 (en) * 2013-07-30 2017-02-27 아사히 가세이 일렉트로닉스 가부시끼가이샤 Current sensor
US10215781B2 (en) 2013-07-30 2019-02-26 Asahi Kasei Microdevices Corporation Current sensor
KR20220094438A (en) * 2020-12-29 2022-07-06 한국전자기술연구원 Dual mode ReadOut Integrated Circuit (ROIC) for MI sensor
KR102460914B1 (en) 2020-12-29 2022-10-31 한국전자기술연구원 Dual mode ReadOut Integrated Circuit (ROIC) for MI sensor

Similar Documents

Publication Publication Date Title
KR100834846B1 (en) Magnetoelectric susceptibility measurement system
Silva et al. High sensitivity giant magnetoimpedance (GMI) magnetic transducer: magnitude versus phase sensing
US10012705B2 (en) Magnetism measurement device
JP2909807B2 (en) Superconducting quantum interference device magnetometer and non-destructive inspection device
Fernandez et al. Equivalent magnetic noise of micro-patterned multilayer thin films based GMI microsensor
Ripka et al. Sensitivity and noise of wire-core transverse fluxgate
Guo et al. Magnetic properties and giant magnetoimpedance effect of FINEMET/Fe50Pt50 composite ribbons
Cha et al. Evaluation of the planar inductive magnetic field sensors for metallic crack detections
Wang et al. Multi-frequency imaging with non-linear calibration of magnetoresistance sensors for surface and buried defects inspection
Mu et al. Mutual inductive magnetic sensor consisting of a pair of coplanar parallel winding spiral coils sandwiched by soft magnetic ribbons
Asfour et al. Practical use of the gmi effect to make a current sensor
US20150091556A1 (en) Method and apparatus for analyzing materials by using pattern analysis of harmonic peaks
Delevoye et al. Microfluxgate sensors for high frequency and low power applications
Krishnan et al. Harmonic detection of multipole moments and absolute calibration in a simple, low-cost vibrating sample magnetometer
JP2005017110A (en) Magnetic field sensing element
WO2018211833A1 (en) Magnetic field measuring device
WO2006059497A1 (en) Method and device for measuring critical current density of superconductor
Matsunaga et al. Application of a HTS coil with a magnetic sensor to nondestructive testing using a low-frequency magnetic field
Choi et al. Orthogonal fluxgate sensor fabricated with a Co-based amorphous wire embedded onto surface of alumina substrate
Kikuchi et al. Effects of DC bias current on behavior and sensitivity of thin-film magnetoimpedance element
Zhao et al. Comparative study of the sensing performance of orthogonal fluxgate sensors with different amorphous sensing elements
Lei et al. Detection of Dynabeads in small bias magnetic field by a micro fluxgate-based sensing system
Portalier et al. Study of the low-frequency excess equivalent magnetic noise in GMI-based devices
JP2019023582A (en) Magnetic sensor and magnetic measurement method
Moulin et al. Micropatterning of sandwiched FeCuNbSiB/Cu/FeCuNbSiB for the realization of magneto-impedance microsensors