JP2005017102A - Insulation performance testing machine of insulated bearing - Google Patents

Insulation performance testing machine of insulated bearing Download PDF

Info

Publication number
JP2005017102A
JP2005017102A JP2003182033A JP2003182033A JP2005017102A JP 2005017102 A JP2005017102 A JP 2005017102A JP 2003182033 A JP2003182033 A JP 2003182033A JP 2003182033 A JP2003182033 A JP 2003182033A JP 2005017102 A JP2005017102 A JP 2005017102A
Authority
JP
Japan
Prior art keywords
bearing
insulating
insulation
insulated
bearings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003182033A
Other languages
Japanese (ja)
Other versions
JP4369690B2 (en
Inventor
Hiromitsu Kondo
博光 近藤
Hironobu Ito
廣信 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2003182033A priority Critical patent/JP4369690B2/en
Priority to CNB031561349A priority patent/CN100385245C/en
Publication of JP2005017102A publication Critical patent/JP2005017102A/en
Application granted granted Critical
Publication of JP4369690B2 publication Critical patent/JP4369690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a testing machine used for a test of an insulated bearing in a main motor of a rolling stock or the like, capable of evaluating the insulation performance of the individual insulated bearing in the state similar to the actual machine using state. <P>SOLUTION: This testing machine comprises a common shaft 3 for interfitting inner rings of a plurality of insulated bearings 46, 47, a plurality of respective housings 11, 12 for interfitting respectively outer rings of each insulated bearing 46, 47, and a common base 4 for installing thereon the respective housings 11, 12. Insulators 8, 9 are interposed between each of the respective housings 11, 12 and the base 4. In the testing machine, insulation resistance measuring means 1, 2 are provided respectively to each insulated bearing 46, 47, and the insulation resistance between a part on the furthermore inner diameter side than the insulation part on the insulated bearings 46, 47 and the respective housings 11, 12 corresponding to the insulated bearings 46, 47 is measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、鉄道車両の主電動機などに用いられる絶縁軸受の絶縁性能試験機に関する。
【0002】
【従来の技術】
鉄道車両においては、台車の主電動機、駆動装置、車軸などの各部位に軸受が用いられている。近年、鉄道技術の進歩に伴い、上記主電動機にもVVVF(可変電圧・可変周波数制御法)が適用されるようになり、それに伴って主電動機に用いられる軸受に電食の発生が多くなっている。軸受に電食が発生すると、軸受転走面が損傷を受けて、異音が発生し、さらには剥離が発生することがあり、それを防ぐために軸受の絶縁性が必要となっている。このような要請に応えるために、転動体に絶縁体であるセラミックスを用いたり、外輪の外径面にセラミックスやPPS樹脂などからなる絶縁皮膜を形成した絶縁軸受が開発されている。
【0003】
図9は鉄道車両の一般的な台車の構造概略図を示す。台車41に設置された主電動機42の駆動は、そのモータ軸43から駆動装置44を介して車軸45に伝達される。車軸45は、両端で車軸軸受46に支持される。このように台車41においては主電動機42内の軸受、駆動装置44の軸受、および車軸軸受46があるが主電動機42内の軸受に絶縁軸受が用いられる。
図10は主電動機42の断面図を示す。モータ軸43の一端部は第1の絶縁軸受46を介してモータハウジング48の一端部に支持され、モータ軸43の他端部は第2の絶縁軸受47を介してモータハウジング48の他端部に支持される。モータ軸43の中間部にはロータ49が設けられ、このロータ49の外径側にステータコイル等を含むステータ50が、モータハウジング48に設置されている。第1の絶縁軸受46は玉軸受からなり、第2の絶縁軸受47はモータ軸43等の熱伸縮を許容するために円筒ころ軸受が用いられている。これらの絶縁軸受46,47は、その外輪がモータハウジング48の両端の分割ハウジング部51,52に設置されている。モータハウジング48における上記各絶縁軸受46,47の両側の幅面と対向する部分には、それぞれグリースポケット57を有する蓋部材53〜56が取付けられている。グリースポケット57は、絶縁軸受46,47の潤滑寿命ないしグリース補給間隔を長くなるために設けられるものである。
【0004】
このような絶縁軸受(例えば外輪の外径面に絶縁皮膜を形成したもの)の絶縁性能を評価する場合、従来は、図11のように、絶縁軸受61を単体で2つ割りハウジング63に組み込んで、絶縁抵抗測定器64の両電極64a,64bをハウジング63と軸受外輪62の母材とに接触させ、ハウジング63と外輪母材の間の絶縁抵抗を測定していた。
【0005】
【発明が解決しようとする課題】
しかし、モータ軸43等に対として用いられる両側の絶縁軸受46,47は、負荷される荷重が互いに異なる。そのため、上記のような軸受単体の測定では、運転時間に対応した実機相当の絶縁性能の変化を調べることができなかった。
また、鉄道車両の主電動機に用いられる絶縁軸受等では、主電動機に組み込まれた状態でグリースが封入され、図10のように絶縁軸受46,47にはグリースポケット57を有する蓋部材53〜56等の周辺部材が取付けられる。そのため、上記したように軸受単体で絶縁抵抗を測定する場合と異なる状況になる。また、主電動機の回転駆動によりグリースが移動・排出されることにもなる。グリースは完全な絶縁体ではなく、グリース移動による洩れから絶縁性が低下することもある。そのため、軸受単体で測定する場合とは、絶縁性能の試験結果が異なって来る。しかし、従来は、このような実機相当状態での絶縁性能については、確認されていなかった。
なお、図10に示す主電動機42等の実機において、モータハウジング48とモータ軸43との間の絶縁性能を測定することはできる。しかし、その場合、両端の絶縁軸受46,47を組み合わせた状態での絶縁性能が測定されることになり、個々の絶縁軸受46,47についての測定は行えない。そのため、実機または実機相当状態での個々の絶縁軸受46,47の絶縁性能は、いずれの方法でも評価することができなかった。
鉄道車両主電動機等における性能向上の要求から、このような実機相当状態での個々の絶縁軸受46,47の絶縁性能の評価が求められてきている。
【0006】
この発明の目的は、実機使用状態に近似した状態での個々の絶縁軸受の絶縁性能を評価できる絶縁軸受の絶縁性能試験機を提供することである。
【0007】
【課題を解決するための手段】
この発明の絶縁軸受の絶縁性能試験機は、複数の絶縁軸受の内輪を嵌合させる共通の軸と、各絶縁軸受の外輪をそれぞれ嵌合させる複数の個別ハウジングと、これら個別ハウジングを設置する共通の基台と、上記各個別ハウジングと基台との間に介在させた絶縁体と、上記各絶縁軸受に対してそれぞれ設けられてその絶縁軸受における絶縁部分よりも内径側の部分とその絶縁軸受に対応する個別ハウジングとの間の絶縁抵抗を測定する複数の絶縁抵抗測定手段とを備えたものである。
この構成によると、一対の絶縁軸受を共通の軸に嵌合させて絶縁抵抗を測定するようにしたため、実機における軸の両端に使用された状態での絶縁軸受の絶縁性能を評価することができる。例えば、軸を回転させて、運転時間に対応した実機相当の絶縁性能の変化を調べることができる。また、各絶縁軸受に対して個別ハウジングを設け、個別ハウジングと共通の基台との間に絶縁体を介在させたため、個々の絶縁軸受の絶縁抵抗を測定することができる。このように、例えば鉄道車両の主電動機等の軸受装備実機に組み込まれた軸受使用状態での絶縁性能の評価を、実機試験の前に行うことができる。
【0008】
この発明において、上記絶縁軸受が外輪の母材の外径面および幅面に上記絶縁部分である絶縁被覆を有するものであり、上記絶縁抵抗測定手段に導通させる上記絶縁軸受の絶縁部分よりも内径側の部分が、上記絶縁軸受の外輪の母材部分であっても良い。
この構成の場合は、絶縁軸受の外輪にその絶縁被覆を介して嵌合した個別ハウジングと軸受外輪の母材との間で絶縁抵抗測定手段による測定を行うので、内外輪間の転動体やグリース等の影響を受けずに、絶縁被覆の絶縁性能を評価することができる。
【0009】
この発明において、上記絶縁軸受が外輪の母材の外径面および幅面に上記絶縁部分である絶縁被覆を有するものであり、上記絶縁抵抗測定手段に導通させる上記絶縁軸受の絶縁部分よりも内径側の部分が、上記絶縁軸受の内輪または上記軸であっても良い。
この構成の場合は、内外輪間に介在した転動体やグリースの影響を含めた絶縁性能の評価が行える。
【0010】
この発明において、上記絶縁軸受がセラミックス製の転動体を有し、この転動体が上記絶縁部分となるものであり、上記絶縁抵抗測定手段に導通させる上記絶縁軸受の絶縁部分よりも内径側の部分が、上記絶縁軸受の内輪または上記軸であっても良い。
この構成の場合は、絶縁軸受がセラミックス製の転動体を有することで絶縁性能が付与されたものであっても、絶縁性能を評価することができる。
【0011】
これらの発明において、上記複数の絶縁軸受を備える軸受装備実機の軸受周辺部を模して上記絶縁軸受の幅面を覆う蓋部材を上記個別ハウジングに取付けても良い。
この構成の場合は、実機における絶縁軸受の幅面を覆う蓋部材の影響を含めた絶縁性能の評価が行え、実機での使用により近い評価をすることができる。
【0012】
上記のように蓋部材を設ける場合に、その蓋部材の軸受対向面にグリースポケットを設けても良い。
この構成の場合、実機の蓋部材の軸受対向面に設けられるグリースポケットにグリースを充填した状態での絶縁性能を評価することができる。上記のように、グリースは完全な絶縁体ではなく、グリース移動による洩れから絶縁性が低下することもある。そのため、軸受装備実機により近似した状態での絶縁性能の評価が行える。
【0013】
これらの発明において、上記各個別ハウジングと基台との間に介在させた絶縁体が絶縁シートであっても良い。
絶縁体を介在させる場合、個別ハウジングと基台とをどのように結合するかが問題となるが、薄い部材である絶縁シートを用いることで、簡単にかつ堅固に個別ハウジングと基台とを結合することができる。また、絶縁体をどの位置でどのように介在させるかは、絶縁性能の評価において重要な要素であるが、絶縁シートを用いることで、絶縁部位が狭い空間になるように配置することが容易であり、絶縁部位の広がり等からのノイズによる外乱を少なくすることができる。
【0014】
この発明において、上記共通の軸を回転させる回転駆動手段、および上記共通の軸が回転している状態で上記共通の軸にラジアル負荷を作用させる荷重負荷手段を設けても良い。
この場合、実機において軸に作用するラジアル荷重を模して軸受運転を行った状態での絶縁性能を評価することができ、さらに実機に近似した状態の絶縁性能評価が行える。
【0015】
これらの発明において、上記複数の個別ハウジングと、上記共通の基台と、上記各個別ハウジングと基台との間に介在させた絶縁体とを設ける構成に代えて、各絶縁軸受の外輪をそれぞれ嵌合させる個別ハウジングと、両個別ハウジングの間に介在させた絶縁体とを設けても良い。
すなわち、この観点の絶縁軸受の絶縁性能試験機は、複数の絶縁軸受の内輪を嵌合させる共通の軸と、各絶縁軸受の外輪をそれぞれ嵌合させる複数の個別ハウジングと、両個別ハウジングの間に介在させた絶縁体と、上記各絶縁軸受に対してそれぞれ設けられてその絶縁軸受における絶縁部分よりも内径側の部分とその絶縁軸受に対応する個別ハウジングとの間の絶縁抵抗を測定する複数の絶縁抵抗測定手段とを備えたものである。
この構成した場合、共通のハウジングを省略して2つの個別ハウジングによるハウジング全体構造とでき、あるいは共通のハウジングを設けても、両側の個別ハウジングの間に設ける絶縁体を一つとできる。そのため試験機の構成が簡易となる。
【0016】
【発明の実施の形態】
この発明の第1の実施形態を図1ないし図4と共に説明する。この実施形態の絶縁軸受の絶縁性能試験機は、図10と共に前述した鉄道車両の主電動機42に装備された両端の絶縁軸受46,47の絶縁性能を評価する試験機である。この絶縁性能試験機は、上記複数の絶縁軸受46,47の内輪57,58を嵌合させる共通の軸3と、各絶縁軸受46,47の外輪59,60をそれぞれ内部に嵌合させる複数の個別ハウジング11,12と、これら個別ハウジング11,12を設置する共通の基台4と、各絶縁軸受46,47に対応する複数の絶縁抵抗測定手段1,2とを備える。
【0017】
基台4は、ベースフレーム5と、このベースフレーム5の上に立設された前後一対のコラム体6,6と、両コラム体6,6にまたがって横架されるスリーブ7とを有する。上記各個別ハウジング11,12は、両側のコラム体6,6の内部に設置される。より詳しくは、スリーブ7のコラム体6,6で支持された両端部分でその内径孔内に設置される。各個別ハウジング11,12と基台4との間には、図2および図4に拡大して示すように、絶縁シートからなる絶縁体8,9がそれぞれ介在させてある。絶縁体8,9の材質は、フッ素樹脂等の樹脂シート等が用いられる。上記スリーブ7は、図10の主電動機42のモータハウジング48を模した部材である。また、各個別ハウジング11,12は、図10の主電動機42の両端の分割ハウジング部51,52を模した部材である。
【0018】
個別ハウジング11,12における各絶縁軸受46,47の周辺部には、これら絶縁軸受46,47の両幅面を覆う蓋部材13〜16が取付けられている。これら蓋部材13〜16は軸受対向面にグリースポケット13a〜16aを設けたものである。片方の絶縁軸受46の両側の幅面に対応する蓋部材13,14は個別ハウジング11に、もう片方の絶縁軸受47の両側の幅面に対応する蓋部材15,16は個別ハウジング12にそれぞれ取付けられる。絶縁軸受46に対応する蓋部材13,14は、軸3に嵌合して絶縁軸受46の内輪57を軸方向に位置決めする一対の軸受押さえ部材17,18との間でラビリンスシール19,20をそれぞれ形成している。また、絶縁軸受47に対応する蓋部材15,16は、軸3に嵌合して絶縁軸受47の内輪58を軸方向に位置決めする一対の軸受押さえ部材21,22との間でラビリンス23,24をそれぞれ形成している。上記各蓋部材13〜16は、図10の主電動機42の蓋部材53〜56を模した部材であり、各蓋部材13〜16とこれに対応する絶縁軸受46,47との間隔、およびグリースポケット13a〜16aの形状,寸法は、主電動機42の蓋部材53〜56と同様に形成されている。
【0019】
上記各絶縁軸受46,47は、外輪59,60の外径面および幅面に絶縁部分59a,60aである絶縁被覆を有するものである。絶縁軸受46に対応する絶縁抵抗測定手段1は、絶縁軸受46の絶縁部分(絶縁被覆)59aよりも内輪57側の部分と個別ハウジング11との間の絶縁抵抗を測定するものである。具体的には、上記絶縁抵抗測定手段1の一方の電極1aが個別ハウジング11に、他方の電極1bが絶縁軸受46の外輪59の母材部分59bにそれぞれ電気的に接続される。上記一方の電極1aは、例えば上記スリーブ7および絶縁体8に渡って孔71(図2)を設けて個別ハウジング11に接続しても良い。絶縁抵抗測定手段1の他方の電極1bは、蓋部材14に軸方向に向けて貫通させた貫通孔14bに絶縁部材からなるスリーブ25を嵌合させ、このスリーブ25内を経て上記外輪59の内径面に臨ませることにより、外輪母材部分59bに接触させている。電極1bはばね部材からなり、その弾性変形により、外輪母材部分59bに押し当てられる。蓋部材14のグリースポケット14aは、グリースポケット14aからグリースが流れ出ないように、図3に正面図で示すように周方向に複数個が分離して配置されており、隣合うグリースポケト14a,14aの間の部分に上記スリーブ25の貫通孔14bが設けられる。
【0020】
もう一方の絶縁軸受47に対応する絶縁抵抗測定手段2は、絶縁軸受47の絶縁部分(絶縁被覆)60aよりも内輪58側の部分と個別ハウジング12との間の絶縁抵抗を測定するものである。この場合も、絶縁抵抗測定手段2の一方の電極2aが個別ハウジング12に、他方の電極2bが絶縁軸受47の外輪60の母材部分60bにそれぞれ電気的に接続される。絶縁抵抗測定手段2の他方の電極2bが、蓋部材16に軸方向に向けて貫通させた貫通孔16bに絶縁部材からなるスリーブ26を嵌合させ、このスリーブ26内を経て上記外輪60の内径面に臨ませることにより外輪母材部分60bに接触させていることは、先の絶縁抵抗測定手段1の場合と同じである。上記一方の電極2aも、スリーブ7および絶縁体9に渡って孔72(図4)を設けて個別ハウジング12に接続しても良い。
なお、上記孔71,72は、必要であれば、さらに個別ハウジング11,12および絶縁軸受47,48の絶縁部分(絶縁被覆)59a,60aに渡って貫通させ、上記他方の電極1a,2aをこの孔71,72から外輪59,60の母材に接続しても良い。上記孔71,72は、電極1a,2aまたは電極1b,2bの挿通に用いない場合、形成しなくて良い。
【0021】
また、この絶縁性能試験機では、その軸3に対してラジアル荷重を負荷させる負荷手段27が設置されている。この荷重負荷手段27による軸3への荷重の負荷は、軸受装備実機である図10の主電動機42におけるロータ49の自重の影響を模して与えるものである。この荷重負荷手段27は、上記軸3に軸受28を介して回転自在に設けられた環体29と、この環体29に継手30を介して進退ロッド31が連結される油圧シリンダ等の駆動源32とで構成される。駆動源32は基台4のベース5に固定され、その進退ロッド31を後退移動させることにより軸3へ荷重が負荷される。継手30は、連結およびその解除が自在なものであり、この継手30には、軸3に負荷される荷重を測定するロードセル等の荷重測定手段(図示せず)が組み込まれる。
【0022】
軸3の一端部は、継手33を介してモータからなる回転駆動源34の回転駆動軸35に連結される。継手33は、連結および結合が自在なものである。
この継手33、および上記ラジアル荷重の負荷手段27における継手30は、絶縁抵抗測定手段1,2により絶縁性能の測定時には結合が解除されるものである。この絶縁性能試験機を、軸3の回転中の軸受絶縁測定可能なものとする場合は、継手30,33において、軸3側と基台5側との絶縁を行うための絶縁体(図示せず)を介在させる。
【0023】
次に、上記構成の絶縁性能試験機による絶縁軸受46,47の絶縁性能試験について説明する。この試験は、回転負荷用の回転駆動源34の回転駆動軸35を継手33で軸3に連結し、荷重負荷手段27でラジアル荷重を負荷した状態で回転駆動源34により軸3を回転させた後に行われる。この回転駆動により、軸受46,47に封入したグリースの移動や、軸受46,47の発熱等が生じ、使用時に近似した状態となる。測定時には、継手30,33を分離して、荷重負荷手段27の進退ロッド31や、回転駆動源34の回転駆動軸35を、軸3から電気的に切り離す。この状態で、絶縁抵抗測定手段1により第1の絶縁軸受46の絶縁性能を、また絶縁抵抗測定手段2により第2の絶縁軸受47の絶縁性能をそれぞれ測定する。この場合に、絶縁抵抗測定手段1は、第1の絶縁軸受46における外輪59の母材部分59bと、この絶縁軸受46に対応する個別ハウジング11との間の絶縁抵抗を測定する。また、絶縁抵抗測定手段2は、第2の絶縁軸受47における外輪60の母材部分60bと、この絶縁軸受47に対応する個別ハウジング12との間の絶縁抵抗を測定する。
【0024】
このように、この構成の絶縁性能試験機によると、鉄道車両の主電動機42に組み込まれる絶縁軸受46,47に対して、使用状態をシュミレートして絶縁性能を評価することができ、かつ個々の絶縁軸受46,47の絶縁性能の評価が行える。特に、軸受装備実機である主電動機42の軸受周辺部を模して、絶縁軸受46,47の幅面を覆う蓋部材13〜16を個別ハウジング11,12に取付けているので、実機に使用した状態に近い状態で絶縁性能を評価できる。また、蓋部材13〜16の軸受対向面にはグリースポケット13a〜16aを設けているので、軸受装備実機により近似した装備状態で絶縁性能を評価できる。
個別ハウジング11,12と基台4との間の絶縁を行う場合、絶縁シートからなる絶縁体8,9をどの部分に挿入するかは絶縁性能評価の上で重要な要素であるが、こ実施形態のように、絶縁部位が狭い空間になるように配置することで、ノイズによる外乱を少なくすることができる。
なお、個別ハウジング11,12や、蓋部材13〜16は、絶縁軸受46,47のサイズに応じた種々のものを準備しておけば、各種サイズの絶縁軸受46,47の絶縁性能の測定を行うことができる。
【0025】
なお、上記実施形態では、絶縁抵抗測定手段1,2の片方の電極1b,2bを、外輪59,60の母材部分59b,60bに電気的に接続させたが、これに代えて、図2および図4に1点鎖線で示すように、軸3あるいは軸受46,47の内輪57,58に電気的に接続しても良い。この場合、絶縁軸受46では、個別ハウジング11と軸3または内輪57の間の絶縁抵抗を測定することになる。また絶縁軸受47では、個別ハウジング12と軸3または内輪58の間の絶縁抵抗を測定することになる。
【0026】
また、上記実施形態では、軸3の回転を止めて各絶縁軸受46,47の絶縁性能を測定するようにしたが、回転駆動源34で軸3を回転させながら絶縁性能を測定しても良い。この場合には、継手30,33に絶縁体を介在させて、軸3を基台4から絶縁させる必要がある。このように、軸3を回転させながら絶縁性能を測定する場合、回転によるグリースの移動および軸受発熱の影響下で、絶縁性能が時間経過と共にどのように変化するかを評価することもできる。グリースは上記のように完全な絶縁体ではないため、回転中の絶縁測定が行えることで、グリースの影響をシュミレートしたより正確な絶縁性能評価が行える。
【0027】
図5おび図6はこの発明の他の実施形態を示す。この実施形態は、図1〜図4に示した第1の実施形態の絶縁性能試験機において、試験対象である絶縁軸受46,47が、セラミックス製の転動体65,66を有するものであって、この転動体65,66が絶縁軸受46,47の絶縁部分となるものである。絶縁軸受46に対応する絶縁抵抗測定手段1は、その一方の電極1bを、上記絶縁部分である転動体65よりも内輪57の部分、具体的には軸3または内輪57に電気的に接続している。また、絶縁軸受47に対応する絶縁抵抗測定手段2も、その一方の電極2bを、上記絶縁部分となる転動体66よりも内輪58の部分、具体的には軸3または内輪58に電気的に接続している。その他の構成は第1の実施形態の場合と同じである。
【0028】
この実施形態の絶縁性能試験機の場合も、鉄道車両の主電動機42に組み込まれる絶縁軸受46,47に対して、使用状態での絶縁性能を評価することができる。
【0029】
図7は、この発明のさらに他の実施形態の概略構成を示す。この実施形態は、第1の実施形態において、基台4のスリーブ7を省略したものである。第1の実施形態における蓋部材13〜16や、回転駆動源34、荷重負荷手段27は図示を省略しているが、蓋部材13〜16はこの実施形態においても第1の実施形態と同様に設けても、また省いても良い。第1の絶縁軸受46の外輪59は、個別ハウジング11を介して基台4を構成する一方のコラム体6に支持され、コラム体6と個別ハウジング11の間は絶縁体8で電気的に分離される。第2の絶縁軸受47の外輪60は、個別ハウジング12を介して基台4を構成する他方のコラム体6に支持され、コラム体6と個別ハウジング12の間は絶縁体9で電気的に分離される。絶縁軸受46に対応する絶縁抵抗測定手段1は、個別ハウジング11と、絶縁軸受46の外輪母材部分59bの間の絶縁抵抗を測定する。絶縁軸受46に対応する絶縁提供測定手段2は、個別ハウジング12と、絶縁軸受47の外輪母材部分60bの間の絶縁抵抗を測定する。その他の構成は第1の実施形態と同じである。
【0030】
図8は、この発明のさらに他の実施形態を示す。この実施形態でも、第1の実施形態において、基台4のスリーブ7を省略している。この実施形態では、試験対象の各絶縁軸受46,47の外輪をそれぞれ嵌合させる個別ハウジング11A、12Aがコラム状に設けられ、これら個別ハウジング11A,12Bの下端面と基台5の上面との間に絶縁シートからなる絶縁体8,9を介在させている。個別ハウジング11A,12Bは、コラム状の個別ハウジング本体に、軸受嵌合部材11Aa,12Aaを取付けたものとされている。第1の実施形態における蓋部材13〜16は、図示を省略しているが、この実施形態においても第1の実施形態と同様に設けても、また省いても良い。軸3を回転駆動する回転駆動源34および荷重負荷手段27は第1の実施形態と同様に設けており、さらに軸3の絶縁軸受47設置側の端部にも、別の荷重負荷手段27Aを連結している。負荷手段27,27Aは同一構造のものである。その他の構成は第1の実施形態の場合と同様である。絶縁軸受46に対応する絶縁抵抗測定手段1は、個別ハウジング11と、絶縁軸受46の外輪母材部分59bの間の絶縁抵抗を測定する。絶縁軸受46に対応する絶縁提供測定手段2は、個別ハウジング12と、絶縁軸受47の外輪母材部分60bの間の絶縁抵抗を測定する。
【0031】
なお、上記実施形態では、各絶縁軸受46,47に対応する個別ハウジング11,12と基台5との間に絶縁体8,9を介在させた構成について示したが、これに代えて、各絶縁軸受の外輪をそれぞれ嵌合させる個別ハウジングと、両個別ハウジングの間に介在させた絶縁体とを設けたものとしても良い。例えば、図1に示す第1の実施形態において、いずれか片方の個別ハウジング11,12と基台4との間の絶縁体8,9を省略しても良い。その場合、その省略側の個別ハウジング11,12と基台4とでなるものが、この変形例で言う個別ハウジングとなる。
【0032】
【発明の効果】
この発明の絶縁軸受の絶縁性能試験機は、複数の絶縁軸受の内輪を嵌合させる共通の軸と、各絶縁軸受の外輪をそれぞれ嵌合させる複数の個別ハウジングと、これら個別ハウジングを設置する共通の基台と、上記各個別ハウジングと基台との間に介在させた絶縁体と、上記各絶縁軸受に対してそれぞれ設けられてその絶縁軸受における絶縁部分よりも内径側の部分とその絶縁軸受に対応する個別ハウジングとの間の絶縁抵抗を測定する複数の絶縁抵抗測定手段とを備えたため、実機使用状態に近似した状態での個々の絶縁軸受の絶縁性能を評価することができる。特に、絶縁軸受の幅面を覆う蓋部材を設け、これにグリースポケットを設けた場合は、グリースの封入、蓋の取付状態等の実機により近似した状態での絶縁性能の評価が行える。
【図面の簡単な説明】
【図1】この発明の第1の実施形態にかかる絶縁軸受の絶縁性能試験機の一部破断正面図である。
【図2】同試験機の一部の拡大断面図である。
【図3】同試験機における蓋部材の側面図である。
【図4】同試験機の他の一部の拡大断面図である。
【図5】この発明の他の実施形態にかかる絶縁軸受の絶縁性能試験機の一部の拡大断面図である。
【図6】同試験機の他の一部の拡大断面図である。
【図7】この発明のさらに他の実施形態にかかる絶縁軸受の絶縁性能試験機の概略構成を示す断面図である。
【図8】この発明のさらに他の実施形態にかかる絶縁軸受の絶縁性能試験機を示す断面図である。
【図9】軸受装備実機である主電動機を装備した鉄道車両台車の概略正面図である。
【図10】同主電動機の拡大断面図である。
【図11】従来例の説明図である。
【符号の説明】
1,2…絶縁抵抗測定手段
3…軸
4…基台
8,9…絶縁体
11,12…個別ハウジング
13〜16…蓋部材
13a〜16a…グリースポケット
46,47…絶縁軸受
57,58…内輪
59,60…外輪
59a,60a…外輪の絶縁被覆(絶縁部分)
59b,60b…外輪の母材部分
65,66…転動体(絶縁部分)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulation performance tester for an insulation bearing used for a main motor of a railway vehicle.
[0002]
[Prior art]
In railway vehicles, bearings are used in various parts such as a main motor, a driving device, and an axle of a carriage. In recent years, with the advancement of railway technology, VVVF (variable voltage / variable frequency control method) has been applied to the main motor, and accordingly, the occurrence of electrolytic corrosion has increased in bearings used in the main motor. Yes. When electric corrosion occurs in the bearing, the rolling surface of the bearing is damaged, noise may be generated, and peeling may occur. In order to prevent this, the insulation of the bearing is necessary. In order to meet such a demand, an insulating bearing has been developed in which an insulating ceramic is used as a rolling element, or an insulating film made of ceramic or PPS resin is formed on the outer diameter surface of the outer ring.
[0003]
FIG. 9 shows a schematic diagram of the structure of a general carriage of a railway vehicle. The drive of the main motor 42 installed on the carriage 41 is transmitted from the motor shaft 43 to the axle 45 via the drive device 44. The axle 45 is supported by axle bearings 46 at both ends. As described above, the carriage 41 includes a bearing in the main motor 42, a bearing of the driving device 44, and an axle bearing 46, but an insulating bearing is used as the bearing in the main motor 42.
FIG. 10 is a sectional view of the main motor 42. One end of the motor shaft 43 is supported on one end of the motor housing 48 via the first insulating bearing 46, and the other end of the motor shaft 43 is supported on the other end of the motor housing 48 via the second insulating bearing 47. Supported by A rotor 49 is provided at an intermediate portion of the motor shaft 43, and a stator 50 including a stator coil and the like is installed on the motor housing 48 on the outer diameter side of the rotor 49. The first insulating bearing 46 is a ball bearing, and the second insulating bearing 47 is a cylindrical roller bearing for allowing thermal expansion and contraction of the motor shaft 43 and the like. These insulated bearings 46 and 47 have their outer rings installed in split housing portions 51 and 52 at both ends of the motor housing 48. Lid members 53 to 56 having grease pockets 57 are respectively attached to portions of the motor housing 48 facing the width surfaces on both sides of the insulating bearings 46 and 47. The grease pocket 57 is provided in order to increase the lubrication life of the insulating bearings 46 and 47 or the grease replenishment interval.
[0004]
When evaluating the insulating performance of such an insulating bearing (for example, an outer ring formed with an insulating film), conventionally, the insulating bearing 61 is split into two and assembled into the housing 63 as shown in FIG. Thus, both the electrodes 64a and 64b of the insulation resistance measuring instrument 64 are brought into contact with the housing 63 and the base material of the bearing outer ring 62, and the insulation resistance between the housing 63 and the outer ring base material is measured.
[0005]
[Problems to be solved by the invention]
However, the load applied to the insulated bearings 46 and 47 on both sides used as a pair for the motor shaft 43 and the like is different from each other. Therefore, in the measurement of the bearing alone as described above, it was not possible to examine the change in the insulation performance corresponding to the actual machine corresponding to the operation time.
Further, in an insulating bearing or the like used for a main motor of a railway vehicle, grease is enclosed in a state of being incorporated in the main motor, and the insulating bearings 46 and 47 have lid members 53 to 56 having grease pockets 57 as shown in FIG. A peripheral member such as is attached. Therefore, as described above, the situation is different from the case where the insulation resistance is measured with a single bearing. Further, the grease is moved and discharged by the rotational drive of the main motor. Grease is not a perfect insulator, and insulation may be degraded by leakage due to grease movement. Therefore, the insulation performance test results differ from the case of measuring with a bearing alone. However, conventionally, the insulation performance in the state equivalent to the actual machine has not been confirmed.
In the actual machine such as the main motor 42 shown in FIG. 10, the insulation performance between the motor housing 48 and the motor shaft 43 can be measured. However, in that case, the insulation performance in a state where the insulating bearings 46 and 47 at both ends are combined is measured, and the measurement of the individual insulating bearings 46 and 47 cannot be performed. Therefore, the insulation performance of the individual insulation bearings 46 and 47 in the actual machine or the state equivalent to the actual machine could not be evaluated by any method.
In response to demands for performance improvement in railway vehicle main motors and the like, it has been required to evaluate the insulation performance of the individual insulation bearings 46 and 47 in a state equivalent to such an actual machine.
[0006]
An object of the present invention is to provide an insulation performance testing machine for an insulated bearing capable of evaluating the insulation performance of each insulated bearing in a state approximate to the actual machine use state.
[0007]
[Means for Solving the Problems]
The insulation performance testing machine for insulated bearings according to the present invention includes a common shaft for fitting inner rings of a plurality of insulated bearings, a plurality of individual housings for fitting outer rings of the respective insulated bearings, and a common for installing these individual housings. A base, an insulator interposed between each of the individual housings and the base, and a portion on the inner diameter side of the insulating bearing provided with respect to each of the insulating bearings and the insulating bearing And a plurality of insulation resistance measuring means for measuring the insulation resistance between the individual housings.
According to this configuration, since the insulation resistance is measured by fitting a pair of insulated bearings to a common shaft, the insulation performance of the insulated bearing in a state where it is used at both ends of the shaft in an actual machine can be evaluated. . For example, by rotating the shaft, it is possible to examine the change in insulation performance corresponding to the actual machine corresponding to the operation time. Further, since an individual housing is provided for each insulated bearing and an insulator is interposed between the individual housing and the common base, the insulation resistance of each insulated bearing can be measured. As described above, for example, the evaluation of the insulation performance in a state of using a bearing incorporated in a bearing-equipped actual machine such as a main motor of a railway vehicle can be performed before the actual machine test.
[0008]
In this invention, the insulating bearing has an insulating coating as the insulating portion on the outer diameter surface and the width surface of the base material of the outer ring, and the inner diameter side of the insulating portion of the insulating bearing that conducts to the insulation resistance measuring means. This part may be a base material part of the outer ring of the insulated bearing.
In this configuration, measurement is performed by an insulation resistance measuring means between the individual housing fitted to the outer ring of the insulated bearing through the insulation coating and the base material of the outer ring of the bearing, so that rolling elements and grease between the inner and outer rings are measured. The insulation performance of the insulation coating can be evaluated without being affected by the above.
[0009]
In this invention, the insulating bearing has an insulating coating as the insulating portion on the outer diameter surface and the width surface of the base material of the outer ring, and the inner diameter side of the insulating portion of the insulating bearing that conducts to the insulation resistance measuring means. This portion may be the inner ring of the insulated bearing or the shaft.
In this configuration, it is possible to evaluate the insulation performance including the influence of rolling elements and grease interposed between the inner and outer rings.
[0010]
In this invention, the insulated bearing has a ceramic rolling element, and the rolling element serves as the insulating part, and is a part on the inner diameter side of the insulating part of the insulating bearing that is conducted to the insulation resistance measuring means. However, the inner ring or the shaft of the insulated bearing may be used.
In the case of this configuration, the insulating performance can be evaluated even if the insulating bearing is provided with insulating performance by having a ceramic rolling element.
[0011]
In these inventions, a lid member covering the width surface of the insulated bearing may be attached to the individual housing, imitating a bearing peripheral portion of a bearing-equipped actual machine including the plurality of insulated bearings.
In the case of this configuration, the insulation performance including the influence of the lid member covering the width surface of the insulation bearing in the actual machine can be evaluated, and the evaluation closer to the use in the actual machine can be performed.
[0012]
When the lid member is provided as described above, a grease pocket may be provided on the bearing facing surface of the lid member.
In the case of this configuration, it is possible to evaluate the insulation performance in a state where grease is filled in the grease pocket provided on the bearing facing surface of the lid member of the actual machine. As described above, grease is not a perfect insulator, and the insulation may be reduced due to leakage due to grease movement. Therefore, it is possible to evaluate the insulation performance in a state approximated by an actual machine equipped with a bearing.
[0013]
In these inventions, the insulator interposed between the individual housings and the base may be an insulating sheet.
When interposing an insulator, there is a problem of how to connect the individual housing and the base, but by using an insulating sheet that is a thin member, the individual housing and the base can be connected easily and firmly. can do. In addition, how and where the insulator is interposed is an important factor in the evaluation of the insulation performance, but by using an insulation sheet, it is easy to arrange the insulation part in a narrow space. In addition, it is possible to reduce the disturbance due to noise from the spread of the insulating part.
[0014]
In the present invention, rotation driving means for rotating the common shaft and load loading means for applying a radial load to the common shaft in a state where the common shaft is rotating may be provided.
In this case, it is possible to evaluate the insulation performance in a state where the bearing operation is performed by imitating the radial load acting on the shaft in the actual machine, and further, it is possible to evaluate the insulation performance in a state approximate to the actual machine.
[0015]
In these inventions, instead of a configuration in which the plurality of individual housings, the common base, and an insulator interposed between the individual housings and the base are provided, the outer rings of the insulating bearings are respectively provided. An individual housing to be fitted and an insulator interposed between the two individual housings may be provided.
In other words, the insulation performance tester for insulated bearings in this aspect is provided between a common shaft for fitting inner rings of a plurality of insulated bearings, a plurality of individual housings for fitting outer rings of the respective insulated bearings, and both individual housings. And a plurality of insulators provided for each of the insulating bearings, each of which measures an insulation resistance between a portion on the inner diameter side of the insulating portion of the insulating bearing and an individual housing corresponding to the insulating bearing. Insulation resistance measuring means.
In this configuration, the common housing can be omitted and the entire housing structure can be made up of two individual housings, or even if a common housing is provided, one insulator can be provided between the individual housings on both sides. This simplifies the configuration of the testing machine.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. The insulation performance tester of the insulation bearing of this embodiment is a test machine for evaluating the insulation performance of the insulation bearings 46 and 47 at both ends equipped on the main motor 42 of the railway vehicle described above with reference to FIG. This insulation performance tester includes a common shaft 3 for fitting the inner rings 57 and 58 of the plurality of insulation bearings 46 and 47 and a plurality of pieces for fitting the outer rings 59 and 60 of the insulation bearings 46 and 47 respectively. Individual housings 11 and 12, a common base 4 on which the individual housings 11 and 12 are installed, and a plurality of insulation resistance measuring means 1 and 2 corresponding to the respective insulating bearings 46 and 47 are provided.
[0017]
The base 4 includes a base frame 5, a pair of front and rear column bodies 6, 6 erected on the base frame 5, and a sleeve 7 that is laid across the column bodies 6, 6. The individual housings 11 and 12 are installed inside the column bodies 6 and 6 on both sides. More specifically, both ends of the sleeve 7 supported by the column bodies 6 and 6 are installed in the inner diameter hole. Between the individual housings 11 and 12 and the base 4, insulators 8 and 9 made of an insulating sheet are interposed, as shown in enlarged views in FIGS. 2 and 4. As the material of the insulators 8 and 9, a resin sheet such as a fluororesin is used. The sleeve 7 is a member simulating the motor housing 48 of the main motor 42 in FIG. The individual housings 11 and 12 are members simulating the divided housing portions 51 and 52 at both ends of the main motor 42 in FIG.
[0018]
Cover members 13 to 16 that cover both width surfaces of the insulating bearings 46 and 47 are attached to the peripheral portions of the insulating bearings 46 and 47 in the individual housings 11 and 12. These lid members 13 to 16 are provided with grease pockets 13a to 16a on the bearing facing surface. The lid members 13 and 14 corresponding to the width surfaces on both sides of one insulating bearing 46 are attached to the individual housing 11, and the lid members 15 and 16 corresponding to the width surfaces on both sides of the other insulating bearing 47 are attached to the individual housing 12, respectively. The lid members 13 and 14 corresponding to the insulating bearing 46 are provided with the labyrinth seals 19 and 20 between the pair of bearing pressing members 17 and 18 which are fitted to the shaft 3 and position the inner ring 57 of the insulating bearing 46 in the axial direction. Each is formed. Further, the lid members 15 and 16 corresponding to the insulating bearing 47 are fitted to the shaft 3 and the labyrinths 23 and 24 between the pair of bearing pressing members 21 and 22 for positioning the inner ring 58 of the insulating bearing 47 in the axial direction. Respectively. Each of the lid members 13 to 16 is a member simulating the lid members 53 to 56 of the main motor 42 in FIG. 10, and the distance between each of the lid members 13 to 16 and the corresponding insulating bearings 46 and 47, and grease. The shapes and dimensions of the pockets 13 a to 16 a are formed in the same manner as the lid members 53 to 56 of the main motor 42.
[0019]
Each of the insulating bearings 46 and 47 has insulating coatings that are insulating portions 59a and 60a on the outer diameter surface and the width surface of the outer rings 59 and 60, respectively. The insulation resistance measuring means 1 corresponding to the insulating bearing 46 measures the insulation resistance between the individual housing 11 and the portion of the insulating bearing 46 closer to the inner ring 57 than the insulating portion (insulating coating) 59a. Specifically, one electrode 1 a of the insulation resistance measuring means 1 is electrically connected to the individual housing 11, and the other electrode 1 b is electrically connected to the base material portion 59 b of the outer ring 59 of the insulating bearing 46. The one electrode 1a may be connected to the individual housing 11 by providing a hole 71 (FIG. 2) over the sleeve 7 and the insulator 8, for example. The other electrode 1b of the insulation resistance measuring means 1 has a sleeve 25 made of an insulating member fitted in a through-hole 14b that penetrates the cover member 14 in the axial direction, and the inner diameter of the outer ring 59 passes through the sleeve 25. By facing the surface, the outer ring base material portion 59b is brought into contact. The electrode 1b is made of a spring member, and is pressed against the outer ring base material portion 59b by elastic deformation thereof. A plurality of grease pockets 14a of the lid member 14 are arranged in the circumferential direction so as to prevent grease from flowing out from the grease pocket 14a as shown in the front view of FIG. 3, and the grease pockets 14a and 14a adjacent to each other are arranged. A through-hole 14b of the sleeve 25 is provided in the intermediate portion.
[0020]
The insulation resistance measuring means 2 corresponding to the other insulation bearing 47 measures the insulation resistance between the portion of the insulation bearing 47 closer to the inner ring 58 than the insulation portion (insulation coating) 60 a and the individual housing 12. . Also in this case, one electrode 2 a of the insulation resistance measuring means 2 is electrically connected to the individual housing 12, and the other electrode 2 b is electrically connected to the base material portion 60 b of the outer ring 60 of the insulating bearing 47. The other electrode 2b of the insulation resistance measuring means 2 is fitted with a sleeve 26 made of an insulating member in a through-hole 16b that penetrates the cover member 16 in the axial direction, and the inner diameter of the outer ring 60 passes through the sleeve 26. The contact with the outer ring base material portion 60b by facing the surface is the same as in the case of the insulation resistance measuring means 1 described above. The one electrode 2 a may also be connected to the individual housing 12 by providing a hole 72 (FIG. 4) across the sleeve 7 and the insulator 9.
If necessary, the holes 71 and 72 pass through the individual housings 11 and 12 and the insulating portions (insulation coatings) 59a and 60a of the insulating bearings 47 and 48, and the other electrodes 1a and 2a are passed through. The holes 71 and 72 may be connected to the base material of the outer rings 59 and 60. The holes 71 and 72 do not have to be formed when not used for inserting the electrodes 1a and 2a or the electrodes 1b and 2b.
[0021]
Further, in this insulation performance tester, load means 27 for applying a radial load to the shaft 3 is installed. The load applied to the shaft 3 by the load loading means 27 imitates the influence of the weight of the rotor 49 in the main motor 42 of FIG. The load loading means 27 includes a ring body 29 rotatably provided on the shaft 3 via a bearing 28, and a drive source such as a hydraulic cylinder in which an advance / retreat rod 31 is coupled to the ring body 29 via a joint 30. 32. The drive source 32 is fixed to the base 5 of the base 4, and a load is applied to the shaft 3 by moving the forward / backward rod 31 backward. The joint 30 is freely connectable and disengageable. A load measuring means (not shown) such as a load cell for measuring the load applied to the shaft 3 is incorporated in the joint 30.
[0022]
One end of the shaft 3 is connected to a rotation drive shaft 35 of a rotation drive source 34 formed of a motor via a joint 33. The joint 33 is freely connectable and connectable.
The joint 33 and the joint 30 in the radial load means 27 are disconnected when the insulation resistance measuring means 1 and 2 measure the insulation performance. When this insulation performance tester is capable of measuring bearing insulation during rotation of the shaft 3, an insulator (not shown) is used to insulate the shaft 3 side and the base 5 side at the joints 30 and 33. )).
[0023]
Next, an insulation performance test of the insulation bearings 46 and 47 using the insulation performance tester having the above-described configuration will be described. In this test, the rotary drive shaft 35 of the rotary drive source 34 for rotary load was connected to the shaft 3 by a joint 33, and the shaft 3 was rotated by the rotary drive source 34 in a state where a radial load was loaded by the load loading means 27. Done later. Due to this rotational drive, movement of grease sealed in the bearings 46 and 47, heat generation of the bearings 46 and 47, and the like occur, and the state approximates that at the time of use. At the time of measurement, the joints 30 and 33 are separated, and the advance / retreat rod 31 of the load load means 27 and the rotation drive shaft 35 of the rotation drive source 34 are electrically disconnected from the shaft 3. In this state, the insulation performance of the first insulation bearing 46 is measured by the insulation resistance measurement means 1, and the insulation performance of the second insulation bearing 47 is measured by the insulation resistance measurement means 2. In this case, the insulation resistance measuring means 1 measures the insulation resistance between the base material portion 59 b of the outer ring 59 in the first insulation bearing 46 and the individual housing 11 corresponding to the insulation bearing 46. The insulation resistance measuring means 2 measures the insulation resistance between the base material portion 60 b of the outer ring 60 in the second insulation bearing 47 and the individual housing 12 corresponding to the insulation bearing 47.
[0024]
As described above, according to the insulation performance testing machine having this configuration, it is possible to evaluate the insulation performance by simulating the usage state of the insulation bearings 46 and 47 incorporated in the main motor 42 of the railway vehicle. The insulation performance of the insulation bearings 46 and 47 can be evaluated. In particular, the cover members 13 to 16 that cover the width surfaces of the insulating bearings 46 and 47 are attached to the individual housings 11 and 12 in a manner similar to the bearing peripheral portion of the main motor 42 that is a bearing-equipped actual machine. The insulation performance can be evaluated in a state close to. Further, since the grease pockets 13a to 16a are provided on the bearing facing surfaces of the lid members 13 to 16, the insulation performance can be evaluated in an equipment state approximated by a bearing equipment actual machine.
When the insulation between the individual housings 11 and 12 and the base 4 is performed, it is an important factor in evaluating the insulation performance which part the insulators 8 and 9 made of an insulating sheet are inserted into. Disturbances caused by noise can be reduced by arranging the insulating portions so as to be a narrow space as in the embodiment.
If the individual housings 11 and 12 and the lid members 13 to 16 are prepared in accordance with the sizes of the insulating bearings 46 and 47, the insulating performance of the insulating bearings 46 and 47 of various sizes can be measured. It can be carried out.
[0025]
In the above embodiment, one electrode 1b, 2b of the insulation resistance measuring means 1, 2 is electrically connected to the base material portions 59b, 60b of the outer rings 59, 60, but instead of this, FIG. And as shown by a one-dot chain line in FIG. 4, the shaft 3 or the inner rings 57 and 58 of the bearings 46 and 47 may be electrically connected. In this case, the insulating bearing 46 measures the insulation resistance between the individual housing 11 and the shaft 3 or the inner ring 57. Further, in the insulating bearing 47, the insulation resistance between the individual housing 12 and the shaft 3 or the inner ring 58 is measured.
[0026]
In the above embodiment, the rotation performance of the shaft 3 is stopped and the insulation performance of each of the insulating bearings 46 and 47 is measured. However, the insulation performance may be measured while the shaft 3 is rotated by the rotary drive source 34. . In this case, it is necessary to insulate the shaft 3 from the base 4 by interposing an insulator in the joints 30 and 33. Thus, when measuring the insulation performance while rotating the shaft 3, it is also possible to evaluate how the insulation performance changes with time under the influence of grease movement and bearing heat generation due to rotation. Since grease is not a perfect insulator as described above, insulation measurement during rotation can be performed, so that more accurate insulation performance evaluation that simulates the influence of grease can be performed.
[0027]
5 and 6 show another embodiment of the present invention. In this embodiment, in the insulation performance tester of the first embodiment shown in FIGS. 1 to 4, the insulation bearings 46 and 47 to be tested have rolling elements 65 and 66 made of ceramics. The rolling elements 65 and 66 serve as insulating portions of the insulating bearings 46 and 47. The insulation resistance measuring means 1 corresponding to the insulating bearing 46 electrically connects one electrode 1b to a portion of the inner ring 57, specifically to the shaft 3 or the inner ring 57, rather than the rolling element 65 which is the insulating portion. ing. Further, the insulation resistance measuring means 2 corresponding to the insulating bearing 47 also has one electrode 2b electrically connected to the inner ring 58 portion, more specifically to the shaft 3 or the inner ring 58, than the rolling element 66 serving as the insulating portion. Connected. Other configurations are the same as those in the first embodiment.
[0028]
Also in the case of the insulation performance tester of this embodiment, the insulation performance in use can be evaluated for the insulation bearings 46 and 47 incorporated in the main motor 42 of the railway vehicle.
[0029]
FIG. 7 shows a schematic configuration of still another embodiment of the present invention. In this embodiment, the sleeve 7 of the base 4 is omitted from the first embodiment. The lid members 13 to 16, the rotation drive source 34, and the load loading means 27 in the first embodiment are not shown, but the lid members 13 to 16 are also the same as in the first embodiment in this embodiment. It may be provided or omitted. The outer ring 59 of the first insulating bearing 46 is supported by one column body 6 constituting the base 4 via the individual housing 11, and the column body 6 and the individual housing 11 are electrically separated by the insulator 8. Is done. The outer ring 60 of the second insulating bearing 47 is supported by the other column body 6 constituting the base 4 via the individual housing 12, and the column body 6 and the individual housing 12 are electrically separated by the insulator 9. Is done. The insulation resistance measuring means 1 corresponding to the insulating bearing 46 measures the insulation resistance between the individual housing 11 and the outer ring base material portion 59 b of the insulating bearing 46. The insulation providing measuring means 2 corresponding to the insulated bearing 46 measures the insulation resistance between the individual housing 12 and the outer ring base material portion 60 b of the insulated bearing 47. Other configurations are the same as those of the first embodiment.
[0030]
FIG. 8 shows still another embodiment of the present invention. Also in this embodiment, the sleeve 7 of the base 4 is omitted in the first embodiment. In this embodiment, individual housings 11A and 12A for fitting the outer rings of the respective insulating bearings 46 and 47 to be tested are provided in a column shape, and the lower end surface of these individual housings 11A and 12B and the upper surface of the base 5 are provided. Insulators 8 and 9 made of an insulating sheet are interposed therebetween. The individual housings 11A and 12B are formed by attaching bearing fitting members 11Aa and 12Aa to columnar individual housing bodies. Although the illustration of the lid members 13 to 16 in the first embodiment is omitted, the lid members 13 to 16 may be provided in the same manner as in the first embodiment or omitted in this embodiment. The rotational drive source 34 and the load loading means 27 for rotationally driving the shaft 3 are provided in the same manner as in the first embodiment, and another load loading means 27A is provided at the end of the shaft 3 on the side where the insulating bearing 47 is installed. It is connected. The load means 27 and 27A have the same structure. Other configurations are the same as those in the first embodiment. The insulation resistance measuring means 1 corresponding to the insulating bearing 46 measures the insulation resistance between the individual housing 11 and the outer ring base material portion 59 b of the insulating bearing 46. The insulation providing measuring means 2 corresponding to the insulated bearing 46 measures the insulation resistance between the individual housing 12 and the outer ring base material portion 60 b of the insulated bearing 47.
[0031]
In addition, in the said embodiment, although shown about the structure which interposed the insulators 8 and 9 between the separate housings 11 and 12 and the base 5 corresponding to each insulation bearings 46 and 47, instead of this, It is good also as what provided the separate housing which each fits the outer ring | wheel of an insulated bearing, and the insulator interposed between both separate housings. For example, in the first embodiment shown in FIG. 1, the insulators 8 and 9 between any one of the individual housings 11 and 12 and the base 4 may be omitted. In that case, what is made up of the individual housings 11 and 12 on the omitted side and the base 4 is the individual housing referred to in this modification.
[0032]
【The invention's effect】
The insulation performance testing machine for insulated bearings according to the present invention includes a common shaft for fitting inner rings of a plurality of insulated bearings, a plurality of individual housings for fitting outer rings of the respective insulated bearings, and a common for installing these individual housings. A base, an insulator interposed between each of the individual housings and the base, and a portion on the inner diameter side of the insulating bearing provided with respect to each of the insulating bearings and the insulating bearing Since the plurality of insulation resistance measuring means for measuring the insulation resistance between the individual housings corresponding to the above are provided, it is possible to evaluate the insulation performance of the individual insulation bearings in a state approximate to the actual machine use state. In particular, when a lid member covering the width surface of the insulating bearing is provided, and a grease pocket is provided in the lid member, the insulation performance can be evaluated in a state similar to that of an actual machine such as grease filling and lid mounting state.
[Brief description of the drawings]
FIG. 1 is a partially broken front view of an insulation performance testing machine for an insulated bearing according to a first embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a part of the testing machine.
FIG. 3 is a side view of a lid member in the testing machine.
FIG. 4 is an enlarged cross-sectional view of another part of the testing machine.
FIG. 5 is an enlarged cross-sectional view of a part of an insulation performance tester for an insulated bearing according to another embodiment of the present invention.
FIG. 6 is an enlarged cross-sectional view of another part of the testing machine.
FIG. 7 is a cross-sectional view showing a schematic configuration of an insulating performance tester for an insulated bearing according to still another embodiment of the present invention.
FIG. 8 is a cross-sectional view showing an insulation performance tester for an insulated bearing according to still another embodiment of the present invention.
FIG. 9 is a schematic front view of a railway vehicle carriage equipped with a main motor that is a bearing-equipped actual machine.
FIG. 10 is an enlarged sectional view of the main motor.
FIG. 11 is an explanatory diagram of a conventional example.
[Explanation of symbols]
1, 2 ... Insulation resistance measuring means
3 ... axis
4 ... Base
8, 9 ... Insulator
11, 12 ... Individual housing
13-16 ... Lid member
13a-16a ... Grease pocket
46, 47 ... Insulated bearings
57, 58 ... inner ring
59, 60 ... outer ring
59a, 60a ... Outer ring insulation coating (insulation part)
59b, 60b ... Base material portion of outer ring
65, 66 ... rolling elements (insulating part)

Claims (9)

複数の絶縁軸受の内輪を嵌合させる共通の軸と、各絶縁軸受の外輪をそれぞれ嵌合させる複数の個別ハウジングと、これら個別ハウジングを設置する共通の基台と、上記各個別ハウジングと基台との間に介在させた絶縁体と、上記各絶縁軸受に対してそれぞれ設けられてその絶縁軸受における絶縁部分よりも内径側の部分とその絶縁軸受に対応する個別ハウジングとの間の絶縁抵抗を測定する複数の絶縁抵抗測定手段とを備えた絶縁軸受の絶縁性能試験機。A common shaft for fitting inner rings of a plurality of insulated bearings, a plurality of individual housings for fitting outer rings of the respective insulated bearings, a common base for installing these individual housings, and the individual housings and the bases. And an insulation resistance provided between each of the insulating bearings and a portion on the inner diameter side of the insulating portion of the insulating bearing and an individual housing corresponding to the insulating bearing. An insulation performance tester for an insulation bearing, comprising a plurality of insulation resistance measurement means for measuring. 請求項1において、上記絶縁軸受が外輪の母材の外径面および幅面に上記絶縁部分である絶縁被覆を有するものであり、上記絶縁抵抗測定手段に導通させる上記絶縁軸受の絶縁部分よりも内径側の部分が、上記絶縁軸受の外輪の母材部分である絶縁軸受の絶縁性能試験機。The insulating bearing according to claim 1, wherein the insulating bearing has an insulating coating as the insulating portion on an outer diameter surface and a width surface of a base material of an outer ring, and has an inner diameter larger than that of the insulating portion of the insulating bearing to be conducted to the insulation resistance measuring means. An insulation performance tester for an insulated bearing, wherein the side portion is a base material portion of the outer ring of the insulated bearing. 請求項1において、上記絶縁軸受が外輪の母材の外径面および幅面に上記絶縁部分である絶縁被覆を有するものであり、上記絶縁抵抗測定手段に導通させる上記絶縁軸受の絶縁部分よりも内径側の部分が、上記絶縁軸受の内輪または上記軸である絶縁軸受の絶縁性能試験機。The insulating bearing according to claim 1, wherein the insulating bearing has an insulating coating as the insulating portion on an outer diameter surface and a width surface of a base material of an outer ring, and has an inner diameter larger than that of the insulating portion of the insulating bearing to be conducted to the insulation resistance measuring means. An insulation performance tester for an insulated bearing, wherein the side portion is the inner ring of the insulated bearing or the shaft. 請求項1において、上記絶縁軸受がセラミックス製の転動体を有し、この転動体が上記絶縁部分となるものであり、上記絶縁抵抗測定手段に導通させる上記絶縁軸受の絶縁部分よりも内径側の部分が、上記絶縁軸受の内輪または上記軸である絶縁軸受の絶縁性能試験機。In Claim 1, the said insulated bearing has a rolling element made from ceramics, and this rolling element becomes the said insulation part, and it is an inner diameter side rather than the insulation part of the said insulation bearing connected to the said insulation resistance measuring means. An insulation performance testing machine for an insulated bearing, wherein the portion is an inner ring of the insulated bearing or the shaft. 請求項1ないし請求項4にいずれかにおいて、上記複数の絶縁軸受を備える軸受装備実機の軸受周辺部を模して上記絶縁軸受の幅面を覆う蓋部材を上記個別ハウジングに取付けた絶縁軸受の絶縁性能試験機。The insulation of an insulated bearing according to any one of claims 1 to 4, wherein a lid member that covers a width surface of the insulated bearing imitating a bearing peripheral portion of a bearing-equipped actual machine including the plurality of insulated bearings is attached to the individual housing. Performance testing machine. 請求項5において、上記蓋部材の軸受対向面にグリースポケットを設けた絶縁軸受の絶縁性能試験機。6. The insulation performance tester according to claim 5, wherein a grease pocket is provided on a bearing-facing surface of the lid member. 請求項1ないし請求項6のいずれかにおいて、上記各個別ハウジングと基台との間に介在させた絶縁体が絶縁シートである絶縁軸受の絶縁性能試験機。7. The insulation performance testing machine according to claim 1, wherein the insulator interposed between each individual housing and the base is an insulation sheet. 請求項1ないし請求項7のいずれかにおいて、共通の軸を回転させる回転駆動手段、および上記共通の軸が回転している状態で上記共通の軸にラジアル負荷を作用させる荷重負荷手段を設けた絶縁軸受の絶縁性能試験機。8. The rotating drive means for rotating a common shaft according to claim 1, and load load means for applying a radial load to the common shaft in a state where the common shaft is rotating. Insulation performance testing machine for insulated bearings. 請求項1ないし請求項8のいずれかにおいて、上記複数の個別ハウジングと、上記共通の基台と、上記各個別ハウジングと基台との間に介在させた絶縁体とを設ける構成に代えて、各絶縁軸受の外輪をそれぞれ嵌合させる個別ハウジングと、両個別ハウジングの間に介在させた絶縁体とを設けた絶縁軸受の絶縁性能試験機。In any one of Claims 1 thru | or 8, It replaces with the structure which provides the said several separate housing, the said common base, and the insulator interposed between each said individual housing and a base, An insulation performance testing machine for an insulated bearing provided with an individual housing for fitting the outer ring of each insulated bearing and an insulator interposed between the individual housings.
JP2003182033A 2003-06-26 2003-06-26 Insulation performance testing machine for insulated bearings Expired - Fee Related JP4369690B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003182033A JP4369690B2 (en) 2003-06-26 2003-06-26 Insulation performance testing machine for insulated bearings
CNB031561349A CN100385245C (en) 2003-06-26 2003-08-29 Insulating property test machine for insulation bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182033A JP4369690B2 (en) 2003-06-26 2003-06-26 Insulation performance testing machine for insulated bearings

Publications (2)

Publication Number Publication Date
JP2005017102A true JP2005017102A (en) 2005-01-20
JP4369690B2 JP4369690B2 (en) 2009-11-25

Family

ID=34182526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182033A Expired - Fee Related JP4369690B2 (en) 2003-06-26 2003-06-26 Insulation performance testing machine for insulated bearings

Country Status (1)

Country Link
JP (1) JP4369690B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241383A (en) * 2007-03-27 2008-10-09 Yaskawa Electric Corp Oil film dielectric breakdown evaluation device
CN105021963A (en) * 2015-08-09 2015-11-04 曾宪雄 Auxiliary device for measuring insulated tools and instruments
CN105044464A (en) * 2015-07-03 2015-11-11 巢湖市金辉自控设备有限公司 Testing method of inverter insulation resistance
CN113984386A (en) * 2021-10-25 2022-01-28 中车永济电机有限公司 Insulation performance testing machine for evaluating anti-corrosion capability of bearing structure
CN114152438A (en) * 2021-11-15 2022-03-08 中车永济电机有限公司 Dynamic testing device suitable for insulation performance of multi-model rolling bearings

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195061B (en) 2015-09-06 2018-04-13 歌尔股份有限公司 Sound-absorbing material preparation method and sound-absorbing material
CN105388404A (en) * 2015-11-19 2016-03-09 南车株洲电机有限公司 Insulated bearing electric testing tool

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665481U (en) * 1979-10-24 1981-06-01
JPH03103615A (en) * 1989-09-12 1991-04-30 Railway Technical Res Inst Electrically insulated bearing
JPH04244624A (en) * 1991-01-30 1992-09-01 Ntn Corp Grease prelubricated ball bearing
JPH0589327U (en) * 1991-11-13 1993-12-07 住友金属工業株式会社 Insulation resistance monitoring device
JPH1114716A (en) * 1997-06-25 1999-01-22 Copal Co Ltd Motor inspecting device
JPH1130239A (en) * 1997-05-12 1999-02-02 Nippon Seiko Kk Electrolytic corrosion preventive rolling bearing
JP2000291667A (en) * 1999-04-01 2000-10-20 Ntn Corp Bearing device
JP2001124072A (en) * 1999-10-29 2001-05-08 Ntn Corp Rolling bearing
JP2002048145A (en) * 2000-08-04 2002-02-15 Ntn Corp Anti-electrolytic corrosion rolling bearing
JP2002310166A (en) * 2001-04-09 2002-10-23 Ntn Corp Conductive rolling bearing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665481U (en) * 1979-10-24 1981-06-01
JPH03103615A (en) * 1989-09-12 1991-04-30 Railway Technical Res Inst Electrically insulated bearing
JPH04244624A (en) * 1991-01-30 1992-09-01 Ntn Corp Grease prelubricated ball bearing
JPH0589327U (en) * 1991-11-13 1993-12-07 住友金属工業株式会社 Insulation resistance monitoring device
JPH1130239A (en) * 1997-05-12 1999-02-02 Nippon Seiko Kk Electrolytic corrosion preventive rolling bearing
JPH1114716A (en) * 1997-06-25 1999-01-22 Copal Co Ltd Motor inspecting device
JP2000291667A (en) * 1999-04-01 2000-10-20 Ntn Corp Bearing device
JP2001124072A (en) * 1999-10-29 2001-05-08 Ntn Corp Rolling bearing
JP2002048145A (en) * 2000-08-04 2002-02-15 Ntn Corp Anti-electrolytic corrosion rolling bearing
JP2002310166A (en) * 2001-04-09 2002-10-23 Ntn Corp Conductive rolling bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241383A (en) * 2007-03-27 2008-10-09 Yaskawa Electric Corp Oil film dielectric breakdown evaluation device
CN105044464A (en) * 2015-07-03 2015-11-11 巢湖市金辉自控设备有限公司 Testing method of inverter insulation resistance
CN105021963A (en) * 2015-08-09 2015-11-04 曾宪雄 Auxiliary device for measuring insulated tools and instruments
CN113984386A (en) * 2021-10-25 2022-01-28 中车永济电机有限公司 Insulation performance testing machine for evaluating anti-corrosion capability of bearing structure
CN114152438A (en) * 2021-11-15 2022-03-08 中车永济电机有限公司 Dynamic testing device suitable for insulation performance of multi-model rolling bearings
CN114152438B (en) * 2021-11-15 2024-01-23 中车永济电机有限公司 Dynamic testing device suitable for insulation performance of multi-type rolling bearing

Also Published As

Publication number Publication date
JP4369690B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US9752961B2 (en) Dual-purpose dynamometer
KR101428829B1 (en) A sensorized bearing unit
US6030128A (en) Insulating arrangement for electrical machine shaft bearing
JP4369690B2 (en) Insulation performance testing machine for insulated bearings
JPH03103615A (en) Electrically insulated bearing
JP5787631B2 (en) Bearing test equipment
JP6535165B2 (en) Wear resistance test device for cage in needle cage
JP5423355B2 (en) Bearing test equipment
KR20200001472A (en) Ball bearing, unit for measuring friction torque under load provided with such a bearing, and test bench for rotating device provided with such a unit for measuring
KR102654049B1 (en) Test RIG FOR A ROTARY DEVICE, IN PARTICULAR FOR A SUSPENSION BEARING UNIT
CN100385245C (en) Insulating property test machine for insulation bearing
CN110196128B (en) Unit for measuring friction torque under load and test bench equipped with same
JP2007192737A (en) Method for evaluating performance of dynamic pressure bearing
US6190052B1 (en) Method for changing the clamping conditions between a shaft bearing and a rotatable part as well as a shaft bearing
CN103511469A (en) Friction-free sealing shaft with torque and angle measurement
JP2966040B2 (en) Centrifugal load bearing tester
JP3837272B2 (en) Bearing characteristic measuring method and measuring device of hydrodynamic bearing
JP4725288B2 (en) Chassis dynamo device
JP2966046B2 (en) Centrifugal load bearing tester
KR20220168867A (en) Bearing Shaft Voltage Durability Test Device for Electric Machine
JP2009074955A (en) Insulation testing method and device of outer ring for rolling bearing
JPH06147231A (en) Electric insulating bearing
CN217689251U (en) Insulating bearing test equipment
JPH07333200A (en) Electrolytic corrosion evaluation test device for bearing
JP2001264184A (en) Method and instrument for measuring temperature of rotary body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees