JP2005017002A - Nondestructive inspection method of different material brazing section - Google Patents

Nondestructive inspection method of different material brazing section Download PDF

Info

Publication number
JP2005017002A
JP2005017002A JP2003178957A JP2003178957A JP2005017002A JP 2005017002 A JP2005017002 A JP 2005017002A JP 2003178957 A JP2003178957 A JP 2003178957A JP 2003178957 A JP2003178957 A JP 2003178957A JP 2005017002 A JP2005017002 A JP 2005017002A
Authority
JP
Japan
Prior art keywords
section
attenuation
different material
destructive inspection
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003178957A
Other languages
Japanese (ja)
Inventor
Shintaro Ishiyama
新太郎 石山
Masahito Matsubayashi
政仁 松林
Masato Akiba
真人 秋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2003178957A priority Critical patent/JP2005017002A/en
Publication of JP2005017002A publication Critical patent/JP2005017002A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a non-destructive inspection method of a diverter that is radiated during service by solving the problems that the attenuation of ultrasonic waves is large at an armor tile section in an ultrasonic method, and the attenuation of X rays is also large so that a transmission image at the narrow brazing section between the armor tile and a cooling substrate cannot be obtained, and measurement sensitivity is not sufficient in thermography in the non-destruction inspection of a structure, where the junction structure of a different material, such as a fusion reactor diverter target plate, and a cooling function structure have become complicated, and a brazed section. <P>SOLUTION: In the method, the non-destructive inspection of the different material brazed section of a structure comprising a three-layer laminated structure of armor tile/brazed section/cooling substrate (having a cooling channel) in a fusion reactor is made by a neutron radiography method utilizing low-energy neutron rays having improved transmission force and a small amount of attenuation by a body to be inspected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、原子力産業分野及び一般産業分野(翼内冷却構造があるガスタービン被覆翼等)において使用される、異種材ろう接部の非破壊検査法に関するものである。
【0002】
【従来の技術】
核融合炉ダイバータターゲットプレート等の異種材料の接合構造及び冷却機能構造が複雑に入り組んだ構造体、並びにろう接部分の非破壊検査技術は、現在まだ確立していない。
【0003】
【発明が解決しようとする課題】
図1に示されるような、核融合炉ダイバータターゲットプレート等の異種材料の接合構造及び冷却機能構造が複雑に入り組んだ構造体、並びにろう接部分の非破壊検査において、超音波法ではアーマータイル部での超音波の減衰が大きく、またX線でも減衰が大きいためアーマータイルと冷却基板間の狭隘なろう接部の透過映像が鮮明に得られない。また、サーモグラフィでは計測感度が不十分である。また、実験・運転時に装置を一時的に停止して定期検査等を行う供用中の放射化したダイバータの非破壊検査法が確立していない。
【0004】
【課題を解決するための手段】
本発明は、透過力に優れ、減衰の少ない低エネルギー中性子線を利用した中性子ラジオグラフィ法により、異種積層材の各素材による前記減衰がなく、且つ狭隘なろう接部検査に必要な分解能を得ることができる、非破壊検査法である。さらに、供用期間中の検査ではダイバータが放射化しているが、この放射化したダイバータ構造体の非破壊検査は、中性子ラジオグラフィ計測設備を利用することにより可能である。
【0005】
即ち、放射化したダイバータ等の放射化した被検査体は、ラジオグラフィ管理区域内でロボット等の遠隔操作により試料台に設置し、試料台を回転、上下運動により中性子線とセンサー間を移動させ、接合界面や母体をあらゆる角度から観察することができる。又、ラジオグラフィ装置及びその施設は、放射線管理区域内にあるので、放射化したダイバータの取り扱いが容易に可能であり、且つラジオグラフィ計測のために分解して取り外すことなく検査することができる。
【0006】
【発明の実施の形態】
核融合炉のダイバーターの構造は、図1の上部に示されるように、バッファー、ドーム、ウイング及びターゲットプレートから構成され、核融合炉の真空室での核融合反応の際に発生した排ガスが、ターゲットバンパーを経て冷却されて放出される。前記ターゲットプレートは、図1の下部に示されるように、C/C複合材からなるアーマータイル、高伝導性無酸素銅からなるろう接部内層及び冷却基板であるヒートシンクの三層積層構造から構成されている。本発明においては、この三層積層構造のろう接部の不完全欠陥を、透過力に優れ、減衰の少ない低エネルギー中性子線を利用した中性子ラジオグラフィ法により、非破壊的に検査することができる。なお、ダイバータのターゲットプレートは、図1に示されるように、細長い冷却水用の配管とその表面にろう接された黒鉛等のアーマタイルとから構成される構造体である。
【0007】
中性子ラジオグラフィ法により中性子線を使用して被検査体を非破壊的に検査する際には、図2に示されるように、原子炉の炉心から中性子線を重水タンク及びビームシャッターを通して取り出し、その中性子ビームをサンプルホルダー又はサンプルテーブル上に置いた被検査体に照射し、その透過ビームを中性子テレビカメラに捕らえて被検査体のろう接部の検査を行うことができる。
【0008】
図3は、アーマーと冷却チャネルとの間の接合内表面にクラックが存在する場合のターゲットプレートのメッシュモデルであり、そのチェック面に欠陥がある場合が示されている。
【0009】
【実施例】
ITER(核融合炉)用ダイバータターゲットプレート実機の非破壊検査試験を中性子ラジオグラフィ(NRG)、X線法(XRG)、超音波法、サーモグラフィ法により表1及び2の条件で図2の装置を使用して実施し、図3に示されるような、特に見つけずらいアーマータイル/冷却基板間のろう接部内のろう接不完全分の検出感度比較を行った。その結果、表3に示す結果を得た。
【0010】
【表1】

Figure 2005017002
【0011】
【表2】
Figure 2005017002
【0012】
【表3】
Figure 2005017002
【0013】
表1には、図2の装置を使用し、その試験室(TNRF−1及びTNRF−2)のサンプルホルダー及びサンプルテーブルにITER(核融合炉)用ダイバータターゲットプレート実機(被検査体)を置き、中性子束を照射した場合の条件が示されている。表2には、図2の装置において、その被検査体を透過した中性子線又はX線を、特定の写真フィルム及び露出時間で、中性子テレビカメラを用いて撮影した場合の結果が示されている。表3には、被検査体に、中性子ラジオグラフィ(NRG)、X線法(XRG)、サーモグラフィ法及び超音波法を使用して得られた最小欠陥サイズが表示されている。これによると、中性子ラジオグラフィによる最小欠陥サイズが一番小さいことが示されている。
【0014】
【発明の効果】
本発明により、各種ろう接部及び複数積層複雑構造体の非破壊検査が可能となるので、ITER等の核融合実験炉や核融合発電炉における複雑な構造物体の非破壊検査、供用中検査を実施でき、運転の効率化が図られる、という本発明に特有の顕著な効果を生ずる。
【図面の簡単な説明】
【図1】ITERダイバータターゲットプレート概念図と実機を示す図である。
【図2】中性子ラジオグラフィ利用原子炉施設を示す図である。
【図3】ダイバータターゲットプレート断面解析モデル図及び欠陥想定箇所を示す図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a non-destructive inspection method for dissimilar material brazing parts used in the nuclear industry field and the general industry field (such as a gas turbine coated blade having a cooling structure inside a blade).
[0002]
[Prior art]
Non-destructive inspection technology for brazed parts has not yet been established at present, such as a fusion reactor divertor target plate and other structures with a complex joining structure and cooling function structure.
[0003]
[Problems to be solved by the invention]
As shown in FIG. 1, in the non-destructive inspection of a brazed portion in a non-destructive inspection of a structure having a complicated joining structure and cooling function structure of different materials such as a fusion reactor divertor target plate, the armor tile portion Since the attenuation of the ultrasonic wave is large and the attenuation of the X-ray is also large, a transmission image of the narrow brazed portion between the armor tile and the cooling substrate cannot be obtained clearly. In addition, measurement sensitivity is insufficient in thermography. In addition, no non-destructive inspection method has been established for in-service activated diverters that perform periodic inspections, etc., by temporarily stopping the apparatus during experiments and operations.
[0004]
[Means for Solving the Problems]
The present invention obtains the resolution required for narrow brazing joint inspection without the above-mentioned attenuation due to each material of different kinds of laminated materials by a neutron radiography method using a low energy neutron beam having excellent transmission power and low attenuation. This is a non-destructive inspection method. Furthermore, although the divertor is activated in the inspection during the service period, the non-destructive inspection of the activated diverter structure can be performed by using a neutron radiography measurement facility.
[0005]
In other words, the activated object to be inspected, such as the activated divertor, is placed on the sample table by remote control of a robot or the like within the radiography control area, and the sample table is rotated and moved between the neutron beam and the sensor by vertical movement. It is possible to observe the bonding interface and the matrix from all angles. In addition, since the radiography apparatus and its facility are in the radiation control area, the activated diverter can be easily handled, and can be inspected without disassembling and removing for radiography measurement.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As shown in the upper part of FIG. 1, the structure of a fusion reactor diverter is composed of a buffer, a dome, a wing and a target plate, and the exhaust gas generated during the fusion reaction in the vacuum chamber of the fusion reactor Then, it is cooled and discharged through the target bumper. As shown in the lower part of FIG. 1, the target plate is composed of a three-layered structure of an armor tile made of a C / C composite material, an inner layer of a brazed part made of highly conductive oxygen-free copper, and a heat sink as a cooling substrate. Has been. In the present invention, incomplete defects in the brazed portion of this three-layer laminated structure can be inspected nondestructively by a neutron radiography method using a low energy neutron beam having excellent transmission power and low attenuation. . As shown in FIG. 1, the target plate of the diverter is a structure composed of an elongated cooling water pipe and an armature such as graphite brazed to the surface thereof.
[0007]
When non-destructively inspecting an object to be inspected using neutron radiation by the neutron radiography method, as shown in FIG. 2, the neutron beam is taken out from the reactor core through a heavy water tank and a beam shutter. A test object placed on a sample holder or a sample table is irradiated with a neutron beam, and the transmitted beam is captured by a neutron television camera to inspect the brazed portion of the test object.
[0008]
FIG. 3 is a mesh model of the target plate when cracks are present on the inner surface of the joint between the armor and the cooling channel, and shows a case where the check surface has a defect.
[0009]
【Example】
The nondestructive inspection test of the actual divertor target plate for ITER (Fusion Reactor) was performed using the neutron radiography (NRG), X-ray method (XRG), ultrasonic method, and thermography method in the conditions shown in Tables 1 and 2. The detection sensitivity comparison of the incomplete brazing in the brazing portion between the armor tile / cooling substrate, which is particularly difficult to find, was performed as shown in FIG. As a result, the results shown in Table 3 were obtained.
[0010]
[Table 1]
Figure 2005017002
[0011]
[Table 2]
Figure 2005017002
[0012]
[Table 3]
Figure 2005017002
[0013]
In Table 1, the actual apparatus (inspected object) for ITER (fusion reactor) is placed on the sample holder and sample table of the test room (TNRF-1 and TNRF-2) using the apparatus of FIG. The conditions for irradiation with a neutron flux are shown. Table 2 shows the result of photographing the neutron beam or X-ray transmitted through the object to be inspected using the neutron television camera with a specific photographic film and exposure time in the apparatus of FIG. . In Table 3, the minimum defect size obtained by using neutron radiography (NRG), X-ray method (XRG), thermography method, and ultrasonic method is displayed on the object to be inspected. This shows that the minimum defect size by neutron radiography is the smallest.
[0014]
【The invention's effect】
The present invention enables non-destructive inspection of various brazed parts and multi-layered complex structures. Therefore, non-destructive inspection and in-service inspection of complex structural objects in fusion experimental reactors such as ITER and fusion power reactors. The present invention has a remarkable effect unique to the present invention that it can be carried out and the operation efficiency is improved.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an ITER divertor target plate and a diagram showing an actual machine.
FIG. 2 is a diagram showing a nuclear facility using neutron radiography.
FIG. 3 is a cross-sectional analysis model diagram of a divertor target plate and a diagram showing a possible defect location.

Claims (4)

異種材料の透過力に優れ、その材料による減衰の少ない低エネルギー中性子線を利用した中性子ラジオグラフィ法により、中性子を利用した異種材ろう接部の非破壊検査方法。A non-destructive inspection method for brazing joints of dissimilar materials using neutrons by neutron radiography using low energy neutron beams with excellent transmission power of dissimilar materials and little attenuation by the materials. アーマータイル/ろう接部/冷却基板(冷却チャンネル付)の三層積層構造から成る構造体の異種材ろう接部の非破壊検査法。Non-destructive inspection method for dissimilar material brazing parts of a structure consisting of a three-layer structure of armor tile / brazing joint / cooling substrate (with cooling channel). 構造材の0.5mm程度の微小なろう接不完全欠陥部の検出するための請求項1又は請求項2記載の方法。The method according to claim 1 or 2, for detecting a minute incompletely brazed defect portion of about 0.5 mm in a structural material. 構造材が放射化した構造材である請求項2又は請求項3記載の方法。The method according to claim 2 or 3, wherein the structural material is an activated structural material.
JP2003178957A 2003-06-24 2003-06-24 Nondestructive inspection method of different material brazing section Pending JP2005017002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178957A JP2005017002A (en) 2003-06-24 2003-06-24 Nondestructive inspection method of different material brazing section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178957A JP2005017002A (en) 2003-06-24 2003-06-24 Nondestructive inspection method of different material brazing section

Publications (1)

Publication Number Publication Date
JP2005017002A true JP2005017002A (en) 2005-01-20

Family

ID=34180393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178957A Pending JP2005017002A (en) 2003-06-24 2003-06-24 Nondestructive inspection method of different material brazing section

Country Status (1)

Country Link
JP (1) JP2005017002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553596A (en) * 2019-08-23 2019-12-10 中国科学院合肥物质科学研究院 comprehensive monitoring and diagnosis system applied to internal components of fusion reactor device
CN113406116A (en) * 2021-05-21 2021-09-17 中国工程物理研究院核物理与化学研究所 Large-capacity sample bearing device for hollow turbine blade detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553596A (en) * 2019-08-23 2019-12-10 中国科学院合肥物质科学研究院 comprehensive monitoring and diagnosis system applied to internal components of fusion reactor device
CN113406116A (en) * 2021-05-21 2021-09-17 中国工程物理研究院核物理与化学研究所 Large-capacity sample bearing device for hollow turbine blade detection
CN113406116B (en) * 2021-05-21 2022-09-27 中国工程物理研究院核物理与化学研究所 Large-capacity sample bearing device for hollow turbine blade detection

Similar Documents

Publication Publication Date Title
US7315609B2 (en) Real-time X-ray scanner and remote crawler apparatus and method
CN105181799B (en) The transverse defect detection means and method of Cylinder Surface workpiece
Du et al. A review of miniaturised Non-Destructive Testing technologies for in-situ inspections
CN105136903B (en) Cylinder Surface workpiece butt weld transverse defect detection device and method
US20040218715A1 (en) Method and apparatus for detecting defects using digital radiography
CN108037091A (en) Composites gas cylinder fatigue damage infrared detection system
Thomas Overview of nondestructive evaluation technologies
JP2005017002A (en) Nondestructive inspection method of different material brazing section
Bulavinov et al. Robot-based in-process examination of ITER dome and first-wall panels based on novel ultrasonic tomography approach
Cramer Research developments in nondestructive evaluation and structural health monitoring for the sustainment of composite aerospace structures at nasa
Zhu et al. Ultrasonic testing system design for defect visualization of inhomogeneous multi-layered pipes
Troitskiy Quick industrial X-ray testing without intermediate data carriers of information
Johnston et al. Investigation of Non‐Destructive Evaluation Methods Applied to Oxide/Oxide Fiber Reinforced Ceramic Matrix Composite
Georgeson Recent advances in aerospace composite NDE
Cramer et al. Quantitative NDE of Composite Structures at NASA
Wong et al. Crack detection using image processing techniques for radiographic inspection of aircraft wing spar
Arifin et al. Study on effect of source to film distance (SFD) on the radiographic images
JPH0269644A (en) Non-destructive inspection method for ceramics body
Renshaw et al. Robotically-deployed NDE inspection development for dry storage systems for used nuclear fuel
Qi et al. Preliminary nondestructive tests by ultrasonic inspection on W-Cu plasma-facing components for EAST
Howard et al. SRs reactor tank inspection program: UT development, application, and results
Klimenov et al. Mobile digital radiography system for nondestructive testing of large diameter pipelines
Sun et al. Nondestructive Evaluation and Characterization of Damage and Repair for Continuous Fiber Ceramic Composite Panels
McClung REMOTE INSPECTION OF WELDED JOINTS.
Van den Bos et al. Inspection of Friction Stir Welds using Triple Array Methods

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081113