JP2005016656A - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP2005016656A
JP2005016656A JP2003183856A JP2003183856A JP2005016656A JP 2005016656 A JP2005016656 A JP 2005016656A JP 2003183856 A JP2003183856 A JP 2003183856A JP 2003183856 A JP2003183856 A JP 2003183856A JP 2005016656 A JP2005016656 A JP 2005016656A
Authority
JP
Japan
Prior art keywords
cage
tapered roller
inner ring
roller
retainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003183856A
Other languages
Japanese (ja)
Inventor
Hiroki Fujiwara
宏樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2003183856A priority Critical patent/JP2005016656A/en
Publication of JP2005016656A publication Critical patent/JP2005016656A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4605Details of interaction of cage and race, e.g. retention or centring

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tapered roller bearing capable of controlling the gap between the major end of each roller and the inner ring larger flange at the time of no load while the bearing dimensions are taken into consideration, reducing the interfering force between a retainer and the roller for different bearing dimensions, and enhancing the lifetime of the retainer. <P>SOLUTION: The tapered roller bearing is composed of an inner ring 1 having a larger flange 1b, an outer ring 2, a plurality of tapered rollers 3 interposed between the raceway surfaces s1a and 2a of the inner 1 and outer rings 2, and a retainer 4. This should be designed so that the retainer stress σ determined from the formula becomes one fifth of the fatigue limit of the retainer material, where δ is the clearance between the roller major end face and the inner ring larger flange 1b when the tapered roller 3 has moved nearest to the minor diameter side, r<SB>1</SB>is the mean diameter of the inner ring raceway surface 1a, α is the inclining angle of the rotational axis of the roller 3, μ<SB>m</SB>is the maximum traction factor of the lubricating oil, s<SB>m</SB>is the slip ratio to exhibit the maximum traction factor, C is the static rated load, Z is the number of rollers, and A is the section area of the retainer ring portion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、各種機械の回転軸を支承する円すいころ軸受に関する。
【0002】
【従来の技術】
鉄道車両駆動歯車装置には、正面組み合わせの円すいころ軸受が正のアキシアル隙間を与えて用いられる。この構成の円すいころ軸受では保持器の破損が問題となることがあり、そのための対策として、従来は主に保持器の高強度化などが行われてきた。
【0003】
【特許文献1】
特開平2−256921号公報
【特許文献2】
特開平9−273548号公報
【特許文献3】
特開平11−82490号公報
【特許文献4】
特開平11−210761号公報
【特許文献5】
特開2001−336537号公報
【特許文献6】
実公昭58−50094号公報
【特許文献7】
実開昭61−66218号公報
【0004】
【発明が解決しようとする課題】
上記構成の円すいころ軸受の場合、車両の力行と惰行の切替えによって、つまりモータで加速走行する状態と惰性で走行する状態の切り替えによって、アキシアル荷重が変化する。本発明者らは、水平軸に組み付けられて回転している無負荷状態の円すいころ軸受に急激なアキシアル荷重を負荷すると、保持器に過大な応力が作用することを見出した。
この現象は、次のような作用による。無負荷時には、上方のころが重力によって内輪小つば方向に移動しているのに対し、下方のころは内輪大つば方向に移動している。この状態でアキシアル荷重が作用すると、上方のころは摩擦によって軸方向位置が拘束され、大端面を内輪大つばと接触させないまま公転運動を開始する。したがって、上方のころは下方のころに対して公転速度が遅くなる。これにより、保持器には複数のころから、方向の異なるモーメントが与えられて、周方向に引張りおよび圧縮の応力分布を持つことになる。本発明者らの研究によれば、この応力は保持器材料の疲労限度以上となる。
このため、上記構成の円すいころ軸受では、非負荷時にころ大端と内輪つばの間の隙間が小さいことが望ましい。
【0005】
保持器に過大な応力が作用することの防止とは、目的が異なるが、ころ大端と内輪つばの間の隙間所定量以下にする方法として、次の2種類▲1▼,▲2▼の方法が提案されている。
▲1▼.ころ長さと内輪溝幅寸法の少なくとも1つを管理して、ころと内輪大つばあるいは内輪小つばの隙間を低減する方法(例えば特許文献1〜5)。
▲2▼.ころを何らかの摺動部材によって内輪大つばに押し付ける方法(例えば特許文献6,7)。
【0006】
しかし、▲1▼に挙げた方法(特許文献1〜5)では、いずれも、軸受寸法に同一の数値で隙間を与えており、軸受寸法によっては必ずしも適切な隙間とはならないという問題がある。▲2▼に挙げた方法(特許文献6,7)においては、運転中の摩擦トルクの増加が懸念される。
【0007】
この発明の目的は、各種の軸受寸法において、保持器ところの干渉力を低減できて、保持器寿命の向上が図れ、また運転中の摩擦トルクの増加の問題のない円すいころ軸受を提供することである。
【0008】
【課題を解決するための手段】
この発明の円すいころ軸受は、円すいころが最も小径側に移動したときの円すいころの大端面と内輪大つばのすきまをδ、内輪転走面の平均半径をr、ころの自転軸の傾き角をα、潤滑油の最大トラクション係数をμ、最大トラクション係数を示すすべり率をs、静定格荷重をC、ころ数をZ、保持器リング部の断面積をAとして、次式
【数2】

Figure 2005016656
で求めた保持器応力σが保持器材料の疲労限度の1/5となるように設計したものである。
この構成によると、アキシアルすきまのある円すいころ軸受に急激なアキシアル荷重が作用するときに、円すいころ同士の公転速度差に起因して保持器に繰り返し作用する応力が、保持器材料の疲労限度の1/5以下となる。機械要素設計では、鋼材の片振り繰り返し荷重に対する一般的な安全率は5とされており、上記のように保持器応力σの範囲を1/5以下とすることで、一般的な安全率をもって、保持器に繰り返し作用する応力が疲労限度以下となり、保持器寿命の延長が図れる。疲労限度は、無限の繰り返しに耐えられる応力のことであり、適切な安全率を以て確実に疲労限度以下となるように設定することで、保持器寿命が向上する。上記の式は軸受寸法を考慮して保持器に作用する応力σを求める式であり、この応力σを所定値以下に設定することで、各種の軸受寸法において、保持器ところの干渉力を低減でき、保持器寿命の向上が図れる。また、保持器応力の規制によるため、何かの部材を押しつけるようなものと異なり、摩擦トルクの増大の問題がない。
【0009】
【発明の実施の形態】
この発明の第1の実施形態を図1および図2と共に説明する。この実施形態の円すいころ軸受は、内輪1と、外輪2と、複数の円すいころ3と、これらの円すいころ3を円周方向に所定間隔を隔てて保持する保持器4とからなる。内輪1は外径面に円すい状の転走面1aを有し、外径の大径側および小径側に大つば1bおよび小つば1cをそれぞれ有する。外輪2は、上記転走面1aに対向する円すい状の転走面2aを有し、鍔無しとされている。円すいころ3は、上記両転走面1a,2a間に転動自在に介在させる。保持器4は、例えばリング状に形成されて、円周方向の複数箇所に、各円すいころ3を内部に保持するポケットを形成したものである。
【0010】
この円すいころ軸受は、上記構成において、次のように軸受各部の寸法等によって求められる保持器応力σの範囲を規制したものである。
すなわち、図2のように円すいころ3の小端面を内輪1の小つば1cに押し当てた状態における円すいころ3の大端面と内輪1の大つば1bの隙間をδとし、内輪1の転走面1aの平均半径をr、内輪1の転走面1aの円すい角の1/2をα、円すいころ3の平均半径をrとする。また、円すいころ3が内輪小つば1cと接触している状態における円すいころ3の平均径部が接触する内輪転走面1aの半径をr’とすると、r’は次式
【0011】
【数3】
Figure 2005016656
【0012】
で表される。円すいころ3の自転軸の傾き角をα、内輪1の回転角速度をωとすると、ころ中心から見た内外輪1,2の周速vは、次式
【0013】
【数4】
Figure 2005016656
【0014】
で表される。内輪小つば1c側に移動した円すいころ3と、内輪大つば1bに接触している円すいころ3との公転周速差Δvは、次式
【0015】
【数5】
Figure 2005016656
【0016】
で表される。円すいころ3のすべり率sは、次式
【0017】
【数6】
Figure 2005016656
【0018】
で表されるが、通常の円すいころ軸受では、r’≒r、α≒α、またr≒r/5であるから、概略的に上記すべり率sは、次式
【0019】
【数7】
Figure 2005016656
【0020】
で表される。潤滑油の最大トラクション係数をμ、最大トラクション係数を示すすべり率をsとすると、すべり率の小さい領域でのトラクション係数μは、次式
【0021】
【数8】
Figure 2005016656
【0022】
で求められる。円すいころ3の内輪1側、および外輪2側の法線荷重をそれぞれQ,Qとしたとき、保持器4と円すいころ3の干渉力Fは、次式
【0023】
【数9】
Figure 2005016656
【0024】
で与えられる。ここで、軸受に作用する荷重は静定格荷重Cが最大値であり、ころ数をZ、外輪転走面2aの円すい角の1/2をα(≒α)とすると、上記干渉力の最大値Fは、次式
【0025】
【数10】
Figure 2005016656
【0026】
で求められる。保持器4におけるリング部4aの断面積をAとしたときに、保持器応力σは、次式
【0027】
【数11】
Figure 2005016656
【0028】
で概算される。そこで、この円すいころ軸受では、保持器4におけるポケット4bの隅部への応力集中を考慮して、上記保持器応力σが保持器材料の疲労限度の1/5以下となるように、各部寸法および公差を設定している。ここで、1/5の数値は安全率の逆数である。「井澤實著,増補版機械要素の設計解析,山海堂,1967,p.15」によれば、鋼の片振り繰り返し荷重の一般的な安全率は5とされている。
【0029】
次に、上記円すいころ軸受の動作を説明する。正規の運転状態では、円すいころ3の大端面は内輪大つば1bに接触して転がりすべり運動を行っている。図2のように、外輪2あるいは内輪1が軸方向に移動して非負荷状態となったとき、一部の円すいころ3は自重によって内輪小つば1c側に移動する。ここで急激なアキシアル荷重が付加すると、上述した機構によって保持器4に応力が発生する。ここで、保持器応力σを所定の値以下に設定すれば、保持器4に発生する応力は疲労限度以下となり、円すいころ3同士の公転速度差に起因する保持器4の破損を防止することができる。この実施形態では、保持器応力σを保持器材料の疲労限度の1/5以下となるように設定しているので、上記のように機械設計の一般的な安全率をもって、保持器4に発生する応力が確実に疲労限度以下となり、円すいころ3同士の公転速度差に起因する保持器4の破損を防止することができる。上記のように求める保持器応力σは、軸受寸法を考慮した値であり、軸受寸法を考慮した非負荷時の円すいころ3の大端と内輪大つば1bの隙間を適切な範囲に管理し、保持器4と円すいころ3の干渉力を低減することができる。
【0030】
図3〜図6は、この発明の他の実施形態を示す。この実施形態は、円すいころ3の公転速度差に起因する保持器応力の発生防止を、保持器応力の値を制限する設計とは別の構成で行うようにし、保持器の寿命向上を図ったものである。図3に示すように、この実施形態は、内輪1と、外輪2と、複数の円すいころ3と、これらの円すいころ3を円周方向に所定間隔を隔てて保持する保持器4とを有する円すいころ軸受において、保持器4の大径側内径面に、その内径が内輪大つば1bの外径よりも小の円環部材5を取付け、この円環部材5と内輪大つば1bが軸方向に係合することで、非負荷時の円すいころ3と保持器4の軸方向の変位が規制されるようにしたものである。内輪1は外径面に円すい状の転走面1aを有し、外径の大径側大つば1bを有し、小径側は鍔無しとされている。外輪2は、上記転走面1aに対向する円すい状の転走面2aを有し、鍔無しとされている。円すいころ3は、上記両転走面1a,2a間に転動自在に介在させる。保持器4は、リング状に形成されて、円周方向の複数箇所に、各円すいころ3を内部に保持するポケットを形成したものである。
【0031】
この円すいころ軸受は、上記円環部材5を設けることで、内輪1、円すいころ3、および保持器4が非分離とされる。非負荷時には、円すいころ3の軸方向変位は保持器4のポケット4bによって規制され、保持器4の軸方向変位は内輪大つば1bによって規制される。円環部材5は、保持器4の大径側端部の内周面に形成した円周溝4cに外周部を嵌合させることで、円環部材5に固定する。円環部材5と径方向に対向する内輪1の大つば1bの外径面は、ころ側の内端から軸方向の中間までの部分1baに比して、軸方向の中間から外端までの部分1bbの外径を所定量だけ小さくした段差形状とされている。上記円環部材5は、上記内輪大つば1bの小径部分1bbに対向するように配置され、円環部材5の内径は大つば大径部分1baの外径よりも小さく、かつ大つば小径部分1bbの外径より大きく設定されている。図3(B)にハッチングを施して表すように、上記円環部材5は円環の周方向の一部が分断されたC字状に形成され、縮径変形させることで保持器2の上記円周溝4cに嵌合できるようにされている。
【0032】
この実施形態は、図1,図2に示す第1の実施形態で説明したと同様に定められる保持器応力σが、第1の実施形態と同じく、保持器材料の疲労限度の1/5以下となるように設計されている。この実施形態の円すいころ軸受は、アキシアル隙間があるものとしても、また、予圧を付与して組み立てたものであっても良い。
なお、この発明とは異なるが、図3〜図6に示す実施形態において、保持器応力σについての限定要件を省いた発明においても、上記円環部材5の取付けによる後述の作用,効果が得られる。
【0033】
この実施形態の動作を、図4を参照して以下に説明する。円すいころ軸受に荷重が作用していない状態での内輪1、円すいころ3、および保持器4は、図4の状態にあり、このとき円すいころ3は軸方向に変位可能である。円すいころ3の軸方向変位によって、保持器4も軸方向に変位する。しかし、保持器4がころ小端側へ変位しようとすると、円環部材5が内輪大つば1bの大径部分1baと干渉するため、円すいころ3および保持器4の軸方向変位が規制される。円すいころ3の軸方向変位は、保持器4のポケット4bで規制される。このとき円環部材5は内輪大つば1bに摺接するが、円すいころ3および保持器4には自重しか作用しないため、摩擦力は小さく摩耗もほとんど発生しない。
なお、荷重が作用する場合には、従来の円すいころ軸受の場合と同様に、保持器4のポケット4bを円すいころ3で案内する構造とすれば、円環部材5と内輪大つば1bとの間の摩擦が発生しないようにできる。
【0034】
この実施形態の円すいころ軸受は、このように円環部材5の取付によって円すいころ3および保持器4の軸方向変位が規制されるようにしたため、アキシアル隙間のあるものである場合は、これに急激なアキシアル荷重が作用するときに、円すいころ3の公転速度差に起因する保持器応力の発生が防止され、保持器寿命の延長が図れる。また、この実施形態の円すいころ軸受が、予圧を付与して組み立てるものである場合には、組立時の馴らし運転の時間を短縮でき、組立時のコストを低減できる。
【0035】
また、この実施形態の円すいころ軸受では、内輪1、円すいころ3、および保持器4を非分離とできるため、内輪小つばは不要となる。そのため、組立工程において保持器4を広げたり加締める工程が不要となり、製造コストの低減が可能であるとともに、保持器4に残留応力を発生させることなく組み立てることができ、保持器4の寿命を一層延長できる。すなわち、内輪小つば1cを有する従来の円すいころ軸受では、図5(A)のように、保持器4の一部を外径側に広げてから内輪1、円すいころ3、保持器4を組み付け、その後、図5(B)のように加締めて元の形状に戻すことによって組立を行っているので、広げと加締めの工程によって、保持器4に部分的に引張りの残留応力が発生するが、内輪小つば1cのないこの実施形態の円すいころ軸受では、広げと加締めの工程が不要となり、保持器4に残留応力を発生させることなく組み立てることができる。
【0036】
図6は、この発明のさらに他の実施形態を示す。この実施形態は、保持器4が内輪大つば1bの外端面より外端側に突出することが許容される場合に適用される。この実施形態は、図4に示す実施形態の円すいころ軸受において、保持器4の大径側に取付ける円環部材5を、内輪大つば1bの外端面より外端側に配置して、円環部材5が内輪大つば1bの外端面に干渉するようにされている。したがって、内輪大つば1bの外径面は、図4の実施形態のように段差状とはされていない。
この実施形態の場合、内輪大つば1bの外径面を段差状に形成する必要がないので、製造コストをより低減できる。
【0037】
【発明の効果】
この発明の円すいころ軸受は、円すいころが最も小径側に移動したときの円すいころの大端面と内輪大つばのすきまをδ、内輪転走面の平均半径をr、ころの自転軸の傾き角をα、潤滑油の最大トラクション係数をμ、最大トラクション係数を示すすべり率をs、静定格荷重をC、ころ数をZ、保持器リング部の断面積をAとして、次式
【数12】
Figure 2005016656
で求めた保持器応力σが保持器材料の疲労限度の1/5となるように設計したため、軸受寸法を考慮して非負荷時のころ大端と内輪大つばの隙間を管理して、各種の軸受寸法において、保持器ところの干渉力を低減でき、保持器寿命の向上が図れる。また運転中の摩擦トルクの増加の問題がない。
【図面の簡単な説明】
【図1】この発明の第1の実施形態にかかる円すいころ軸受の断面図である。
【図2】同円すいころ軸受における保持器応力を求めるための説明図である。
【図3】(A)はこの発明の他の実施形態にかかる円すいころ軸受の断面図、(B)は同正面図である。
【図4】同円すいころ軸受の動作説明図である。
【図5】同円すいころ軸受と組立容易性について比較するために示した従来例の組立工程図である。
【図6】この発明のさらに他の実施形態にかかる円すいころ軸受の断面図である。
【符号の説明】
1…内輪
1a…転走面
1b…内輪大つば
1c…内輪小つば
2…外輪
2a…転走面
3…円すいころ
4…保持器
4b…保持器ポケット
4c…円周溝
5…円環部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tapered roller bearing that supports a rotating shaft of various machines.
[0002]
[Prior art]
In a railway vehicle drive gear device, a tapered roller bearing of a front combination is used with a positive axial gap. In the tapered roller bearing of this configuration, breakage of the cage may become a problem, and as a countermeasure for this, conventionally, the strength of the cage has been mainly increased.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-256922 [Patent Document 2]
Japanese Patent Laid-Open No. 9-273548 [Patent Document 3]
Japanese Patent Laid-Open No. 11-82490 [Patent Document 4]
Japanese Patent Laid-Open No. 11-210761 [Patent Document 5]
JP 2001-336537 A [Patent Document 6]
Japanese Utility Model Publication No. 58-50094 [Patent Document 7]
Japanese Utility Model Publication No. 61-66218 [0004]
[Problems to be solved by the invention]
In the case of the tapered roller bearing having the above-described configuration, the axial load is changed by switching between power running and coasting of the vehicle, that is, by switching between a state in which the motor is accelerated and coasting. The inventors have found that when a sudden axial load is applied to a tapered roller bearing in an unloaded state rotating on a horizontal shaft, excessive stress acts on the cage.
This phenomenon is caused by the following action. When there is no load, the upper roller moves in the direction of the inner ring small collar due to gravity, while the lower roller moves in the direction of the inner ring large brim. When an axial load is applied in this state, the upper roller is constrained in the axial position by friction, and starts a revolving motion without bringing the large end surface into contact with the inner ring large collar. Accordingly, the revolution speed of the upper roller is slower than that of the lower roller. Accordingly, the cage is given moments in different directions from the plurality of rollers, and has tensile and compressive stress distribution in the circumferential direction. According to our studies, this stress is above the fatigue limit of the cage material.
For this reason, in the tapered roller bearing configured as described above, it is desirable that the gap between the roller large end and the inner ring collar be small when there is no load.
[0005]
Although the purpose is different from prevention of excessive stress acting on the cage, the following two types (1) and (2) can be used as a method of reducing the gap between the roller large end and the inner ring collar to a predetermined amount or less. A method has been proposed.
(1). A method of managing at least one of the roller length and the inner ring groove width dimension to reduce the gap between the roller and the inner ring large brim or the inner ring small brim (for example, Patent Documents 1 to 5).
(2). A method of pressing a roller against the inner ring large collar by some sliding member (for example, Patent Documents 6 and 7).
[0006]
However, in the methods listed in (1) (Patent Documents 1 to 5), there is a problem that a gap is given with the same numerical value to the bearing dimension, and the gap is not necessarily appropriate depending on the bearing dimension. In the method (Patent Documents 6 and 7) listed in (2), there is a concern about an increase in friction torque during operation.
[0007]
An object of the present invention is to provide a tapered roller bearing that can reduce the interference force of the cage at various bearing dimensions, can improve the life of the cage, and has no problem of increase in friction torque during operation. It is.
[0008]
[Means for Solving the Problems]
Tapered roller bearing of this invention, the slope of the clearance of the large end face and the inner ring large rib of the tapered rollers [delta], the average radius of the inner rotary run surface of the r i, the roller rotation axis when the tapered roller is moved to the smallest diameter side Assuming that the angle is α, the maximum traction coefficient of the lubricant is μ m , the slip ratio indicating the maximum traction coefficient is s m , the static load rating is C, the number of rollers is Z, and the cross-sectional area of the cage ring is A Number 2]
Figure 2005016656
The cage stress σ obtained in the above is designed to be 1/5 of the fatigue limit of the cage material.
According to this configuration, when a sudden axial load is applied to a tapered roller bearing with an axial clearance, the stress that repeatedly acts on the cage due to the revolution speed difference between the tapered rollers is equivalent to the fatigue limit of the cage material. 1/5 or less. In machine element design, the general safety factor for single-sided repeated load of steel is set to 5, and the range of the cage stress σ is 1/5 or less as described above, so that the general safety factor is obtained. The stress that repeatedly acts on the cage becomes below the fatigue limit, and the life of the cage can be extended. The fatigue limit is a stress that can withstand an infinite number of repetitions, and the cage life is improved by setting the fatigue limit to be surely below the fatigue limit with an appropriate safety factor. The above formula is an equation for determining the stress σ acting on the cage in consideration of the bearing dimensions. By setting this stress σ to a predetermined value or less, the interference force at the cage is reduced in various bearing dimensions. This can improve the life of the cage. Further, because of the restriction of the cage stress, there is no problem of an increase in the friction torque unlike the case of pressing any member.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. The tapered roller bearing of this embodiment includes an inner ring 1, an outer ring 2, a plurality of tapered rollers 3, and a cage 4 that holds the tapered rollers 3 at a predetermined interval in the circumferential direction. The inner ring 1 has a conical rolling surface 1a on the outer diameter surface, and has a large collar 1b and a small collar 1c on the large diameter side and the small diameter side of the outer diameter, respectively. The outer ring 2 has a conical rolling surface 2a facing the rolling surface 1a, and has no wrinkles. The tapered roller 3 is interposed between the rolling surfaces 1a and 2a so as to roll freely. The cage 4 is formed, for example, in a ring shape, and pockets for holding the tapered rollers 3 therein are formed at a plurality of locations in the circumferential direction.
[0010]
In the tapered roller bearing, the range of the cage stress σ required by the dimensions and the like of each part of the bearing is regulated as follows.
That is, the clearance between the large end surface of the tapered roller 3 and the large collar 1b of the inner ring 1 in a state where the small end surface of the tapered roller 3 is pressed against the small collar 1c of the inner ring 1 as shown in FIG. The average radius of the surface 1a is r i , ½ of the cone angle of the rolling surface 1a of the inner ring 1 is α i , and the average radius of the tapered roller 3 is r r . Further, if the radius of the inner ring rolling surface 1a with which the average diameter portion of the tapered roller 3 is in contact with the tapered roller 3 in contact with the inner ring collar 1c is r i ′, r i ′ is expressed by the following equation:
[Equation 3]
Figure 2005016656
[0012]
It is represented by Assuming that the inclination angle of the rotation axis of the tapered roller 3 is α and the rotational angular velocity of the inner ring 1 is ω i , the peripheral speed v of the inner and outer rings 1 and 2 as viewed from the roller center is
[Expression 4]
Figure 2005016656
[0014]
It is represented by The revolution peripheral speed difference Δv between the tapered roller 3 moved to the inner ring small collar 1c side and the tapered roller 3 in contact with the inner ring large collar 1b is expressed by the following equation:
[Equation 5]
Figure 2005016656
[0016]
It is represented by The sliding rate s of the tapered roller 3 is expressed by the following equation:
[Formula 6]
Figure 2005016656
[0018]
In the case of a normal tapered roller bearing, r i '≈r i , α≈α i , and r r ≈r i / 5, so the slip ratio s is roughly expressed by the following equation: ]
[Expression 7]
Figure 2005016656
[0020]
It is represented by When the maximum traction coefficient of the lubricating oil mu m, the slip ratio indicating the maximum traction coefficient and s m, the mu traction coefficient in a small area of the slip ratio, the following formula [0021]
[Equation 8]
Figure 2005016656
[0022]
Is required. When the normal loads on the inner ring 1 side and the outer ring 2 side of the tapered roller 3 are respectively Q i and Q o , the interference force F between the cage 4 and the tapered roller 3 is expressed by the following equation:
[Equation 9]
Figure 2005016656
[0024]
Given in. Here, when the static load rating C is the maximum load acting on the bearing, the number of rollers is Z, and 1/2 of the conical angle of the outer ring rolling surface 2a is α o (≈α), the above interference force The maximum value F m is given by the following formula:
[Expression 10]
Figure 2005016656
[0026]
Is required. When the sectional area of the ring portion 4a in the cage 4 is A, the cage stress σ is expressed by the following equation.
[Expression 11]
Figure 2005016656
[0028]
Estimated by Therefore, in this tapered roller bearing, in consideration of the stress concentration at the corner of the pocket 4b in the cage 4, the dimensions of each part are set so that the cage stress σ is 1/5 or less of the fatigue limit of the cage material. And have set tolerances. Here, the numerical value of 1/5 is the reciprocal of the safety factor. According to “Izawa Satoshi, design analysis of augmented machine elements, Sankai-do, 1967, p.15”, the general safety factor of one-sided repeated load of steel is 5.
[0029]
Next, the operation of the tapered roller bearing will be described. In a normal operation state, the large end surface of the tapered roller 3 is in contact with the inner ring large collar 1b to perform a rolling and sliding motion. As shown in FIG. 2, when the outer ring 2 or the inner ring 1 moves in the axial direction and becomes unloaded, some of the tapered rollers 3 move to the inner ring small collar 1c side by their own weight. Here, when a sudden axial load is applied, stress is generated in the cage 4 by the mechanism described above. Here, if the cage stress σ is set to a predetermined value or less, the stress generated in the cage 4 becomes the fatigue limit or less, and the cage 4 is prevented from being damaged due to the revolution speed difference between the tapered rollers 3. Can do. In this embodiment, since the cage stress σ is set to be 1/5 or less of the fatigue limit of the cage material, it is generated in the cage 4 with the general safety factor of the mechanical design as described above. The stress to be surely becomes below the fatigue limit, and breakage of the cage 4 due to the difference in revolution speed between the tapered rollers 3 can be prevented. The cage stress σ obtained as described above is a value that takes into account the bearing size, and manages the clearance between the large end of the tapered roller 3 and the inner ring large collar 1b in an appropriate range in consideration of the bearing size, The interference force between the cage 4 and the tapered roller 3 can be reduced.
[0030]
3 to 6 show another embodiment of the present invention. In this embodiment, the generation of the cage stress due to the revolution speed difference of the tapered roller 3 is prevented by a configuration different from the design for limiting the cage stress value, thereby improving the life of the cage. Is. As shown in FIG. 3, this embodiment includes an inner ring 1, an outer ring 2, a plurality of tapered rollers 3, and a retainer 4 that holds these tapered rollers 3 at a predetermined interval in the circumferential direction. In the tapered roller bearing, an annular member 5 having an inner diameter smaller than the outer diameter of the inner ring collar 1b is attached to the inner diameter surface of the cage 4 on the large diameter side, and the annular member 5 and the inner ring collar 1b are axially connected. By engaging with, the axial displacement of the tapered roller 3 and the cage 4 when not loaded is regulated. The inner ring 1 has a conical rolling surface 1a on the outer diameter surface, a large-diameter side large collar 1b of the outer diameter, and the small-diameter side has no wrinkles. The outer ring 2 has a conical rolling surface 2a facing the rolling surface 1a, and has no wrinkles. The tapered roller 3 is interposed between the rolling surfaces 1a and 2a so as to roll freely. The cage 4 is formed in a ring shape, and pockets for retaining the tapered rollers 3 therein are formed at a plurality of locations in the circumferential direction.
[0031]
In this tapered roller bearing, the annular member 5 is provided so that the inner ring 1, the tapered roller 3, and the cage 4 are not separated. When not loaded, the axial displacement of the tapered roller 3 is regulated by the pocket 4b of the cage 4, and the axial displacement of the cage 4 is regulated by the inner ring large collar 1b. The annular member 5 is fixed to the annular member 5 by fitting an outer peripheral portion into a circumferential groove 4 c formed on the inner peripheral surface of the end portion on the large diameter side of the cage 4. The outer diameter surface of the large collar 1b of the inner ring 1 that faces the annular member 5 in the radial direction is smaller than the portion 1ba from the inner end on the roller side to the middle in the axial direction. A stepped shape is formed by reducing the outer diameter of the portion 1bb by a predetermined amount. The annular member 5 is disposed so as to face the small diameter portion 1bb of the inner ring large collar 1b. The inner diameter of the annular member 5 is smaller than the outer diameter of the large collar large diameter portion 1ba and the large collar small diameter portion 1bb. It is set larger than the outer diameter. As shown by hatching in FIG. 3 (B), the annular member 5 is formed in a C shape in which a part of the annular ring in the circumferential direction is divided. It can be fitted in the circumferential groove 4c.
[0032]
In this embodiment, the cage stress σ determined in the same manner as described in the first embodiment shown in FIGS. 1 and 2 is equal to or less than 1/5 of the fatigue limit of the cage material as in the first embodiment. It is designed to be. The tapered roller bearing of this embodiment may have an axial gap or may be assembled by applying a preload.
Although different from the present invention, in the embodiment shown in FIGS. 3 to 6, even in the invention in which the limitation requirement for the cage stress σ is omitted, the following actions and effects are obtained by attaching the annular member 5. It is done.
[0033]
The operation of this embodiment will be described below with reference to FIG. The inner ring 1, the tapered roller 3 and the cage 4 in a state where no load is applied to the tapered roller bearing are in the state shown in FIG. 4, and at this time, the tapered roller 3 can be displaced in the axial direction. Due to the axial displacement of the tapered roller 3, the cage 4 is also displaced in the axial direction. However, when the cage 4 is displaced toward the roller small end side, the annular member 5 interferes with the large-diameter portion 1ba of the inner ring large collar 1b, so that the axial displacement of the tapered roller 3 and the cage 4 is restricted. . The axial displacement of the tapered roller 3 is regulated by the pocket 4 b of the cage 4. At this time, the annular member 5 is in sliding contact with the inner ring collar 1b. However, since only the dead weight acts on the tapered roller 3 and the retainer 4, the frictional force is small and little wear occurs.
When a load is applied, as in the case of a conventional tapered roller bearing, if the pocket 4b of the cage 4 is guided by the tapered roller 3, the ring member 5 and the inner ring large collar 1b It is possible to prevent friction between them.
[0034]
In the tapered roller bearing of this embodiment, since the axial displacement of the tapered roller 3 and the cage 4 is regulated by the attachment of the annular member 5 in this way, if there is an axial gap, When a sudden axial load is applied, the cage stress caused by the revolution speed difference of the tapered roller 3 is prevented, and the life of the cage can be extended. In addition, when the tapered roller bearing of this embodiment is assembled by applying a preload, it is possible to shorten the time for the acclimation operation at the time of assembly and to reduce the cost at the time of assembly.
[0035]
Further, in the tapered roller bearing of this embodiment, the inner ring 1, the tapered roller 3, and the cage 4 can be made non-separated, so that the inner ring small brim is unnecessary. Therefore, the process of expanding or crimping the cage 4 in the assembling process becomes unnecessary, the manufacturing cost can be reduced, the cage 4 can be assembled without generating residual stress, and the life of the cage 4 can be increased. Can be extended further. That is, in the conventional tapered roller bearing having the inner ring small collar 1c, the inner ring 1, the tapered roller 3, and the cage 4 are assembled after a part of the cage 4 is expanded to the outer diameter side as shown in FIG. After that, as shown in FIG. 5 (B), the assembly is performed by returning to the original shape, so that a partial tensile residual stress is generated in the cage 4 by the process of spreading and caulking. However, in the tapered roller bearing of this embodiment without the inner ring small collar 1c, the steps of spreading and caulking are unnecessary, and the cage 4 can be assembled without generating residual stress.
[0036]
FIG. 6 shows still another embodiment of the present invention. This embodiment is applied when the cage 4 is allowed to protrude from the outer end surface of the inner ring large collar 1b to the outer end side. In this embodiment, in the tapered roller bearing of the embodiment shown in FIG. 4, the annular member 5 attached to the large diameter side of the cage 4 is arranged on the outer end side from the outer end surface of the inner ring large collar 1b. The member 5 interferes with the outer end surface of the inner ring large collar 1b. Therefore, the outer diameter surface of the inner ring collar 1b is not stepped as in the embodiment of FIG.
In the case of this embodiment, since it is not necessary to form the outer diameter surface of the inner ring large collar 1b in a stepped shape, the manufacturing cost can be further reduced.
[0037]
【The invention's effect】
Tapered roller bearing of this invention, the slope of the clearance of the large end face and the inner ring large rib of the tapered rollers [delta], the average radius of the inner rotary run surface of the r i, the roller rotation axis when the tapered roller is moved to the smallest diameter side Assuming that the angle is α, the maximum traction coefficient of the lubricant is μ m , the slip ratio indicating the maximum traction coefficient is s m , the static load rating is C, the number of rollers is Z, and the cross-sectional area of the cage ring is A Equation 12
Figure 2005016656
Since the cage stress σ determined in step 1 is designed to be 1/5 of the fatigue limit of the cage material, the clearance between the roller large end and the inner ring large collar when not loaded is managed in consideration of the bearing dimensions. With this bearing size, the interference force at the cage can be reduced, and the life of the cage can be improved. There is no problem of increase in friction torque during operation.
[Brief description of the drawings]
FIG. 1 is a sectional view of a tapered roller bearing according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram for obtaining a cage stress in the tapered roller bearing.
3A is a sectional view of a tapered roller bearing according to another embodiment of the present invention, and FIG. 3B is a front view thereof.
FIG. 4 is an operation explanatory view of the tapered roller bearing.
FIG. 5 is an assembly process diagram of a conventional example shown in order to compare ease of assembly with the tapered roller bearing.
FIG. 6 is a sectional view of a tapered roller bearing according to still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inner ring 1a ... Rolling surface 1b ... Inner ring large brim 1c ... Inner ring small brim 2 ... Outer ring 2a ... Rolling surface 3 ... Tapered roller 4 ... Cage 4b ... Cage pocket 4c ... Circumferential groove 5 ... Ring member

Claims (1)

円すいころが最も小径側に移動した状態における円すいころの大端面と内輪大つばのすきまをδ、内輪転走面の平均半径をr、ころの自転軸の傾き角をα、潤滑油の最大トラクション係数をμ、最大トラクション係数を示すすべり率をs、静定格荷重をC、ころ数をZ、保持器リング部の断面積をAとして、次式
Figure 2005016656
で求めた保持器応力σが保持器材料の疲労限度の1/5以下となるように設計した円すいころ軸受。
When the tapered roller is moved to the smallest diameter side, the clearance between the large end face of the tapered roller and the inner ring large collar is δ, the average radius of the inner ring rolling surface is r i , the inclination angle of the rotation axis of the roller is α, and the maximum lubricant Assuming that the traction coefficient is μ m , the slip ratio indicating the maximum traction coefficient is s m , the static load rating is C, the number of rollers is Z, and the sectional area of the cage ring is A,
Figure 2005016656
Tapered roller bearings designed so that the cage stress σ obtained in step 1 is 1/5 or less of the fatigue limit of the cage material.
JP2003183856A 2003-06-27 2003-06-27 Tapered roller bearing Pending JP2005016656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183856A JP2005016656A (en) 2003-06-27 2003-06-27 Tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183856A JP2005016656A (en) 2003-06-27 2003-06-27 Tapered roller bearing

Publications (1)

Publication Number Publication Date
JP2005016656A true JP2005016656A (en) 2005-01-20

Family

ID=34183784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183856A Pending JP2005016656A (en) 2003-06-27 2003-06-27 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP2005016656A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049389A1 (en) * 2005-10-25 2007-05-03 Ntn Corporation Tapered roller bearing
WO2009017159A1 (en) 2007-08-02 2009-02-05 Ntn Corporation Tapered roller bearing
WO2010016202A1 (en) * 2008-08-06 2010-02-11 Ntn株式会社 Reusable bearing and reuse method thereof
US8167503B2 (en) * 2007-06-08 2012-05-01 Ntn Corporation Taper roller bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049389A1 (en) * 2005-10-25 2007-05-03 Ntn Corporation Tapered roller bearing
JP2007120540A (en) * 2005-10-25 2007-05-17 Ntn Corp Tapered roller bearing
US7934873B2 (en) 2005-10-25 2011-05-03 Ntn Corporation Tapered roller bearing
US8167503B2 (en) * 2007-06-08 2012-05-01 Ntn Corporation Taper roller bearing
WO2009017159A1 (en) 2007-08-02 2009-02-05 Ntn Corporation Tapered roller bearing
EP2182231A1 (en) * 2007-08-02 2010-05-05 NTN Corporation Tapered roller bearing
EP2182231A4 (en) * 2007-08-02 2012-01-11 Ntn Toyo Bearing Co Ltd Tapered roller bearing
WO2010016202A1 (en) * 2008-08-06 2010-02-11 Ntn株式会社 Reusable bearing and reuse method thereof
JP2010038290A (en) * 2008-08-06 2010-02-18 Ntn Corp Reusable bearing and reuse method thereof

Similar Documents

Publication Publication Date Title
EP3511588B1 (en) Sealed bearing
JP4730168B2 (en) Test method for radial rolling bearings
JP2006226318A (en) One-way clutch built-in pulley device
CN211343730U (en) Parallel bearing
JP2008106923A (en) Planetary-roller-type transmission
JP3011093B2 (en) Tapered roller bearings for automobiles
JP2005016656A (en) Tapered roller bearing
JPH09291942A (en) Radial rolling bearing
RU2232926C2 (en) Antifriction bearing
JP4626183B2 (en) Rolling bearing and transmission for hybrid vehicle or fuel cell vehicle using the same
CN108071683B (en) Tapered roller bearing and power transmission device
CN108457986B (en) Cylindrical roller bearing and retainer thereof
CN108457987B (en) Cylinder roller bearing and its retainer
JP2010185547A (en) One-way clutch built-in type pulley device
WO2007049389A1 (en) Tapered roller bearing
Pan et al. Study on design and simulation of a novel isolator cylindrical roller bearing
JP2008069974A (en) Disengageable pulley device
JP5499327B2 (en) Rolling bearing
JP2007055393A (en) Bearing unit for wheel support, and manufacturing method thereof
JP2006214520A (en) Bearing device for gear speed-increasing gear
JP2005180465A (en) Pulley unit having one-way clutch
JP2000274437A (en) Rolling bearing
CN214274239U (en) Axial stressed bearing
JPH11190330A (en) Thrust bearing
JP2008032069A (en) Split roller bearing