JP2005016575A - Heat insulator, and method for manufacturing the same - Google Patents

Heat insulator, and method for manufacturing the same Download PDF

Info

Publication number
JP2005016575A
JP2005016575A JP2003179522A JP2003179522A JP2005016575A JP 2005016575 A JP2005016575 A JP 2005016575A JP 2003179522 A JP2003179522 A JP 2003179522A JP 2003179522 A JP2003179522 A JP 2003179522A JP 2005016575 A JP2005016575 A JP 2005016575A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
pulp
raw material
diatomaceous earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003179522A
Other languages
Japanese (ja)
Inventor
Ryosaku Oki
亮作 大木
Tadayuki Hashimoto
忠幸 橋本
Naotake Sawada
尚武 沢田
Kanji Hirakuri
寛治 平栗
Kazuhiro Asano
和宏 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ask Technica Corp
Original Assignee
Ask Technica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ask Technica Corp filed Critical Ask Technica Corp
Priority to JP2003179522A priority Critical patent/JP2005016575A/en
Publication of JP2005016575A publication Critical patent/JP2005016575A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulator of excellent heat insulation, sound absorption characteristic, and moldability by performing pulp-molding of raw material containing at least diatomaceous earth and ceramic fibers. <P>SOLUTION: In the configuration and the method for manufacturing a heat insulator, raw material containing at least diatomaceous earth and ceramic fibers is molded by a pulp-molding method to obtain the heat insulator of excellent heat insulation, sound absorption characteristic and moldability. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、断熱材及びその製造方法に関し、特に、少なくとも珪藻土及びセラミック繊維からなる原料をパルプモールド成形法によって成形し、300℃以上の高温に耐えるようにするための新規な改良に関する。
【0002】
【従来の技術】
従来、用いられていたパルプモールド成形法(http://www.pulpmold.gr.jp/a1.htmlにて開示)においては、パルプ、古紙等を用いて緩衝剤(例えば、玉子の包装箱)及び断熱材を成形していた。また、有機材料を用いたパルプモールド成形品の中に磁性粉を入れたものもある(特許文献1)。
【0003】
【特許文献1】
特開平8−158300号公報
【0004】
【発明が解決しようとする課題】
従来のパルプモールド成形方法を用いた断熱材は、以上のように、前者の場合、パルプ及び古紙等で成形していたために、高温に耐えることができず、食品の包装、低温雰囲気での断熱材としてしか用いることが不可能であった。また、後者の場合、磁性粉を混合させているが、断熱材としては好適ではなかった。
【0005】
本発明は、以上のような課題を解決するためになされたもので、特に、少なくとも珪藻土及びセラミック繊維からなる原料をパルプモールド成形法によって成形し、300℃以上の高温に耐えることができるようにした断熱材及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明による断熱材は、少なくとも珪藻土及びセラミック繊維を有する原料を、パルプモールド成形法により成形してなる構成であり、また、前記原料には、繊維状鉱物、粘土鉱物、澱粉、ラテックス、パルプの中の1個又は複数が含まれる構成であり、また、前記珪藻土は20〜60%、セラミック繊維は10〜50%とした構成であり、また、本発明による断熱材の製造方法は、少なくとも珪藻土及びセラミック繊維を有する原料を、パルプモールド成形法により成形する方法であり、また、前記原料には、繊維状鉱物、粘土鉱物、澱粉、ラテックス、パルプの中の1個又は複数を含む方法であり、また、前記珪藻土は20〜60%、セラミック繊維は10〜50%とした方法である。
【0007】
【発明の実施の形態】
以下、図面と共に本発明による断熱材及びその製造方法の好適な実施の形態について説明する。
まず、図示しない周知のパルプモールド成形装置を用い、この装置の槽内に原料を入れ、水を注入して適度の混合状態の混合溶液となるように混練する。
【0008】
前記原料としては、耐熱性及び断熱性を確保するため、少なくとも珪藻土及びセラミック繊維を含有することが必須の内容で、その配合割合としては次の通りである。

Figure 2005016575
【0009】
前述の実配合A、B、C、Dの原料を用い、前記パルプモールド成形装置の所要の形状の細かいメッシュで成形された成形型に液状の前記原料を含む混合溶液を高圧で供給することにより、液体は素通り又は滴下し、前記原料のみが前記成形型によって成形され成形品が得られる。
【0010】
前述のパルプモールド成形装置で成形された前記実配合A、B、C、Dによる各成形品を、断熱性、吸音性、耐熱性、ヒンジ性、室温での剛性、加熱時の臭気及び加熱時の煙の状況について特性試験を行った結果は、次の通りである。
Figure 2005016575
【0011】
前述の特性試験の結果、実配合BとCの成形品が他のA、Dに比較すると、良好な特性が得られた。
また、前述のパルプモールド成形装置による成形品は、密度が小さく、軽量で原料費が安く、気泡量が多く、同原料及び同厚さのものをパルプモールド成形以外の製法で製作したものに比べると、多量の空気を内包することができ、すぐれた断熱効果及び吸音効果並びに制振効果を得ることができると共に、300℃以上1000℃位迄の耐熱性を有する。
【0012】
また、前記原料に用いることができ300℃以上の耐温度特性を有する前述の材料を含む全ての好適な材料を以下に挙げる。
無機繊維
セラミック繊維
ガラス繊維
炭素繊維
金属繊維
有機繊維
アラミド繊維
セルロース
無機フィラー
珪藻土 断熱性を高める。
粘土鉱物(含水アルミナ珪酸塩) 剛性を高める。
カオリナイト
ナクライト
デイィカイト
ハロサイト
酸性白土
ベントナイト
フーラー土
セピオナイト 耐熱性を高める。
炭酸カルシウム 柔軟性を高める。
金属水和物 難燃性を高める。
水酸化アルミニウム
水酸化マグネシウム
水酸化鉄
バインダー
Figure 2005016575
【0013】
次に、図1に示す透過損失試験結果は、本発明と比較例(古紙等の原料)との関係を示し、ほぼ全ての周波数帯域にわたって良好な結果が得られた。
【0014】
図2及び図3に示す大・小型管測定データ吸音率は、本発明と比較例(古紙等の原料)との関係を示し、全ての周波数帯域にわたって良好な結果が得られた。
【0015】
次に、図5は図4の実験構成を用い、本発明と比較例(一般に使用されているグラスウールと無機質フィラーの混合材料で構成した市販の断熱材)の発熱源10に対する断熱材11の断熱材上面の温度を測定した結果であり、断熱材11の下面と発熱源10との距離は8.5mm、断熱材11の下面温度が500℃となる条件で断熱材11の上面温度を測定した。
【0016】
その結果、図5に示されるように、時間の経過と共に、発熱源の温度が上昇し、60分から120分の間の平均をみると、本発明の断熱材11の上面の平均温度は228℃、比較例の上面の平均温度は307℃、室温は23℃であった。
以上の通り、本発明の断熱材11の上面の温度上昇が抑えられ、例えば、実際に、車輛のボンネットの裏に貼った状態で測定した結果も、ボンネット表面の温度が効果的に抑えられ、ボンネット表面の塗装面の保護に大きい効果が得られることが確認された。
また、本発明による断熱材は、成形型によって自在に形状を作ることができ、ボンネットの断熱材に限らず、あらゆる任意の場所に、任意の形状の断熱材として供給することができる。
【0017】
【発明の効果】
本発明による断熱材及びその製造方法は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、パルプモールド成形法を用いて少なくとも珪藻土及びセラミック繊維を有する原料を成形して断熱材を得るため、断熱性、吸音性及び制振性にすぐれ、かつ、成形形状を自在に形成でき、従来不可能であった任意の形状の断熱材を得ることができる。
【図面の簡単な説明】
【図1】本発明の断熱材と比較例の透過損失試験結果を示す特性図である。
【図2】本発明の断熱材と比較例の小型管測定データ吸音率を示す特性図である。
【図3】本発明の断熱材と比較例の大型管測定データ吸音率を示す特性図である。
【図4】本発明の断熱材と比較例の断熱性能試験の実験構成を示す構成図である。
【図5】本発明の断熱材と比較例の加熱時の上面の温度試験結果を示す表である。
【符号の説明】
10 発熱源
11 断熱材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat insulating material and a method for producing the same, and more particularly to a novel improvement for forming a raw material comprising at least diatomaceous earth and ceramic fibers by a pulp molding method so as to withstand a high temperature of 300 ° C. or higher.
[0002]
[Prior art]
In the conventional pulp mold forming method (disclosed in http://www.pulpmold.gr.jp/a1.html), a buffer (for example, an egg packaging box) using pulp, waste paper, etc. And the heat insulating material was molded. Also, there is a pulp mold molded product using an organic material in which magnetic powder is put (Patent Document 1).
[0003]
[Patent Document 1]
JP-A-8-158300 [0004]
[Problems to be solved by the invention]
As described above, the heat insulating material using the conventional pulp mold forming method is formed of pulp and waste paper in the former case, so cannot withstand high temperature, food packaging, heat insulation in a low temperature atmosphere. It was impossible to use only as a material. In the latter case, magnetic powder is mixed, but it is not suitable as a heat insulating material.
[0005]
The present invention has been made to solve the above-described problems. In particular, a raw material composed of at least diatomaceous earth and ceramic fibers is formed by a pulp molding method, and can withstand a high temperature of 300 ° C. or higher. An object of the present invention is to provide a heat insulating material and a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
The heat insulating material according to the present invention has a structure formed by molding a raw material having at least diatomaceous earth and ceramic fibers by a pulp molding method, and the raw material includes fibrous minerals, clay minerals, starch, latex, and pulp. The diatomaceous earth is composed of 20 to 60%, the ceramic fibers are composed of 10 to 50%, and the method for producing a heat insulating material according to the present invention includes at least diatomaceous earth. And a raw material having ceramic fibers is formed by pulp molding, and the raw material includes one or more of fibrous mineral, clay mineral, starch, latex, and pulp. The diatomaceous earth is 20 to 60% and the ceramic fiber is 10 to 50%.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a heat insulating material and a method for producing the same according to the present invention will be described with reference to the drawings.
First, using a well-known pulp mold forming apparatus (not shown), a raw material is placed in a tank of this apparatus, and water is injected to knead the mixture so as to obtain a mixed solution in an appropriate mixed state.
[0008]
The raw material contains at least diatomaceous earth and ceramic fibers in order to ensure heat resistance and heat insulation, and the blending ratio is as follows.
Figure 2005016575
[0009]
By using the raw materials of the above-mentioned actual blends A, B, C, and D, and supplying the liquid mixed solution containing the raw materials at a high pressure to a molding die formed with a fine mesh of the required shape of the pulp mold molding device The liquid passes through or drops, and only the raw material is molded by the molding die to obtain a molded product.
[0010]
Each molded product formed by the above-mentioned pulp mold molding apparatus with the actual blends A, B, C, D is heat-insulating, sound-absorbing, heat-resistant, hinged, rigid at room temperature, odor during heating, and during heating. The result of the characteristic test on the state of smoke is as follows.
Figure 2005016575
[0011]
As a result of the above-mentioned characteristic test, when the molded products of the actual blends B and C were compared with other A and D, good characteristics were obtained.
In addition, the molded product by the above-described pulp mold molding apparatus is smaller in density, lighter and cheaper in raw material cost, has a large amount of bubbles, and is compared with the one manufactured by the same raw material and the same thickness as a manufacturing method other than pulp molding. In addition, a large amount of air can be contained, an excellent heat insulating effect, a sound absorbing effect and a vibration damping effect can be obtained, and the heat resistance is from 300 ° C. to 1000 ° C.
[0012]
Moreover, all the suitable materials including the above-mentioned material which can be used for the said raw material and have a temperature resistance characteristic of 300 degreeC or more are mentioned below.
Inorganic fiber Ceramic fiber Glass fiber Carbon fiber Metal fiber Organic fiber Aramid fiber Cellulose inorganic filler Diatomaceous earth
Clay mineral (hydrous alumina silicate) Increases rigidity.
Kaolinite Naclite Daykite Halosite Acid clay Soil Bentonite Fuller Soil Sepionite Increases heat resistance.
Calcium carbonate Increases flexibility.
Metal hydrate Increases flame retardancy.
Aluminum hydroxide Magnesium hydroxide Iron hydroxide binder
Figure 2005016575
[0013]
Next, the transmission loss test results shown in FIG. 1 show the relationship between the present invention and comparative examples (raw paper and other raw materials), and good results were obtained over almost all frequency bands.
[0014]
The large and small tube measurement data sound absorption coefficient shown in FIG. 2 and FIG. 3 shows the relationship between the present invention and a comparative example (raw material such as waste paper), and good results were obtained over all frequency bands.
[0015]
Next, FIG. 5 uses the experimental configuration of FIG. 4 to insulate the heat insulating material 11 with respect to the heat source 10 of the present invention and a comparative example (commercially used heat insulating material composed of glass wool and inorganic filler). It is the result of measuring the temperature of the upper surface of the material, and the upper surface temperature of the heat insulating material 11 was measured under the condition that the distance between the lower surface of the heat insulating material 11 and the heat source 10 was 8.5 mm and the lower surface temperature of the heat insulating material 11 was 500 ° C. .
[0016]
As a result, as shown in FIG. 5, the temperature of the heat source increases with time, and the average temperature on the top surface of the heat insulating material 11 of the present invention is 228 ° C. The average temperature of the upper surface of the comparative example was 307 ° C., and the room temperature was 23 ° C.
As described above, the temperature rise of the upper surface of the heat insulating material 11 of the present invention is suppressed, for example, the result of measurement in the state of being actually attached to the back of the vehicle hood, the temperature of the hood surface is effectively suppressed, It was confirmed that a great effect was obtained in protecting the painted surface of the bonnet surface.
In addition, the heat insulating material according to the present invention can be freely shaped by a molding die, and can be supplied not only to the hood heat insulating material but also to any arbitrary place as a heat insulating material having an arbitrary shape.
[0017]
【The invention's effect】
Since the heat insulating material and the manufacturing method thereof according to the present invention are configured as described above, the following effects can be obtained.
That is, since a heat insulating material is obtained by forming a raw material having at least diatomaceous earth and ceramic fibers by using a pulp mold forming method, the heat insulating property, the sound absorbing property and the vibration damping property are excellent, and the forming shape can be freely formed. It is possible to obtain a heat insulating material having any shape that has been impossible.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a transmission loss test result of a heat insulating material of the present invention and a comparative example.
FIG. 2 is a characteristic diagram showing the sound absorption coefficient of small tube measurement data of the heat insulating material of the present invention and a comparative example.
FIG. 3 is a characteristic diagram showing the sound absorption coefficient of large pipe measurement data of the heat insulating material of the present invention and a comparative example.
FIG. 4 is a configuration diagram showing an experimental configuration of a heat insulating performance test of the heat insulating material of the present invention and a comparative example.
FIG. 5 is a table showing the temperature test results of the top surface during heating of the heat insulating material of the present invention and a comparative example.
[Explanation of symbols]
10 Heat source 11 Heat insulation material

Claims (6)

少なくとも珪藻土及びセラミック繊維を有する原料を、パルプモールド成形法により成形してなることを特徴とする断熱材。A heat insulating material formed by molding a raw material having at least diatomaceous earth and ceramic fibers by a pulp molding method. 前記原料には、繊維状鉱物、粘土鉱物、澱粉、ラテックス、パルプの中の1個又は複数が含まれることを特徴とする請求項1記載の断熱材。The heat insulating material according to claim 1, wherein the raw material includes one or more of fibrous mineral, clay mineral, starch, latex, and pulp. 前記珪藻土は20〜60%、セラミック繊維は10〜50%としたことを特徴とする請求項1又は2記載の断熱材。The heat insulating material according to claim 1 or 2, wherein the diatomaceous earth is 20 to 60% and the ceramic fiber is 10 to 50%. 少なくとも珪藻土及びセラミック繊維を有する原料を、パルプモールド成形法により成形することを特徴とする断熱材の製造方法。A method for producing a heat insulating material, comprising forming a raw material having at least diatomaceous earth and ceramic fibers by a pulp molding method. 前記原料には、繊維状鉱物、粘土鉱物、澱粉、ラテックス、パルプの中の1個又は複数を含むことを特徴とする請求項4記載の断熱材の製造方法。The method of manufacturing a heat insulating material according to claim 4, wherein the raw material includes one or more of fibrous mineral, clay mineral, starch, latex, and pulp. 前記珪藻土は20〜60%、セラミック繊維は10〜50%としたことを特徴とする請求項4又は5記載の断熱材の製造方法。The method for manufacturing a heat insulating material according to claim 4 or 5, wherein the diatomaceous earth is 20 to 60% and the ceramic fiber is 10 to 50%.
JP2003179522A 2003-06-24 2003-06-24 Heat insulator, and method for manufacturing the same Pending JP2005016575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179522A JP2005016575A (en) 2003-06-24 2003-06-24 Heat insulator, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179522A JP2005016575A (en) 2003-06-24 2003-06-24 Heat insulator, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005016575A true JP2005016575A (en) 2005-01-20

Family

ID=34180825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179522A Pending JP2005016575A (en) 2003-06-24 2003-06-24 Heat insulator, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005016575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031136A (en) * 2008-07-29 2010-02-12 Akio Fukui Fire retarding and sound absorbing member
KR20230057697A (en) * 2021-10-22 2023-05-02 박은경 Eco-friendly special soil and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031136A (en) * 2008-07-29 2010-02-12 Akio Fukui Fire retarding and sound absorbing member
JP4503668B2 (en) * 2008-07-29 2010-07-14 昭男 福井 Flame retardant and sound absorbing material
KR20230057697A (en) * 2021-10-22 2023-05-02 박은경 Eco-friendly special soil and its manufacturing method
KR102620718B1 (en) 2021-10-22 2024-01-04 박은경 Eco-friendly special soil manufacturing method

Similar Documents

Publication Publication Date Title
JP6026504B2 (en) Heat insulating material composition, heat insulating material using the same, and method for manufacturing heat insulating material
AU2010319346B2 (en) Multi-layer fire protection material
US9011708B2 (en) Thermal insulator using closed cell expanded perlite
JP2008100877A (en) Inorganic board and its manufacturing method
Lawanwadeekul et al. Thermal-acoustic clay brick production with added charcoal for use in Thailand
JP2005016575A (en) Heat insulator, and method for manufacturing the same
CN109912285B (en) Manufacturing process of flexible heat-insulation board
KR101243377B1 (en) Eco-board having improved mechanical property and water-proof and method of preparing the same
JP2010222190A (en) Method for producing calcium silicate board
JP2001226166A (en) Calcium silicate formed plate
KR20170103386A (en) Asbestos-free insulation·heat insulation board and manufacturing method thereof
CN207859629U (en) A kind of novel sound insulating environmental protection mineral wool
RU2057741C1 (en) Composition for heat-insulating material producing
CN207846722U (en) A kind of flame retardant type mineral wool
KR101903363B1 (en) Manufacturing method of eco-friendly bti heat insulating materials
JPS62501595A (en) Insulating materials and their production and use
JPH01172280A (en) Inorganic fiber sheet
JP2004182528A (en) Fuel treating equipment
JP2019151521A (en) Calcium silicate plate and method for producing the same
US1568415A (en) Non-heat-conducting covering
JP3351599B2 (en) Foam board
CN108049513A (en) A kind of flame retardant type mineral wool
JPH0511768A (en) Soundproof material and its manufacture
JP6548426B2 (en) Raw material composition
JPH0511767A (en) Soundproof material and its manufacture