JP2005016400A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2005016400A
JP2005016400A JP2003181602A JP2003181602A JP2005016400A JP 2005016400 A JP2005016400 A JP 2005016400A JP 2003181602 A JP2003181602 A JP 2003181602A JP 2003181602 A JP2003181602 A JP 2003181602A JP 2005016400 A JP2005016400 A JP 2005016400A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
intake
intake air
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003181602A
Other languages
Japanese (ja)
Inventor
Yuji Kishimoto
雄治 岸本
Arinori Hamada
有啓 浜田
Ryoji Nishiyama
亮治 西山
Satoshi Wachi
敏 和知
Hiromichi Tsugami
弘道 津上
Takashi Matsumoto
隆史 松本
Koji Nagao
浩治 永尾
Toshikatsu Saito
敏克 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003181602A priority Critical patent/JP2005016400A/en
Publication of JP2005016400A publication Critical patent/JP2005016400A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a control device for an internal combustion engine providing retreating travel by using small and inexpensive solenoid valves. <P>SOLUTION: At the time of retreating travel when failures of an ETV 3 or an electric motor 3a, which is an intake throttle means, are detected by a failure detecting means 13e, the intake amount supplied to each cylinder 1a can be individually controlled by the individual solenoid valves 14 provided for each of the cylinders 1a, and intake amount variation of each of the cylinders 1a can be eliminated. In addition, the individual solenoid valves 14 controlling the intake amount of each of the cylinders 1a may be operated corresponding to each of the cylinders 1a, and solenoid valves of large size or having highly durable reliability are not required. Small solenoid valves enabling high speed response can be adopted, making it possible to provide an inexpensive device as a whole. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の吸気量の制御に関する制御装置であり、特に制御装置の一部の機能が不全に至ったときに退避走行を行うための内燃機関用制御装置に関するものである。
【0002】
【従来の技術】
従来技術としては、内燃機関への吸気量を電子的に制御する電子制御スロットルバルブ(以下ETVと称す)が知られているが、この種のETVに走行中何らかの不具合が生じたときには、最寄りの修理工場まで退避運転を行う、いわゆるリンプホームなる機構が設けられている。例えば、複数気筒を有する内燃機関の吸気集合部に設けられたETVの電子制御に不具合が生じたときには、モータへの通電を遮断し、ETVの回動するバタフライ弁の回動軸に付勢される二つのスプリングにより、中間開度へ復帰されるように構成されている。中間開度が設定されている理由は、市街地での通常走行を可能とするためである。
【0003】
また上記中間開度に復帰する方式のETVでは、通常使用状態において、中間開度の境界で付勢されるスプリング力が異なるため、スプリング力に抗して作用しバタフライを回動する電動機の制御ゲインが一定しない。このため、故障時にはバタフライが全閉となるように単一のスプリングで付勢し、退避運転に必要な空気はバタフライをバイパスする個別バイパス通路から供給する方式も知られている。
【0004】
さらに、複数の気筒を有する内燃機関への吸気量を制御する吸気絞り手段を各気筒の独立吸気管に配した方が、吸気管の集合部に配したときよりも、吸気応答性が優れるのみならず機関のポンピングロスが低下し、燃費の改善が図られることが知られている。また、独立吸気管に吸気絞り手段を設けた場合には、バルブの低開度での吸気量制御ゲインが大きくなり、安定した吸気量制御が困難となるため、各独立した吸気管を連通する連通管を設け、連通管を介して吸気量のバランスを得ることが開示されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特許第2529692号公報(第2頁、第3図)
【0006】
【発明が解決しようとする課題】
しかしながら、従来技術には次のような問題点がある。上記中間開度に復帰する方式のETVでは、この中間開度で規制される吸気量に応じて内燃機関は出力を行うため、例えば退避運転中の減速または停車はブレーキ力に依存する。そのためブレーキに多大の負荷がかかるとブレーキの過熱による不具合が生じる。このような結果として車両の制御が不能となることを回避するため、市街地での退避走行を可能とする程度の吸気量とする中間開度が設定されている。
【0007】
ところが例えば高速走行中の故障あるいは登坂路走行中の故障等、設定されている中間開度では吸気量不足により十分な内燃機関出力が得られない場合が生じる。その結果、退避運転において、道路走行中の他車との相対速度が確保できないといった状況が発生する可能性がある。一方、個別バイパス通路から供給する方式においても、例えばリニヤ電磁弁またはON/OFFのデューティ電磁弁等で退避運転時の吸気量を制御する事が考えられるが、複数の気筒への吸気を一括して制御するため、多量の吸気の制御を行うための大きな電磁弁が必要であり、高価なリンプホーム機構とならざるを得なかった。
【0008】
さらにデューティ電磁弁は単一の電磁弁により吸気量を制御しており、内燃機関の回転数に同期しない周期でON/OFFを行うと、各気筒への吸気量が異なり、燃焼斑またはトルク変動が生じることとなり、安定した退避走行が難しくなる。回転同期でバイパス吸気量制御を行うために、あるいは回転に非同期でありながら各気筒への吸気バラツキを低減するためには、高周波数でのON/OFF制御が必要であり、耐久信頼性の高い、高価なリンプホーム機構とならざるを得なかった。また、連通管を設けた装置においても連通管からの吸気量は単一の電磁弁で制御されるものであり、大型で、耐久信頼性の高い電磁弁を用いる必要がある。
【0009】
本発明は上述のような課題を解決するためになされたもので、小型で安価な電磁弁を用いた退避走行を提供する内燃機関用制御装置を得ることを目的とする。
【0010】
【課題を解決するための手段】
この発明に係る内燃機関用制御装置は、複数の気筒を有する内燃機関の各気筒につながれた独立吸気管と、前記独立吸気管の各々に設けられた吸気量を調整する絞り部と、各々の絞り部を連動動作させる吸気絞り手段と、前記独立吸気管の絞り部をバイパスする個別バイパス通路と、前記個別バイパス通路を通過する吸気量を調整する個別電磁弁と、前記独立吸気管の吸気量を検出する吸気量検出手段と、前記吸気量検出手段の検出結果と設定された目標吸気量とに基づいて各気筒に供給する吸気量を調整する制御手段と、前記吸気絞り手段または前記絞り部の故障を検出する故障検出手段とを備えた内燃機関用制御装置であって、通常時には、前記制御手段は、吸気絞り手段に前記目標吸気量に基づいて独立吸気管に設けられた各絞り部を連動動作させ、前記故障検出手段により故障が検出されたときには、前記吸気絞り手段への通電を遮断して前記絞り部の開度を機械的に閉状態とし、前記個別電磁弁による制御に切り替えるものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明に係る内燃機関用制御装置の構成図であり、4気筒の場合を示している。内燃機関1は複数の気筒1aを有し、複数の気筒1aに対応して、それぞれ独立吸気管2及び独立排気管7がつながれている。独立吸気管2はそれぞれ吸気弁1bを有し、独立排気管7はそれぞれ排気弁1cを有している。
【0012】
さらに独立吸気管2には各気筒1aの吸気量を電子的に制御する電子制御スロットルバルブ3(以下ETV3と称す)が設けられている。電動機3aはETV3の吸気絞り弁を連動して動かすことにより吸気量の制御を行う。ここで、ETV3は絞り部に相当し、電動機3aは吸気絞り手段に相当する。ETV3は電動機3aが無通電時には(図示しない)リターンスプリングにより機械的に全閉開度に戻るよう付勢されている。
【0013】
ETV3の下流には、各吸気弁へ向けて燃料を噴射する噴射弁4が設けられている。また、各独立吸気管2の吸気集合部5の上流にはエアークリーナ6が設けられている。さらに独立排気管7の排気集合部8には内燃機関1の空燃比を検出する空燃比センサ9が設けられている。また、内燃機関1には各気筒1aの燃焼行程と内燃機関1の回転速度を判定する気筒識別センサ10が気筒識別手段として設けられている。
【0014】
さらにETV3の各吸気絞り弁をバイパスして吸気集合部5からバイパス空気を流入させる個別バイパス通路11が設けられ、個別バイパス通路11には空気流量を制御するアクチュエータとして個別電磁弁14がそれぞれ配置されている。個別電磁弁14を通過する空気流量は車両が登坂路走行あるいは高速走行などの高負荷時に足る一気筒分の吸気流量の供給能力を有するように設定する。また吸気量検出手段である吸気圧センサ12は、各独立吸気管2に設置しているが、各気筒1aの行程毎に切り替えて計測してもよい。
【0015】
制御手段13は内燃機関1への吸気量、燃料量及び点火時期を演算制御する制御手段であり、以下に説明するETV制御手段13a、燃料量制御手段13b、電磁弁制御手段13c及び吸気量制御手段13dの各制御手段を含んでいる。ここで吸気量制御手段13dは運転者が操作するアクセルペダル(図示しない)の指示により設定される目標吸気量に基づき、各気筒1aへの充填空気量を演算する。また、吸気量制御手段13dは、ETV制御手段13aを介してETV3の制御を行い、電磁弁制御手段13cを介して個別電磁弁14の制御を行う。
【0016】
さらに吸気量制御手段13dは故障検出手段13eを備えており、故障検出手段13eはETV3、電動機3a、及びETV制御手段13aの故障を検出する。故障検出手段13eがETV3を含んだ故障を検出したときには、ETV制御手段13aは電動機3aへの通電を停止するとともに、電磁弁制御手段13cは個別電磁弁14を制御することにより個別バイパス通路11を介して各気筒1aへの吸気を行う。
【0017】
通常はエアークリーナ6を通過した空気が、ETV3あるいは個別電磁弁14で制限された空気量として各独立吸気管2へ供給され、供給される空気の吸気圧は吸気圧センサ12により検出される。燃料量制御手段13bは、吸気圧センサ12及び気筒識別センサ10の検出結果に基づいて各気筒への適切な燃料量を演算し、噴射弁4の制御を行う。
【0018】
また燃料量制御手段13bは排気集合部8に設けられた空燃比センサ9の出力を受け、フィードバック制御を行う事により精密に燃料量の調整を行うようにしている。さらに燃料量制御手段13bは点火制御手段(図示しない)を有し、予め定められた内燃機関の環境に応じたMBT(Minimum Spark Advance for Best
Torque)またはMBT近傍で点火制御を行う。
【0019】
故障検出手段13eによりETV3を含んだ故障が検出された場合だけではなく、アイドル等低負荷時の吸気量制御にも個別バイパス通路11と個別電磁弁14による制御が有効となる。すなわち、アイドル等低負荷時の吸気量制御は、ETV3で行うことによる吸気バラツキを補償するように、独立吸気管2に対応して個別に設けられた個別電磁弁14で行う。個別に設けられた吸気圧センサ12の出力値をフィードバックすることにより、独立吸気管2ごとに個別の制御を行うことができる。さらに排気集合部8に設けた空燃比センサ9の出力をフィードバックすることにより、より精度よく空燃比と内燃機関1の出力の制御が行われる。
【0020】
特に本発明では、気筒識別センサ10を活用することにより、個別バイパス通路11から流入する空気が内燃機関1の回転、言い換えれば内燃機関1の各行程に同期して供給されるように制御されうるため、内燃機関1の各気筒1aへ実際に吸入される吸気量のバラツキが少なく、かつ前記吸気圧センサ12による計測の精度も向上する。さらに個別バイパス通路11を介しての吸気量を極力吸気弁1bが閉じている間に供給すると内燃機関1のポンピングロスが低下するため、個別バイパス通路11からの供給能力が大きいほど燃費効率のよい吸気が可能となる。
【0021】
上記の動作を行う本発明の構成において、車両が走行しているときに前記故障検出手段13eがETV3を含んだ故障を検出すると、電動機3aへの通電を停止し、スプリングの付勢力により、ETV3を全閉状態とするとともに、個別バイパス通路11の流量のみで内燃機関1の出力制御を行うことになる。しかし、個別電磁弁14は気筒識別センサ10の検出結果に基づいて回転に同期してデューティ制御を行っているため、バイパス流量の設定範囲で高負荷から低負荷まで各気筒1aへの充填吸気量を安定に制御できる。
【0022】
さらに、上述のように高負荷から低負荷までの範囲を安定に制御できるため、退避走行においても運転者の意思を示すアクセル開度に応じたスムースな退避走行が可能となる。個別バイパス通路11は気筒1a毎に設けられているため、それぞれに対応する個別電磁弁14は一括でバイパス流量を制御する場合に必要となる電磁弁よりも小型で対応でき、高速応答も可能となるため高速運転時または登坂路運転時等での突然の故障時にも気筒毎の吸気量バラツキを抑えた退避走行が可能となる。
【0023】
本実施の形態によれば、退避走行時であっても各気筒へ供給される吸気量を、気筒毎に設けられた電磁弁により個別に制御することができ、気筒毎の吸気量バラツキをなくすことができる。さらに、気筒毎の吸気量を制御する電磁弁も、各気筒対応で動作すればよく、大型あるいは耐久信頼性が高いものを必要とするものではなく、小型で高速応答の可能な電磁弁を採用することができ、装置全体として安価なものを提供することが可能となる。
【0024】
さらに、個別バイパス通路から各気筒へ供給される吸気量の最大値を登坂路走行または高速走行が可能な量に設定することにより、退避運転中の機関要求出力に応じて吸気量を制御でき、アイドル状態から登坂路走行あるいは高速走行までの広範囲に渡って出力制御を行うことができる。これにより退避走行中であっても、減速あるいは停止をブレーキに頼ることなく行え、ブレーキの過熱による不具合を防ぐことができる。
【0025】
さらに、個別バイパス通路を介して供給する吸気量の制御を内燃機関の回転に同期して行えるため、内燃機関の各気筒へ実際に吸入される吸気量のバラツキを少なくすることができ、かつ吸気圧センサによる計測の精度も向上する。特に吸気弁が閉じている間に空気を供給することで、ポンプピングロスを低減でき、燃費効率のよい吸気が可能となる。
【0026】
【発明の効果】
以上のように、本発明によれば、独立吸気管の絞り部をバイパスする個別バイパス通路を設けて個別電磁弁による吸気量制御を行うことにより、小型で安価な電磁弁を用いた退避走行を提供する内燃機関用制御装置を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関用制御装置の構成図である。
【符号の説明】1 内燃機関、1a 気筒、1b 吸気弁、1c 排気弁、2 独立吸気管、3 ETV、3a 電動機、4 噴射弁、5 吸気集合部、6 エアークリーナ、7 独立排気管、8 排気集合部、9 空燃比センサ、10 気筒識別センサ、11 個別バイパス通路、12 吸気圧センサ、13 制御手段、13a ETV制御手段、13b 燃料量制御手段、13c 電磁弁制御手段、13d 吸気量制御手段、13e 故障検出手段、14 個別電磁弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device related to control of the intake air amount of an internal combustion engine, and more particularly to a control device for an internal combustion engine for performing retreat travel when a part of the functions of the control device fails.
[0002]
[Prior art]
As the prior art, an electronically controlled throttle valve (hereinafter referred to as ETV) that electronically controls the intake air amount to the internal combustion engine is known, but when any trouble occurs in this type of ETV, There is a so-called limp home mechanism that performs evacuation operation to a repair shop. For example, when a problem occurs in the electronic control of the ETV provided in the intake manifold portion of the internal combustion engine having a plurality of cylinders, the motor is cut off and is energized by the rotating shaft of the butterfly valve that rotates the ETV. It is comprised so that it may return to an intermediate opening degree by two springs. The reason why the intermediate opening is set is to enable normal traveling in an urban area.
[0003]
In the ETV system that returns to the intermediate opening, the spring force that is urged at the boundary of the intermediate opening is different in the normal use state. Therefore, the motor that rotates against the spring force and rotates the butterfly is controlled. Gain is not constant. For this reason, a system is also known in which a butterfly is urged by a single spring so that the butterfly is fully closed in the event of a failure, and air necessary for the evacuation operation is supplied from an individual bypass passage that bypasses the butterfly.
[0004]
Furthermore, the intake throttle means for controlling the intake amount to the internal combustion engine having a plurality of cylinders is arranged in the independent intake pipe of each cylinder, and the intake responsiveness is only superior to the case where it is arranged in the collecting section of the intake pipe. In other words, it is known that the pumping loss of the engine is reduced and the fuel consumption is improved. Further, when the intake throttle means is provided in the independent intake pipe, the intake air amount control gain at a low opening of the valve becomes large and stable intake air amount control becomes difficult. Therefore, each independent intake pipe is communicated. It is disclosed that a communication pipe is provided and the balance of the intake air amount is obtained through the communication pipe (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent No. 2529692 (2nd page, FIG. 3)
[0006]
[Problems to be solved by the invention]
However, the prior art has the following problems. In the ETV system that returns to the intermediate opening, the internal combustion engine outputs in accordance with the amount of intake air that is regulated by the intermediate opening. For example, deceleration or stopping during the evacuation operation depends on the braking force. Therefore, when a great load is applied to the brake, a problem due to overheating of the brake occurs. In order to prevent the vehicle from being disabled as a result of this, an intermediate opening is set to an intake amount that allows retreating in an urban area.
[0007]
However, for example, a failure during high-speed traveling or a failure during traveling on an uphill road may cause a case where a sufficient internal combustion engine output cannot be obtained due to a shortage of intake air at a set intermediate opening. As a result, in the evacuation operation, a situation may occur in which the relative speed with other vehicles traveling on the road cannot be ensured. On the other hand, in the method of supplying from the individual bypass passage, it is conceivable to control the intake air amount during the evacuation operation with, for example, a linear solenoid valve or an ON / OFF duty solenoid valve. Therefore, a large solenoid valve for controlling a large amount of intake air is necessary, and an expensive limp home mechanism has to be used.
[0008]
In addition, the duty solenoid valve controls the intake air amount with a single solenoid valve. If the duty solenoid valve is turned ON / OFF in a cycle that is not synchronized with the rotational speed of the internal combustion engine, the intake air amount to each cylinder will differ, causing combustion spots or torque fluctuations. As a result, stable evacuation traveling becomes difficult. In order to perform bypass intake air amount control in synchronization with rotation, or to reduce intake variation to each cylinder while being asynchronous with rotation, ON / OFF control at high frequency is required, and durability reliability is high. It had to be an expensive limp home mechanism. Further, even in a device provided with a communication pipe, the intake air amount from the communication pipe is controlled by a single electromagnetic valve, and it is necessary to use a large-sized and highly reliable electromagnetic valve.
[0009]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain an internal combustion engine control device that provides retreat travel using a small and inexpensive electromagnetic valve.
[0010]
[Means for Solving the Problems]
An internal combustion engine control apparatus according to the present invention includes an independent intake pipe connected to each cylinder of an internal combustion engine having a plurality of cylinders, a throttle unit for adjusting an intake air amount provided in each of the independent intake pipes, Intake throttle means for operating the throttle portion in conjunction, an individual bypass passage that bypasses the throttle portion of the independent intake pipe, an individual solenoid valve that adjusts the intake air amount that passes through the individual bypass passage, and an intake air amount of the independent intake pipe An intake air amount detecting means for detecting the intake air amount, a control means for adjusting an intake air amount supplied to each cylinder based on a detection result of the intake air amount detecting means and a set target intake air amount, and the intake air throttle means or the throttle portion A control unit for an internal combustion engine that detects a failure of the internal combustion engine, wherein the control unit normally has each throttle unit provided in an independent intake pipe based on the target intake air amount. The When a failure is detected by the failure detection means, the energization to the intake throttle means is cut off, the opening of the throttle portion is mechanically closed, and the control is switched to the control by the individual solenoid valve It is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a control device for an internal combustion engine according to the present invention, and shows a case of four cylinders. The internal combustion engine 1 has a plurality of cylinders 1a, and an independent intake pipe 2 and an independent exhaust pipe 7 are connected to each of the plurality of cylinders 1a. Each independent intake pipe 2 has an intake valve 1b, and each independent exhaust pipe 7 has an exhaust valve 1c.
[0012]
Further, the independent intake pipe 2 is provided with an electronically controlled throttle valve 3 (hereinafter referred to as ETV 3) for electronically controlling the intake amount of each cylinder 1a. The electric motor 3a controls the intake air amount by moving the intake throttle valve of the ETV 3 in conjunction with it. Here, ETV3 corresponds to a throttle part, and the electric motor 3a corresponds to an intake throttle means. The ETV 3 is urged to return to the fully closed position mechanically by a return spring (not shown) when the electric motor 3a is not energized.
[0013]
An injection valve 4 that injects fuel toward each intake valve is provided downstream of the ETV 3. An air cleaner 6 is provided upstream of the intake air collecting portion 5 of each independent intake pipe 2. Furthermore, an air-fuel ratio sensor 9 that detects the air-fuel ratio of the internal combustion engine 1 is provided in the exhaust collecting portion 8 of the independent exhaust pipe 7. The internal combustion engine 1 is provided with a cylinder identification sensor 10 for determining the combustion stroke of each cylinder 1a and the rotational speed of the internal combustion engine 1 as cylinder identification means.
[0014]
Further, an individual bypass passage 11 for bypassing each intake throttle valve of the ETV 3 and allowing bypass air to flow in from the intake air collecting portion 5 is provided, and an individual electromagnetic valve 14 is arranged in the individual bypass passage 11 as an actuator for controlling the air flow rate. ing. The flow rate of air passing through the individual solenoid valve 14 is set so that the vehicle has a supply capacity of an intake flow rate for one cylinder that is sufficient when the vehicle is in a high load such as traveling on an uphill road or traveling at a high speed. Moreover, although the intake pressure sensor 12 which is an intake amount detection means is installed in each independent intake pipe 2, you may switch and measure for every stroke of each cylinder 1a.
[0015]
The control means 13 is a control means for calculating and controlling the intake air amount, the fuel amount and the ignition timing to the internal combustion engine 1, and the ETV control means 13a, the fuel amount control means 13b, the electromagnetic valve control means 13c and the intake air amount control described below. Each control means of the means 13d is included. Here, the intake air amount control means 13d calculates the amount of air charged into each cylinder 1a based on a target intake air amount set by an instruction of an accelerator pedal (not shown) operated by the driver. The intake air amount control means 13d controls the ETV 3 via the ETV control means 13a, and controls the individual electromagnetic valve 14 via the electromagnetic valve control means 13c.
[0016]
Further, the intake air amount control means 13d includes a failure detection means 13e, and the failure detection means 13e detects a failure of the ETV 3, the electric motor 3a, and the ETV control means 13a. When the failure detection means 13e detects a failure including the ETV 3, the ETV control means 13a stops energizing the motor 3a, and the electromagnetic valve control means 13c controls the individual electromagnetic valve 14 to control the individual bypass passage 11. Via each of the cylinders 1a.
[0017]
Normally, the air that has passed through the air cleaner 6 is supplied to each independent intake pipe 2 as the amount of air limited by the ETV 3 or the individual electromagnetic valve 14, and the intake pressure of the supplied air is detected by the intake pressure sensor 12. The fuel amount control means 13 b calculates an appropriate fuel amount for each cylinder based on the detection results of the intake pressure sensor 12 and the cylinder identification sensor 10, and controls the injection valve 4.
[0018]
The fuel amount control means 13b receives the output of the air-fuel ratio sensor 9 provided in the exhaust collecting portion 8 and performs a feedback control to precisely adjust the fuel amount. Further, the fuel amount control means 13b has ignition control means (not shown), and MBT (Minimum Spark Advance for Best) corresponding to a predetermined environment of the internal combustion engine.
Torque) or ignition control near MBT.
[0019]
The control by the individual bypass passage 11 and the individual electromagnetic valve 14 is effective not only in the case where a failure including the ETV 3 is detected by the failure detection means 13e but also in the intake air amount control at a low load such as idle. That is, the intake air amount control at the time of low load such as idling is performed by the individual electromagnetic valve 14 provided individually corresponding to the independent intake pipe 2 so as to compensate for the intake variation caused by the ETV 3. By feeding back the output value of the intake pressure sensor 12 provided individually, individual control can be performed for each independent intake pipe 2. Further, by feeding back the output of the air-fuel ratio sensor 9 provided in the exhaust collecting portion 8, the air-fuel ratio and the output of the internal combustion engine 1 can be controlled with higher accuracy.
[0020]
In particular, in the present invention, by using the cylinder identification sensor 10, the air flowing from the individual bypass passage 11 can be controlled to be supplied in synchronization with the rotation of the internal combustion engine 1, in other words, each stroke of the internal combustion engine 1. Therefore, there is little variation in the amount of intake air actually sucked into each cylinder 1a of the internal combustion engine 1, and the accuracy of measurement by the intake pressure sensor 12 is improved. Further, if the intake air amount through the individual bypass passage 11 is supplied while the intake valve 1b is closed as much as possible, the pumping loss of the internal combustion engine 1 is reduced. Therefore, the greater the supply capacity from the individual bypass passage 11, the better the fuel efficiency. Inhalation is possible.
[0021]
In the configuration of the present invention that performs the above operation, when the failure detection means 13e detects a failure including the ETV3 while the vehicle is running, the energization to the electric motor 3a is stopped and the ETV3 is applied by the biasing force of the spring. And the output control of the internal combustion engine 1 is performed only by the flow rate of the individual bypass passage 11. However, since the individual solenoid valve 14 performs duty control in synchronization with the rotation based on the detection result of the cylinder identification sensor 10, the charging intake air amount to each cylinder 1a from the high load to the low load within the setting range of the bypass flow rate. Can be controlled stably.
[0022]
Furthermore, since the range from the high load to the low load can be stably controlled as described above, smooth retreat travel according to the accelerator opening degree indicating the driver's intention is possible even during retreat travel. Since the individual bypass passages 11 are provided for each cylinder 1a, the individual solenoid valves 14 corresponding to the cylinders 1a can be made smaller than the solenoid valves required for collectively controlling the bypass flow rate, and can respond quickly. Therefore, even when a sudden failure occurs during high-speed driving or uphill driving, it is possible to perform evacuation while suppressing variations in intake air amount for each cylinder.
[0023]
According to the present embodiment, the intake air amount supplied to each cylinder can be individually controlled by the solenoid valve provided for each cylinder even during the retreat travel, and the intake air amount variation for each cylinder is eliminated. be able to. In addition, the solenoid valve that controls the intake air amount for each cylinder only needs to operate for each cylinder, and does not require a large or highly reliable one, but adopts a small solenoid valve that can respond quickly. Therefore, it is possible to provide an inexpensive apparatus as a whole.
[0024]
Furthermore, by setting the maximum value of the amount of intake air supplied to each cylinder from the individual bypass passage to an amount capable of traveling on an uphill road or traveling at high speed, the intake air amount can be controlled according to the engine demand output during the evacuation operation, The output control can be performed over a wide range from the idle state to the uphill traveling or the high speed traveling. As a result, even during retreating, deceleration or stopping can be performed without relying on the brake, and problems due to overheating of the brake can be prevented.
[0025]
Furthermore, since the amount of intake air supplied through the individual bypass passage can be controlled in synchronization with the rotation of the internal combustion engine, the variation in the amount of intake air actually taken into each cylinder of the internal combustion engine can be reduced, and the intake air can be reduced. The accuracy of measurement by the barometric sensor is also improved. In particular, by supplying air while the intake valve is closed, pumping loss can be reduced and intake with good fuel efficiency can be achieved.
[0026]
【The invention's effect】
As described above, according to the present invention, by providing an individual bypass passage that bypasses the throttle portion of the independent intake pipe and performing intake air amount control by the individual solenoid valve, retreat travel using a small and inexpensive solenoid valve is performed. The provided control device for an internal combustion engine can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a control device for an internal combustion engine according to the present invention.
[Explanation of Symbols] 1 Internal combustion engine, 1a cylinder, 1b Intake valve, 1c Exhaust valve, 2 Independent intake pipe, 3 ETV, 3a Electric motor, 4 Injection valve, 5 Intake collecting part, 6 Air cleaner, 7 Independent exhaust pipe, 8 Exhaust collecting unit, 9 air-fuel ratio sensor, 10 cylinder identification sensor, 11 individual bypass passage, 12 intake pressure sensor, 13 control means, 13a ETV control means, 13b fuel amount control means, 13c electromagnetic valve control means, 13d intake air amount control means , 13e Failure detection means, 14 Individual solenoid valve.

Claims (5)

複数の気筒を有する内燃機関の各気筒につながれた独立吸気管と、
前記独立吸気管の各々に設けられた吸気量を調整する絞り部と、
各々の絞り部を連動動作させる吸気絞り手段と、
前記独立吸気管の絞り部をバイパスする個別バイパス通路と、
前記個別バイパス通路を通過する吸気量を調整する個別電磁弁と、
前記独立吸気管の吸気量を検出する吸気量検出手段と、
前記吸気量検出手段の検出結果と設定された目標吸気量とに基づいて各気筒に供給する吸気量を調整する制御手段と、
前記吸気絞り手段または前記絞り部の故障を検出する故障検出手段と
を備えた内燃機関用制御装置であって、
通常時には、前記制御手段は、吸気絞り手段に前記目標吸気量に基づいて独立吸気管に設けられた各絞り部を連動動作させ、
前記故障検出手段により故障が検出されたときには、前記吸気絞り手段への通電を遮断して前記絞り部の開度を機械的に閉状態とし、前記個別電磁弁による制御に切り替えることを特徴とする内燃機関用制御装置。
An independent intake pipe connected to each cylinder of an internal combustion engine having a plurality of cylinders;
A throttle that adjusts the intake air amount provided in each of the independent intake pipes;
An intake throttle means for operating each throttle section in conjunction with each other;
An individual bypass passage for bypassing the throttle portion of the independent intake pipe;
An individual solenoid valve for adjusting the amount of intake air passing through the individual bypass passage;
An intake air amount detecting means for detecting an intake air amount of the independent intake pipe;
Control means for adjusting the amount of intake air supplied to each cylinder based on the detection result of the intake air amount detection means and the set target intake air amount;
A control device for an internal combustion engine comprising a failure detection means for detecting a failure of the intake throttle means or the throttle portion,
Normally, the control means causes the intake throttle means to operate each throttle portion provided in the independent intake pipe based on the target intake air amount,
When a failure is detected by the failure detection means, the energization to the intake throttle means is cut off, the opening of the throttle portion is mechanically closed, and the control is switched to the control by the individual solenoid valve. Control device for internal combustion engine.
請求項1に記載の内燃機関用制御装置において、
前記制御手段は、前記故障検出手段により故障が検出されたときには、前記目標吸気量の変化に応じて前記個別電磁弁を制御することにより前記個別バイパス通路を通過して各気筒に供給される吸気量を調整して退避運転を行うことを特徴とする内燃機関用制御装置。
The control device for an internal combustion engine according to claim 1,
When the failure is detected by the failure detection means, the control means controls the individual electromagnetic valve according to the change in the target intake air amount so as to pass through the individual bypass passage and supply the intake air to each cylinder. A control apparatus for an internal combustion engine, wherein a retraction operation is performed by adjusting an amount.
請求項1または2に記載の内燃機関用制御装置において、
前記個別バイパス通路及び前記個別電磁弁は、内燃機関が搭載される車両が登坂路走行あるいは高速走行を行う高負荷時に必要な空気流量の供給能力を有することを特徴とする内燃機関用制御装置。
The control apparatus for an internal combustion engine according to claim 1 or 2,
The control device for an internal combustion engine, wherein the individual bypass passage and the individual solenoid valve have a supply capacity of an air flow rate required when a vehicle on which the internal combustion engine is mounted travels on an uphill road or travels at a high speed.
請求項1ないし3のいずれか1項に記載の内燃機関用制御装置において、
前記内燃機関は、前記各気筒の燃焼行程を検出する気筒識別手段を備え、
前記制御手段は、前記気筒識別手段で検出された前記各気筒の燃焼行程に基づいて前記個別電磁弁による前記個別バイパス通路を通過する吸気量制御を行うことを特徴とする内燃機関用制御装置。
The control apparatus for an internal combustion engine according to any one of claims 1 to 3,
The internal combustion engine includes cylinder identification means for detecting a combustion stroke of each cylinder,
The control device for an internal combustion engine, wherein the control means performs an intake air amount control that passes through the individual bypass passage by the individual electromagnetic valve based on a combustion stroke of each cylinder detected by the cylinder identification means.
請求項4に記載の内燃機関用制御装置において、
前記制御手段は、前記気筒識別手段で検出された前記各気筒の燃焼行程に基づいて各吸気弁の閉期間を検出し、前記個別電磁弁による前記個別バイパス通路を通過する吸気量制御を検出された前記各吸気弁の閉期間に同期して行うことを特徴とする内燃機関用制御装置。
The control apparatus for an internal combustion engine according to claim 4,
The control means detects a closing period of each intake valve based on a combustion stroke of each cylinder detected by the cylinder identification means, and detects intake air amount control passing through the individual bypass passage by the individual electromagnetic valve. Further, the control apparatus for an internal combustion engine is performed in synchronization with a closing period of each intake valve.
JP2003181602A 2003-06-25 2003-06-25 Control device for internal combustion engine Pending JP2005016400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181602A JP2005016400A (en) 2003-06-25 2003-06-25 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181602A JP2005016400A (en) 2003-06-25 2003-06-25 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005016400A true JP2005016400A (en) 2005-01-20

Family

ID=34182266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181602A Pending JP2005016400A (en) 2003-06-25 2003-06-25 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005016400A (en)

Similar Documents

Publication Publication Date Title
US7634348B2 (en) Ejector system for a vehicle and ejector system controller
US6715289B2 (en) Turbo-on-demand engine with cylinder deactivation
EP1103700B1 (en) Internal combustion engine having a variable valve train
JP2002521615A (en) Fuel supply device for internal combustion engine
JPH0248730B2 (en)
JPH0223238A (en) Power generator
US8646431B2 (en) Vehicle provided with valve-stop-mechanism-equipped internal combustion engine
JP2905612B2 (en) Engine valve timing control device
JPH0131016B2 (en)
US5181484A (en) Cam timing control device for automotive engine
JP2010223064A (en) Intake control device of internal combustion engine for vehicle
KR0149512B1 (en) Internal combustion engine air supply system
JP2006336566A (en) Controller for variable cylinder engine
JP5297258B2 (en) Control device for internal combustion engine
JP2005016400A (en) Control device for internal combustion engine
JP2000320347A (en) Throttle controller for internal combustion engine
JP6179240B2 (en) Engine supercharging control device
JP4565863B2 (en) Negative pressure control method for pneumatic booster
JP5297257B2 (en) Control device for internal combustion engine
JP2005163674A (en) Supercharging device for internal combustion engine
JP5828517B2 (en) Intake control device for multi-cylinder engine
JP2001130248A (en) Air-conditioner cut control method
KR200189180Y1 (en) Negative pressure maintaining device of vehicle braking booster
JPH03520Y2 (en)
GB2511608A (en) Method for operating an internal combustion engine of a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A02 Decision of refusal

Effective date: 20061205

Free format text: JAPANESE INTERMEDIATE CODE: A02