JP2005016351A - Secondary air supply device for internal combustion engine - Google Patents

Secondary air supply device for internal combustion engine Download PDF

Info

Publication number
JP2005016351A
JP2005016351A JP2003179894A JP2003179894A JP2005016351A JP 2005016351 A JP2005016351 A JP 2005016351A JP 2003179894 A JP2003179894 A JP 2003179894A JP 2003179894 A JP2003179894 A JP 2003179894A JP 2005016351 A JP2005016351 A JP 2005016351A
Authority
JP
Japan
Prior art keywords
air
engine
catalyst
fuel ratio
secondary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003179894A
Other languages
Japanese (ja)
Inventor
Yasuyuki Irisawa
泰之 入澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003179894A priority Critical patent/JP2005016351A/en
Publication of JP2005016351A publication Critical patent/JP2005016351A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately calculate engine air suction amount to control air-fuel ratio and maintain satisfactory emission when supplying secondary air to catalyst. <P>SOLUTION: This secondary air supply device for the internal combustion engine is provided with an air flow meter 13 detecting amount of suction air supplied to the engine 1 and a supercharger 35 provided on the downstream side of the air flow meter to supercharge the air supplied to the engine 1. When supplying secondary air onto the upstream side of the catalyst 36, 37 provided in an exhaust passage 3, the air passing through the air flow meter 13 is supplied to the engine 1 by bypassing the supercharger 35, and the air which does not pass through the air flow meter 13 is supercharged in the supercharger 35 and is supplied onto the upstream side of the catalyst 36, 37 as secondary air. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の二次空気供給装置に関し、特に、排気通路に配置した排気浄化用触媒に蓄積された被毒物質を被毒解消操作、すなわち触媒温度を上昇させて触媒から被毒物質を放出させる操作を行うことにより、被毒物質による触媒の排気浄化能力の低下を防止する内燃機関の二次空気供給装置に関する。
【0002】
【従来の技術】
機関排気通路に、排気浄化触媒を配置して排気中の有害物質を浄化する技術が知られている。このような排気浄化触媒には、使用とともに排気中の特定の成分(被毒物質)を吸収、吸着等により吸蔵し、被毒物質の吸蔵量増大とともに排気浄化能力が低下するものがある。
【0003】
例えば、排気浄化触媒として、流入する排気空燃比がリーンのときに排気中の窒素酸化物(NO)を吸収、吸着またはその両方により吸蔵し、流入する排気空燃比がリッチになったときに吸蔵したNOを還元浄化するNO吸蔵還元触媒が知られているが、NO吸蔵還元触媒は排気中に硫黄酸化物(SO)が含まれると、NOと同様にSOを吸蔵する。
【0004】
しかも、SOはNO吸蔵還元触媒内で安定した硫酸塩を形成するため、NOのように単に排気空燃比をリッチにしただけでは触媒から放出されず、徐々にNO吸蔵還元触媒中に吸蔵された硫黄成分の量が増大するにつれてその分だけNOの吸蔵能力が低下する。すなわち、NO吸蔵還元触媒は排気中の被毒物質としての硫黄を吸蔵し、硫黄による被毒を生じる。
【0005】
NO吸蔵還元触媒の硫黄被毒を解消するためには、排気空燃比をリッチにしただけでは足りず、排気空燃比をリッチにするとともに触媒温度を通常運転時より高い所定の温度まで上昇させる被毒解消操作が必要となる。
被毒解消操作時に触媒温度を通常運転時より高い所定温度まで上昇させるためには、触媒に未燃燃料などの炭化水素(HC)やCO成分を比較的多量に供給するとともに、充分な酸素を供給してHCやCO成分を触媒上で燃焼させることが有効である。
【0006】
このため、被毒解消操作時に機関をリッチ空燃比で運転することにより、排気中のHCやCO成分量を増大させるとともに、触媒に二次空気を供給することにより燃焼に必要な酸素を触媒に供給して効率的に触媒を昇温することが提案されている(特許文献2参照)。
通常、触媒の昇温は機関冷間始動時に短時間で触媒温度を活性化温度に到達させるためにも必要となる。このため、通常は始動時にも昇温操作を行うために専用のエアポンプを設けて触媒に二次空気を供給することが行われている。
【0007】
ところで、リーン空燃比運転を行ういわゆるリーンバーンエンジンでは、リーン空燃比運転を行う負荷領域を拡大するためにターボチャージャ(過給機)を設ける場合がある。この場合、排気エネルギーが比較的比較的小さくなる低負荷リーン空燃比運転領域でも過給機の回転を高く維持することがで必要であり、このため通常電動機で補助的に過給機のコンプレッサを駆動する、モーターアシストターボチャージャー(MAT)を用いている。
【0008】
一般に、排気系に過給機を設けると排気系の熱容量の増大や過給機による排気温度の低下などのために触媒の温度が上昇しにくくなるため、機関始動時や被毒解消操作時には上述した二次空気を用いる昇温操作の必要性が大きくなる。それゆえ、MATを使用すれば、機関始動時にもモーターでコンプレッサを駆動して充分な量の空気を機関に供給することができる。
【0009】
従ってMATを使用して、過給機下流側の吸気通路から触媒に二次空気を供給してやれば、二次空気供給用のエアポンプを別途設けることなく触媒の暖機や被毒解消操作時に、常に充分な量の二次空気を供給することができ、二次空気供給系の構成を簡易なものにすることができる。
ところが、このように過給機下流側の吸気通路から二次空気を供給すると機関の吸入空気量を検出する上で問題が生じる場合がある。
【0010】
通常、機関の吸入空気量は過給機上流側の吸気通路に設けた流量計(エアフローメータ)により検出する。しかし、二次空気は過給機の下流側吸気通路から取り出す必要があるため、二次空気の供給が行われるとエアフローメータで検出した吸気流量より実際に機関に吸入される吸気流量が二次空気の分だけ少なくなってしまい、エアフローメータでは吸気流量を正確に検出することができないという問題が生じるのである。
【0011】
この問題は、過給機の下流側の吸気通路にエアフローメータを配置して二次空気分岐後の吸気流量を検出すれば解決するが、過給機を通過した吸気には微量ながら過給機の潤滑油が混入しているため、過給機下流側にエアフローメータを配置すると検出部への潤滑油付着などによりエアフローメータの検出値の信頼性が低下する問題があり、過給機下流側にエアフローメータを配置することはできない。
【0012】
このため、例えば特許文献1ではエアフローメータに加えて過給機下流より分岐した二次空気通路にも流量計測手段を設け、二次空気供給時には機関吸気流量をエアフローメータで検出した吸気流量から流量計測手段で計測した二次空気流量を差し引いた値として算出するようにして、機関吸気流量に誤差が生じることを防止している。
【0013】
【特許文献1】
特公平7−42873号公報
【特許文献2】
特開平11−280456号公報
【0014】
【発明が解決しようとする課題】
上記特許文献1のように二次空気流量を計測する場合にも過給機のコンプレッサを通過した空気を流量計測手段で計測することとなるため、計測値の信頼性が低下する問題がある。つまり、上記特許文献1では、流量計測手段として過給機通過空気に含まれる潤滑油の影響が生じにくいオリフィスを二次空気供給通路に配置し、オリフィスの上流側と下流側の差圧を検出して流量に換算するようにしている。
【0015】
しかし、特許文献1のようにオリフィスを用いて二次空気流量を正確に検出する場合には、オリフィス開口部を絞って上流側と下流側との差圧を充分に大きくする必要があるが、差圧を大きく設定すると二次空気通路の圧損が増大してしまうためオリフィス差圧を充分に大きく設定できず、流量検出精度を充分に高くできない場合が生じる。
【0016】
前述したように、触媒の被毒解消操作中は機関排気空燃比をリッチ空燃比にして、二次空気を触媒に供給するが、この場合には機関排気空燃比を適切な値に正確に制御する必要がある。例えば、排気空燃比のリッチ度合いが大きすぎると排気中のHCやCOが増大し、触媒で燃焼せずに下流側に流出するHCやCOの量が増大するため、被毒解消操作中機関空燃比は理論空燃比よりややリッチ側の値に正確に制御してHCやCOの発生量を低減することが好ましい。
【0017】
しかし、特許文献1の装置では二次空気量の流出検出精度が低いことから、正確に機関吸気量を算出できない場合が生じ、機関の空燃比を正確に制御できなくなる問題が生じる。
それゆえ、本発明は、上記問題を解決し、すなわち機関吸気量を正確に算出することにより、機関の空燃比を正確に制御し、機関冷間始動時または被毒解消操作時には機関をリッチ空燃比で運転することにより排気中のHCやCO成分量を増大させるとともに、触媒に二次空気を供給することにより燃焼に必要な酸素を触媒に供給して効率的に触媒を昇温し、さらにNO吸蔵還元触媒を早期に冷却して触媒の温度を許容範囲(ウインドウ)内にするため触媒に二次空気を供給する、内燃機関の二次空気供給装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記目的を達成する内燃機関の二次空気供給装置は、
内燃機関に供給される吸入空気量を検出する吸入空気量検出手段と、該吸入空気量検出手段の下流に設けられ該内燃機関に供給される空気を過給する過給手段と、を備えた内燃機関の二次空気供給装置において、排気通路に設けられた触媒の上流に二次空気を供給する時、前記吸入空気量検出手段を通過した空気を前記過給手段をバイパスさせて前記内燃機関に供給するとともに、前記吸入空気量検出手段を通過しない空気を前記過給手段にて過給し、二次空気として前記触媒の上流に供給する、ことを特徴とする。
【0019】
上記内燃機関の二次空気供給装置では、冷間始動時や被毒解消操作時に、過給手段は吸入空気量検出手段を通過しない空気を過給して、二次空気として排気通路に設けられた触媒の上流に供給して触媒を昇温するので、触媒の早期活性化、触媒の被毒解消が可能となる。また、二次空気を触媒の上流に供給する時に吸入空気量検出手段を通過した空気を過給手段をバイパスさせて内燃機関に供給するので、内燃機関に供給される吸入空気量を正確に検出でき、それゆえ高精度な空燃比制御が可能となり排気エミッションが良好となる。
【0020】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態を詳細に説明する。
図1は本発明による内燃機関の二次空気供給装置の一実施形態の概略構成図である。図1に示す内燃機関(エンジン)1は、自動車用内燃機関を示し、4気筒ガソリン機関とされる。また、機関1は、運転領域の大部分の領域でリーン空燃比運転が可能な、いわゆるリーンバーンエンジンとされている。
【0021】
図1において、吸気通路2に接続されたサージタンク21は吸気枝管を介して各気筒の吸気ポートに接続されている。各気筒の吸気ポートにはそれぞれの燃料噴射弁(図示せず)から機関1の1回転毎に燃料が噴射される。各気筒の排気ポートに接続された排気マニホルド31は排気通路3に接続されている。
【0022】
本実施形態では、機関1の過給を行なう過給機35が設けられており、過給機35の排気入口には排気通路3が接続されており、過給機35の吸気吐出口には吸気通路2、吸気切換弁42を経由した二次空気通路52が接続されている。吸気切換弁42の動作は後で説明する。
本実施形態では、過給機35は排気通路3に配置されたタービン35aと吸気通路2に配置されたコンプレッサ35bとを連結するシャフトを駆動するモータ35cを備えており、タービン35aに加えて補助的にモータ35cを用いてコンプレッサ35bを駆動することが可能なモーターアシストターボチャージャ(MAT)の形式とされる。
【0023】
通常、機関1がリーン空燃比で運転されている場合には機関排気温度は理論空燃比運転時に較べて低くなり、排気の持つエネルギが低いため過給機35のタービン35aの回転数があまり上昇せず過給圧も低くなる。このため、リーン空燃比運転中は通常であれば良好な過給効果が得られず、リーン空燃比を維持したまま出力を増大することが困難な場合がある。
【0024】
これに対して、過給機(MAT)35を用いた場合には、排気タービン35aに加えて電動モータ35cによりコンプレッサ35bを駆動することができるため、リーン空燃比運転時にも過給機の回転数を上昇させ高い過給圧を得ることが可能となる。これにより、本実施形態では機関1への燃料供給量の増大に応じて機関1への充填吸気量を増大させ、リーン空燃比を維持しながら高出力を得ることが可能となるため、リーン空燃比運転領域を高出力側に拡大することが可能となっている。
【0025】
また、機関1に流入する吸気が流れる吸気入口通路11には、エアクリーナ12を介して機関1に流入する吸気流量を検出するエアフローメータ13が設けられている。一方、吸気切換弁41を経由してMAT35に流入する吸気が流れる吸気入口通路51の入口には、エアクリーナ14が設けられている。本実施形態では、エアフローメータ13としてはベーン式、超音波式、熱線式などの公知の形式のエアフローメータの何れかが使用される。
【0026】
吸気切換弁41および42は、次のように動作する。通常機関運転時には、吸気切換弁41および42共に(イ)の位置にあり、エアクリーナ12から流入した空気を吸気入口通路11、コンプレッサ35bを介して機関1に連通し、エアクリーナ14、吸気入口通路51を介して機関1に流入する空気の流入を遮断する。エアフローメータ13を通過し機関1に流入する空気の過給手段のバイパス時には、吸気切換弁41および42共に(ロ)の位置にあり、エアクリーナ12から流入した空気を吸気入口通路11、吸気通路16を介して機関1に連通し、エアクリーナ14、吸気入口通路51、コンプレッサ35bを介して機関1への空気の流入を遮断してこの空気を二次空気として、二次空気通路52、流量制御弁50、二次空気通路53、54を介して触媒36、37に供給する。
【0027】
MAT35のタービン35a下流側の排気通路3には、三元触媒からなるスタートキャタリスト(SC)36と、その下流側にNO吸蔵還元触媒37がそれぞれ配置されている。
スタートキャタリスト36は、機関始動後短時間で活性化温度まで昇温するように比較的小容量のものとされ、機関始動直後の排気浄化を行う。
【0028】
また、本実施形態ではコンプレッサ35bと吸気切換弁42の間には二次空気通路52内の過給圧を検出する圧力センサ15が設けられている。後述するように圧力センサ15で検出した過給圧は機関1の運転状態に応じた機関1への吸気流量をフィードバック制御するために用いられる。
また、排気通路3には、触媒36の上流に空燃比(A/F)センサ38が、触媒36の下流で触媒37の上流に空燃比(A/F)センサ39がそれぞれ配設されており、触媒37の下流には排気温センサ40が配設されている。
【0029】
NO吸蔵還元触媒37は、流入する排気の空燃比がリーンのときに排気中の窒素酸化物(NO)を吸着、吸収またはその両方で吸蔵し、流入する排気の空燃比がリッチになったときに吸蔵したNOを還元浄化する触媒である。
本実施形態では、機関1は大部分の運転領域でリーン空燃比運転が可能な機関であり、機関1がリーン空燃比運転される状態では、排気中のNOはNO吸蔵触媒37に吸蔵される。
【0030】
なお、NO吸蔵触媒37に吸蔵したNOは、リーン空燃比運転中に短時間機関1をリッチ空燃比で運転するリッチスパイク操作を行い、NO吸蔵触媒37にリッチ空燃比の排気を供給することにより還元浄化される。
しかし、NO吸蔵触媒37には排気中に含まれる微量の硫黄酸化物(SO)もNOと同様に吸蔵されるが、NO吸蔵還元触媒に吸蔵されたSOは安定した硫酸塩を形成するためNOのように単にリッチスパイク操作を行っただけではNO吸蔵還元触媒から放出させることはできない。このため、運転中徐々にNO吸蔵還元触媒37のSO吸蔵量が増大し、吸蔵されたSOの分だけ吸蔵可能なNO量が低下する、いわゆる硫黄被毒が生じる。
【0031】
硫黄被毒を解消するためには、前述したように排気空燃比をリッチにするとともに触媒37に二次空気を供給し、未燃HC、CO等の可燃成分を触媒37上で酸化する昇温操作が必要となる。
【0032】
図2は図1に示す二次空気供給装置に装備されたECUの説明図である。図2に示すエンジン制御ユニット(ECU)60は、一般的なディジタルコンピュータからなり、図示しない双方向性バスを介して相互に接続されたCPU、RAM、ROM、入力ポートおよび出力ポート、ならびに入力ポートに接続されたAD変換器および出力ポートに接続された駆動回路を具備する。
【0033】
入力ポートには、ECU60を搭載する車両の各部に設置された上述した各種センサからのアナログ電圧出力がAD変換器を介して入力されるか、あるいは各種センサからのディジタル信号が直接入力される。入力ポートにはエアフローメータ12、圧力センサ15、A/Fセンサ38、39、排気温センサ40、シリンダブロック1のウォータジャケット内に設けられ機関1の冷却水温THWを検出する水温センサ61、機関クランク軸(図示せず)近傍に配置され機関クランク軸一定回転角毎にパルス信号を出力する回転数センサ62が接続されている。出力ポートから駆動回路へのECU60による制御信号に応じて、図示しないバッテリまたはオルタネータから吸気切換弁41、42、流量制御弁50およびMAT35c、燃料噴射弁43等の電気的負荷に電力が供給される。
【0034】
図3は図1に示す二次空気供給装置における機関冷間時の二次空気制御のフローチャートである。本ルーチンのステップ301では、水温センサ61により機関1の水温THWを検出して、水温THW<85°Cのときは機関1は冷間時であり、触媒SC36が二次空気を要求していると判定してステップ302に進み、水温THW≧85°Cのときは機関1は暖機し、触媒SC36が二次空気を要求していていないと判定してステップ321に進む。
【0035】
ステップ321では、エアフローメータ13を通った吸気のみが機関1に流入するように吸気切換弁41および42を共に閉弁(図1のイの位置)する。この場合、エアクリーナ14、吸気通路51を通過した空気は、吸気切換弁41により吸気通路2に流入することを遮断され、エアクリーナ12、吸気通路11を通過した空気は、エアフローメータ13、コンプレッサ35b、吸気通路2を通って機関1に流入する。一方、吸気通路52を通る空気は、流量制御弁50を閉じることにより二次空気をSC36およびNO吸蔵還元触媒37に供給しない。
ステップ322では、通常時の空燃比制御を実行する。すなわち、A/Fセンサ39の出力値が目標空燃比となるように燃料噴射量を制御する。
【0036】
ステップ302では、SC36を早期に暖機し活性化して早期に排気の浄化を行うためSC36に二次空気を供給すべく吸気切換弁41および42を共に開弁(図1のロの位置)する。この場合、吸入空気量検出手段(エアフローメータ)13を通過した空気を過給手段(過給機)35をバイパスさせて機関1に供給するとともに、エアフローメータ13を通過しない(エアクリーナ14を通過した)空気を過給機35にて過給し、二次空気として触媒36の上流に供給する。
ステップ303〜307は機関1からの排ガスの空燃比を目標空燃比に制御する一般的な空燃比制御のための処理であり、ステップ311〜314は機関冷間時の触媒への二次空気供給制御のための処理である。
ステップ303ではエアフローメータ13により計測された吸入空気量Qを読取る。
【0037】
ステップ304では読取った吸入空気量Qと回転数センサ62から読取った機関1の回転数NEとから機関1の一回転当たりの吸気量Q/NEを算出し、理論空燃比よりわずかにリッチな空燃比を目標空燃比とする各気筒の燃料噴射量FIJ=(Q/NE)×BAFを算出する。ここで、BAFは機関一回転当たりに単位量(例えば1リットル/回転)の吸気が吸入された場合に機関1の燃焼空燃比を目標のリッチ空燃比にするために必要とされる燃料量である。
ステップ305では、所定のクランク角周期に各燃料噴射弁43からステップ304で算出した燃料量FIJを噴射し、機関1をリッチ燃焼させる。
【0038】
ステップ306ではSC36の直前の空燃比センサ38の出力値を取込む。
ステップ307では、機関1の排気空燃比が、目標空燃比となるように制御されているか否かを判定する。具体的には、空燃比センサ38の出力値が所定の目標空燃比の範囲内にあるか否かを判定し、その判定結果がYESのときは機関1は目標空燃比通りに制御されていると判定しステップ301に戻り、その判定結果がNOのときは機関1は目標空燃比通りに制御されていないと判定してステップ314に進む。ここで、この目標空燃比は理論空燃比よりわずかにリーンな空燃比である。
【0039】
一方、ステップ311では、機関1の回転数NEと吸入空気量Qで定まる機関運転状態に応じて予め設定したマップを参照して目標過給圧を設定する。このマップは、アクセル開度センサ(不図示)により検出されるアクセル開度と機関1の回転数NEで定まる機関運転状態に応じて過給圧を設定したものでもよい。
ステップ312では、触媒(SC)36の昇温が必要な場合に、機関1をリッチ空燃比で運転するとともに、圧力センサ15の出力、すなわち実過給圧がステップ311で設定した過給圧になるように補助モータ35cの回転数をフィードバック制御する。
【0040】
ステップ313では、二次空気供給用の流量制御弁50を開弁して吸気通路51から流入しMAT35のコンプレッサ35bを経由して流れる二次空気を全て流量制御弁50、二次空気通路53を経由して触媒36上流側の排気通路3に供給する。
ステップ314では流量制御弁50を調節してSC36への二次空気量を増減し、ステップ306に戻る。この二次空気量の増減は、ステップ307の判定時に、空燃比センサ38の出力値>>目標空燃比のときは、空気量が過多と判定し二次空気量を減量し、空燃比センサ38の出力値<<目標空燃比のときは、空気量が過少と判定し二次空気量を増量する。
【0041】
この場合、例えば機関冷間始動時に触媒36を早期に活性化温度まで到達させるための触媒昇温操作(触媒暖機操作)では、ECU60は機関1をリッチ空燃比で運転するとともに、空燃比センサ38で検出した触媒36入口の排気空燃比が理論空燃比よりわずかにリーンな空燃比になるように二次空気量をフィードバック制御する(ステップ314)。これにより、機関冷間始動時のリッチ空燃比運転により発生する比較的多量のHC、CO等の可燃成分は触媒36上で燃焼するため、リッチ空燃比運転により排気性状が大幅に悪化することが防止されるとともに、触媒温度が短時間で活性化温度に到達するようになる。
【0042】
図4は図1に示す二次空気供給装置における触媒の硫黄被毒回復制御時の二次空気制御のフローチャートである。本ルーチンのステップ401では、NO吸蔵還元触媒37に吸蔵されたSOが、所定値より大きいときは触媒37の硫黄被毒回復要求有りと判定してステップ402に進み、所定値以下のときは触媒37の硫黄被毒回復要求無しと判定してステップ421に進む。
上記NO吸蔵還元触媒37に吸蔵されたSOが所定値より大きいか否かの判定は次のように行う。まず、触媒37に吸蔵されたSOの量を測る。このSO量の測定は、空燃比センサ39により検出される空燃比が機関1をリーン空燃比運転を行うときの空燃比であるときに、機関1の走行距離またはリーン空燃比運転時間を積算して、この積算値を触媒37に吸蔵されたSO量と推定する。次に、この積算値を所定値と比較して上記判定を行う。また、この積算値は触媒の硫黄被毒回復要求が有りから無しに変わった時点でリセットされる。
【0043】
ステップ421では、エアフローメータ13を通った吸気のみが機関1に流入するように吸気切換弁41および42を共に閉弁(図1のイの位置)する。この場合、エアクリーナ14、吸気通路51を通過した空気は、吸気切換弁41により吸気通路2に流入することを遮断され、エアクリーナ12、吸気通路11を通過した空気は、エアフローメータ13、コンプレッサ35b、吸気通路2を通って機関1に流入する。一方、吸気通路52を通る空気は、流量制御弁50を閉じることにより二次空気をSC36およびNO吸蔵還元触媒37に供給しない。
ステップ422では、通常時の空燃比制御を実行する。すなわち、A/Fセンサ39の出力値が目標空燃比となるように燃料噴射量を制御する。
【0044】
ステップ402では、NO吸蔵還元触媒37の硫黄被毒を回復して早期に排気の浄化を行うため触媒37に二次空気を供給すべく吸気切換弁41および42を共に開弁(図1のロの位置)する。この場合、吸入空気量検出手段(エアフローメータ)13を通過した空気を過給手段(過給機)35をバイパスさせて機関1に供給するとともに、エアフローメータ13を通過しない空気を過給機35にて過給し、二次空気として触媒37の上流に供給する。
【0045】
ステップ403〜407は機関からの排ガスの空燃比を目標空燃比に制御する一般的な空燃比制御のための処理であり、ステップ411〜414は触媒37の硫黄被毒回復要求有りの時の触媒37への二次空気供給制御のための処理である。
ステップ403〜405は、それぞれ図3に示す処理ステップ303〜305に対応し同一であり、ステップ406、407が図3に示す処理ステップ306、307と異なるのでステップ406、407を以下に説明する。
【0046】
ステップ406ではNO吸蔵還元触媒37の直前の空燃比センサ39の出力値を取込む。
ステップ407では、機関1の排気空燃比が、目標空燃比となるように制御されているか否かを判定する。具体的には、空燃比センサ39の出力値が所定の目標空燃比の範囲内にあるか否かを判定し、その判定結果がYESのときは機関1は目標空燃比通りに制御されていると判定しステップ401に戻り、その判定結果がNOのときは機関1は目標空燃比通りに制御されていないと判定してステップ414に進む。ここで、この目標空燃比は理論空燃比よりわずかにリーンな空燃比である。
【0047】
ここで、ステップ411、412は、それぞれ図3に示す処理ステップ311、312に対応し同一であり、ステップ413、414が図3に示す処理ステップ313、314と異なるのでステップ413、414を以下に説明する。
ステップ413では、二次空気供給用の流量制御弁50を開弁して吸気通路51から流入しMAT35のコンプレッサ35bを経由して流れる二次空気を全て流量制御弁50、二次空気通路54を経由して全て触媒37上流側の排気通路3に供給する。
ステップ414では流量制御弁50を調節して触媒37への二次空気量を増減し、ステップ406に戻る。この二次空気量の増減は、ステップ407の判定時に、空燃比センサ39の出力値>>目標空燃比のときは、空気量が過多と判定し二次空気量を減量し、空燃比センサ39の出力値<<目標空燃比のときは、空気量が過少と判定し二次空気量を増量する。
【0048】
図5は図1に示す二次空気供給装置における排気冷却制御時の二次空気制御のフローチャートである。本ルーチンのステップ501では、排気温センサ40により機関1の排気温EXHTを検出して、EXHTが、所定温度、例えば500°Cより大のときは触媒38の排気冷却要求有りと判定してステップ502に進み、所定温度、例えば300°C以下のときは触媒38の排気冷却要求無しと判定してステップ521に進む。
【0049】
ステップ521では、エアフローメータ13を通った吸気のみが機関1に流入するように吸気切換弁41および42を共に閉弁(図1のイの位置)する。この場合、エアクリーナ14、吸気通路51を通過した空気は、吸気切換弁41により吸気通路2に流入することを遮断され、エアクリーナ12、吸気通路11を通過した空気は、エアフローメータ13、コンプレッサ35b、吸気通路2を通って機関1に流入する。一方、吸気通路52を通る空気は、流量制御弁50を閉じることにより二次空気をSC36およびNO吸蔵還元触媒37に供給しない。
ステップ522では、通常時の空燃比制御を実行する。すなわち、A/Fセンサ39の出力値が目標空燃比となるように燃料噴射量を制御する。
【0050】
ステップ502では、NO吸蔵還元触媒37を早期に冷却して触媒37の温度を許容範囲(ウインドウ)内にするため触媒37に二次空気を供給すべく吸気切換弁41および42を共に開弁(図1のロの位置)する。この場合、吸入空気量検出手段(エアフローメータ)13を通過した空気を過給手段(過給機)35をバイパスさせて機関1に供給するとともに、エアフローメータ13を通過しない空気を過給機35にて過給し、二次空気として触媒37の上流に供給する。
ステップ503〜505は機関からの排ガスの空燃比を目標空燃比に制御する一般的な空燃比制御のための処理であり、ステップ511〜514は排気冷却要求時の触媒への二次空気供給制御のための処理である。
ステップ503ではエアフローメータ13により計測された吸入空気量Qを読取る。
【0051】
ステップ504では読取った吸入空気量Qと回転数センサ62から読取った機関1の回転数NEとから機関1の一回転当たりの吸気量Q/NEを算出し、理論空燃比を目標空燃比とする各気筒の燃料噴射量FIJ=(Q/NE)×BAFを算出する。ここで、BAFは機関一回転当たりに単位量(例えば1リットル/回転)の吸気が吸入された場合に機関の燃焼空燃比を目標の理論空燃比にするために必要とされる燃料量である。
ステップ505では、所定のクランク角周期に各燃料噴射弁43からステップ504で算出した燃料量FIJを噴射し、機関1をストイキ燃焼させる。
【0052】
ステップ506では触媒37の直後の排気温センサ40の出力値を取込む。
ステップ507では、排気温センサ40の出力値と触媒37の目標温度とを比較し、排気温センサ40の出力値が目標温度以下のときは触媒37が目標温度に達し許容温度範囲内に入ったと判定して本ルーチンを終了し、排気温センサ40の出力値が目標温度より大のときは触媒37が目標温度に達しておらず許容温度範囲内に入っていないと判定してステップ514に進む。
【0053】
一方、ステップ511では、機関1の回転数NEと吸入空気量Qで定まる機関運転状態に応じて予め設定したマップを参照して目標過給圧を設定する。このマップは、アクセル開度センサ(不図示)により検出されるアクセル開度と機関1の回転数NEで定まる機関運転状態に応じて過給圧を設定したものでもよい。
ステップ512では、触媒37の冷却が必要な場合に、機関1を理論空燃比で運転するとともに、圧力センサ15の出力、すなわち実過給圧がステップ511で予め定めた過給圧になるように補助モータ35cの回転数をフィードバック制御する。
【0054】
ステップ513では、二次空気用の流量制御弁50を開弁して吸気通路51から流入しMAT35のコンプレッサ35bを経由して流れる二次空気を全て流量制御弁50、二次空気通路54を経由して全て触媒37上流側の排気通路3に供給する。
ステップ514では流量制御弁50を調節して触媒37への二次空気量を増量するよう調節し、ステップ506に戻る。
【0055】
【発明の効果】
以上説明したように、本発明によれば、機関吸気量を正確に算出することにより、機関の空燃比を正確に制御し、機関冷間始動時には触媒に二次空気を供給することにより短時間で触媒温度を活性化温度に到達させ、被毒解消操作時には機関をリッチ空燃比で運転することにより排気中のHCやCO成分量を増大させるとともに、触媒に二次空気を供給することにより燃焼に必要な酸素を触媒に供給して効率的に触媒を昇温し、さらにNO吸蔵還元触媒を早期に冷却して触媒の温度を許容範囲(ウインドウ)内にするため触媒に二次空気を供給する、内燃機関の二次空気供給装置を提供できる。
【図面の簡単な説明】
【図1】本発明による内燃機関の二次空気供給装置の一実施形態の概略構成図である。
【図2】図1に示す二次空気供給装置に装備されたECUの説明図である。
【図3】図1に示す二次空気供給装置における機関冷間時の二次空気制御のフローチャートである。
【図4】図1に示す二次空気供給装置における触媒の硫黄被毒回復制御時の二次空気制御のフローチャートである。
【図5】図1に示す二次空気供給装置における排気冷却制御時の二次空気制御のフローチャートである。
【符号の説明】
1…内燃機関
2…吸気通路
3…排気通路
13…エアフローメータ
15…圧力センサ
21…サージタンク
31…排気マニホルド
35…過給機(MAT)
35a…タービン
35b…コンプレッサ
35c…モータ
36…スタートキャタリスト(SC)
37…NO吸蔵還元触媒
38、39…空燃比(A/F)センサ
40…排気温センサ
41、42…吸気切換弁
43…燃料噴射弁
50…流量制御弁
52、53、54…二次空気通路
61…水温センサ
62…回転数センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary air supply device for an internal combustion engine, and more particularly to a poisoning elimination operation for poisoning substances accumulated in an exhaust purification catalyst disposed in an exhaust passage, that is, a catalyst temperature is raised to poisoning substances from a catalyst. The present invention relates to a secondary air supply device for an internal combustion engine that prevents a reduction in exhaust gas purification ability of a catalyst due to a poisoning substance by performing an operation of releasing gas.
[0002]
[Prior art]
A technique for purifying harmful substances in exhaust gas by arranging an exhaust purification catalyst in an engine exhaust passage is known. Some of these exhaust purification catalysts absorb specific components (toxic substances) in the exhaust as they are used and store them by absorption, adsorption, etc., and the exhaust purification capacity decreases as the amount of stored poisonous substances increases.
[0003]
For example, as an exhaust purification catalyst, nitrogen oxide (NO) in the exhaust gas when the inflowing exhaust air-fuel ratio is lean X ) By absorbing, adsorbing, or both, and the NO stored when the inflowing exhaust air-fuel ratio becomes rich X NO to reduce and purify X Occlusion reduction catalysts are known, but NO X The storage reduction catalyst contains sulfur oxides (SO X ) Is included, NO X Like SO X Occlude.
[0004]
Moreover, SO X Is NO X NO in order to form a stable sulfate in the storage reduction catalyst X If the exhaust air-fuel ratio is simply made rich as shown in FIG. X As the amount of the sulfur component stored in the storage reduction catalyst increases, NO is increased accordingly. X The occlusion capacity decreases. That is, NO X The occlusion reduction catalyst occludes sulfur as a poisonous substance in the exhaust gas and causes poisoning by sulfur.
[0005]
NO X In order to eliminate sulfur poisoning of the storage reduction catalyst, it is not enough to make the exhaust air-fuel ratio rich. To poisoning, the exhaust air-fuel ratio is made rich and the catalyst temperature is raised to a predetermined temperature higher than during normal operation. A resolution operation is required.
In order to raise the catalyst temperature during the poisoning elimination operation to a predetermined temperature higher than that during normal operation, a relatively large amount of hydrocarbon (HC) such as unburned fuel or CO component is supplied to the catalyst, and sufficient oxygen is supplied. It is effective to supply and burn HC and CO components on the catalyst.
[0006]
Therefore, by operating the engine at a rich air-fuel ratio during the poisoning elimination operation, the amount of HC and CO components in the exhaust gas is increased, and oxygen necessary for combustion is supplied to the catalyst by supplying secondary air to the catalyst. It has been proposed to efficiently raise the temperature of the catalyst by supplying (see Patent Document 2).
Usually, the temperature rise of the catalyst is also required for the catalyst temperature to reach the activation temperature in a short time when the engine is cold. For this reason, a secondary air is usually supplied to the catalyst by providing a dedicated air pump in order to perform the temperature raising operation even at the start.
[0007]
By the way, in a so-called lean burn engine that performs lean air-fuel ratio operation, a turbocharger (supercharger) may be provided in order to expand a load region in which lean air-fuel ratio operation is performed. In this case, it is necessary to maintain high rotation of the turbocharger even in a low load lean air-fuel ratio operation region where the exhaust energy is relatively small. A motor-assisted turbocharger (MAT) is used.
[0008]
In general, when a supercharger is provided in the exhaust system, the temperature of the catalyst is difficult to increase due to an increase in the heat capacity of the exhaust system or a decrease in the exhaust temperature due to the supercharger. The necessity of the temperature raising operation using the secondary air thus increased. Therefore, if MAT is used, a sufficient amount of air can be supplied to the engine by driving the compressor with the motor even when the engine is started.
[0009]
Therefore, if secondary air is supplied to the catalyst from the intake passage on the downstream side of the supercharger using MAT, it is always possible to warm up the catalyst or perform poisoning elimination operation without separately providing an air pump for supplying secondary air. A sufficient amount of secondary air can be supplied, and the configuration of the secondary air supply system can be simplified.
However, if secondary air is supplied from the intake passage downstream of the supercharger in this way, there may be a problem in detecting the intake air amount of the engine.
[0010]
Normally, the intake air amount of the engine is detected by a flow meter (air flow meter) provided in the intake passage upstream of the supercharger. However, since the secondary air must be taken out from the intake passage downstream of the turbocharger, when the secondary air is supplied, the intake air flow actually sucked into the engine is less than the intake air flow detected by the air flow meter. As a result, the amount of air is reduced, and the air flow meter cannot accurately detect the intake flow rate.
[0011]
This problem can be solved by installing an air flow meter in the intake passage on the downstream side of the turbocharger and detecting the intake air flow after the secondary air branch. If there is an air flow meter on the downstream side of the turbocharger, there is a problem that the reliability of the detected value of the air flow meter decreases due to adhesion of lubricating oil to the detector. It is not possible to place an air flow meter.
[0012]
For this reason, for example, in Patent Document 1, in addition to the air flow meter, a flow rate measuring unit is also provided in the secondary air passage branched from the downstream of the supercharger, and when the secondary air is supplied, the engine intake flow rate is determined from the intake flow rate detected by the air flow meter. It is calculated as a value obtained by subtracting the secondary air flow rate measured by the measuring means, thereby preventing an error in the engine intake flow rate.
[0013]
[Patent Document 1]
Japanese Patent Publication No. 7-42873
[Patent Document 2]
Japanese Patent Laid-Open No. 11-280456
[0014]
[Problems to be solved by the invention]
Even when the secondary air flow rate is measured as in Patent Document 1, air that has passed through the compressor of the supercharger is measured by the flow rate measuring means, and there is a problem that the reliability of the measured value is lowered. In other words, in Patent Document 1, an orifice that is unlikely to be affected by the lubricating oil contained in the air passing through the supercharger is disposed in the secondary air supply passage as a flow rate measuring means, and the differential pressure between the upstream side and the downstream side of the orifice is detected. And converted to flow rate.
[0015]
However, when the secondary air flow rate is accurately detected using an orifice as in Patent Document 1, it is necessary to squeeze the orifice opening to sufficiently increase the differential pressure between the upstream side and the downstream side. If the differential pressure is set to be large, the pressure loss of the secondary air passage increases, so that the orifice differential pressure cannot be set sufficiently large, and the flow rate detection accuracy cannot be sufficiently increased.
[0016]
As described above, during the catalyst poisoning elimination operation, the engine exhaust air-fuel ratio is made rich and the secondary air is supplied to the catalyst. In this case, the engine exhaust air-fuel ratio is accurately controlled to an appropriate value. There is a need to. For example, if the richness of the exhaust air / fuel ratio is too large, the amount of HC and CO in the exhaust increases, and the amount of HC and CO that flows downstream without being burned by the catalyst increases. It is preferable to reduce the generation amount of HC and CO by accurately controlling the fuel ratio to a value slightly richer than the stoichiometric air-fuel ratio.
[0017]
However, since the apparatus of Patent Document 1 has low detection accuracy of the secondary air amount, the engine intake amount may not be accurately calculated, and the air-fuel ratio of the engine cannot be accurately controlled.
Therefore, the present invention solves the above problem, that is, accurately calculates the engine intake air amount to accurately control the air-fuel ratio of the engine, and makes the engine rich when empty during engine cold start or poisoning elimination operation. By operating at a fuel ratio, the amount of HC and CO components in the exhaust gas is increased, and by supplying secondary air to the catalyst, oxygen necessary for combustion is supplied to the catalyst to efficiently raise the temperature of the catalyst. NO x An object of the present invention is to provide a secondary air supply device for an internal combustion engine that supplies secondary air to the catalyst in order to cool the storage reduction catalyst at an early stage so that the temperature of the catalyst falls within an allowable range (window).
[0018]
[Means for Solving the Problems]
A secondary air supply device for an internal combustion engine that achieves the above object is as follows.
An intake air amount detecting means for detecting an intake air amount supplied to the internal combustion engine; and a supercharging means provided downstream of the intake air amount detecting means for supercharging the air supplied to the internal combustion engine. In the secondary air supply apparatus for an internal combustion engine, when supplying secondary air upstream of the catalyst provided in the exhaust passage, the internal combustion engine is configured to bypass the supercharging means for the air that has passed through the intake air amount detecting means. And air that does not pass through the intake air amount detection means is supercharged by the supercharging means, and is supplied upstream of the catalyst as secondary air.
[0019]
In the secondary air supply device for an internal combustion engine, the supercharging means supercharges air that does not pass through the intake air amount detection means during cold start or poisoning elimination operation, and is provided in the exhaust passage as secondary air. Since the temperature of the catalyst is raised by supplying it to the upstream side of the catalyst, it is possible to activate the catalyst early and eliminate the poisoning of the catalyst. In addition, when the secondary air is supplied upstream of the catalyst, the air that has passed through the intake air amount detection means is supplied to the internal combustion engine by bypassing the supercharging means, so the intake air amount supplied to the internal combustion engine is accurately detected. Therefore, highly accurate air-fuel ratio control is possible, and exhaust emission is improved.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an embodiment of a secondary air supply device for an internal combustion engine according to the present invention. An internal combustion engine (engine) 1 shown in FIG. 1 is an automobile internal combustion engine, and is a four-cylinder gasoline engine. The engine 1 is a so-called lean burn engine capable of lean air-fuel ratio operation in most of the operating region.
[0021]
In FIG. 1, a surge tank 21 connected to the intake passage 2 is connected to an intake port of each cylinder via an intake branch pipe. Fuel is injected into the intake port of each cylinder from each fuel injection valve (not shown) every rotation of the engine 1. An exhaust manifold 31 connected to the exhaust port of each cylinder is connected to the exhaust passage 3.
[0022]
In the present embodiment, a supercharger 35 for supercharging the engine 1 is provided, the exhaust passage 3 is connected to the exhaust inlet of the supercharger 35, and the intake discharge port of the supercharger 35 is connected to the exhaust discharge port. A secondary air passage 52 via an intake passage 2 and an intake switching valve 42 is connected. The operation of the intake air switching valve 42 will be described later.
In the present embodiment, the supercharger 35 includes a motor 35c that drives a shaft that connects a turbine 35a disposed in the exhaust passage 3 and a compressor 35b disposed in the intake passage 2, and includes an auxiliary in addition to the turbine 35a. In particular, the motor assist turbocharger (MAT) can be driven by using the motor 35c to drive the compressor 35b.
[0023]
Normally, when the engine 1 is operated at a lean air-fuel ratio, the engine exhaust temperature is lower than that during the stoichiometric air-fuel ratio operation, and the energy of the exhaust gas is low, so the rotational speed of the turbine 35a of the supercharger 35 increases so much. Without supercharging pressure. For this reason, during a lean air-fuel ratio operation, a normal supercharging effect may not be obtained, and it may be difficult to increase the output while maintaining the lean air-fuel ratio.
[0024]
On the other hand, when the supercharger (MAT) 35 is used, the compressor 35b can be driven by the electric motor 35c in addition to the exhaust turbine 35a. It is possible to increase the number and obtain a high supercharging pressure. As a result, in this embodiment, the intake air amount to the engine 1 can be increased in accordance with the increase in the fuel supply amount to the engine 1, and a high output can be obtained while maintaining the lean air-fuel ratio. It is possible to expand the fuel ratio operation region to the high output side.
[0025]
In addition, an air flow meter 13 that detects an intake air flow rate flowing into the engine 1 via an air cleaner 12 is provided in the intake inlet passage 11 through which the intake air flowing into the engine 1 flows. On the other hand, an air cleaner 14 is provided at the inlet of an intake inlet passage 51 through which intake air flowing into the MAT 35 via the intake air switching valve 41 flows. In the present embodiment, as the air flow meter 13, any one of known types of air flow meters such as a vane type, an ultrasonic type, and a hot wire type is used.
[0026]
The intake switching valves 41 and 42 operate as follows. During normal engine operation, the intake switching valves 41 and 42 are both in the position (a), and the air flowing from the air cleaner 12 communicates with the engine 1 via the intake inlet passage 11 and the compressor 35b, and the air cleaner 14 and the intake inlet passage 51 The inflow of air flowing into the engine 1 via the engine is blocked. When bypassing the supercharging means for the air that passes through the air flow meter 13 and flows into the engine 1, both of the intake switching valves 41 and 42 are in the (B) position, and the air that has flowed from the air cleaner 12 flows into the intake inlet passage 11 and the intake passage 16. Is connected to the engine 1 through the air cleaner 14, the intake air inlet passage 51, the air flow into the engine 1 through the compressor 35 b is cut off, and this air is used as secondary air to form a secondary air passage 52, a flow control valve. 50 and the secondary air passages 53 and 54 to supply to the catalysts 36 and 37.
[0027]
In the exhaust passage 3 on the downstream side of the turbine 35a of the MAT 35, a start catalyst (SC) 36 made of a three-way catalyst and NO on the downstream side thereof. X An occlusion reduction catalyst 37 is arranged.
The start catalyst 36 has a relatively small capacity so that the temperature is raised to the activation temperature in a short time after the engine is started, and performs exhaust purification immediately after the engine is started.
[0028]
In the present embodiment, a pressure sensor 15 that detects the supercharging pressure in the secondary air passage 52 is provided between the compressor 35 b and the intake air switching valve 42. As will be described later, the supercharging pressure detected by the pressure sensor 15 is used for feedback control of the intake flow rate to the engine 1 in accordance with the operating state of the engine 1.
In the exhaust passage 3, an air-fuel ratio (A / F) sensor 38 is disposed upstream of the catalyst 36, and an air-fuel ratio (A / F) sensor 39 is disposed downstream of the catalyst 36 and upstream of the catalyst 37. An exhaust temperature sensor 40 is disposed downstream of the catalyst 37.
[0029]
NO X The occlusion reduction catalyst 37 is configured to reduce nitrogen oxide (NO X ) Is absorbed and / or absorbed, and the NO is stored when the air-fuel ratio of the inflowing exhaust gas becomes rich X It is a catalyst that reduces and purifies.
In the present embodiment, the engine 1 is an engine capable of lean air-fuel ratio operation in most operating regions, and in a state where the engine 1 is operated with lean air-fuel ratio, NO in exhaust gas X Is NO X Occluded by the occlusion catalyst 37.
[0030]
NO X NO stored in the storage catalyst 37 X Performs a rich spike operation in which the engine 1 is operated at a rich air-fuel ratio for a short time during lean air-fuel ratio operation. X Reduction and purification are performed by supplying the rich air-fuel ratio exhaust gas to the storage catalyst 37.
But NO X The storage catalyst 37 contains a small amount of sulfur oxide (SO X ) NO X Is stored in the same way as NO X SO stored in the storage reduction catalyst X NO to form stable sulfate X If you simply perform a rich spike operation like X It cannot be released from the storage reduction catalyst. Therefore, gradually NO during operation X SO of the storage reduction catalyst 37 X The amount of occlusion increases and the occluded SO X NO can be stored as much as X So-called sulfur poisoning occurs in which the amount decreases.
[0031]
In order to eliminate sulfur poisoning, as described above, the exhaust air-fuel ratio is made rich, and secondary air is supplied to the catalyst 37 to oxidize combustible components such as unburned HC and CO on the catalyst 37. Operation is required.
[0032]
FIG. 2 is an explanatory diagram of an ECU equipped in the secondary air supply device shown in FIG. An engine control unit (ECU) 60 shown in FIG. 2 is composed of a general digital computer, and is connected to a CPU, a RAM, a ROM, an input port and an output port, and an input port connected to each other via a bidirectional bus (not shown). And an A / D converter connected to the output port and a drive circuit connected to the output port.
[0033]
Analog voltage output from the above-described various sensors installed in each part of the vehicle on which the ECU 60 is mounted is input to the input port via an AD converter, or digital signals from the various sensors are directly input. The input port includes an air flow meter 12, a pressure sensor 15, A / F sensors 38 and 39, an exhaust temperature sensor 40, a water temperature sensor 61 that is provided in the water jacket of the cylinder block 1 and detects the cooling water temperature THW of the engine 1, an engine crank A rotation speed sensor 62 that is disposed near a shaft (not shown) and outputs a pulse signal at every fixed rotation angle of the engine crankshaft is connected. In accordance with a control signal from the output port to the drive circuit by the ECU 60, electric power is supplied from an unillustrated battery or alternator to electrical loads such as the intake switching valves 41 and 42, the flow control valve 50 and the MAT 35c, and the fuel injection valve 43. .
[0034]
FIG. 3 is a flowchart of the secondary air control when the engine is cold in the secondary air supply device shown in FIG. In step 301 of this routine, the water temperature THW of the engine 1 is detected by the water temperature sensor 61. When the water temperature THW <85 ° C., the engine 1 is cold and the catalyst SC36 is requesting secondary air. When the water temperature THW ≧ 85 ° C., the engine 1 is warmed up, and it is determined that the catalyst SC 36 is not requesting secondary air, and the process proceeds to step 321.
[0035]
In step 321, both the intake switching valves 41 and 42 are closed (a position in FIG. 1) so that only the intake air that has passed through the air flow meter 13 flows into the engine 1. In this case, the air that has passed through the air cleaner 14 and the intake passage 51 is blocked from flowing into the intake passage 2 by the intake switching valve 41, and the air that has passed through the air cleaner 12 and the intake passage 11 passes through the air flow meter 13, the compressor 35b, It flows into the engine 1 through the intake passage 2. On the other hand, the air passing through the intake passage 52 causes the secondary air to flow into the SC 36 and NO by closing the flow control valve 50. x It is not supplied to the storage reduction catalyst 37.
In step 322, normal air-fuel ratio control is executed. That is, the fuel injection amount is controlled so that the output value of the A / F sensor 39 becomes the target air-fuel ratio.
[0036]
In step 302, the intake air switching valves 41 and 42 are both opened (position b in FIG. 1) to supply secondary air to the SC 36 in order to warm up and activate the SC 36 early to purify the exhaust gas early. . In this case, the air that has passed through the intake air amount detection means (air flow meter) 13 is supplied to the engine 1 by bypassing the supercharging means (supercharger) 35, and does not pass through the air flow meter 13 (passed through the air cleaner 14). ) Air is supercharged by the supercharger 35, and is supplied upstream of the catalyst 36 as secondary air.
Steps 303 to 307 are processes for general air-fuel ratio control for controlling the air-fuel ratio of the exhaust gas from the engine 1 to the target air-fuel ratio, and steps 311 to 314 are the supply of secondary air to the catalyst when the engine is cold. This is a process for control.
In step 303, the intake air amount Q measured by the air flow meter 13 is read.
[0037]
In step 304, the intake air amount Q / NE per one rotation of the engine 1 is calculated from the read intake air amount Q and the rotational speed NE of the engine 1 read from the rotational speed sensor 62, and the air amount slightly richer than the theoretical air-fuel ratio is calculated. The fuel injection amount FIJ = (Q / NE) × BAF of each cylinder having the fuel ratio as the target air-fuel ratio is calculated. Here, BAF is the amount of fuel required to bring the combustion air-fuel ratio of the engine 1 to the target rich air-fuel ratio when a unit amount (for example, 1 liter / rotation) of intake air is sucked per engine rotation. is there.
In step 305, the fuel amount FIJ calculated in step 304 is injected from each fuel injection valve 43 at a predetermined crank angle period, and the engine 1 is richly burned.
[0038]
In step 306, the output value of the air-fuel ratio sensor 38 immediately before SC36 is taken.
In step 307, it is determined whether or not the exhaust air-fuel ratio of the engine 1 is controlled to become the target air-fuel ratio. Specifically, it is determined whether or not the output value of the air-fuel ratio sensor 38 is within a predetermined target air-fuel ratio range. If the determination result is YES, the engine 1 is controlled according to the target air-fuel ratio. When the determination result is NO, it is determined that the engine 1 is not controlled according to the target air-fuel ratio, and the process proceeds to step 314. Here, this target air-fuel ratio is an air-fuel ratio slightly leaner than the stoichiometric air-fuel ratio.
[0039]
On the other hand, in step 311, the target boost pressure is set with reference to a map set in advance according to the engine operating state determined by the engine speed NE and the intake air amount Q. This map may be a map in which the boost pressure is set according to the engine operating state determined by the accelerator opening detected by an accelerator opening sensor (not shown) and the rotational speed NE of the engine 1.
In step 312, when the temperature of the catalyst (SC) 36 needs to be increased, the engine 1 is operated at a rich air-fuel ratio, and the output of the pressure sensor 15, that is, the actual boost pressure is set to the boost pressure set in step 311. Thus, the rotational speed of the auxiliary motor 35c is feedback-controlled.
[0040]
In step 313, the flow control valve 50 for supplying secondary air is opened, all the secondary air that flows in from the intake passage 51 and flows through the compressor 35b of the MAT 35 flows through the flow control valve 50 and the secondary air passage 53. Then, the gas is supplied to the exhaust passage 3 upstream of the catalyst 36.
In step 314, the flow control valve 50 is adjusted to increase or decrease the secondary air amount to the SC 36, and the process returns to step 306. The increase / decrease of the secondary air amount is determined when the output value of the air / fuel ratio sensor 38 >> the target air / fuel ratio at the time of the determination in step 307, it is determined that the air amount is excessive, the secondary air amount is decreased, Output value << target air-fuel ratio, it is determined that the air amount is too low and the secondary air amount is increased.
[0041]
In this case, for example, in a catalyst temperature raising operation (catalyst warm-up operation) for causing the catalyst 36 to reach the activation temperature early at the time of engine cold start, the ECU 60 operates the engine 1 at a rich air-fuel ratio, and an air-fuel ratio sensor. The secondary air amount is feedback controlled so that the exhaust air-fuel ratio at the inlet of the catalyst 36 detected at 38 becomes an air-fuel ratio slightly leaner than the stoichiometric air-fuel ratio (step 314). As a result, a relatively large amount of combustible components such as HC and CO generated by the rich air-fuel ratio operation at the time of cold start of the engine are burned on the catalyst 36, so that the exhaust air quality is greatly deteriorated by the rich air-fuel ratio operation. In addition to being prevented, the catalyst temperature reaches the activation temperature in a short time.
[0042]
FIG. 4 is a flowchart of secondary air control during sulfur poisoning recovery control of the catalyst in the secondary air supply device shown in FIG. In step 401 of this routine, NO X SO stored in the storage reduction catalyst 37 X However, if it is greater than the predetermined value, it is determined that there is a request for recovery of sulfur poisoning of the catalyst 37 and the process proceeds to step 402. If it is less than the predetermined value, it is determined that there is no request for recovery of sulfur poisoning of the catalyst 37 and the process proceeds to step 421.
NO above X SO stored in the storage reduction catalyst 37 X Whether or not is larger than a predetermined value is determined as follows. First, the SO stored in the catalyst 37 X Measure the amount of This SO X When the air-fuel ratio detected by the air-fuel ratio sensor 39 is the air-fuel ratio when the engine 1 is operated in lean air-fuel ratio, the amount of measurement is obtained by integrating the travel distance of the engine 1 or the lean air-fuel ratio operation time. This integrated value is the SO stored in the catalyst 37. X Estimate with quantity. Next, the integrated value is compared with a predetermined value to make the above determination. The integrated value is reset when the catalyst sulfur poisoning recovery request is changed from being present to absent.
[0043]
In step 421, both intake switching valves 41 and 42 are closed so that only the intake air that has passed through the air flow meter 13 flows into the engine 1 (position a in FIG. 1). In this case, the air that has passed through the air cleaner 14 and the intake passage 51 is blocked from flowing into the intake passage 2 by the intake switching valve 41, and the air that has passed through the air cleaner 12 and the intake passage 11 passes through the air flow meter 13, the compressor 35b, It flows into the engine 1 through the intake passage 2. On the other hand, the air passing through the intake passage 52 causes the secondary air to flow into the SC 36 and NO by closing the flow control valve 50. x It is not supplied to the storage reduction catalyst 37.
In step 422, normal air-fuel ratio control is executed. That is, the fuel injection amount is controlled so that the output value of the A / F sensor 39 becomes the target air-fuel ratio.
[0044]
In step 402, NO x In order to recover the sulfur poisoning of the storage reduction catalyst 37 and purify the exhaust gas at an early stage, both the intake switching valves 41 and 42 are opened (position B in FIG. 1) to supply secondary air to the catalyst 37. In this case, the air that has passed through the intake air amount detection means (air flow meter) 13 is supplied to the engine 1 by bypassing the supercharging means (supercharger) 35, and the air that does not pass through the air flow meter 13 is supplied to the supercharger 35. And is supplied upstream of the catalyst 37 as secondary air.
[0045]
Steps 403 to 407 are processes for general air-fuel ratio control for controlling the air-fuel ratio of the exhaust gas from the engine to the target air-fuel ratio, and steps 411 to 414 are the catalysts when there is a request for recovery of sulfur poisoning of the catalyst 37. 37 is a process for controlling the secondary air supply to 37.
Steps 403 to 405 correspond to the processing steps 303 to 305 shown in FIG. 3 and are the same, and steps 406 and 407 are different from the processing steps 306 and 307 shown in FIG. 3, so steps 406 and 407 will be described below.
[0046]
In step 406, NO x The output value of the air-fuel ratio sensor 39 immediately before the storage reduction catalyst 37 is taken in.
In step 407, it is determined whether or not the exhaust air / fuel ratio of the engine 1 is controlled to be the target air / fuel ratio. Specifically, it is determined whether or not the output value of the air-fuel ratio sensor 39 is within a predetermined target air-fuel ratio range. If the determination result is YES, the engine 1 is controlled according to the target air-fuel ratio. When the determination result is NO, it is determined that the engine 1 is not controlled according to the target air-fuel ratio, and the process proceeds to step 414. Here, this target air-fuel ratio is an air-fuel ratio slightly leaner than the stoichiometric air-fuel ratio.
[0047]
Here, steps 411 and 412 are the same as processing steps 311 and 312 shown in FIG. 3, respectively, and steps 413 and 414 are different from processing steps 313 and 314 shown in FIG. explain.
In step 413, the secondary air supply flow control valve 50 is opened, all the secondary air flowing in from the intake passage 51 and flowing through the compressor 35b of the MAT 35 flows through the flow control valve 50 and the secondary air passage 54. All are supplied to the exhaust passage 3 upstream of the catalyst 37.
In step 414, the flow rate control valve 50 is adjusted to increase or decrease the secondary air amount to the catalyst 37, and the process returns to step 406. The increase / decrease of the secondary air amount is determined when the output value of the air / fuel ratio sensor 39 >> the target air / fuel ratio at the time of the determination in step 407, it is determined that the air amount is excessive, and the secondary air amount is decreased. Output value << target air-fuel ratio, it is determined that the air amount is too low and the secondary air amount is increased.
[0048]
FIG. 5 is a flowchart of secondary air control during exhaust cooling control in the secondary air supply device shown in FIG. In step 501 of this routine, the exhaust temperature EXHT of the engine 1 is detected by the exhaust temperature sensor 40, and when EXHT is higher than a predetermined temperature, for example, 500 ° C., it is determined that there is an exhaust cooling request for the catalyst 38. Proceeding to 502, when it is a predetermined temperature, for example, 300 ° C. or lower, it is determined that there is no exhaust cooling request for the catalyst 38, and the routine proceeds to step 521.
[0049]
In step 521, the intake switching valves 41 and 42 are both closed (the position of A in FIG. 1) so that only the intake air that has passed through the air flow meter 13 flows into the engine 1. In this case, the air that has passed through the air cleaner 14 and the intake passage 51 is blocked from flowing into the intake passage 2 by the intake switching valve 41, and the air that has passed through the air cleaner 12 and the intake passage 11 passes through the air flow meter 13, the compressor 35b, It flows into the engine 1 through the intake passage 2. On the other hand, the air passing through the intake passage 52 causes the secondary air to flow into the SC 36 and NO by closing the flow control valve 50. x It is not supplied to the storage reduction catalyst 37.
In step 522, normal air-fuel ratio control is executed. That is, the fuel injection amount is controlled so that the output value of the A / F sensor 39 becomes the target air-fuel ratio.
[0050]
In step 502, NO x In order to cool the storage reduction catalyst 37 at an early stage so that the temperature of the catalyst 37 falls within an allowable range (window), the intake switching valves 41 and 42 are both opened to supply secondary air to the catalyst 37 (see FIG. 1B). To position. In this case, the air that has passed through the intake air amount detection means (air flow meter) 13 is supplied to the engine 1 by bypassing the supercharging means (supercharger) 35, and the air that does not pass through the air flow meter 13 is supplied to the supercharger 35. And is supplied upstream of the catalyst 37 as secondary air.
Steps 503 to 505 are processing for general air-fuel ratio control for controlling the air-fuel ratio of the exhaust gas from the engine to the target air-fuel ratio, and steps 511 to 514 are control of secondary air supply to the catalyst when exhaust cooling is requested. Is the process for.
In step 503, the intake air amount Q measured by the air flow meter 13 is read.
[0051]
In step 504, the intake air amount Q / NE per one rotation of the engine 1 is calculated from the read intake air amount Q and the rotational speed NE of the engine 1 read from the rotational speed sensor 62, and the theoretical air fuel ratio is set as the target air fuel ratio. The fuel injection amount FIJ = (Q / NE) × BAF for each cylinder is calculated. Here, BAF is the amount of fuel required to bring the combustion air-fuel ratio of the engine to the target stoichiometric air-fuel ratio when a unit amount (for example, 1 liter / rotation) of intake air is taken in per engine rotation. .
In step 505, the fuel amount FIJ calculated in step 504 is injected from each fuel injection valve 43 at a predetermined crank angle cycle, and the engine 1 is stoichiometrically burned.
[0052]
In step 506, the output value of the exhaust temperature sensor 40 immediately after the catalyst 37 is taken.
In step 507, the output value of the exhaust temperature sensor 40 is compared with the target temperature of the catalyst 37. When the output value of the exhaust temperature sensor 40 is equal to or lower than the target temperature, the catalyst 37 reaches the target temperature and falls within the allowable temperature range. This routine is finished and this routine is ended. When the output value of the exhaust temperature sensor 40 is higher than the target temperature, it is determined that the catalyst 37 has not reached the target temperature and is not within the allowable temperature range, and the routine proceeds to step 514. .
[0053]
On the other hand, in step 511, a target boost pressure is set with reference to a map set in advance according to the engine operating state determined by the engine speed NE and the intake air amount Q. This map may be a map in which the boost pressure is set according to the engine operating state determined by the accelerator opening detected by an accelerator opening sensor (not shown) and the rotational speed NE of the engine 1.
In step 512, when the catalyst 37 needs to be cooled, the engine 1 is operated at the stoichiometric air-fuel ratio, and the output of the pressure sensor 15, that is, the actual supercharging pressure is set to the supercharging pressure predetermined in step 511. The rotational speed of the auxiliary motor 35c is feedback controlled.
[0054]
In step 513, the secondary air flow control valve 50 is opened and all the secondary air flowing in from the intake passage 51 and flowing through the compressor 35b of the MAT 35 passes through the flow control valve 50 and the secondary air passage 54. All of the gas is then supplied to the exhaust passage 3 upstream of the catalyst 37.
In step 514, the flow rate control valve 50 is adjusted to adjust the amount of secondary air to the catalyst 37, and the process returns to step 506.
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to accurately control the air-fuel ratio of the engine by accurately calculating the engine intake air amount, and to supply secondary air to the catalyst for a short time by starting the engine cold. In order to increase the amount of HC and CO components in the exhaust by operating the engine at a rich air-fuel ratio at the time of poisoning elimination operation, the combustion temperature is increased by supplying secondary air to the catalyst. The necessary oxygen is supplied to the catalyst to efficiently raise the temperature of the catalyst. x It is possible to provide a secondary air supply device for an internal combustion engine that supplies secondary air to the catalyst in order to cool the storage reduction catalyst at an early stage so that the temperature of the catalyst falls within an allowable range (window).
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of a secondary air supply device for an internal combustion engine according to the present invention.
FIG. 2 is an explanatory diagram of an ECU provided in the secondary air supply device shown in FIG. 1;
FIG. 3 is a flowchart of secondary air control when the engine is cold in the secondary air supply device shown in FIG. 1;
4 is a flowchart of secondary air control at the time of catalyst sulfur poisoning recovery control in the secondary air supply device shown in FIG. 1; FIG.
FIG. 5 is a flowchart of secondary air control during exhaust cooling control in the secondary air supply device shown in FIG. 1;
[Explanation of symbols]
1. Internal combustion engine
2 ... Intake passage
3 ... Exhaust passage
13 ... Air flow meter
15 ... Pressure sensor
21 ... Surge tank
31. Exhaust manifold
35 ... Supercharger (MAT)
35a ... Turbine
35b ... Compressor
35c ... motor
36 ... Start Catalyst (SC)
37 ... NO x Occlusion reduction catalyst
38, 39 ... Air-fuel ratio (A / F) sensor
40 ... Exhaust temperature sensor
41, 42 ... Intake switching valve
43 ... Fuel injection valve
50 ... Flow control valve
52, 53, 54 ... Secondary air passage
61 ... Water temperature sensor
62 ... Rotational speed sensor

Claims (1)

内燃機関に供給される吸入空気量を検出する吸入空気量検出手段と、該吸入空気量検出手段の下流に設けられ該内燃機関に供給される空気を過給する過給手段と、を備えた内燃機関の二次空気供給装置において、
排気通路に設けられた触媒の上流に二次空気を供給する時、前記吸入空気量検出手段を通過した空気を前記過給手段をバイパスさせて前記内燃機関に供給するとともに、前記吸入空気量検出手段を通過しない空気を前記過給手段にて過給し、二次空気として前記触媒の上流に供給する、
ことを特徴とする内燃機関の二次空気供給装置。
An intake air amount detecting means for detecting an intake air amount supplied to the internal combustion engine; and a supercharging means provided downstream of the intake air amount detecting means for supercharging the air supplied to the internal combustion engine. In a secondary air supply device for an internal combustion engine,
When supplying secondary air upstream of the catalyst provided in the exhaust passage, air passing through the intake air amount detection means is supplied to the internal combustion engine by bypassing the supercharging means, and the intake air amount detection is performed. The air that does not pass through the means is supercharged by the supercharging means, and is supplied upstream of the catalyst as secondary air.
A secondary air supply device for an internal combustion engine.
JP2003179894A 2003-06-24 2003-06-24 Secondary air supply device for internal combustion engine Pending JP2005016351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179894A JP2005016351A (en) 2003-06-24 2003-06-24 Secondary air supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179894A JP2005016351A (en) 2003-06-24 2003-06-24 Secondary air supply device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005016351A true JP2005016351A (en) 2005-01-20

Family

ID=34181096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179894A Pending JP2005016351A (en) 2003-06-24 2003-06-24 Secondary air supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005016351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177669A (en) * 2005-12-27 2007-07-12 Toyota Motor Corp Device and method for exhaust emission control
DE102009047355A1 (en) * 2009-12-01 2011-06-09 Ford Global Technologies, LLC, Dearborn Combustion engine has compressor with compressor outlet opening and cylinder with cylinder inlet opening, where compressor outlet opening is connected with cylinder inlet opening in aerodynamic manner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177669A (en) * 2005-12-27 2007-07-12 Toyota Motor Corp Device and method for exhaust emission control
DE102009047355A1 (en) * 2009-12-01 2011-06-09 Ford Global Technologies, LLC, Dearborn Combustion engine has compressor with compressor outlet opening and cylinder with cylinder inlet opening, where compressor outlet opening is connected with cylinder inlet opening in aerodynamic manner
DE102009047355B4 (en) * 2009-12-01 2014-04-17 Ford Global Technologies, Llc Combustion engine with a gas storage space with variable volume and method for operating such an internal combustion engine

Similar Documents

Publication Publication Date Title
US10072590B2 (en) Control device and control method for diesel engine
JP2001164999A (en) Clogging sensing device of exhaust gas recirculation device
JP5282695B2 (en) Control device for an internal combustion engine with a supercharger
JP2006169997A (en) Deterioration determining device of catalyst
JP2011179324A (en) Control device for internal combustion engine
JP2011001893A (en) Exhaust gas purification system
JP4747079B2 (en) Exhaust gas purification device for internal combustion engine
JP5625716B2 (en) Cooling device for internal combustion engine
JP2005042604A (en) Exhaust emission control system of internal combustion engine
JP2010163924A (en) Control device of internal combustion engine
JP3979099B2 (en) Exhaust gas purification device for internal combustion engine
JP5760932B2 (en) Engine control device
JP4510655B2 (en) Exhaust gas purification device for internal combustion engine
JP4910849B2 (en) EGR system for internal combustion engine
JP2005023822A (en) Control device for internal combustion engine
JP5157507B2 (en) Exhaust gas purification system for internal combustion engine
JP2008106636A (en) Abnormality detection device for engine
JP2005016351A (en) Secondary air supply device for internal combustion engine
JP3511967B2 (en) Abnormality detection device for particulate filter
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
US11300065B2 (en) Method of controlling temperature of exhaust purification device of internal combustion engine, and internal combustion engine control device
JP2000097011A (en) Exhaust emission control device for diesel engine
JP2004278457A (en) Catalyst deterioration diagnosing device of internal combustion engine
JP4487838B2 (en) Control device for internal combustion engine having supercharger with electric motor
JPH0988563A (en) Exhaust device for internal combustion engine