JP2005015701A - Method of manufacturing ferrocoke - Google Patents

Method of manufacturing ferrocoke Download PDF

Info

Publication number
JP2005015701A
JP2005015701A JP2003185001A JP2003185001A JP2005015701A JP 2005015701 A JP2005015701 A JP 2005015701A JP 2003185001 A JP2003185001 A JP 2003185001A JP 2003185001 A JP2003185001 A JP 2003185001A JP 2005015701 A JP2005015701 A JP 2005015701A
Authority
JP
Japan
Prior art keywords
coke
shaft furnace
gas
ferro
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003185001A
Other languages
Japanese (ja)
Other versions
JP4218443B2 (en
Inventor
Minoru Asanuma
稔 浅沼
Toshihiko Okada
敏彦 岡田
Shozo Itagaki
省三 板垣
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003185001A priority Critical patent/JP4218443B2/en
Publication of JP2005015701A publication Critical patent/JP2005015701A/en
Application granted granted Critical
Publication of JP4218443B2 publication Critical patent/JP4218443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing ferrocoke which can recover hydrogen in a high yield from a gas formed in manufacturing ferrocoke from coal and iron ore. <P>SOLUTION: The coal and the iron ore as raw materials are carbonized in a shaft kiln to recover a carbonization gas formed from the shaft kiln. By blowing the carbonization gas formed in producing ferrocoke into a high-temperature tuyere 9 with a heavy tar content, hydrogen is increasingly recovered and a carbon content in the tar to be blown is recovered with the ferrocoke. Further, by blowing the carbonization gas formed in manufacturing the ferrocoke into the high-temperature tuyere 9 with a synthetic resin, hydrogen is increasingly recovered and a carbon content in the synthetic resin to be blown is recovered together with coke. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、石炭及び鉄鉱石を成型し、シャフト炉により鉄鉱石を還元し、得られた成型フェロコークスを高炉等の原料とするフェロコークスの製造方法に関する。
【0002】
【従来の技術】
近年、室炉式コークス製造法に替わるコークス製造方法として、連続式成型コークス製造法が開発されている。連続式成型コークス製造法では、石炭を所定の大きさに成型後、シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。
【0003】
連続式成型コークス製造法を使用したフェロコークスの製造技術として、以下の技術が知られている。
【0004】
特許文献1には、成型炭と鉄鉱石をシャフト炉に装入し、成型フェロコークスを製造するフェロコークスの製造方法が開示されている。この特許文献1では、成型炭の乾留過程で発生した副生ガスを、炉外で脱タール、除塵及び脱水した後に燃焼炉で部分燃焼し、この部分燃焼させたガスを再びシャフト炉内に吹き込む(特許文献1、1頁参照)。
【0005】
特許文献2には、成型フェロコークスの製造方法において、シャフト炉から発生する副生ガスを再加熱し、シャフト炉(フェロコークス製造炉)に熱源として吹き込む方法が開示されている(特許文献2、1頁参照)。
【0006】
【特許文献1】特開昭64−83607号公報
【特許文献2】特開昭59−66486号公報
【0007】
【発明が解決しようとする課題】
上記従来技術の、石炭及び鉄鉱石からフェロコークスを製造する方法には、発生ガスより高効率で水素を回収する場合に以下の問題点がある。
【0008】
特許文献1においては、副生ガスを空気あるいは酸素にて部分酸化し、炉に導入することから水素濃度を著しく低下させ、水素の効率的な回収が困難になる。また、部分酸化で発生する還元性ガスにより鉄鉱石の還元は促進されるものの、一部生成するCO,HOにより成型炭中の炭素分が消費される可能性があり、このため成型フェロコークスの圧壊強度等を低下させる可能性がある。
【0009】
特許文献2においては、フェロコークス製造過程で発生する副生ガスはH,CO,CO等を含むので、これを再加熱し、シャフト炉に導入した場合には、鉄鉱石の還元は促進されるものの発生ガス中の水素濃度は低下する。
【0010】
室炉コークス法に替わる方法として連続式成型コークスが検討され、水素濃度60%の副生ガスが回収されることが報告されている。本方法に石炭および鉄鉱石からなるフェロコークス製造方法を適用した場合、還元により発生するCO,COのため、水素濃度が低下する。
【0011】
本発明は、石炭及び鉄鉱石からフェロコークスを製造する方法において、発生ガスから高効率に水素を回収することができるフェロコークスの製造方法を提供することを目的とする。
【0012】
ところで、近年、産業廃棄物や一般廃棄物としてプラスチック等の合成樹脂類が増加しており、その処理が社会上、環境上、大きな問題となっている。なかでも高分子系の炭化水素化合物であるプラスチックは燃焼時に発生する発熱量が高く、焼却処理した場合の焼却炉の炉壁を傷める等の問題から専用の焼却設備を必要とし、その多くはごみ埋立て地等で投棄処理されているのが現状である。しかし、プラスチック等の投棄は埋立て地の地盤の低下をもたらすと共に、環境対策上好ましくなく、また、昨今では処理費の増加とともに埋め立て地用の用地不足が社会問題となりつつあり、このため投棄によらない合成樹脂類の大量処理方法の開発が切望されている。また、家屋等の建設あるいは解体過程で発生する廃木材なども同様に新規の有効利用法が必須である。
【0013】
そこで本発明の他の目的は、バイオマス、廃プラスチックを有効利用できるフェロコークスの製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記課題を解決するために、本発明のフェロコークスの製造方法は、原料としての石炭及び鉄鉱石をシャフト炉で乾留し、前記シャフト炉から発生する乾留ガスを回収するフェロコークスの製造方法において、シャフト炉の高温羽口にフェロコークス製造時に発生する乾留ガスと共に重質タール分を吹き込むことによって、水素を増回収すると共に、吹き込みタール中の炭素分をフェロコークスと共に回収することを特徴とする。
【0015】
シャフト炉の高温羽口に重質タール分を吹き込むと、乾留過程における鉄鉱石の触媒効果により、還元鉄上で炭素と水素との化合物である重質タール分がガス化し、また軽量化する。このため、タール成分中炭素分がフェロコークス上に析出し(すなわち炭素を有効利用することができ)、シャフト炉から回収するガス中の水素量が増大する。
【0016】
また本発明のフェロコークスの製造方法は、原料としての石炭及び鉄鉱石をシャフト炉で乾留し、前記シャフト炉から発生する乾留ガスを回収するフェロコークスの製造方法において、シャフト炉の高温羽口にフェロコークス製造時に発生する乾留ガスと共に合成樹脂を吹き込むことによって、水素を増回収すると共に、吹き込み合成樹脂中の炭素分をコークスとともに回収することを特徴とする。
【0017】
シャフト炉の高温羽口に合成樹脂分を吹き込むと、乾留過程における鉄鉱石の触媒効果により、還元鉄上で炭素と水素との化合物である合成樹脂がガス化し、また軽量化する。このため、合成樹脂成分中炭素分がフェロコークス上に析出し(すなわち炭素を有効利用することができ)、シャフト炉から回収するガス中の水素量が増大する。
【0018】
また本発明の好ましい一態様は、前記石炭及び前記鉄鉱石以外に、バイオマス及び廃プラスチックの少なくとも一方を原料として用いることを特徴とする。
【0019】
乾留過程における鉄鉱石の触媒効果を利用して、バイオマス及び廃プラスチックの少なくとも一方から水素を含むガスを多量に回収することができる。
【0020】
【発明の実施の形態】
以下本発明の一実施形態におけるフェロコークス製造方法について説明する。図1はフェロコークス製造方法が実施されるシステムの全体構成図を示す。原料としては鉄鉱石、石炭、バイオマスを使用する。石炭には冶金用ではなく、例えば一般炭である非微粘結炭を使用する。バイオマスの替わりに又はバイオマスと併用して廃プラスチックを使用してもよい。
【0021】
ここでバイオマスとは、すべての生物、すなわちエネルギ資源として再生可能な全有機体をいい、例えば木材、パルプ廃液、紙、油を挙げることができる。また廃プラスチックとは、あらゆる産業分野、日常生活分野で利用されているプラスチックが使用後に廃棄物として排出されたものをいう。廃プラスチックは、主に家庭から排出される一般廃棄物、及び事業所から排出される産業廃棄物の双方に含まれて排出される。また廃プラスチック以外にも、汚泥、タイヤ等の有機系廃棄物を原料として使用してもよい。
【0022】
原料の鉄鉱石、石炭及びバイオマスは粉砕機1にて所定の粒度以下に粉砕された後、前処理装置3にて加熱され、含有水分が除去される。前処理装置3には例えば流動層炉やキルンが用いられる。
【0023】
次に、原料を混練機4により混合した後、成型機5により熱間成型する。次に得られた成型炭をシャフト炉に装入・乾留する。シャフト炉内に装入された成型炭はシャフト炉内を降下する。まず、シャフト炉低温乾留室6では、低温加熱ガス吹き込み羽口7よりガスを吹き込み、成型炭を昇温・熱分解する。次に、シャフト炉高温乾留室8において、高温羽口としての高温加熱ガス吹き込み羽口9より加熱した回収ガスを吹き込み、成型炭の熱分解と鉄鉱石の還元反応を進行させる。次にシャフト炉下部冷却室10にて、回収ガスにより冷却し、成型フェロコークスを回収する。
【0024】
シャフト炉からは発生ガスが回収されるが、図示しない熱交換機器、タールミストセパレータ、デカンターなどにより降温され、高温ガス加熱炉12、低温ガス加熱炉11に供給される。
【0025】
シャフト炉から発生する乾留ガスは、一部は低温ガス加熱炉11及び高温ガス加熱炉12に供給され、残部は水素リッチ発生ガスとして回収される。石炭、バイオマスの乾留によって発生する重質タール分は、タール成分搬送装置13によって高温加熱ガス吹き込み羽口9に吹き込まれる。また廃プラスチック等の合成樹脂も、重質タール分と共にあるいは重質タール分に替えて合成樹脂搬送装置13によって高温ガス吹込み羽口9に吹き込まれる。
【0026】
シャフト炉の高温加熱ガス吹き込み羽口9に重質タール分を吹き込むと、乾留過程における鉄鉱石の触媒効果により、還元鉄上で炭素と水素との化合物である重質タール分がガス化し、軽量化する。このため、タール成分中の炭素分がフェロコークス上に析出し、シャフト炉から回収するガス中の水素量が増大する。また、シャフト炉の高温加熱ガス吹き込み羽口9に合成樹脂を吹き込むと、乾留過程における鉄鉱石の触媒効果により、合成樹脂中の炭素分がフェロコークス上に析出し、シャフト炉から回収するガス中の水素量が増大する。
【0027】
さらに乾留過程における鉄鉱石の触媒効果によって、原料としてのバイオマス又は廃プラスチックから水素を含むガスを多量に回収することができる。
【0028】
鉄鉱石の中でも多孔質(すなわち高結晶水)の鉄鉱石を使用すると、分解触媒効果を向上させることができ、水素の収率を上げることができる。また回収した乾留ガスを水蒸気改質又は部分酸化により改質し、COを除去して、ガスの水素濃度を向上させることが望ましい。これにより水素濃度が70%以上の水素リッチなガスを得ることができる。なお近年水素ガスは、燃料電池用の需要も見込まれている。
【0029】
一部還元された粉状鉄源を内包したフェロコークスは例えば高炉に投入される。鉄鉱石はCO反応の触媒作用効果を有しているので、原料に高反応性の鉄鉱石を添加することにより、フェロコークスの反応性を高めることができる。
【0030】
【実施例】
〈廃プラスチック吹き込みの実施例1〉
図1に示す本実施形態の装置にて以下の配合、操業条件でフェロコークス製造試験を実施した。表1および表2に示す組成および配合比で石炭および鉱石を配合した。
【0031】
【表1】

Figure 2005015701
【0032】
【表2】
Figure 2005015701
【0033】
粉砕機1にて粉砕後、前処理装置3にて約350℃にて含有水分を蒸発し、混練機4により混合した後、熱間成型により成型体とした。さらに得られた成型体をシャフト炉に装入乾留した。まずシャフト炉低温乾留室6では、低温加熱ガス吹き込み羽口7より650℃、1191Nm/t−原料のガスが吹き込まれ、成型体は昇温、熱分解を受ける。さらにシャフト炉高温乾留室8において、高温加熱ガス吹き込み羽口9より1080℃、344Nm/t−原料に加熱した回収ガスを吹き込み、熱分解と鉄鉱石の還元反応を進行する。さらにシャフト炉下部冷却室にて55℃、709Nm/t−原料の回収ガスにより冷却し、612kg/t−原料の成型フェロコークスを回収した。シャフト炉からは410℃、393Nm/t−原料の発生ガスが回収されるが、図示しない熱交換機器、タールミストセパレータ、デカンターなどにより降温され、低温ガス加熱炉11、高温ガス加熱炉12に供給される。高温加熱ガス吹き込み羽口9に廃プラスチックを50kg/t−原料を合成樹脂搬送装置13にて吹き込んだ。表3に回収ガスの組成を示す。
【0034】
〈廃プラスチック吹き込みの実施例2〉
表2の配合比で試験を実施した。シャフト炉低温乾留室6では低温加熱ガス吹き込み羽口7より650℃、1044Nm/t−原料のガスを、シャフト炉高温乾留室8において高温加熱ガス吹き込み羽口9より1080℃、394Nm/t−原料に加熱した回収ガスを吹き込んだ。さらにシャフト炉下部冷却室にて55℃、679Nm/t−原料の回収ガスにより冷却し、576kg/t−原料の成型フェロコークスを回収した。シャフト炉からは410℃、387Nm/t−原料の発生ガスが回収された。表3に回収ガスの組成を示す。
【0035】
【表3】
Figure 2005015701
【0036】
〈比較例〉
実施例1の配合により、廃プラスチックを吹き込まず試験を実施した。シャフト炉低温乾留室6では低温加熱ガス吹き込み羽口7より650℃、1234Nm/t−原料のガスを、シャフト炉高温乾留室8において高温加熱ガス吹き込み羽口9より1080℃、266Nm/t−原料に加熱した回収ガスを吹き込んだ。さらにシャフト炉下部冷却室10にて55℃、670Nm/t−原料の回収ガスにより冷却し、585kg/t−原料の成型フェロコークスを回収した。シャフト炉からは410℃、373Nm/t−原料の発生ガスが回収された。表3に回収ガスの組成を示す。
【0037】
本発明の実施例では、比較例に比べて、水素濃度の高い発生ガスが得られ、高温羽口部より吹き込んだ廃プラスチックが有効に水素分として回収されたことがわかる。
【0038】
〈タール吹き込みの実施例〉
表4に示す組成及び配合比で石炭、鉄鉱石及びバイオマスを混合し、熱間成型した。表5に示す操業条件でシャフト炉を操業し、高温加熱ガス吹き込み羽口9にタール分を50kg/t−原料を吹き込んだ。
【0039】
【表4】
Figure 2005015701
【0040】
【表5】
Figure 2005015701
【0041】
得られた回収ガスの成分を表6に示す。表6には高温ガス吹き込み羽口にタール分を吹き込まない試験結果を比較例として示す。回収ガス中の水素が増大しているのがわかる。
【0042】
【表6】
Figure 2005015701
【0043】
【発明の効果】
以上説明したように、本発明によれば、シャフト炉の高温羽口に重質タール分を吹き込むと、乾留過程における鉄鉱石の触媒効果により、タール成分中炭素分がフェロコークス上に析出し、シャフト炉から回収するガス中の水素量が増大する。
【0044】
またシャフト炉の高温羽口に合成樹脂分を吹き込むと、乾留過程における鉄鉱石の触媒効果により、合成樹脂成分中炭素分がフェロコークス上に析出し、シャフト炉から回収するガス中の水素量が増大する。
【図面の簡単な説明】
【図1】フェロコークス製造方法が実施されるシステムの全体構成図。
【符号の説明】
1・・・粉砕機
3・・・前処理装置
4・・・混練機
5・・・成型機
6・・・シャフト炉低温乾留室
7・・・低温加熱ガス吹き込み羽口
8・・・シャフト炉高温乾留室
9・・・高温加熱ガス吹き込み羽口(高温羽口)
10・・・シャフト炉下部冷却室
11・・・低温ガス加熱炉
12・・・高温ガス加熱炉
13・・・タール成分搬送装置、合成樹脂搬送装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing ferro-coke by molding coal and iron ore, reducing the iron ore by a shaft furnace, and using the obtained molded ferro-coke as a raw material for a blast furnace or the like.
[0002]
[Prior art]
In recent years, a continuous molding coke manufacturing method has been developed as a coke manufacturing method replacing the chamber furnace type coke manufacturing method. In the continuous molding coke manufacturing method, coal is molded into a predetermined size, charged into a shaft furnace, and heated using a circulating heat transfer gas to dry-distill the coal to produce molded coke.
[0003]
The following techniques are known as ferro-coke manufacturing techniques using a continuous molding coke manufacturing method.
[0004]
Patent Document 1 discloses a ferro-coke manufacturing method in which cast charcoal and iron ore are charged into a shaft furnace to manufacture molded ferro-coke. In this Patent Document 1, by-product gas generated during the dry distillation process of coal coal is detarred, dust-removed and dehydrated outside the furnace, and then partially burned in the combustion furnace, and the partially burned gas is blown again into the shaft furnace. (See Patent Document 1, page 1).
[0005]
Patent Document 2 discloses a method of re-heating by-product gas generated from a shaft furnace and blowing it as a heat source into a shaft furnace (ferro-coke manufacturing furnace) in a manufacturing method of molded ferro-coke (Patent Document 2, (See page 1).
[0006]
[Patent Document 1] JP-A-64-83607 [Patent Document 2] JP-A-59-66486
[Problems to be solved by the invention]
The method for producing ferro-coke from coal and iron ore according to the prior art has the following problems when hydrogen is recovered with higher efficiency than the generated gas.
[0008]
In Patent Document 1, since the by-product gas is partially oxidized with air or oxygen and introduced into a furnace, the hydrogen concentration is remarkably lowered, and efficient recovery of hydrogen becomes difficult. In addition, although the reduction of iron ore is promoted by the reducing gas generated by partial oxidation, the carbon content in the formed coal may be consumed by CO 2 and H 2 O that are partially generated. There is a possibility that the crushing strength of ferro-coke may be reduced.
[0009]
In Patent Document 2, the by-product gas generated in the ferro-coke production process contains H 2 , CO, CO 2, etc., so when this is reheated and introduced into the shaft furnace, the reduction of iron ore is accelerated. However, the hydrogen concentration in the generated gas decreases.
[0010]
Continuous molding coke has been studied as a method to replace the chamber furnace coke method, and it has been reported that by-product gas having a hydrogen concentration of 60% is recovered. When a ferro-coke production method composed of coal and iron ore is applied to this method, the hydrogen concentration decreases due to CO and CO 2 generated by reduction.
[0011]
An object of this invention is to provide the manufacturing method of the ferro coke which can collect | recover hydrogen from generated gas highly efficiently in the method of manufacturing ferro coke from coal and iron ore.
[0012]
By the way, in recent years, synthetic resins such as plastics are increasing as industrial waste and general waste, and the treatment thereof has become a serious problem in terms of society and environment. In particular, plastics, which are polymeric hydrocarbon compounds, generate a large amount of heat during combustion, and require special incineration equipment due to problems such as damaging the walls of the incinerator when incinerated. At present, it is disposed of in landfills. However, the dumping of plastic, etc. brings about a decrease in the land of the landfill site and is not preferable for environmental measures. In addition, the shortage of land for the landfill site is becoming a social problem with the increase in the processing cost. Development of a mass processing method for non-reliable synthetic resins is eagerly desired. In addition, a new effective utilization method is indispensable for waste wood generated in the construction or dismantling process of houses and the like.
[0013]
Then, the other object of this invention is to provide the manufacturing method of the ferro coke which can utilize biomass and waste plastics effectively.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the ferro-coke production method of the present invention is a ferro-coke production method in which coal and iron ore as raw materials are dry-distilled in a shaft furnace, and the dry-distilled gas generated from the shaft furnace is recovered. The heavy tar content is blown into the high temperature tuyere of the shaft furnace together with the dry distillation gas generated at the time of ferrocoke production, whereby hydrogen is increased and recovered, and the carbon content in the blown tar is recovered together with the ferrocoke.
[0015]
When heavy tar is blown into the hot tuyeres of the shaft furnace, the heavy tar, which is a compound of carbon and hydrogen, is gasified and reduced in weight on the reduced iron due to the catalytic effect of iron ore in the dry distillation process. For this reason, carbon content in the tar component is deposited on the ferrocoke (that is, carbon can be effectively used), and the amount of hydrogen in the gas recovered from the shaft furnace increases.
[0016]
The ferro-coke production method of the present invention is a ferro-coke production method in which coal and iron ore as raw materials are dry-distilled in a shaft furnace, and the carbonization gas generated from the shaft furnace is recovered. It is characterized in that hydrogen is increased and recovered by blowing a synthetic resin together with a dry distillation gas generated during ferro-coke production, and carbon in the blown synthetic resin is recovered together with coke.
[0017]
When the synthetic resin component is blown into the hot tuyeres of the shaft furnace, the synthetic resin, which is a compound of carbon and hydrogen, is gasified and reduced in weight on the reduced iron due to the catalytic effect of iron ore in the dry distillation process. For this reason, the carbon content in the synthetic resin component is deposited on the ferrocoke (that is, carbon can be effectively used), and the amount of hydrogen in the gas recovered from the shaft furnace increases.
[0018]
Moreover, the preferable one aspect | mode of this invention uses at least one of biomass and a waste plastic as a raw material other than the said coal and the said iron ore, It is characterized by the above-mentioned.
[0019]
Utilizing the catalytic effect of iron ore in the carbonization process, a large amount of gas containing hydrogen can be recovered from at least one of biomass and waste plastic.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The ferro-coke manufacturing method in one embodiment of the present invention will be described below. FIG. 1 shows an overall configuration diagram of a system in which a ferro-coke manufacturing method is implemented. Iron ore, coal, and biomass are used as raw materials. The coal is not for metallurgy but, for example, non-caking coal that is general coal is used. Waste plastic may be used in place of or in combination with biomass.
[0021]
Here, the biomass refers to all living organisms, that is, all organic matter that can be regenerated as an energy resource, and examples thereof include wood, pulp waste liquid, paper, and oil. Waste plastics are plastics used in all industrial fields and daily life fields, and are discharged as waste after use. Waste plastics are included in both general waste discharged from households and industrial waste discharged from business establishments. In addition to waste plastic, organic waste such as sludge and tires may be used as a raw material.
[0022]
The raw iron ore, coal, and biomass are pulverized to a predetermined particle size or less by the pulverizer 1 and then heated by the pretreatment device 3 to remove the contained water. For the pretreatment device 3, for example, a fluidized bed furnace or a kiln is used.
[0023]
Next, the raw materials are mixed by the kneader 4 and then hot-molded by the molding machine 5. Next, the obtained coal is charged into a shaft furnace and carbonized. The charcoal charged in the shaft furnace descends in the shaft furnace. First, in the shaft furnace low temperature carbonization chamber 6, gas is blown from the low temperature heating gas blowing tuyere 7, and the coal is heated and pyrolyzed. Next, in the shaft furnace high temperature carbonization chamber 8, the recovered gas heated from the high temperature heated gas blowing tuyere 9 as the high temperature tuyere is blown, and the thermal decomposition of the coal and the reduction reaction of the iron ore are advanced. Next, in the shaft furnace lower cooling chamber 10, it is cooled with the recovered gas, and the molded ferro-coke is recovered.
[0024]
Although the generated gas is recovered from the shaft furnace, the temperature is lowered by a heat exchange device, a tar mist separator, a decanter or the like (not shown) and supplied to the high temperature gas heating furnace 12 and the low temperature gas heating furnace 11.
[0025]
A part of the dry distillation gas generated from the shaft furnace is supplied to the low temperature gas heating furnace 11 and the high temperature gas heating furnace 12, and the rest is recovered as a hydrogen rich generation gas. The heavy tar generated by the dry distillation of coal and biomass is blown into the tuyere transfer device 13 through the high temperature heated gas blowing tuyere 9. Also, synthetic resin such as waste plastic is blown into the high temperature gas blowing tuyere 9 by the synthetic resin transfer device 13 together with or instead of the heavy tar content.
[0026]
When heavy tar is blown into the tuyere 9 at the high temperature heating gas blow in the shaft furnace, the heavy tar, which is a compound of carbon and hydrogen, is gasified on the reduced iron due to the catalytic effect of iron ore in the dry distillation process. Turn into. For this reason, the carbon content in the tar component is deposited on the ferro-coke, and the amount of hydrogen in the gas recovered from the shaft furnace increases. In addition, when synthetic resin is blown into the tuyere 9 at the high temperature heating gas blow-in of the shaft furnace, carbon in the synthetic resin is deposited on the ferro-coke due to the catalytic effect of iron ore in the dry distillation process, and in the gas recovered from the shaft furnace. The amount of hydrogen increases.
[0027]
Furthermore, due to the catalytic effect of iron ore in the dry distillation process, a large amount of gas containing hydrogen can be recovered from biomass or waste plastic as a raw material.
[0028]
When porous ore (or high crystal water) is used among iron ores, the decomposition catalytic effect can be improved and the yield of hydrogen can be increased. It is also desirable to improve the hydrogen concentration of the gas by reforming the recovered dry distillation gas by steam reforming or partial oxidation to remove CO 2 . Thereby, a hydrogen-rich gas having a hydrogen concentration of 70% or more can be obtained. In recent years, hydrogen gas is expected to be used for fuel cells.
[0029]
Ferro-coke containing the partially reduced powder iron source is put into a blast furnace, for example. Since iron ore has a catalytic effect of CO 2 reaction, the reactivity of ferrocoke can be increased by adding highly reactive iron ore to the raw material.
[0030]
【Example】
<Example 1 of waste plastic blowing>
A ferro-coke production test was carried out with the apparatus of the present embodiment shown in FIG. Coal and ore were blended at the compositions and blending ratios shown in Tables 1 and 2.
[0031]
[Table 1]
Figure 2005015701
[0032]
[Table 2]
Figure 2005015701
[0033]
After pulverization by the pulverizer 1, the water content was evaporated at about 350 ° C. by the pretreatment device 3, mixed by the kneader 4, and then formed into a molded body by hot forming. Further, the obtained molded body was charged and dry-distilled in a shaft furnace. First, in the shaft furnace low temperature carbonization chamber 6, 650 ° C. and 1191 Nm 3 / t-raw material gas are blown from the tuyere 7 of the low temperature heating gas blow, and the molded body is heated and decomposed. Further, in the shaft furnace high-temperature carbonization chamber 8, a recovered gas heated to 1080 ° C. and 344 Nm 3 / t-raw material is blown from the tuyere 9 where the high-temperature heated gas is blown, and the thermal decomposition and iron ore reduction reaction proceed. Furthermore, it cooled by 55 degreeC and the recovery gas of 709Nm < 3 > / t-raw material in the lower cooling chamber of the shaft furnace, and the molded ferro coke of 612 kg / t- raw material was collect | recovered. The generated gas of 410 ° C. and 393 Nm 3 / t-raw material is recovered from the shaft furnace, but the temperature is lowered by a heat exchange device, a tar mist separator, a decanter or the like (not shown), and is supplied to the low temperature gas heating furnace 11 and the high temperature gas heating furnace 12. Supplied. Waste plastic was blown into the tuyere 9 with high-temperature heated gas, and 50 kg / t-raw material was blown into the synthetic resin transfer device 13. Table 3 shows the composition of the recovered gas.
[0034]
<Example 2 of waste plastic blowing>
The test was carried out at the compounding ratio in Table 2. In the shaft furnace low-temperature carbonization chamber 6, 650 ° C. and 1044 Nm 3 / t-raw material gas are supplied from the low-temperature heating gas blowing tuyere 7 to 1080 ° C. and 394 Nm 3 / t from the high-temperature heating gas blowing tuyere 9 in the shaft furnace high-temperature carbonization chamber 8. -A heated recovery gas was blown into the raw material. Furthermore, it cooled by 55 degreeC and the recovery gas of 679Nm < 3 > / t-raw material in the shaft furnace lower cooling chamber, and the shaping | molding ferro coke of 576 kg / t- raw material was collect | recovered. The generated gas of 410 ° C. and 387 Nm 3 / t-raw material was recovered from the shaft furnace. Table 3 shows the composition of the recovered gas.
[0035]
[Table 3]
Figure 2005015701
[0036]
<Comparative example>
The test was carried out with the formulation of Example 1 without blowing waste plastic. In the shaft furnace low temperature carbonization chamber 6, 650 ° C., 1234 Nm 3 / t-raw material gas from the low temperature heating gas blowing tuyere 7, and 1080 ° C., 266 Nm 3 / t in the shaft furnace high temperature gas distillation chamber 8 from the high temperature heating gas blowing tuyere 9. -A heated recovery gas was blown into the raw material. Furthermore, in the shaft furnace lower cooling chamber 10, it cooled by 55 degreeC and the recovery gas of 670 Nm < 3 > / t-raw material, and the shaping | molding ferro-coke of 585 kg / t- raw material was collect | recovered. The generated gas of 410 ° C. and 373 Nm 3 / t-raw material was recovered from the shaft furnace. Table 3 shows the composition of the recovered gas.
[0037]
In the Example of this invention, compared with a comparative example, the generated gas with high hydrogen concentration was obtained, and it turns out that the waste plastic blown from the high temperature tuyere part was collect | recovered effectively as a hydrogen content.
[0038]
<Example of tar injection>
Coal, iron ore, and biomass were mixed at the composition and blending ratio shown in Table 4 and hot molded. The shaft furnace was operated under the operating conditions shown in Table 5, and a tar content of 50 kg / t-raw material was blown into the tuyere 9 with high-temperature heated gas blowing.
[0039]
[Table 4]
Figure 2005015701
[0040]
[Table 5]
Figure 2005015701
[0041]
Table 6 shows the components of the obtained recovered gas. Table 6 shows, as a comparative example, test results in which the tar content is not blown into the hot gas blowing tuyere. It can be seen that hydrogen in the recovered gas has increased.
[0042]
[Table 6]
Figure 2005015701
[0043]
【The invention's effect】
As described above, according to the present invention, when the heavy tar content is blown into the high temperature tuyere of the shaft furnace, the carbon content in the tar component is precipitated on the ferrocoke due to the catalytic effect of iron ore in the dry distillation process, The amount of hydrogen in the gas recovered from the shaft furnace increases.
[0044]
In addition, when the synthetic resin component is blown into the high temperature tuyere of the shaft furnace, the carbon content in the synthetic resin component precipitates on the ferrocoke due to the catalytic effect of iron ore in the dry distillation process, and the amount of hydrogen in the gas recovered from the shaft furnace is reduced. Increase.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a system in which a ferro-coke manufacturing method is implemented.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Crusher 3 ... Pretreatment apparatus 4 ... Kneading machine 5 ... Molding machine 6 ... Shaft furnace low temperature distillation chamber 7 ... Low temperature heating gas blowing tuyere 8 ... Shaft furnace High temperature carbonization chamber 9 ... High temperature heated gas blowing tuyere (high temperature tuyere)
DESCRIPTION OF SYMBOLS 10 ... Shaft furnace lower cooling chamber 11 ... Low temperature gas heating furnace 12 ... High temperature gas heating furnace 13 ... Tar component conveying apparatus, synthetic resin conveying apparatus

Claims (3)

原料としての石炭及び鉄鉱石をシャフト炉で乾留し、前記シャフト炉から発生する乾留ガスを回収するフェロコークスの製造方法において、
シャフト炉の高温羽口にフェロコークス製造時に発生する乾留ガスと共に重質タール分を吹き込むことによって、水素を増回収すると共に、吹き込みタール中の炭素分をフェロコークスと共に回収することを特徴とするフェロコークスの製造方法。
In the method for producing ferro-coke, carbonizing the raw material coal and iron ore in a shaft furnace, and recovering the carbonization gas generated from the shaft furnace,
Ferrocarbon is characterized by increasing the recovery of hydrogen by injecting heavy tar together with dry distillation gas generated during the production of ferro-coke into the hot tuyere of the shaft furnace, and recovering carbon in the injection tar together with ferro-coke. Coke manufacturing method.
原料としての石炭及び鉄鉱石をシャフト炉で乾留し、前記シャフト炉から発生する乾留ガスを回収するフェロコークスの製造方法において、
シャフト炉の高温羽口にフェロコークス製造時に発生する乾留ガスと共に合成樹脂を吹き込むことによって、水素を増回収すると共に、吹き込み合成樹脂中の炭素分をコークスとともに回収することを特徴とするフェロコークスの製造方法。
In the method for producing ferro-coke, carbonizing the raw material coal and iron ore in a shaft furnace, and recovering the carbonization gas generated from the shaft furnace,
The ferro-coke is characterized by increasing the amount of hydrogen recovered by blowing synthetic resin together with the dry distillation gas generated during the production of ferro-coke into the hot tuyere of the shaft furnace, and collecting the carbon content in the injected synthetic resin together with the coke. Production method.
前記石炭及び前記鉄鉱石以外に、バイオマス及び廃プラスチックの少なくとも一方を原料として用いることを特徴とする請求項1又は2に記載のフェロコークスの製造方法。The ferro-coke production method according to claim 1 or 2, wherein at least one of biomass and waste plastic is used as a raw material in addition to the coal and the iron ore.
JP2003185001A 2003-06-27 2003-06-27 Ferro-coke manufacturing method Expired - Fee Related JP4218443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185001A JP4218443B2 (en) 2003-06-27 2003-06-27 Ferro-coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185001A JP4218443B2 (en) 2003-06-27 2003-06-27 Ferro-coke manufacturing method

Publications (2)

Publication Number Publication Date
JP2005015701A true JP2005015701A (en) 2005-01-20
JP4218443B2 JP4218443B2 (en) 2009-02-04

Family

ID=34184605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185001A Expired - Fee Related JP4218443B2 (en) 2003-06-27 2003-06-27 Ferro-coke manufacturing method

Country Status (1)

Country Link
JP (1) JP4218443B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222475A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Method for utilizing biomass
KR101141989B1 (en) 2009-07-29 2012-05-17 제이에프이 스틸 가부시키가이샤 Process for producing ferro coke
CN103468841A (en) * 2013-09-06 2013-12-25 鞍钢股份有限公司 Semi coke for blast furnace injection and manufacturing method thereof
JP6016001B1 (en) * 2015-06-24 2016-10-26 Jfeスチール株式会社 Ferro-coke manufacturing method
WO2016208435A1 (en) * 2015-06-24 2016-12-29 Jfeスチール株式会社 Ferro-coke production method
CN108660270A (en) * 2017-03-29 2018-10-16 鞍钢股份有限公司 Low-temperature consolidated coke containing metallic iron for blast furnace injection and production method thereof
KR20210035525A (en) * 2019-09-24 2021-04-01 현대제철 주식회사 Reduction method of the reducing agents ratio and co2 gas of the blast furnace
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222475A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Method for utilizing biomass
KR101141989B1 (en) 2009-07-29 2012-05-17 제이에프이 스틸 가부시키가이샤 Process for producing ferro coke
CN103468841A (en) * 2013-09-06 2013-12-25 鞍钢股份有限公司 Semi coke for blast furnace injection and manufacturing method thereof
JP6016001B1 (en) * 2015-06-24 2016-10-26 Jfeスチール株式会社 Ferro-coke manufacturing method
WO2016208435A1 (en) * 2015-06-24 2016-12-29 Jfeスチール株式会社 Ferro-coke production method
US11111441B2 (en) 2015-06-24 2021-09-07 Jfe Steel Corporation Method for producing ferrocoke
CN108660270A (en) * 2017-03-29 2018-10-16 鞍钢股份有限公司 Low-temperature consolidated coke containing metallic iron for blast furnace injection and production method thereof
KR20210035525A (en) * 2019-09-24 2021-04-01 현대제철 주식회사 Reduction method of the reducing agents ratio and co2 gas of the blast furnace
KR102289527B1 (en) * 2019-09-24 2021-08-12 현대제철 주식회사 Reduction method of the reducing agents ratio and co2 gas of the blast furnace
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Also Published As

Publication number Publication date
JP4218443B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
AU2019254838B2 (en) Method of producing solid composites
CN104355519A (en) Comprehensive sludge treating method based on hydrothermal carbonization and fast microwave pyrolysis
US10611657B2 (en) Method and system for preparing fuel gas by utilizing organic waste with high water content
CN111234880A (en) Clean resource treatment method for solid waste and hazardous waste
JP2011111511A (en) Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system
Sharma et al. Disposal of waste tyres for energy recovery and safe environment
WO2001010978A1 (en) Method for treating combustible waste
JP2007167782A (en) Waste treatment method
CN105567327B (en) Method for preparing hydrogen-rich fuel gas by gasifying high-humidity sludge based on blast furnace slag waste heat recovery
JP3916179B2 (en) High temperature gasification method and apparatus for waste
Wallman et al. Hydrogen production from wastes
WO2012014277A1 (en) Method for producing hydrogen-containing gas
CN110551550A (en) RDF prepared from household garbage and high-temperature pyrolysis gasification treatment process
JP4218443B2 (en) Ferro-coke manufacturing method
CN104109560B (en) Method for preparing industrial fuel gas through pyrolysis treatment of garbage
CN113025388B (en) Method for co-resource utilization of urban solid waste and carbon dioxide
CA2563375A1 (en) Method and apparatus for gasifying waste automotive tires to produce high quality solid carbon and non-condensable synthesis gas
CN109355071A (en) City house refuse treatment method and processing system
CN111704931B (en) Combustible solid waste segmented oxygen-enriched gasification cooperative treatment system
CN112939397A (en) Method and system for sludge carbonization-coupled fusion treatment
CN209456367U (en) System for treating municipal solid waste
CN105131994A (en) Dry distillation device and dry distillation method of preparing granular nitrogen-free hot gas from crushed bituminous coal and straw
CN1576379A (en) Effective utilizing method for carbon resource
JP4218442B2 (en) Method for producing ferro-coke from biomass
CN215403741U (en) System for sludge carbonization coupling melting treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees