JP2005015295A - Glass plate with transparent electric conducting membrane - Google Patents

Glass plate with transparent electric conducting membrane Download PDF

Info

Publication number
JP2005015295A
JP2005015295A JP2003184814A JP2003184814A JP2005015295A JP 2005015295 A JP2005015295 A JP 2005015295A JP 2003184814 A JP2003184814 A JP 2003184814A JP 2003184814 A JP2003184814 A JP 2003184814A JP 2005015295 A JP2005015295 A JP 2005015295A
Authority
JP
Japan
Prior art keywords
film
glass plate
transparent conductive
conductive film
electric conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003184814A
Other languages
Japanese (ja)
Inventor
Akira Fujisawa
章 藤沢
Toru Yamamoto
透 山本
Kiyotaka Ichiki
聖敬 市來
Koichiro Kiyohara
康一郎 清原
Yasunari Seto
康徳 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003184814A priority Critical patent/JP2005015295A/en
Publication of JP2005015295A publication Critical patent/JP2005015295A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass plate with a transparent electric conducting membrane in which conductivity is improved without deteriorating adhesive force. <P>SOLUTION: The glass plate with the transparent electric conducting membrane includes a soda lime glass plate 1 and the transparent electric conducting membrane 2 consisting essentially of the tin oxide and directly formed on the glass plate, the thickness of the transparent electric conducting membrane 2 is ≥ 800 nm, a surface resistance value is ≤ 13 Ω/ square and also the adhesive force is ≥ 90mN. The adhesive force of the transparent electric conducting membrane is enhanced by actively utilizing the diffusion of an alkali component from the glass plate by directly forming the transparent electric conducting membrane 2 without forming a ground membrane on the glass plate 1 and also a desired surface resistance value is obtained by utilizing the conductivity of the upper part of the membrane which is hardly influenced by the alkali component by thickening the transparent electric conducting membrane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、透明導電膜付きガラス板に関する。
【0002】
【従来の技術】
酸化錫などの金属酸化物を含む透明導電膜は赤外線反射機能を有するため、この膜を形成したガラス板は、全太陽エネルギーの透過率を低下させ、室内の熱を屋外に逃がしにくくする。これを利用し、酸化錫を含む透明導電膜を形成したガラス板は、建築物などの窓ガラスとして用いられている。
【0003】
特許文献1(特開平1−96044号公報)には、有機錫化合物の蒸気を含む混合ガスを用いた化学蒸着法(CVD法)により、酸化錫膜を形成する方法が開示されている。窓ガラスとして用いる場合、商品価値を高めるには、反射色の光彩を低減する必要がある。酸化錫膜を厚く形成すると光彩が顕著となるため、特許文献1では、260nm、320nmの酸化錫膜が形成されている。
【0004】
酸化錫を含む透明導電膜を形成したガラス板は、太陽電池などの光電変換装置の基板としても適した特性を有する。この用途では、高い導電性(低い抵抗値)が要求特性の一つであるが、透明導電膜の導電性を低下させる原因の一つには、ガラス板から透明導電膜へと拡散するアルカリ成分がある。よく知られているようにアルカリ成分の拡散は温度に依存する。このため、CVD法のように被膜形成原料の熱分解を伴う成膜法では、アルカリ成分の拡散が顕著となる。
【0005】
ガラス板と透明導電膜との間に下地膜を介在させると、アルカリ成分の拡散が妨害される。特許文献2(特開昭63−313874号公報)には、ガラス板と膜厚480〜1220nmの酸化錫膜との間に、膜厚80nmの酸化珪素膜を形成することが開示されている。この酸化錫膜の表面抵抗値は4.7〜8.7Ω/□である。
【0006】
【特許文献1】特開平1−96044号公報
【0007】
【特許文献2】特開昭63−313874号公報
【0008】
【発明が解決しようとする課題】
特許文献2が開示するように、導電性を確保するための下地膜上に形成した透明導電膜の膜厚を増して導電性のさらなる向上を図ると、透明導電膜の付着力が低下する。発明者の実験では、特許文献2が開示する程度の膜厚の透明導電膜を下地膜とともに高温で成膜すると、膜剥離が発生することがある。
【0009】
そこで、本発明は、付着力を低下させずに導電性を向上させた透明導電膜付きガラス板を提供することを目的とする。
【0010】
【課題を解決するための手段】
付着性試験の結果より、下地膜上に形成した透明導電膜は、ガラス板と下地膜との間ではなく、下地膜と透明導電膜との間から剥離することが明らかとなった。さらに各種実験を重ねた結果、下地膜を省略した状態で透明導電膜をある程度厚くしても、少なくとも被膜形成原料の熱分解を伴うCVD法によれば、膜の付着力が大きく低下せず、かつ、アルカリ成分の拡散が膜の導電性を幾分低下させるものの、この低下は、アルカリ成分の拡散の影響を受けにくい膜の上部で補いうることが見いだされた。膜の付着力の確保には、ガラス板と透明導電膜との界面近傍における成分の相互拡散が寄与していると考えられる。
【0011】
本発明は、ソーダライムガラス板とこのガラス板上に直接形成された酸化錫を主成分とする透明導電膜とを含み、上記透明導電膜の膜厚が800nm以上、好ましくは900nm以上であり、上記透明導電膜の表面抵抗値が13Ω/□以下であり、かつ上記透明導電膜の付着力が90mN以上である透明導電膜付きガラス板を提供する。
【0012】
ただし、付着力は、JIS R3255−1997「ガラスを基板とした薄膜の付着性試験」に基づいて測定するものとする。また、主成分とは、慣用のとおり、当該薄膜の50重量%以上を占める成分をいう。
【0013】
【発明の実施の形態】
図1に示したように、本発明では、ソーダライムガラス板1上に、酸化錫を主成分とする透明導電膜2が直接形成される。
【0014】
透明導電膜2の表面抵抗値の下限に特に制限はないが、この表面抵抗値は3Ω/□以上であってもよい。同様に、付着力の上限にも制限はないが、この付着力は300mN以下であってもよい。付着力は100mN以上が好ましい。透明導電膜2の膜厚は、例えば3000nm以下であってもよく、好ましくは950nm以上に設定される。
【0015】
本発明によれば、導電性と付着性とのバランスに優れた透明導電膜付きガラス板を、酸化錫以外を主成分とする膜を形成することなく、酸化錫を主成分とする膜のみを形成することによって提供できる。ガラス板から透明導電膜へのアルカリ成分の拡散は、導電性の低下を抑制する上では完全に排除すべき現象であるため、特にCVD法のように高温を適用する量産工程では、下地膜は必須と考えられてきた。これに対し、本発明では、むしろ、アルカリを含む成分の拡散による遷移層の存在が透明導電膜の付着力維持に寄与していると考えられる。この遷移層は、高温での成膜により発達する。
【0016】
したがって、本発明では、高温での成膜、例えばCVD法では、その基板を、少なくとも透明導電膜のガラス板(あるいはガラス板となるガラスリボン)に接する部分を成膜する際に、500℃以上、さらには550℃以上、特に600℃〜800℃とすることが好ましい。高温に加熱するとソーダライムガラス板はその形状を保持できなくなることがあるため、本発明の透明導電膜は、ソーダライムガラス板を製造する工程におけるソーダライムガラスリボン上に形成することが好ましい。このCVD法は、錫フロート槽の内部で行うとよい。
【0017】
このように、本発明の透明導電膜付きガラス板は、ソーダライムガラス板を製造する工程におけるソーダライムガラスリボン上に被膜形成原料の熱分解を伴う方法により透明導電膜を形成した後、このソーダライムガラスリボンを切断して得たものとするとよい。
【0018】
ガラス板の厚みなどにより定まる所定速度で搬送されるガラスリボン上に成膜する場合、透明導電膜を十分に厚膜化するには、複数のコータを用いてCVD法を行うとよい。複数のコータを用いたCVD法により成膜する場合、発明者の実験によると、第1コータを用いて形成される透明導電膜の第1層(ガラス板に接する層)は、引き続き第2コータを用いて形成される第2層よりも遅い成膜速度で形成するとよい。第1層の好ましい厚さは50nm以上500nm以下である。本発明の透明導電膜がその製法を制限するわけではないが、発明者の実験では、複数のコータを用いて上記のように成膜することによって、本発明の目的とする透明導電膜を得ることが可能となった。このCVD法では、目標とする膜厚に応じ、適宜、第3コータ、第4コータを用いて第3層、第4層を成膜すればよい。
【0019】
複数のコータを用いた成膜は、膜の各部分が担う機能に応じた膜組成の調整にも便利である。例えば、導電性を高めるフッ素、アンチモンなどの微量成分の添加は、膜の上部に添加するべきである。
【0020】
フロート法におけるガラスリボン上にCVD法により成膜するオンラインCVD法のための装置の一形態を図2に示す。図2に示したように、この装置では、溶融炉(フロート窯)11から錫フロート糟(フロートバス)12内に流れ出し、錫浴15上を帯状に移動するガラスリボン10の表面から所定距離を隔て、所定個数のコータ16(図示した形態では3つのコータ16a,16b,16c)が配置されている。これらのコータからガス状の原料(原料混合ガス)が供給され、ガラスリボン10上に連続的に透明導電膜が形成されていく。
【0021】
透明導電膜が形成されたガラスリボン10は、ローラ17により引き上げられて、徐冷窯13へと送り込まれる。徐冷窯13で冷却されたガラスリボンは、図示を省略する切断装置により切断され、所定の大きさのガラス板となる。
【0022】
CVD法により酸化錫を主成分とする膜を形成する場合の錫原料としては、四塩化錫、ジメチル錫ジクロライド、ジブチル錫ジクロライド、テトラメチル錫、テトラブチル錫、ジオクチル錫ジクロライド、モノブチル錫トリクロライドなどが挙げられる。厚膜化する場合には、透明導電膜付きガラス板の透過率を確保するために膜の光吸収は小さいほうがよい。かかる観点からは、カーボンを膜中に供給しない無機錫化合物、特に四塩化錫(塩化第二錫)を錫原料とするとよい。錫原料から酸化錫を得るために用いられる酸化原料としては、酸素、水蒸気、乾燥空気などが挙げられる。
【0023】
微量成分となるフッ素原料としては、フッ化水素、トリフルオロ酢酸、ブロモトリフルオロメタン、クロロジフルオロメタンなどが挙げられる。アンチモンを添加する場合には、五塩化アンチモン、三塩化アンチモンなどを用いるとよい。四塩化錫のような反応性の高い錫原料を用いる場合は、塩化水素やアルコールなどの反応抑制剤を適量添加してもよい。
【0024】
本発明の透明導電膜付きガラス板は、特に光電変換装置用基板として好適である。アモルファスシリコン太陽電池用基板として用いる場合には、透明導電膜上に、光電変換層としてアモルファスシリコン膜が形成される。アモルファスシリコン膜は、例えば、水素ガスで希釈されたモノシランを原料とし、グロー放電を用いたプラズマCVD法により成膜される。アモルファスシリコン層は、通常、pin接合が形成されるように適宜メタン、ジボラン、フォスフィンなどをシリコン膜に添加しながら、透明導電膜側から順に、p層、i層、n層を成膜することにより形成される。さらに、アモルファスシリコン層上には、アルミニウム膜などからなる金属電極層が裏面電極として形成される。もっとも、アモルファスシリコン膜に代えて、あるいはこれに加えて、結晶シリコン膜を光電変換層として形成しても構わない。
【0025】
【実施例】
以下、実施例により、本発明をさらに具体的に説明する。ただし、本発明は、以下の実施例により制限を受けるものではない。
【0026】
(実施例1)
図2と同様の装置を用いて、ガラスリボン上に透明導電膜を形成し、これを切断して透明導電膜付きガラス板を得た。フロートバスの内部には、バス外よりもやや高圧に維持されるように98体積%の窒素および2体積%の水素を供給し、バス内を非酸化性雰囲気に保持した。
【0027】
最上流側に位置する第1のコータから、塩化第二錫(蒸気)、水蒸気、塩化水素、窒素およびヘリウムからなる混合ガスを供給し、表面温度720℃のガラスリボン上に厚さ140nmの酸化錫(SnO)膜(第1層)を成膜速度2771nm/分で形成した。第2のコータから、同じ混合ガスを、混合比率を変更して供給し、第1層上に厚さ250nmの酸化錫(SnO)膜(第2層)を成膜速度4948nm/分で形成した。第3のコータおよび第4のコータから、塩化第二錫(蒸気)、水蒸気、塩化水素、窒素およびフッ化水素からなる混合ガスを供給し、第2層上に、厚さ603nmのフッ素含有酸化錫(SnO:F)膜(第3層)を平均成膜速度5968nm/分で形成した。
【0028】
こうして得た総膜厚993nmの透明導電膜(SnO層+SnO:F層)の表面抵抗は12Ω/□であった。この透明導電膜について、JIS R3255−1997に基づいて測定した付着力は105mNであった。
【0029】
(比較例1)
予め150×150mmに切断した厚さ1mmのソーダライムガラス板をメッシュベルトに乗せて加熱炉を通過させ、約600℃にまで加熱した。この加熱したガラス板をさらに搬送しながら、搬送路上方に設置したコータから、モノシラン、エチレン、酸素および窒素からなる混合ガスを供給し、ガラス板上に厚さ約50nmの酸化珪素(SiO)膜(下地膜)を形成した。このガラス板を徐冷した後に、再度、メッシュベルトに乗せて加熱炉を通過させ、約600℃にまで加熱した。この加熱したガラス板をさらに搬送しながら、ガラス搬送路上方に設置したコータから、塩化第二錫(蒸気)、水蒸気、フッ化水素および窒素からなる混合ガスを供給し、酸化珪素膜上に、膜厚950nmのフッ素含有酸化錫(SnO:F)膜を成膜した。
【0030】
こうして形成した透明導電膜(SnO:F膜)の表面抵抗は10Ω/口となった。しかし、JIS R3255−1997に基づいて測定した付着力は、25mNであった。
【0031】
(比較例2)
実施例1と同様にしてフロートバス内を非酸化性雰囲気に保持した状態で、図2と同様の装置を用い、ガラスリボン上に以下の成膜を実施した。
【0032】
第1のコータから、塩化第二錫(蒸気)、水蒸気、塩化水素、窒素およびヘリウムからなる混合ガスを供給し、表面温度720℃のガラスリボン上に厚さ100nmの酸化錫(SnO)膜(第1層)を成膜速度1979nm/分で形成した。第2のコータから、同じ混合ガスを、混合比率を変更して供給し、第1層上に厚さ225nmの酸化錫(SnO)膜(第2層)を成膜速度4453nm/分で形成した。第3のコータおよび第4のコータから、塩化第二錫(蒸気)、水蒸気、塩化水素、窒素およびフッ化水素からなる混合ガスを供給し、第2層上に、厚さ425nmのフッ素含有酸化錫(SnO:F)膜を成膜速度4209nm/分で形成した。
【0033】
こうして得た総膜厚750nmの透明導電膜(SnO層+SnO:F層)のJIS R3255−1997に基づいて測定した付着力は115mNとなった。しかし、表面抵抗は20Ω/□であった。
【0034】
(比較例3)
実施例1と同様にしてフロートバス内を非酸化性雰囲気に保持した状態で、図2と同様の装置を用い、ガラスリボン上に以下の成膜を実施した。
【0035】
第1のコータから、モノシラン、エチレン、酸素および窒素からなる混合ガスを供給し、表面温度720℃のガラスリボン上に厚さ30nmの酸化珪素(SiO)膜(下地膜)を形成した。第2および第3のコータから、ジメチル錫ジクロライド(蒸気)、酸素、水蒸気、フッ化水素および窒素からなる混合ガスを供給し、下地層上に、厚さ700nmのフッ素含有酸化錫(SnO:F)膜を形成した。
【0036】
この透明導電膜(SnO:F層)の表面低抗は12Ω/□となった。しかし、JIS R3255−1997に基づいて測定した付着力は41mNであった。
【0037】
【発明の効果】
以上説明したとおり、本発明によれば、ガラス板またはガラスリボン上に下地膜を形成することなく酸化錫を主成分とする透明導電膜を直接形成することにより、ガラスからのアルカリ成分の拡散を積極的に利用して透明導電膜の付着力を高め、かつ透明導電膜を厚膜化することにより、アルカリ成分の影響を受けにくい膜上部の導電性を利用して所望の表面抵抗値を得ることができる。こうして、付着力を低下させずに導電性を向上させた産業上の利用性が高い透明導電膜付きガラス板を提供できる。
【図面の簡単な説明】
【図1】本発明の透明導電膜付きガラス板の一例を示す断面図である。
【図2】本発明の透明導電膜付きガラス板の製造に用いうる装置の構成を示す図である。
【符号の説明】
1 ソーダライムガラス板
2 透明導電膜
10 ガラスリボン
11 熔融炉
12 錫フロート槽(フロートバス)
13 徐冷窯
15 錫浴
16 コータ
17 ローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass plate with a transparent conductive film.
[0002]
[Prior art]
Since a transparent conductive film containing a metal oxide such as tin oxide has an infrared reflection function, the glass plate on which this film is formed reduces the transmittance of total solar energy and makes it difficult to release indoor heat to the outdoors. The glass plate which formed the transparent conductive film containing a tin oxide using this is used as window glass, such as a building.
[0003]
Japanese Patent Application Laid-Open No. 1-96044 discloses a method of forming a tin oxide film by a chemical vapor deposition method (CVD method) using a mixed gas containing an organic tin compound vapor. When used as a window glass, it is necessary to reduce the brightness of the reflected color in order to increase the commercial value. When the tin oxide film is formed thick, the luster becomes remarkable, and in Patent Document 1, tin oxide films of 260 nm and 320 nm are formed.
[0004]
A glass plate on which a transparent conductive film containing tin oxide is formed has characteristics suitable as a substrate for a photoelectric conversion device such as a solar cell. In this application, high conductivity (low resistance value) is one of the required characteristics, but one of the causes of reducing the conductivity of the transparent conductive film is an alkali component that diffuses from the glass plate to the transparent conductive film. There is. As is well known, the diffusion of alkali components depends on temperature. For this reason, in the film forming method that involves thermal decomposition of the film forming raw material, such as the CVD method, the diffusion of the alkali component becomes significant.
[0005]
If a base film is interposed between the glass plate and the transparent conductive film, diffusion of alkali components is hindered. Patent Document 2 (Japanese Patent Laid-Open No. 63-313874) discloses that a silicon oxide film having a thickness of 80 nm is formed between a glass plate and a tin oxide film having a thickness of 480 to 1220 nm. The tin oxide film has a surface resistance value of 4.7 to 8.7 Ω / □.
[0006]
[Patent Document 1] Japanese Patent Laid-Open No. 1-96044
[Patent Document 2] Japanese Patent Application Laid-Open No. 63-313874
[Problems to be solved by the invention]
As disclosed in Patent Document 2, when the film thickness of the transparent conductive film formed on the base film for ensuring conductivity is increased to further improve the conductivity, the adhesion of the transparent conductive film decreases. In the inventor's experiment, when a transparent conductive film having a film thickness disclosed in Patent Document 2 is formed at a high temperature together with a base film, film peeling may occur.
[0009]
Then, an object of this invention is to provide the glass plate with a transparent conductive film which improved electroconductivity, without reducing adhesive force.
[0010]
[Means for Solving the Problems]
As a result of the adhesion test, it was found that the transparent conductive film formed on the base film peels not between the glass plate and the base film but between the base film and the transparent conductive film. Furthermore, as a result of repeating various experiments, even if the transparent conductive film is thickened to some extent in a state where the base film is omitted, at least according to the CVD method involving thermal decomposition of the film forming raw material, the adhesion of the film is not greatly reduced, In addition, although the diffusion of the alkali component somewhat reduces the conductivity of the film, it has been found that this decrease is compensated for at the top of the film which is less susceptible to the diffusion of the alkali component. It is considered that mutual diffusion of components in the vicinity of the interface between the glass plate and the transparent conductive film contributes to securing the adhesion of the film.
[0011]
The present invention includes a soda lime glass plate and a transparent conductive film mainly composed of tin oxide formed directly on the glass plate, and the film thickness of the transparent conductive film is 800 nm or more, preferably 900 nm or more, Provided is a glass sheet with a transparent conductive film, wherein the transparent conductive film has a surface resistance value of 13 Ω / □ or less, and the adhesive force of the transparent conductive film is 90 mN or more.
[0012]
However, the adhesion force is measured based on JIS R3255-1997 “Adhesion test of thin film using glass as substrate”. Moreover, a main component means the component which occupies 50 weight% or more of the said thin film as usual.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, in the present invention, a transparent conductive film 2 mainly composed of tin oxide is directly formed on a soda lime glass plate 1.
[0014]
The lower limit of the surface resistance value of the transparent conductive film 2 is not particularly limited, but the surface resistance value may be 3Ω / □ or more. Similarly, although there is no restriction | limiting in the upper limit of adhesive force, this adhesive force may be 300 mN or less. The adhesive force is preferably 100 mN or more. The film thickness of the transparent conductive film 2 may be, for example, 3000 nm or less, and is preferably set to 950 nm or more.
[0015]
According to the present invention, a glass plate with a transparent conductive film excellent in balance between conductivity and adhesion is formed only on a film mainly composed of tin oxide without forming a film mainly composed of other than tin oxide. Can be provided by forming. The diffusion of alkali components from the glass plate to the transparent conductive film is a phenomenon that should be completely eliminated in order to suppress the decrease in conductivity. Therefore, in the mass production process where a high temperature is applied, especially in the CVD method, It has been considered essential. On the other hand, in the present invention, it is rather considered that the presence of the transition layer due to the diffusion of the component containing alkali contributes to maintaining the adhesion of the transparent conductive film. This transition layer develops by film formation at a high temperature.
[0016]
Therefore, in the present invention, in film formation at a high temperature, for example, in the CVD method, the substrate is formed at a temperature of 500 ° C. or higher when forming at least a portion of the transparent conductive film in contact with the glass plate (or the glass ribbon serving as the glass plate) Furthermore, it is preferable to set it to 550 degreeC or more, especially 600 to 800 degreeC. Since the soda lime glass plate may not be able to maintain its shape when heated to a high temperature, the transparent conductive film of the present invention is preferably formed on the soda lime glass ribbon in the process of producing the soda lime glass plate. This CVD method may be performed inside a tin float bath.
[0017]
As described above, the glass plate with a transparent conductive film of the present invention is obtained by forming a transparent conductive film on a soda lime glass ribbon in a process for producing a soda lime glass plate by a method involving thermal decomposition of a film forming raw material. It may be obtained by cutting a lime glass ribbon.
[0018]
In the case of forming a film on a glass ribbon that is conveyed at a predetermined speed determined by the thickness of the glass plate or the like, a CVD method may be performed using a plurality of coaters in order to sufficiently increase the thickness of the transparent conductive film. When the film is formed by the CVD method using a plurality of coaters, according to the inventors' experiment, the first layer of the transparent conductive film (the layer in contact with the glass plate) formed by using the first coater is continuously the second coater. The film may be formed at a slower deposition rate than the second layer formed using A preferable thickness of the first layer is not less than 50 nm and not more than 500 nm. Although the transparent conductive film of the present invention does not limit the production method, in the inventor's experiment, the transparent conductive film targeted by the present invention is obtained by forming a film as described above using a plurality of coaters. It became possible. In this CVD method, the third layer and the fourth layer may be appropriately formed using the third coater and the fourth coater according to the target film thickness.
[0019]
Film formation using a plurality of coaters is convenient for adjusting the film composition in accordance with the function of each part of the film. For example, the addition of trace components such as fluorine and antimony that enhance conductivity should be added to the upper part of the film.
[0020]
FIG. 2 shows an embodiment of an apparatus for on-line CVD that forms a film on a glass ribbon in the float process by the CVD method. As shown in FIG. 2, in this apparatus, a predetermined distance from the surface of the glass ribbon 10 that flows out from the melting furnace (float kiln) 11 into the tin float bath (float bath) 12 and moves on the tin bath 15 in a strip shape. A predetermined number of coaters 16 (three coaters 16a, 16b, and 16c in the illustrated form) are arranged. A gaseous raw material (raw material mixed gas) is supplied from these coaters, and a transparent conductive film is continuously formed on the glass ribbon 10.
[0021]
The glass ribbon 10 on which the transparent conductive film is formed is pulled up by the roller 17 and fed into the slow cooling furnace 13. The glass ribbon cooled in the slow cooling furnace 13 is cut by a cutting device (not shown) to become a glass plate having a predetermined size.
[0022]
Examples of tin raw materials for forming a film mainly composed of tin oxide by CVD include tin tetrachloride, dimethyltin dichloride, dibutyltin dichloride, tetramethyltin, tetrabutyltin, dioctyltin dichloride, monobutyltin trichloride, and the like. Can be mentioned. In the case of increasing the film thickness, the light absorption of the film should be small in order to ensure the transmittance of the glass plate with a transparent conductive film. From this point of view, an inorganic tin compound that does not supply carbon into the film, particularly tin tetrachloride (stannic chloride) is preferably used as the tin raw material. Examples of the oxidation raw material used for obtaining tin oxide from the tin raw material include oxygen, water vapor, and dry air.
[0023]
Examples of the fluorine raw material that is a trace component include hydrogen fluoride, trifluoroacetic acid, bromotrifluoromethane, and chlorodifluoromethane. When antimony is added, antimony pentachloride, antimony trichloride, or the like may be used. When a highly reactive tin raw material such as tin tetrachloride is used, an appropriate amount of a reaction inhibitor such as hydrogen chloride or alcohol may be added.
[0024]
The glass plate with a transparent conductive film of the present invention is particularly suitable as a substrate for a photoelectric conversion device. When used as a substrate for an amorphous silicon solar cell, an amorphous silicon film is formed as a photoelectric conversion layer on the transparent conductive film. The amorphous silicon film is formed by, for example, plasma CVD using glow discharge using monosilane diluted with hydrogen gas as a raw material. The amorphous silicon layer is usually formed by sequentially forming the p layer, the i layer, and the n layer from the transparent conductive film side while appropriately adding methane, diborane, phosphine, etc. to the silicon film so that a pin junction is formed. It is formed by. Further, a metal electrode layer made of an aluminum film or the like is formed on the amorphous silicon layer as a back electrode. However, a crystalline silicon film may be formed as a photoelectric conversion layer instead of or in addition to the amorphous silicon film.
[0025]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples.
[0026]
(Example 1)
Using the same apparatus as FIG. 2, a transparent conductive film was formed on a glass ribbon, and this was cut to obtain a glass plate with a transparent conductive film. Inside the float bath, 98% by volume of nitrogen and 2% by volume of hydrogen were supplied so as to be maintained at a slightly higher pressure than the outside of the bath, and the inside of the bath was maintained in a non-oxidizing atmosphere.
[0027]
A mixed gas composed of stannic chloride (steam), water vapor, hydrogen chloride, nitrogen and helium is supplied from the first coater located on the uppermost stream side, and oxidized with a thickness of 140 nm on a glass ribbon having a surface temperature of 720 ° C. A tin (SnO 2 ) film (first layer) was formed at a deposition rate of 2771 nm / min. The same mixed gas is supplied from the second coater while changing the mixing ratio, and a 250 nm thick tin oxide (SnO 2 ) film (second layer) is formed on the first layer at a deposition rate of 4948 nm / min. did. A mixed gas composed of stannic chloride (steam), water vapor, hydrogen chloride, nitrogen and hydrogen fluoride is supplied from the third coater and the fourth coater, and a fluorine-containing oxide having a thickness of 603 nm is formed on the second layer. A tin (SnO 2 : F) film (third layer) was formed at an average film formation rate of 5968 nm / min.
[0028]
The surface resistance of the transparent conductive film (SnO 2 layer + SnO 2 : F layer) having a total film thickness of 993 nm thus obtained was 12Ω / □. About this transparent conductive film, the adhesive force measured based on JIS R3255-1997 was 105 mN.
[0029]
(Comparative Example 1)
A 1 mm thick soda lime glass plate cut in advance to 150 × 150 mm was placed on a mesh belt, passed through a heating furnace, and heated to about 600 ° C. While further transporting this heated glass plate, a mixed gas composed of monosilane, ethylene, oxygen and nitrogen is supplied from a coater installed above the transport path, and silicon oxide (SiO 2 ) having a thickness of about 50 nm is formed on the glass plate. A film (underlying film) was formed. After this glass plate was gradually cooled, it was again placed on a mesh belt, passed through a heating furnace, and heated to about 600 ° C. While further transporting this heated glass plate, supplying a mixed gas consisting of stannic chloride (steam), water vapor, hydrogen fluoride and nitrogen from the coater installed above the glass transport path, on the silicon oxide film, A fluorine-containing tin oxide (SnO 2 : F) film having a thickness of 950 nm was formed.
[0030]
The surface resistance of the transparent conductive film (SnO 2 : F film) thus formed was 10Ω / mouth. However, the adhesive force measured based on JIS R3255-1997 was 25 mN.
[0031]
(Comparative Example 2)
In the same manner as in Example 1, the following film formation was performed on the glass ribbon using the same apparatus as in FIG.
[0032]
A mixed gas composed of stannic chloride (steam), water vapor, hydrogen chloride, nitrogen and helium is supplied from the first coater, and a tin oxide (SnO 2 ) film having a thickness of 100 nm is formed on a glass ribbon having a surface temperature of 720 ° C. (First layer) was formed at a deposition rate of 1979 nm / min. The same mixed gas is supplied from the second coater while changing the mixing ratio, and a tin oxide (SnO 2 ) film (second layer) having a thickness of 225 nm is formed on the first layer at a deposition rate of 4453 nm / min. did. A mixed gas composed of stannic chloride (steam), water vapor, hydrogen chloride, nitrogen and hydrogen fluoride is supplied from the third coater and the fourth coater, and a fluorine-containing oxide having a thickness of 425 nm is formed on the second layer. A tin (SnO 2 : F) film was formed at a deposition rate of 4209 nm / min.
[0033]
The adhesive force measured based on JIS R3255-1997 of the transparent conductive film (SnO 2 layer + SnO 2 : F layer) having a total film thickness of 750 nm thus obtained was 115 mN. However, the surface resistance was 20Ω / □.
[0034]
(Comparative Example 3)
In the same manner as in Example 1, the following film formation was performed on the glass ribbon using the same apparatus as in FIG.
[0035]
A mixed gas composed of monosilane, ethylene, oxygen and nitrogen was supplied from the first coater to form a silicon oxide (SiO 2 ) film (underlayer film) having a thickness of 30 nm on a glass ribbon having a surface temperature of 720 ° C. A mixed gas composed of dimethyltin dichloride (steam), oxygen, water vapor, hydrogen fluoride and nitrogen is supplied from the second and third coaters, and a 700 nm-thick fluorine-containing tin oxide (SnO 2 : F) A film was formed.
[0036]
The surface resistance of this transparent conductive film (SnO 2 : F layer) was 12Ω / □. However, the adhesive force measured based on JIS R3255-1997 was 41 mN.
[0037]
【The invention's effect】
As described above, according to the present invention, by directly forming a transparent conductive film mainly composed of tin oxide without forming a base film on a glass plate or glass ribbon, diffusion of alkali components from glass can be achieved. By actively using the conductive film to increase the adhesion of the transparent conductive film and increasing the thickness of the transparent conductive film, the desired surface resistance value can be obtained by utilizing the conductivity of the upper part of the film that is not easily affected by the alkali component. be able to. In this way, it is possible to provide a glass plate with a transparent conductive film, which has high industrial applicability and has improved conductivity without reducing adhesion.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a glass plate with a transparent conductive film of the present invention.
FIG. 2 is a view showing a configuration of an apparatus that can be used for producing a glass plate with a transparent conductive film of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Soda-lime glass plate 2 Transparent electrically conductive film 10 Glass ribbon 11 Melting furnace 12 Tin float tank (float bath)
13 Slow cooling furnace 15 Tin bath 16 Coater 17 Roller

Claims (2)

ソーダライムガラス板と前記ガラス板上に直接形成された酸化錫を主成分とする透明導電膜とを含み、前記透明導電膜の膜厚が800nm以上であり、前記透明導電膜の表面抵抗値が13Ω/□以下であり、かつ前記透明導電膜の付着力が90mN以上である透明導電膜付きガラス板。
ただし、前記付着力は、JIS R3255−1997「ガラスを基板とした薄膜の付着性試験」に基づいて測定するものとする。
A soda-lime glass plate and a transparent conductive film mainly composed of tin oxide formed directly on the glass plate, the film thickness of the transparent conductive film is 800 nm or more, and the surface resistance value of the transparent conductive film is The glass plate with a transparent conductive film which is 13 ohms / square or less, and the adhesive force of the said transparent conductive film is 90 mN or more.
However, the adhesion force is measured based on JIS R3255-1997 “Adhesion test of thin film using glass as substrate”.
前記ソーダライムガラス板を製造する工程におけるソーダライムガラスリボン上に被膜形成原料の熱分解を伴う方法により前記透明導電膜を形成した後、前記ソーダライムガラスリボンを切断して得た請求項1に記載の透明導電膜付きガラス板。Claim 1 obtained by cutting the soda lime glass ribbon after forming the transparent conductive film on the soda lime glass ribbon in the step of producing the soda lime glass plate by a method involving thermal decomposition of the film forming raw material. The glass plate with a transparent conductive film of description.
JP2003184814A 2003-06-27 2003-06-27 Glass plate with transparent electric conducting membrane Withdrawn JP2005015295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184814A JP2005015295A (en) 2003-06-27 2003-06-27 Glass plate with transparent electric conducting membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184814A JP2005015295A (en) 2003-06-27 2003-06-27 Glass plate with transparent electric conducting membrane

Publications (1)

Publication Number Publication Date
JP2005015295A true JP2005015295A (en) 2005-01-20

Family

ID=34184465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184814A Withdrawn JP2005015295A (en) 2003-06-27 2003-06-27 Glass plate with transparent electric conducting membrane

Country Status (1)

Country Link
JP (1) JP2005015295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233731A (en) * 2010-04-14 2011-11-09 精工爱普生株式会社 Liquid ejecting head, liquid ejecting apparatus and piezoelectric element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233731A (en) * 2010-04-14 2011-11-09 精工爱普生株式会社 Liquid ejecting head, liquid ejecting apparatus and piezoelectric element

Similar Documents

Publication Publication Date Title
US9181124B2 (en) Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
US7846562B2 (en) Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
JP2002260448A (en) Conductive film, method of making the same, substrate and photoelectric conversion device equipped with the same
JP4468894B2 (en) Transparent conductive substrate, manufacturing method thereof, and photoelectric conversion element
JP4460108B2 (en) Method for manufacturing substrate for photoelectric conversion device
JP2003060217A (en) Glass plate with conductive film
JP2004362842A (en) Transparent base substrate with transparent conductive film, its manufacturing method, photoelectric conversion device and substrate therefor
JP2001035262A (en) Glass plate with conductive film, its manufacture and photoelectric transfer device using the same
JP2005015295A (en) Glass plate with transparent electric conducting membrane
JP4516657B2 (en) SUBSTRATE FOR PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION DEVICE USING THE SAME
JP2001039738A (en) Glass plate having conductive film, its production and photo-electric transfer device using the glass plate
JP2005029464A (en) Glass plate with thin film, its production method, and photoelectric conversion device using the glass plate
JP2005029463A (en) Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate
JP4485642B2 (en) Method for producing transparent substrate with transparent conductive film, and photoelectric conversion device using the same
JP2001036107A (en) Photoelectric transducer and substrate there for
JP2000340815A (en) Optoelectronic transducer element substrate
JP2004323321A (en) Method of manufacturing substrate with transparent conductive film
JP2001167706A (en) Glass substrate for display
JP2005324984A (en) Thin film, glass article with thin film and its manufacturing method
JP2002094083A (en) Substrate for photoelectric conversion device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905