JP2005015286A - Hydrogen production hybrid system - Google Patents

Hydrogen production hybrid system Download PDF

Info

Publication number
JP2005015286A
JP2005015286A JP2003183668A JP2003183668A JP2005015286A JP 2005015286 A JP2005015286 A JP 2005015286A JP 2003183668 A JP2003183668 A JP 2003183668A JP 2003183668 A JP2003183668 A JP 2003183668A JP 2005015286 A JP2005015286 A JP 2005015286A
Authority
JP
Japan
Prior art keywords
reformer
hydrogen
aromatic
type direct
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003183668A
Other languages
Japanese (ja)
Other versions
JP4165818B2 (en
Inventor
Satoshi Nakamura
諭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2003183668A priority Critical patent/JP4165818B2/en
Publication of JP2005015286A publication Critical patent/JP2005015286A/en
Application granted granted Critical
Publication of JP4165818B2 publication Critical patent/JP4165818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce hydrogen from a lower hydrocarbon gas without being accompanied by the large quantity of carbon dioxide. <P>SOLUTION: An aromatic manufacture type direct reformer 12 for producing hydrogen and an aromatic series from the lower hydrocarbon and a carbon manufacture type direct reformer or a steam reformer 50 for producing hydrogen and carbon from the lower hydrocarbon are hybridized. As a result, the discharge of carbon dioxide is suppressed and the hydrocarbon is fixed as the aromatic series and carbon by making up for defects that equilibrium conversion of the aromatic manufacture type direct reformer is low and the life of a catalyst is affected by gaseous impurities such as C<SB>2</SB>+. Thus, the efficient system with which the defects of each reformer are compensated and the fixation of carbon dioxide and the production of useful materials such as hydrogen, the aromatic series, filament carbon or the like are performed is realized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メタンや天然ガス等の低級炭化水素燃料を触媒により改質し、二酸化炭素を有用なカーボンナノフィラメント(CNF)や芳香族化合物として固定化すると同時に水素を効率よく製造する二酸化炭素固定化水素製造ハイブリッドシステムに関するものである。
【0002】
【従来の技術】
従来、水素発生方法として代表的なものに水蒸気改質法がある。図4に水蒸気改質装置50の概略図を示した。
図において、51は触媒、52は原料ガス、53はチューブ形状の反応容器、54は加熱用バーナー、55は加熱炉、56は生成ガスである。
触媒51は多数の反応容器53内に充填されており、該反応容器53が加熱炉55内に並列配置されている。加熱炉55の該部には、加熱炉55内を加熱する加熱用バーナー54が反応容器53に温度分布が生じないように複数配置されている。
この装置では、反応容器53に、水蒸気と原料炭化水素とを導入し、上記加熱用バーナー54で加熱炉55内を加熱することで触媒51を加熱して反応容器53内で導入ガスを改質する。反応後のガスは主に水素と二酸化炭素、未反応のメタンとなり、反応容器53から排出される。
【0003】
この水蒸気改質法による水素発生方法の一例を説明する。
水蒸気改質法は触媒としてニッケル等を使用し、原料の炭化水素であるメタンに、出口のガス組成に応じてS/C(スチームモル数/原料炭化水素のカーボンモル数、一般的には3〜5)の割合で水蒸気を添加し、温度:450〜900(℃),圧力:0〜3.4(MPaG),GHSV:500〜5000(1/hr)条件で反応させる事で水素と二酸化炭素を製造するものである(例えば、ズードケミー触媒(株)製のSC11−9等を使用した場合の条件)。
反応としてはCH+2HO→CO+4Hで表され,転化率は〜80%程度である。
【0004】
また、メタンを改質してプロセス上二酸化炭素が発生する事なく、有用な芳香族製造するシステムとして特許文献1、カーボンナノチューブ様の炭素を製造するシステムとしてそ特許文献2に代表される方法がある。
特許文献1に示すように低級炭化水素から直接芳香族(主にベンゼン)を製造するプロセスでは、ZSM5型ゼオライトにモリブデンを担持した触媒が代表的であり、反応は6CH→C+9Hで表され、転化率は800℃で20%程度である。この反応は一般的に温度:650〜800(℃),圧力:0〜1(MPaG),GHSV:500〜10000(1/hr)の条件下で進行する。
さらに、特許文献2に示すように低級炭化水素から水素とカーボンナノチューブ様の炭素を製造するプロセスは触媒としてニッケルや酸化鉄等を使用し、反応はCH→C+2Hで表され、転化率は800℃で90%程度にも達する。一般的に温度:400〜800(℃),圧力:0〜1(MPaG),GHSV:500〜10000(1/hr)の条件下で反応は進行する。
【0005】
【特許文献1】
特開2001−334151号公報
【特許文献2】
特許2838192号明細書
【0006】
【発明が解決しようとする課題】
しかし、従来の水蒸気改質装置は以上の様に構成されているので、水素と同時に地球温暖化ガスである二酸化炭素が大量に製造される事になる。このため、将来の究極のクリーン発電システムと言われる燃料電池へ供給するための水素製造システムとして水蒸気改質装置を使用すると、地球環境に対する負荷は現在の石油依存性社会と何ら変わらないと言う欠点がある。
【0007】
また、低級炭化水素から芳香族と水素を製造するプロセスでは平衡転化率が低い事から未反応ガスを回収して再度芳香族製造型直接改質する必要があり、プロセス上の二酸化炭素排出は無いが、この時の反応熱を燃料を燃焼させて得ようとした場合のシステムとしては加熱用二酸化炭素排出量が、水蒸気改質法以上になる事も考えられる。さらに、回収するガスは副生成物を減らしメタン純度を高くしなければ安定的に触媒性能を発揮する事が出来ないし、天然ガス等を直接原料にする事が難しいという欠点がある。
【0008】
また、低級炭化水素から水素と固体炭素を製造するプロセスでは、転化率を上げようとして余り高温で改質を行うと、有用なCNFがグラファイト化し製品としての価値を失ってしまう欠点があった。このCNF炭素を効率良く得るための温度は500℃〜600℃程度と考えられ、この時のメタン転化率は50〜60%程度である。
【0009】
本発明は、上記事情を背景としてなされたものであり、メタンや天然ガス等の低級炭化水素燃料を触媒により改質し水素を発生すると同時に、従来その燃料を燃焼してエネルギーを得る場合に二酸化炭素として排出されるはずの炭素成分を有用な芳香族化合物やカーボンナノチューブ様炭素などとして固定化し、従来の水蒸気改質法に比べてプロセス上二酸化炭素排出を抑えた高効率な水素発生システムを提供することを目的としている。
【0010】
【課題を解決するための手段】
上記課題を解決するため本発明の水素製造ハイブリッドシステムのうち請求項1記載の発明は、低級炭化水素ガスを原料として芳香族化合物と水素とが生成される芳香族製造型直接改質器と、芳香族製造型直接改質器の後段にあって低級炭化水素ガスから水素と二酸化炭素とが生成される水蒸気改質器とを備えることを特徴とする。
【0011】
請求項2記載の水素製造ハイブリッドシステムの製造方法は、低級炭化水素ガスを原料として芳香族化合物と水素とが生成される芳香族製造型直接改質器と、該芳香族製造型直接改質器の前段または後段にあって低級炭化水素ガスから水素と炭素とが生成される炭素製造型直接改質器とを備えることを特徴とする。
【0012】
請求項3記載の水素製造ハイブリッドシステムの製造方法は、低級炭化水素ガスを原料として芳香族化合物と水素とが生成される芳香族製造型直接改質器と、芳香族製造型直接改質器の後段にあって低級炭化水素ガスから水素と二酸化炭素とが生成される水蒸気改質器と、前記芳香族製造型直接改質器の前段または後段にあって低級炭化水素ガスから水素と炭素とが生成される炭素製造型直接改質器とを備えることを特徴とする。
【0013】
請求項4記載の水素製造ハイブリッドシステムの製造方法は、請求項1〜3のいずれかに記載の発明において、前記芳香族製造型直接改質器から送出されるガスから芳香族化合物を分離する芳香族分離手段を備えることを特徴とする。
【0014】
請求項5記載の水素製造ハイブリッドシステムの製造方法は、請求項1〜4のいずれかに記載の発明において、前段の改質器で改質されたガスから未反応の原料低級炭化水素ガスを分離してその一部または全部を前段の改質器に還流させる未反応原料分離手段を備えることを特徴とする。
【0015】
請求項6記載の水素製造ハイブリッドシステムの製造方法は、請求項5記載の発明において、前記未反応原料分離手段は、分離した未反応の原料低級炭化水素ガスの一部を前段の改質器に還流させるとともに、分離した原料低級ガスの一部を後段の改質器に供給可能としたことを特徴とする。
【0016】
請求項7記載の水素製造ハイブリッドシステムは、請求項6記載の発明において、前記した還流させる未反応原料低級炭化ガス量と後段の改質器に供給する未反応原料低級炭化水素ガス量とを調整可能としたことを特徴とする。
【0017】
請求項8記載の水素製造ハイブリッドシステムの製造方法は、請求項1〜7のいずれかに記載の発明において、最終段の改質器の後段に水素精製手段を備えることを特徴とする。
【0018】
請求項9記載の水素製造ハイブリッドシステムの製造方法は、請求項2記載の発明において、前記芳香族製造型直接改質器の余熱を前記炭素製造型直接改質器の加熱に利用可能としたことを特徴とする。
【0019】
すなわち、本発明は、芳香族製造型直接改質器と、水蒸気改質器および炭素製造型直接改質器の少なくとも1つとを備えるので、炭化水素中の炭素の一部を化学工業原料として有用な芳香族化合物、またCNFとして固定化し、さらに、メタンなどの未反応低級炭化水素を水蒸気改質法や炭素製造型直接改質法により水素と炭素に改質する事で、プロセス上、二酸化炭素の排出を抑え、原料を熱的・物質的に高効率で改質して水素を製造出来、同時に有用な炭化水素を芳香族と炭素として固定化する事を可能としたものである。
【0020】
なお本発明は、低級炭化水素を原料ガスとして使用する。その種別は特定のものに限定されないが、代表的にはメタンが挙げられる。また、原料となる低級炭化水素は単一種の他、複数種からなるものであってもよい。
なお、芳香族製造型直接改質器は、原料となる低級炭化水素ガスから芳香族化合物と水素とが主として製造されるものであり、その構成については特定のものに限定されない。通常は、一種または複数の金属を触媒材料として担体に担持した触媒を用いたものが例示される。改質では、低級炭化水素を原料として芳香族化合物と水素とが生成され、その他に、エタン、エチレン等が副生成物として生成される。改質されたガスには、この他に未反応の原料低級炭化水素が残存する。
【0021】
また、水蒸気改質器は、一般に水蒸気と原料低級炭化水とを触媒に接触させて反応を生じさせるもので、主として水素と一酸化炭素または二酸化炭素が生成される。また、この他に副生成物の生成があり、改質されたガスには、この他に未反応の原料低級炭化水素が残存する。水蒸気改質器では、水蒸気発生器を付設する場合もある。
【0022】
前記炭素製造型直接改質器は、水素と固体炭素(例えばカーボンナノチューブ様)が生成されるものであり、通常は適宜の触媒を用いて原料低級炭化水素を反応させる。この反応ではその他に副生成物が生成されることがある。なお、改質されたガスには、この他に未反応の原料低級炭化水素が残存する。
【0023】
本発明では、上記芳香族製造型直接改質器を必須として、水蒸気改質器と炭素製造型直接改質器の少なくとも一方を備える。水蒸気改質器は芳香族製造型直接改質器の後段に配置され、芳香族製造型直接改質器によって原料低級炭化水素の一部の元素を有用な芳香族化合物として固定化した後に、蒸気改質がなされる。これにより、システム全体で発生する二酸化炭素量を抑制して水素を効率よく製造する。また、このシステムによれば、香族製造型直接改質器で改質され不純物を含んだ未反応ガスを香族製造型直接改質器に還流させることが不要になるので、不純ガスの還流によって香族製造型直接改質器の性質が劣化するのを防止できる。
【0024】
また、炭素製造型直接改質器は、通常は二酸化炭素の生成を前提としないので、芳香族製造型直接改質器の前段、後段のいずれに設置しても良い。このシステムでは、原料低級炭化水素中の炭素が有用なCNFおよび芳香族化合物として固定化され、二酸化炭素の生成を抑制する。なお、炭素製造型直接改質器を芳香族製造型直接改質器の前段に設置する場合、原料低級炭化水素の前処理が炭素製造型直接改質器によってなされることになり、より純度の高い原料低級炭化水を芳香族製造型直接改質器に供給することが可能になる。
【0025】
なお、前記芳香族製造型直接改質器から送出されるガスから芳香族化合物を分離する芳香族分離手段を設けて系外に取り出すことで、芳香族化合物の有効利用を図ることができるとともに、芳香族化合物が後段に悪影響を与えるのを防止できる。
【0026】
また、改質されたガスには未反応の原料低級炭化水素が含まれており、この原料低級炭化水素は後段に供給されて処理されるが、改質されたガスから未反応原料低級炭化水を分離して前段の改質器に供給する分離手段を設けることができる。分離手段で分離した未反応原料の一部は燃料などとして系外に取り出すことも可能である。また、分離した未反応原料の一部を後段の改質器に割り振ることもできる。分離手段によって還流させる量と後段の改質器に供給する量を調整することで芳香族化合物製造量および水素製造量を調整することができる。
【0027】
また、炭素製造型直接改質器を配置するシステムではその反応の温度が芳香族製造型直接改質器の反応温度より低く設定出来る事から、芳香族製造型直接改質器の余熱を有効に利用する事で、既存の水蒸気改質システムより効率よく水素と芳香族および炭素を製造することが出来る。
【0028】
【発明の実施の形態】
(実施形態1)
以下、この発明の一実施形態を図1に基づいて説明する。なお、従来装置と同様の構成については同一の符号を付してその説明を省略または簡略化する。
この実施形態のシステムは、原料低級炭化水素としてバイオガス原料を使用するものとしており、その成分は、60%CH、40%COからなる。
本システムでは、上記原料を導入して硫黄分を除く脱硫装置10と二酸化炭素を除去するためのCO除去前処理装置11が直列に配置されている。脱硫装置10の構成は特に限定されないが、例えば鉄系触媒等の使用によってHSを除去する。CO除去前処理装置11も本発明としては特定の構成に限定されないが、例えば、MEA吸収やPSA、膜分離によって構成することができ、この装置によって原料に含まれるCOがほぼ除去される。
【0029】
CO除去前処理装置11の後段には、芳香族製造型直接改質器12が接続されている。芳香族製造型直接改質器12は、例えば、5Å程度の細孔系を持つZSM5型のゼオライトにモリブデンの様な金属を担持した触媒を充填した直接改質器により構成することができる。芳香族製造型直接改質器12の後段には、芳香族製造型直接改質器12で生成された芳香族化合物を分離する、芳香族分離手段13が接続されている。芳香族分離手段13は、前記直接改質部2で生成した水素と未反応ガスを含むガスから芳香族(ベンゼン、トルエン、キシレン:BTX,及びナフタレン)を分離する分離精製装置であり、例えば分留などによって芳香族化合物を分離することができる。芳香族分離部13の後段には、芳香族除去部14が設置されている。該芳香族除去部14は、活性炭吸着等によって芳香族化合物(以下BTXという)を除去するものである。BTX分離後に分離し切れなかった微量BTXは後段のシステムに影響を与える可能性があるので、芳香族除去部14で完全に除去される。芳香族除去部14の後段には、コンプレッサ15が配置されておりメタン分離に要求される圧力までガスを昇圧して膜等の分離装置16へガスを導入する。
【0030】
上記コンプレッサ15の後段には、未反応原料分離部としてCH分離部16が接続されている。CH分離部16は、PSAや分離膜を備えており、原料メタンを分離することができる。CH分離部16の分離側は、コンプレッサ17aを備える還流路17に接続され、スルー側のガスは水蒸気改質器50と系外に供給されるように構成されている。また、CH分離部16の分離側CHは、還流路17側と水蒸気改質器50側と系外とで割り振るようにしてもよい。系外に供給されるスルーガス(例えばCH50%、H他50%)は燃料などして使用される。還流路17は、芳香族製造型直接改質器12のガス導入側に接続されている。上記水蒸気改質器50の後段側には水素精製装置18に接続されている。該水素精製装置18における分離方法は本発明としては特に限定されるものではなく、例えば、PSAや水素を透過させる膜分離方法などの適宜の方法を採用することができる。
【0031】
次に、このシステムの動作について説明する。
原料バイオガスは、脱硫装置12で脱硫され、CO除去前処理装置11で脱COがされて芳香族製造型直接改質器12に供給される。芳香族製造型直接改質器12では、例えば、750〜800℃、5気圧の条件下で触媒反応がなされ、水素と芳香族化合物とエタンなどの副生成物を生成する。また、一部の原料低級炭化水素は反応することなく未反応のままとなる。これらのガスは芳香族製造型直接改質器12から排出されて芳香族分離部13に導入される。芳香族分離部13では、ベンゼン等の芳香族化合物(BTX)が分離されて系外に取り出される。これにより、例えば、20〜40%のメタンがBTXとして固定化される。芳香族化合物を分離した残余は、芳香族除去部14によってさらに微量のBTXが除去され、さらに、水分除去装置15で水分が除去されてCH分離部16に供給される。CH分離部16では、未反応のCH(例えば純度98%以上、回収率80%)が分離され、一部が還流路17に供給され、他部が水蒸気改質器50と系外に割り振られる。スルーガスは、系外と水蒸気改質器50に供給される。系外のガスは燃料などに利用される。なお、CH分離部16では、還流路17に供給する分離ガス量と水蒸気改質器50に供給するガス量を調整できるようにしてもよい。該調整は、例えばバルブの配置および開度調整によって行うことができる。還流路17に送出されたCHは、芳香族製造型直接改質器12に供給され、芳香族直接改質反応に利用され、実働転化率を向上させる。
【0032】
水蒸気改質器50では、CHとともに水蒸気が供給され、例えば、500〜800℃、4気圧の条件で改質することによって水素と二酸化炭素、一酸化炭素が精製される。これらのガスは、水素精製装置18に供給され、ここで、二酸化炭素、一酸化炭素、水蒸気が除去され水素が分離されて製造水素として利用される。
このシステムによれば、原料メタン中の約20〜40%の炭素を芳香族として固定化すると同時に水素を製造する事ができる。
【0033】
なお、従来の芳香族製造型直接改質器のみからなるシステムでは、原料低級炭化水素芳香族製造型直接改質器で水素とベンゼンなどを主とする芳香族化合物に改質される。しかし、ここで改質温度を例えば800℃とすると理論平衡転化率は約20%なので、未反応メタンが80%オフガスとして排出される事になる。このプロセスを単独で水素発生装置として使用した場合、原料を100%水素と芳香族に改質するためには、この未反応ガスを5回反応器に通す必要がある。しかし、既存の技術では反応を進めるためには芳香族製造型直接改質器を出た未反応ガスを冷却して生成物の水素を分離器で分離する必要があり、その後また未反応メタンを800℃に加熱せねばならないので熱効率が悪い。さらに、生成物分離の際微量の副生成物が循環ガス中に戻り、原料ガス中に蓄積する危険性があり改質性能が安定性を欠く可能性がある。しかし、本発明の構成によって、このメタン精製後の不純物を含んだ未反応ガス(例えばメタン50%,水素やC+その他50%)を後段に配置した水蒸気改質器で改質して水素を発生させれば、芳香族製造型直接改質器に性能の安定性に影響を与える不純ガスを含んだ未反応メタンを再度通す必要は無く、効率的に原料のほとんどを処理でき、かつ二酸化炭素排出を抑制して水素を製造出来、さらに化学工業原料として有用な芳香族化合物を同時に製造出来るシステムとする事が出来る。
【0034】
(実施形態2)
次に、他の実施形態を図2に基づいて説明する。
なお、この実施形態は、上記実施形態における水蒸気改質器50を炭素製造型直接改質器20に変更した以外は上記実施形態と同様であり、それら構成は同一の符号を付してその説明を省略または簡略化する。
炭素製造型直接改質器20は、例えばシリカ、アルミナなどの多孔質担体にニッケルや酸化鉄等などの触媒金属を担持させた触媒を備えるもので構成することができる。
上記実施形態と同様にして原料メタンの改質を芳香族製造型直接改質器12で行い、未反応メタンを含むガスを炭素製造型直接改質器20に導入して改質を行う。改質は、例えば500〜800℃、4気圧で行う。この反応によって水素と固体炭素が生成される。このシステムでは、このシステムでは、原料メタン中の約50〜90%の炭素を芳香族や炭素として固定化することと同時に水素を製造することができる。
【0035】
なお、前記実施形態で示した、芳香族製造型直接改質器と水蒸気改質器のハイブリッドシステムでは、二酸化炭素を固定化すると言う観点からメタンは前段の芳香族製造型直接改質器で芳香族として固定化されるのみである。しかし、この実施形態では、芳香族製造型直接改質器と炭素製造方直接改質器をメタン分離装置を介してハイブリッド化する事でプロセス上排出される二酸化炭素はゼロとなり、さらに前段の熱を反応温度が低い後段(炭素製造型直接改質器)に利用する事が出来、不足分をメタン分離精製装置の一部を燃料にする事で加熱用の二酸化炭素排出を抑制できる高効率システムを構築する事が出来る。
【0036】
(実施形態3)
次に、他の実施形態を図3に基づいて説明する。なお、前記各実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
この実施形態では、芳香族製造型直接改質器12の前段に炭素製造型直接改質器20を設置したものであり、原料低級炭化水素として天然ガスを用いている。このため、このシステムでは、上記実施形態と異なり脱硫装置10、CO除去前処理装置11は省いている。原料ガスは、例えば、85%CH、15%C+を含んでいる。炭素製造型直接改質器20では、前記実施形態と同様に原料ガスから水素と固体炭素とが生成され、生成ガスと未反応の原料ガスとが排出される。この炭素製造型直接改質器20によって50〜90%のメタンが炭素として固定化される。
【0037】
炭素製造型直接改質器20の後段にはCH分離部16が設置されており、該分離部14で分離された98%程度(回収率80%程度)の未反応のCHは、還流路17を通って前記炭素製造型直接改質器20に還流され転化率向上に用いられる。CH分離部16のスルーガスおよび分離された未反応のCHが振り分けられて芳香族製造型直接改質器12に供給される。このCH分離部16におけるスルーガスの一部は、燃料にして炭素製造型直接改質器20の反応に必要な熱に利用することで従来必然的に排出されていたCOを高効率で固定化出来る。該芳香族製造型直接改質器12では、前記実施形態と同様に水素とBTXが生成される。なお、芳香族製造型直接改質器12で発生する余熱を前記炭素製造型直接改質器20の加熱源として利用することもできる。
【0038】
芳香族製造型直接改質器12の後段には芳香族分離部13が接続されており、生成されたBTXが分離される。この分離部13によって20〜40%のメタンがBTXとして固定化されることになる。分離部13でBTXを分離した残余のガスは、水素精製装置18によって水素が分離され、製造水素として供給される。水素精製装置18における残余のガスは、加熱用燃料として使用することができ、また、残余のガスから未反応原料ガスを取りだして還流路19を通して前記した炭素製造型直接改質器20に還流させてもよい。
【0039】
この実施形態によれば、原料を天然ガスとした場合、C+の成分は芳香族改質型直接改質触媒の劣化を促進させる影響がある。炭素製造型直接改質器20はC+成分でも問題なく反応が促進される事から、炭素製造型直接改質器20はC+除去の前処理装置としても効果が期待出来、このプロセスを芳香族製造型直接改質器の前段に入れる事で天然ガス中のC+成分を除去する必要が無くなる。
【0040】
【発明の効果】
以上説明したように、本発明によれば芳香族製造型直接改質器と水蒸気改質器または炭素製造型直接改質器を直列に配置する事で、芳香族製造型直接改質器の平衡転化率が低く、C2+等の不純ガスに触媒の寿命が影響される点を補い、二酸化炭素排出を抑えて炭化水素を芳香族と炭素に固定化し、かつ熱的・物質的に効率が良いシステムを構成できる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態であって、前段の芳香族製造型直接改質器と後段の水蒸気改質器とを備えるシステムのシステムフロー図である。
【図2】同じく他の実施形態であって、前段の芳香族製造型直接改質器と後段の炭素製造型直接改質器とを備えるシステムのシステムフロー図である。
【図3】同じく他の実施形態であって、前段の炭素製造型直接改質器と後段の芳香族製造型直接改質器とを備えるシステムのシステムフロー図である。
【図4】従来の水蒸気改質装置を示す概略図であり、(A)は斜視図、(B)は、(A)図のB部拡大図である。
【符号の説明】
12 芳香族製造型直接改質器
13 芳香族分離部
16 CH分離部
17 還流路
18 水素精製装置
20 炭素製造型直接改質器
50 水蒸気改質器
[0001]
BACKGROUND OF THE INVENTION
The present invention reforms lower hydrocarbon fuels such as methane and natural gas with a catalyst to immobilize carbon dioxide as useful carbon nanofilaments (CNF) and aromatic compounds, and at the same time efficiently produce hydrogen. The present invention relates to a hydrogen fluoride production hybrid system.
[0002]
[Prior art]
Conventionally, there is a steam reforming method as a representative hydrogen generation method. FIG. 4 shows a schematic diagram of the steam reformer 50.
In the figure, 51 is a catalyst, 52 is a raw material gas, 53 is a tube-shaped reaction vessel, 54 is a heating burner, 55 is a heating furnace, and 56 is a product gas.
The catalyst 51 is filled in a number of reaction vessels 53, and the reaction vessels 53 are arranged in parallel in a heating furnace 55. In this part of the heating furnace 55, a plurality of heating burners 54 for heating the inside of the heating furnace 55 are arranged so that temperature distribution does not occur in the reaction vessel 53.
In this apparatus, water vapor and raw material hydrocarbons are introduced into the reaction vessel 53 and the inside of the heating furnace 55 is heated by the heating burner 54 to heat the catalyst 51 and reform the introduced gas in the reaction vessel 53. To do. The gas after the reaction is mainly hydrogen, carbon dioxide, and unreacted methane, and is discharged from the reaction vessel 53.
[0003]
An example of a hydrogen generation method using this steam reforming method will be described.
In the steam reforming method, nickel or the like is used as a catalyst, and methane as a raw material hydrocarbon is converted into S / C (number of steam moles / number of carbon moles of raw material hydrocarbons, generally 3 according to the gas composition at the outlet). ~ 5), water vapor is added by reacting under conditions of temperature: 450-900 (° C), pressure: 0-3.4 (MPaG), GHSV: 500-5000 (1 / hr). Carbon is produced (for example, conditions when SC11-9 or the like manufactured by Zude Chemie Catalysts Co., Ltd.) is used.
The reaction is represented by CH 4 + 2H 2 O → CO 2 + 4H 2 , and the conversion is about 80%.
[0004]
Further, there is a method represented by Patent Document 1 as a system for producing aromatics that is useful for aromatic production without reforming methane and generating carbon dioxide in the process, and Patent Document 2 as a system for producing carbon like carbon nanotubes. is there.
As shown in Patent Document 1, in the process of producing aromatics (mainly benzene) directly from lower hydrocarbons, a catalyst in which molybdenum is supported on ZSM5 type zeolite is typical, and the reaction is 6CH 4 → C 6 H 6 + 9H. 2 and the conversion is about 20% at 800 ° C. This reaction generally proceeds under conditions of temperature: 650 to 800 (° C.), pressure: 0 to 1 (MPaG), and GHSV: 500 to 10,000 (1 / hr).
Furthermore, as shown in Patent Document 2, the process for producing hydrogen and carbon nanotube-like carbon from lower hydrocarbons uses nickel, iron oxide or the like as a catalyst, the reaction is represented by CH 4 → C + 2H 2 , and the conversion rate is It reaches about 90% at 800 ° C. In general, the reaction proceeds under conditions of temperature: 400 to 800 (° C.), pressure: 0 to 1 (MPaG), GHSV: 500 to 10,000 (1 / hr).
[0005]
[Patent Document 1]
JP 2001-334151 A [Patent Document 2]
Japanese Patent No. 2838192 specification [0006]
[Problems to be solved by the invention]
However, since the conventional steam reformer is configured as described above, a large amount of carbon dioxide, which is a global warming gas, is produced simultaneously with hydrogen. For this reason, if the steam reformer is used as a hydrogen production system for supplying fuel cells, which is said to be the ultimate clean power generation system in the future, the burden on the global environment is no different from that of the current oil-dependent society. There is.
[0007]
Also, in the process of producing aromatics and hydrogen from lower hydrocarbons, the equilibrium conversion is low, so it is necessary to recover the unreacted gas and directly reform the aromatic production type again, and there is no carbon dioxide emission in the process However, as a system for obtaining the reaction heat at this time by burning the fuel, it is conceivable that the amount of carbon dioxide for heating is higher than that of the steam reforming method. Furthermore, the recovered gas has a drawback that it cannot stably exhibit catalytic performance unless the by-products are reduced and the methane purity is increased, and it is difficult to directly use natural gas or the like as a raw material.
[0008]
In addition, in the process of producing hydrogen and solid carbon from lower hydrocarbons, if reforming is carried out at an excessively high temperature in order to increase the conversion rate, there is a drawback that useful CNF is graphitized and loses its value as a product. The temperature for efficiently obtaining the CNF carbon is considered to be about 500 ° C. to 600 ° C., and the methane conversion rate at this time is about 50 to 60%.
[0009]
The present invention has been made against the background of the above circumstances, and reforms lower hydrocarbon fuels such as methane and natural gas with a catalyst to generate hydrogen, and at the same time, when the fuel is conventionally burned to obtain energy. Provides a highly efficient hydrogen generation system in which carbon components that should be emitted as carbon are fixed as useful aromatic compounds or carbon nanotube-like carbon, etc., and carbon dioxide emissions are reduced in the process compared to conventional steam reforming methods The purpose is to do.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 of the hydrogen production hybrid system of the present invention comprises an aromatic production type direct reformer in which an aromatic compound and hydrogen are produced from a lower hydrocarbon gas as a raw material, It is provided with a steam reformer that is subsequent to the aromatic production type direct reformer and generates hydrogen and carbon dioxide from the lower hydrocarbon gas.
[0011]
A method for producing a hybrid system for producing hydrogen according to claim 2, comprising: an aromatic production type direct reformer in which an aromatic compound and hydrogen are produced using a lower hydrocarbon gas as a raw material; and the aromatic production type direct reformer And a carbon production type direct reformer in which hydrogen and carbon are produced from a lower hydrocarbon gas.
[0012]
According to a third aspect of the present invention, there is provided a method for producing a hydrogen production hybrid system comprising: an aromatic production type direct reformer that produces an aromatic compound and hydrogen using a lower hydrocarbon gas as a raw material; and an aromatic production type direct reformer. A steam reformer in which hydrogen and carbon dioxide are produced from lower hydrocarbon gas in the latter stage, and hydrogen and carbon from lower hydrocarbon gas in the former stage or rear stage of the aromatic production type direct reformer. And a carbon production type direct reformer to be produced.
[0013]
According to a fourth aspect of the present invention, there is provided a method for producing a hydrogen production hybrid system according to any one of the first to third aspects, wherein an aromatic compound is separated from a gas sent from the aromatic production type direct reformer. It comprises a group separation means.
[0014]
The method for producing a hybrid system for producing hydrogen according to claim 5 is the invention according to any one of claims 1 to 4, wherein the unreacted raw lower hydrocarbon gas is separated from the gas reformed by the reformer in the previous stage. And an unreacted raw material separating means for refluxing a part or all of it to the former reformer.
[0015]
According to a sixth aspect of the present invention, there is provided a method for producing a hydrogen production hybrid system according to the fifth aspect of the invention, wherein the unreacted raw material separation means converts a part of the separated unreacted raw material lower hydrocarbon gas into a reformer at the preceding stage. While being refluxed, a part of the separated raw material lower gas can be supplied to the reformer at the subsequent stage.
[0016]
The hybrid system for producing hydrogen according to claim 7 is the invention according to claim 6, wherein the amount of the unreacted raw material lower hydrocarbon gas to be refluxed and the amount of the unreacted raw material lower hydrocarbon gas supplied to the subsequent reformer are adjusted. It is possible to do this.
[0017]
The method for producing a hybrid system for producing hydrogen according to claim 8 is characterized in that, in the invention according to any one of claims 1 to 7, a hydrogen purification means is provided in the rear stage of the reformer in the final stage.
[0018]
According to a ninth aspect of the present invention, in the method for producing a hydrogen production hybrid system according to the second aspect of the invention, the residual heat of the aromatic production type direct reformer can be used for heating the carbon production type direct reformer. It is characterized by.
[0019]
That is, the present invention includes an aromatic production type direct reformer and at least one of a steam reformer and a carbon production type direct reformer, so that a part of carbon in the hydrocarbon is useful as a chemical industrial raw material. In the process, carbon dioxide is fixed as CNF, and unreacted lower hydrocarbons such as methane are reformed into hydrogen and carbon by steam reforming method or carbon production type direct reforming method. This makes it possible to produce hydrogen by reforming raw materials with high efficiency in terms of heat and materials, and at the same time, it is possible to fix useful hydrocarbons as aromatic and carbon.
[0020]
In the present invention, lower hydrocarbons are used as a raw material gas. The type is not limited to a specific type, but typically includes methane. Further, the lower hydrocarbon as a raw material may be composed of a plurality of types in addition to a single type.
The aromatic production type direct reformer is one in which an aromatic compound and hydrogen are mainly produced from a lower hydrocarbon gas as a raw material, and the configuration is not limited to a specific one. Usually, the thing using the catalyst which carry | supported the support | carrier with 1 or a some metal as a catalyst material is illustrated. In reforming, an aromatic compound and hydrogen are generated from lower hydrocarbons as raw materials, and ethane, ethylene, and the like are also generated as by-products. In addition, unreacted raw material lower hydrocarbons remain in the reformed gas.
[0021]
Further, the steam reformer generally causes a reaction by bringing steam and a raw material lower hydrocarbon into contact with a catalyst, and mainly produces hydrogen and carbon monoxide or carbon dioxide. In addition, by-products are generated, and unreacted raw material lower hydrocarbons remain in the reformed gas. A steam reformer may be provided with a steam generator.
[0022]
The carbon production type direct reformer generates hydrogen and solid carbon (for example, carbon nanotube-like), and usually reacts the raw material lower hydrocarbon using an appropriate catalyst. Other by-products may be generated in this reaction. In addition, unreacted raw material lower hydrocarbons remain in the reformed gas.
[0023]
In the present invention, the aromatic production type direct reformer is essential, and at least one of a steam reformer and a carbon production type direct reformer is provided. The steam reformer is arranged at the subsequent stage of the aromatic production direct reformer, and after fixing some elements of the raw material lower hydrocarbon as a useful aromatic compound by the aromatic production direct reformer, Modification is made. Thereby, hydrogen is efficiently produced while suppressing the amount of carbon dioxide generated in the entire system. In addition, according to this system, it is not necessary to recirculate unreacted gas containing impurities that has been reformed in the aromatic production type direct reformer to the aromatic production type direct reformer. Thus, it is possible to prevent deterioration of the properties of the aromatic production type direct reformer.
[0024]
In addition, since the carbon production type direct reformer does not normally assume the production of carbon dioxide, it may be installed either before or after the aromatic production type direct reformer. In this system, carbon in the raw material lower hydrocarbon is immobilized as useful CNF and an aromatic compound, and the production of carbon dioxide is suppressed. In addition, when the carbon production type direct reformer is installed in the front stage of the aromatic production type direct reformer, the raw material lower hydrocarbon is pretreated by the carbon production type direct reformer. It becomes possible to supply high raw material lower hydrocarbons to an aromatic production type direct reformer.
[0025]
In addition, while providing an aromatic separation means for separating the aromatic compound from the gas sent from the aromatic production type direct reformer and taking it out of the system, effective use of the aromatic compound can be achieved, It is possible to prevent the aromatic compound from adversely affecting the subsequent stage.
[0026]
In addition, the reformed gas contains unreacted raw material lower hydrocarbon, and this raw material lower hydrocarbon is supplied to the subsequent stage and processed, but the unreacted raw material lower hydrocarbon is treated from the reformed gas. Separation means can be provided for separating and supplying to the former reformer. Part of the unreacted raw material separated by the separation means can be taken out of the system as fuel or the like. In addition, a part of the separated unreacted raw material can be allocated to a subsequent reformer. The amount of aromatic compound produced and the amount of hydrogen produced can be adjusted by adjusting the amount refluxed by the separation means and the amount supplied to the reformer at the subsequent stage.
[0027]
In addition, since the temperature of the reaction can be set lower than the reaction temperature of the aromatic production type direct reformer in the system where the carbon production type direct reformer is arranged, the residual heat of the aromatic production type direct reformer is effectively used. By using it, hydrogen, aromatics and carbon can be produced more efficiently than existing steam reforming systems.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
An embodiment of the present invention will be described below with reference to FIG. In addition, about the structure similar to a conventional apparatus, the same code | symbol is attached | subjected and the description is abbreviate | omitted or simplified.
The system of this embodiment uses a biogas raw material as a raw material lower hydrocarbon, and its components are composed of 60% CH 4 and 40% CO 2 .
In the present system, a desulfurization apparatus 10 that introduces the above raw material to remove sulfur and a CO 2 removal pretreatment apparatus 11 for removing carbon dioxide are arranged in series. It is not particularly limited construction of desulfurizer 10 to remove the H 2 S by the use of, for example, iron-based catalyst. The CO 2 removal pretreatment apparatus 11 is not limited to a specific configuration in the present invention, but can be configured by, for example, MEA absorption, PSA, or membrane separation, and CO 2 contained in the raw material is almost removed by this apparatus. .
[0029]
An aromatic production type direct reformer 12 is connected to the subsequent stage of the CO 2 removal pretreatment apparatus 11. The aromatic production type direct reformer 12 can be constituted by, for example, a direct reformer in which a catalyst in which a metal such as molybdenum is supported on a ZSM5 type zeolite having a pore system of about 5 mm is filled. At the subsequent stage of the aromatic production type direct reformer 12, an aromatic separation means 13 for separating the aromatic compound produced by the aromatic production type direct reformer 12 is connected. The aromatic separation means 13 is a separation and purification device for separating aromatics (benzene, toluene, xylene: BTX, and naphthalene) from the gas containing hydrogen and unreacted gas generated in the direct reforming unit 2. Aromatic compounds can be separated by distillation or the like. An aromatic removal unit 14 is installed at the subsequent stage of the aromatic separation unit 13. The aromatic removing unit 14 removes an aromatic compound (hereinafter referred to as BTX) by activated carbon adsorption or the like. The trace amount BTX that cannot be completely separated after the BTX separation may affect the subsequent system, and is therefore completely removed by the aromatic removal unit 14. A compressor 15 is disposed downstream of the aromatic removal unit 14 and the pressure of the gas is increased to a pressure required for methane separation, and the gas is introduced into the separation device 16 such as a membrane.
[0030]
A CH 4 separation unit 16 is connected to the subsequent stage of the compressor 15 as an unreacted raw material separation unit. The CH 4 separation unit 16 includes a PSA and a separation membrane, and can separate raw methane. The separation side of the CH 4 separation unit 16 is connected to the reflux path 17 including the compressor 17a, and the gas on the through side is configured to be supplied to the steam reformer 50 and the outside of the system. Further, the separation side CH 4 of the CH 4 separation unit 16 may be allocated on the reflux path 17 side, the steam reformer 50 side, and outside the system. Through gas (for example, CH 4 50%, H 2 and other 50%) supplied to the outside of the system is used as fuel. The reflux path 17 is connected to the gas introduction side of the aromatic production type direct reformer 12. A downstream side of the steam reformer 50 is connected to a hydrogen purifier 18. The separation method in the hydrogen purifier 18 is not particularly limited in the present invention, and for example, an appropriate method such as a membrane separation method that allows PSA or hydrogen to permeate can be employed.
[0031]
Next, the operation of this system will be described.
The raw biogas is desulfurized by the desulfurization device 12, de-CO 2 is removed by the CO 2 removal pretreatment device 11, and is supplied to the aromatic production type direct reformer 12. In the aromatic production type direct reformer 12, for example, a catalytic reaction is performed under conditions of 750 to 800 ° C. and 5 atm to generate byproducts such as hydrogen, an aromatic compound, and ethane. Some raw lower hydrocarbons remain unreacted without reacting. These gases are discharged from the aromatic production type direct reformer 12 and introduced into the aromatic separation unit 13. In the aromatic separation unit 13, an aromatic compound (BTX) such as benzene is separated and taken out of the system. Thereby, for example, 20 to 40% of methane is immobilized as BTX. The residue from which the aromatic compound has been separated is further removed by a minute amount of BTX by the aromatic removing unit 14, and further, the moisture is removed by the moisture removing device 15 and supplied to the CH 4 separating unit 16. In the CH 4 separation unit 16, unreacted CH 4 (for example, a purity of 98% or more and a recovery rate of 80%) is separated, a part is supplied to the reflux path 17, and the other part is removed from the steam reformer 50 and the system. Allocated. The through gas is supplied to the outside of the system and the steam reformer 50. Gas outside the system is used as fuel. Note that the CH 4 separation unit 16 may be configured to adjust the separation gas amount supplied to the reflux path 17 and the gas amount supplied to the steam reformer 50. The adjustment can be performed, for example, by arranging the valve and adjusting the opening. The CH 4 sent to the reflux path 17 is supplied to the aromatic production type direct reformer 12 and used for the aromatic direct reforming reaction to improve the actual conversion rate.
[0032]
In steam reformer 50 is supplied with steam with CH 4, for example, 500 to 800 ° C., hydrogen and carbon dioxide, carbon monoxide is purified by reforming under conditions of 4 atm. These gases are supplied to the hydrogen purifier 18 where carbon dioxide, carbon monoxide and water vapor are removed and hydrogen is separated and used as production hydrogen.
According to this system, hydrogen can be produced at the same time that about 20 to 40% of carbon in the raw material methane is immobilized as an aromatic.
[0033]
In a conventional system consisting only of an aromatic production type direct reformer, the raw material lower hydrocarbon aromatic production type direct reformer is reformed into an aromatic compound mainly composed of hydrogen and benzene. However, if the reforming temperature is 800 ° C., for example, the theoretical equilibrium conversion is about 20%, so that unreacted methane is discharged as 80% off-gas. When this process is used alone as a hydrogen generator, it is necessary to pass this unreacted gas through the reactor five times in order to reform the raw material into 100% hydrogen and aromatics. However, with the existing technology, in order to proceed with the reaction, it is necessary to cool the unreacted gas exiting the aromatic production type direct reformer and separate the product hydrogen with a separator, and then to remove the unreacted methane again. Thermal efficiency is poor because it must be heated to 800 ° C. Furthermore, a small amount of by-products may return to the circulating gas during product separation and accumulate in the raw material gas, and the reforming performance may lack stability. However, according to the configuration of the present invention, unreacted gas containing impurities after purification of methane (for example, methane 50%, hydrogen and C 2 + other 50%) is reformed by a steam reformer disposed in the subsequent stage to generate hydrogen. Therefore, it is not necessary to pass unreacted methane containing impure gas that affects the stability of performance through the aromatic production type direct reformer, so that most of the raw materials can be processed efficiently and carbon dioxide. It is possible to produce a system capable of producing hydrogen while suppressing carbon emission, and further producing an aromatic compound useful as a raw material for chemical industry.
[0034]
(Embodiment 2)
Next, another embodiment will be described with reference to FIG.
In addition, this embodiment is the same as that of the said embodiment except having changed the steam reformer 50 in the said embodiment into the carbon production type direct reformer 20, and those structures attach | subject the same code | symbol and give the description. Is omitted or simplified.
The carbon production type direct reformer 20 can be configured by including a catalyst in which a catalyst metal such as nickel or iron oxide is supported on a porous carrier such as silica or alumina.
In the same manner as in the above embodiment, the raw material methane is reformed by the aromatic production direct reformer 12, and a gas containing unreacted methane is introduced into the carbon production direct reformer 20 for reforming. The reforming is performed, for example, at 500 to 800 ° C. and 4 atm. This reaction produces hydrogen and solid carbon. In this system, hydrogen can be produced at the same time that about 50 to 90% of carbon in the raw material methane is immobilized as an aromatic or carbon.
[0035]
In the hybrid system of an aromatic production direct reformer and a steam reformer shown in the above embodiment, methane is aromatized in the preceding aromatic production direct reformer from the viewpoint of fixing carbon dioxide. It is only fixed as a tribe. However, in this embodiment, the aromatic carbon direct reformer and the carbon production direct reformer are hybridized via a methane separation device, so that the amount of carbon dioxide discharged in the process becomes zero, and the heat of the previous stage is further reduced. Can be used in the latter stage (carbon production type direct reformer) with low reaction temperature, and the carbon dioxide emissions for heating can be suppressed by using a part of the methane separation and purification unit as fuel for the shortage Can be built.
[0036]
(Embodiment 3)
Next, another embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected about the structure similar to each said embodiment, and the description is abbreviate | omitted or simplified.
In this embodiment, the carbon production type direct reformer 20 is installed in the preceding stage of the aromatic production type direct reformer 12, and natural gas is used as the raw material lower hydrocarbon. For this reason, in this system, unlike the above embodiment, the desulfurization apparatus 10 and the CO 2 removal pretreatment apparatus 11 are omitted. The source gas contains, for example, 85% CH 4 and 15% C 2 +. In the carbon production type direct reformer 20, hydrogen and solid carbon are generated from the raw material gas as in the above embodiment, and the generated gas and the unreacted raw material gas are discharged. The carbon production type direct reformer 20 fixes 50 to 90% of methane as carbon.
[0037]
A CH 4 separation unit 16 is installed at the rear stage of the carbon production type direct reformer 20, and about 98% (about 80% recovery rate) of unreacted CH 4 separated by the separation unit 14 is refluxed. It is refluxed to the carbon production type direct reformer 20 through the passage 17 and used for improving the conversion rate. The through gas of the CH 4 separation unit 16 and the separated unreacted CH 4 are distributed and supplied to the aromatic production type direct reformer 12. A part of the through gas in the CH 4 separation section 16 is used as a fuel for the heat necessary for the reaction of the carbon production type direct reformer 20, thereby fixing CO 2 inevitably exhausted conventionally with high efficiency. Can be In the aromatic production type direct reformer 12, hydrogen and BTX are generated as in the above embodiment. The residual heat generated in the aromatic production direct reformer 12 can be used as a heating source for the carbon production direct reformer 20.
[0038]
An aromatic separation unit 13 is connected to the subsequent stage of the aromatic production type direct reformer 12, and the generated BTX is separated. The separation unit 13 immobilizes 20 to 40% of methane as BTX. The remaining gas from which BTX has been separated by the separation unit 13 is separated by the hydrogen purifier 18 and supplied as production hydrogen. The remaining gas in the hydrogen purifier 18 can be used as a fuel for heating, and unreacted raw material gas is taken out from the remaining gas and returned to the carbon production type direct reformer 20 through the reflux path 19. May be.
[0039]
According to this embodiment, when the raw material is natural gas, the C 2 + component has an effect of promoting the deterioration of the aromatic reforming type direct reforming catalyst. Since the carbon production type direct reformer 20 can promote the reaction without problems even with C 2 + components, the carbon production type direct reformer 20 can be expected to be effective as a pretreatment device for C 2 + removal. It is not necessary to remove the C 2 + component in the natural gas by placing the gas in the front stage of the aromatic production type direct reformer.
[0040]
【The invention's effect】
As described above, according to the present invention, the aromatic production type direct reformer and the steam reformer or the carbon production type direct reformer are arranged in series, so that the equilibrium of the aromatic production type direct reformer is achieved. Low conversion rate, C2 + etc. impure gas affects the life of the catalyst, suppresses carbon dioxide emission, immobilizes hydrocarbons to aromatics and carbon, and is thermally and materially efficient system There is an effect that can be configured.
[Brief description of the drawings]
FIG. 1 is a system flow diagram of a system that is an embodiment of the present invention and includes a front-stage aromatic production-type direct reformer and a rear-stage steam reformer.
FIG. 2 is a system flow diagram of a system that is another embodiment and includes a front-stage aromatic production-type direct reformer and a rear-stage carbon production-type direct reformer.
FIG. 3 is a system flow diagram of a system that is another embodiment and includes a front-stage carbon production-type direct reformer and a rear-stage aromatic production-type direct reformer.
4A and 4B are schematic views showing a conventional steam reformer, in which FIG. 4A is a perspective view, and FIG. 4B is an enlarged view of a portion B in FIG.
[Explanation of symbols]
12 Aromatic production type direct reformer 13 Aromatic separation unit 16 CH 4 separation unit 17 Reflux path 18 Hydrogen purifier 20 Carbon production type direct reformer 50 Steam reformer

Claims (9)

低級炭化水素ガスを原料として芳香族化合物と水素とが生成される芳香族製造型直接改質器と、芳香族製造型直接改質器の後段にあって低級炭化水素ガスから水素と二酸化炭素とが生成される水蒸気改質器とを備えることを特徴とする水素製造ハイブリッドシステム。An aromatic production type direct reformer in which an aromatic compound and hydrogen are produced using a lower hydrocarbon gas as a raw material, and hydrogen and carbon dioxide from the lower hydrocarbon gas in the latter stage of the aromatic production type direct reformer And a steam reformer that generates water. 低級炭化水素ガスを原料として芳香族化合物と水素とが生成される芳香族製造型直接改質器と、該芳香族製造型直接改質器の前段または後段にあって低級炭化水素ガスから水素と炭素とが生成される炭素製造型直接改質器とを備えることを特徴とする水素製造ハイブリッドシステム。An aromatic production type direct reformer in which an aromatic compound and hydrogen are produced using a lower hydrocarbon gas as a raw material, and hydrogen from the lower hydrocarbon gas in the front stage or the rear stage of the aromatic production type direct reformer A hydrogen production hybrid system comprising a carbon production type direct reformer for producing carbon. 低級炭化水素ガスを原料として芳香族化合物と水素とが生成される芳香族製造型直接改質器と、芳香族製造型直接改質器の後段にあって低級炭化水素ガスから水素と二酸化炭素とが生成される水蒸気改質器と、前記芳香族製造型直接改質器の前段または後段にあって低級炭化水素ガスから水素と炭素とが生成される炭素製造型直接改質器とを備えることを特徴とする水素製造ハイブリッドシステム。An aromatic production type direct reformer in which an aromatic compound and hydrogen are produced using a lower hydrocarbon gas as a raw material, and hydrogen and carbon dioxide from the lower hydrocarbon gas in the latter stage of the aromatic production type direct reformer And a carbon production type direct reformer in which hydrogen and carbon are produced from a lower hydrocarbon gas in the front stage or the rear stage of the aromatic production type direct reformer. A hydrogen production hybrid system characterized by 前記芳香族製造型直接改質器から送出されるガスから芳香族化合物を分離する芳香族分離手段を備えることを特徴とする請求項1〜3のいずれかに記載の水素製造ハイブリッドシステム。The hydrogen production hybrid system according to any one of claims 1 to 3, further comprising aromatic separation means for separating an aromatic compound from a gas sent from the aromatic production type direct reformer. 前段の改質器で改質されたガスから未反応の原料低級炭化水素ガスを分離してその一部または全部を前段の改質器に還流させる未反応原料分離手段を備えることを特徴とする請求項1〜4のいずれかに記載の記載の水素製造ハイブリッドシステム。It comprises an unreacted raw material separation means for separating unreacted raw material lower hydrocarbon gas from the gas reformed by the former reformer and refluxing part or all of it to the former reformer. The hydrogen production hybrid system according to any one of claims 1 to 4. 前記未反応原料分離手段は、分離した未反応の原料低級炭化水素ガスの一部を前段の改質器に還流させるとともに、分離された原料低級ガスの一部を後段の改質器に供給可能としたことを特徴とする請求項5記載の記載の水素製造ハイブリッドシステム。The unreacted raw material separating means can recirculate a part of the separated unreacted raw material lower hydrocarbon gas to the former reformer and supply a part of the separated raw material lower gas to the latter reformer. The hydrogen production hybrid system according to claim 5, wherein: 還流させる未反応原料低級炭化ガス量と後段の改質器に供給する未反応原料低級炭化水素ガス量とを調整可能としたことを特徴とする請求項6記載の水素製造ハイブリッドシステム。The hydrogen production hybrid system according to claim 6, wherein the amount of the unreacted raw material lower hydrocarbon gas to be refluxed and the amount of the unreacted raw material lower hydrocarbon gas supplied to the reformer at the subsequent stage can be adjusted. 最終段の改質器の後段に水素精製手段を備えることを特徴とする請求1〜7のいずれかに記載の水素製造ハイブリッドシステム。The hydrogen production hybrid system according to any one of claims 1 to 7, further comprising a hydrogen purification means in a subsequent stage of the reformer in the final stage. 前記芳香族製造型直接改質器の余熱を前記炭素製造型直接改質器の加熱に利用可能としたことを特徴とする請求項2記載の水素製造ハイブリッドシステム。3. The hydrogen production hybrid system according to claim 2, wherein the residual heat of the aromatic production direct reformer can be used for heating the carbon production direct reformer.
JP2003183668A 2003-06-27 2003-06-27 Hydrogen production hybrid system Expired - Lifetime JP4165818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183668A JP4165818B2 (en) 2003-06-27 2003-06-27 Hydrogen production hybrid system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183668A JP4165818B2 (en) 2003-06-27 2003-06-27 Hydrogen production hybrid system

Publications (2)

Publication Number Publication Date
JP2005015286A true JP2005015286A (en) 2005-01-20
JP4165818B2 JP4165818B2 (en) 2008-10-15

Family

ID=34183648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183668A Expired - Lifetime JP4165818B2 (en) 2003-06-27 2003-06-27 Hydrogen production hybrid system

Country Status (1)

Country Link
JP (1) JP4165818B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529943A (en) * 2005-02-10 2008-08-07 エレクトロファック アクチェンゲゼルシャフト Hydrogen production
JP2009513466A (en) * 2005-10-31 2009-04-02 エレクトロファック アクチェンゲゼルシャフト Use of hydrogen production method
JP2010528974A (en) * 2007-06-06 2010-08-26 リンデ・エルエルシー Integrated process for carbon monoxide generation for carbon nanomaterial generation
CN111333029A (en) * 2020-02-29 2020-06-26 太原理工大学 Process for reforming and reducing iron and generating carbon nano tube by methane and carbon dioxide
WO2023120628A1 (en) * 2021-12-23 2023-06-29 千代田化工建設株式会社 Method for manufacturing paraxylene

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529943A (en) * 2005-02-10 2008-08-07 エレクトロファック アクチェンゲゼルシャフト Hydrogen production
JP2009513466A (en) * 2005-10-31 2009-04-02 エレクトロファック アクチェンゲゼルシャフト Use of hydrogen production method
US9561957B2 (en) 2005-10-31 2017-02-07 Bestrong International Limited Use of a process for hydrogen production
JP2010528974A (en) * 2007-06-06 2010-08-26 リンデ・エルエルシー Integrated process for carbon monoxide generation for carbon nanomaterial generation
CN111333029A (en) * 2020-02-29 2020-06-26 太原理工大学 Process for reforming and reducing iron and generating carbon nano tube by methane and carbon dioxide
WO2023120628A1 (en) * 2021-12-23 2023-06-29 千代田化工建設株式会社 Method for manufacturing paraxylene

Also Published As

Publication number Publication date
JP4165818B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
KR100952343B1 (en) Method and apparatus for hydroacrbon fuel processor , Method for operating a fuel cell
US20080003466A1 (en) Diesel Steam Reforming With CO2 Fixing
FI118647B (en) Procedure for reforming gas containing tar-like pollutants
CN107021454B (en) Method for producing hydrogen
CN101041419A (en) Hydrogen production process with regenerant recycle
JP2004530272A5 (en)
CN116133982A (en) Low-hydrocarbon fuel
US20210155859A1 (en) Fuel processing system and method for sulfur bearing fuels
JP4165818B2 (en) Hydrogen production hybrid system
US20170320728A1 (en) A process for the elimination of volatile organic compounds and hazardous air pollutants in ammonia plants
US20100176346A1 (en) Process and system for conducting isothermal low-temperature shift reaction using a compact boiler
WO2023170389A1 (en) Process for producing hydrogen and method of retrofitting a hydrogen production unit
JP4256013B2 (en) Environmentally friendly hydrogen production method
JP2009084257A (en) Method for producing aromatic compound
JP7181105B2 (en) Fuel cell system and method for regenerating anode off-gas
JP2016184550A (en) Gas manufacturing apparatus
JP2009221864A (en) Hydrogen-containing gas utilization system
JP2016184549A (en) Gas production device
DK202100198A1 (en) Process for synthesis gas generation
WO2023218160A1 (en) Process for synthesising methanol
GB2620463A (en) Process for producing hydrogen and method of retrofitting a hydrogen production unit
KR20240075921A (en) System and method for producing hydrogen using high temperature fuel cells
JP2009102186A (en) Production method for hydrogen gas for fuel cell
JP2009102426A (en) Method for directly reforming lower hydrocarbon
JP2005002049A (en) Method of directly reforming lower hydrocarbon and direct reforming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

R150 Certificate of patent or registration of utility model

Ref document number: 4165818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term