JP2005014745A - Air conditioner for aircraft - Google Patents

Air conditioner for aircraft Download PDF

Info

Publication number
JP2005014745A
JP2005014745A JP2003181753A JP2003181753A JP2005014745A JP 2005014745 A JP2005014745 A JP 2005014745A JP 2003181753 A JP2003181753 A JP 2003181753A JP 2003181753 A JP2003181753 A JP 2003181753A JP 2005014745 A JP2005014745 A JP 2005014745A
Authority
JP
Japan
Prior art keywords
air
exhaust
conditioning system
machine
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003181753A
Other languages
Japanese (ja)
Other versions
JP4136809B2 (en
Inventor
Shoji Uryu
承治 瓜生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003181753A priority Critical patent/JP4136809B2/en
Publication of JP2005014745A publication Critical patent/JP2005014745A/en
Application granted granted Critical
Publication of JP4136809B2 publication Critical patent/JP4136809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce consumption of engine fuel required for air-conditioning at a high altitude. <P>SOLUTION: This device is provided with an exhaust using air-conditioning system A having an air cycle machine 12 comprising a compressor 12a for compressing the outside air or fan bleeding 11A of a turbo fan engine and supplying the compressed air into the aircraft and an exhaust turbine 12b using exhaust air 11C to the outside as a power source, and an air cycle air-conditioning system B using bleeding 1A from an APU or an engine compressor as operation energy. Only at the high altitude cruising, the exhaust using air-conditioning system A is operated, and the bleeding 11A is dispensed with, and thereby the fuel consumption can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、航空機の機内温度及び圧力を制御する航空機用空気調和装置に関する。
【0002】
【従来の技術】
航空機用空気調和装置には、従来一般的にエアサイクルシステムが用いられてきた。これは、温度調節以外に高高度での機内において与圧が必要であること、高圧のエンジン抽気が使用できること、小型軽量であることの条件を満たすものであるという理由によるものである。近年、一般的に用いられているシステムは、図4に示すような3ホイール、HPWS(High Pressure Water Separation)方式と呼ばれるシステムである(例えば、特許文献1参照。)。
【0003】
このHPWS方式の空調システムでは、エンジンのコンプレッサまたはAPU(補助動力装置)からの高温・高圧空気である抽気1Aを一次熱交換器2でラムエア1Bにより冷却し、コンプレッサ31、抽気タービン32及びファン33からなるエアサイクルマシン(ACM)3のコンプレッサ31で圧縮し、二次熱交換器4で再度ラムエア1Bにより冷却後、リヒータ51、コンデンサ52及びウオータエキストラクタ53からなる除湿機構5で除湿した後、前記エアサイクルマシン3の抽気タービン32で断熱膨張させ、低温空気1Cを得ている。この抽気タービン32の有する動力は、コンプレッサ31及び抽気1Aまたは低速飛行時にラムエア1Bを引き込むためのファン33の駆動に利用される。前記低温空気1Cは、ミキシングチャンバ6において、機内与圧室7から循環する循環空気1Dと混合され適度な温度で与圧され、機内与圧室7に供給される。
【0004】
これらのエアサイクルによる空調システムは、飛行時に仮にその空調システムの一系統が故障しても一定の空気調和が行えるように、一般に一機あたり同一の予備空調システムCを予備として切替バルブ8を介して切替え可能に搭載している。また、機内与圧室7内の圧力を一定に保ために、CPCS(Cabin pressure Control System)と呼ばれる機内与圧制御システムが作動しており、与圧制御のためにアウトフローバルブ7から機外へ排気空気1Eが排出されている。
【0005】
【特許文献1】
特開2002−96799号公報
【0006】
【発明が解決しようとする課題】
従来のエアサイクル方式を用いた航空機用空気調和装置は、上記のように構成されているが、エアサイクル方式による空調システムは、飛行中はエンジン・コンプレッサからの高温・高圧の抽気1Aのエネルギーによって駆動されるものであるので、エンジンから高圧空気を直接抽気する必要がある。このことは、エンジン側にとってはそれだけの高圧空気を余分に作り出す必要が生じるだけでなく、エンジンそのものの効率を低下させることとなり、機体にとって大きな負担となっている。このため、航空機用空気調和装置は、低圧・低流量で効率良く機内空気調和を行うことができるものであって、機体の燃費低減に寄与するものであることが必要である。
本発明は、このような状況に鑑みてなされたものであって、エンジンへの負担の低減(すなわち空調装置が消費する燃料の低減)を達成できる航空機用空気調和装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明の航空機用空気調和装置は、機外空気またはターボファンエンジンのファン抽気を新鮮空気として取り入れ、該新鮮空気を圧縮して機内へ供給するコンプレッサと機外へ排気する排気空気を動力源とする排気膨張タービンからなるエアサイクルマシンを備えた排気利用形空調システムと、補助動力装置またはエンジンのコンプレッサからの抽気を冷却して機内与圧室内に新鮮空気として供給するエアサイクル方式のエアサイクル形空調システムを並設するとともに、高高度巡航中は排気利用形空調システムを稼働させ、地上及び低高度飛行中はエアサイクル形空調システムを稼働させるように切り換える切換機構を設けた。
また、排気膨張タービンに電動モータを連結し、機外空気を圧縮する際に、排気膨張タービンで得られる動力とともに電動モータにより必要な動力を得るようにした。
本発明の航空機用空気調和装置は、上記のように構成されており、飛行中はエンジン・コンプレッサから抽気を取る必要がなくなり、排気利用形空調システムの作動により燃料消費量は大幅に低減される。
【0008】
【発明の実施の形態】
本発明の実施例を図面を参照して説明する。なお、図中の記号において図4の従来例と同じ部品には同一記号を付した。図1は本実施例による航空機用空気調和装置の構成を示すシステム構成図である。本航空機用空気調和装置は、図1に示すように基本的には、例えば、客室や操縦室などの与圧が必要な機内与圧室Rの気温、気圧を制御対象とし、この機内与圧室Rを一定温度、一定気圧に保持するために、空調によって得られる低温空気を機内与圧室Rからの循環空気1Dと混合し、この混合空気を前記機内与圧室Rに供給するミキシングチャンバ6と、このミキシングチャンバ6を共用して高高度巡航時に機内の空気調和を行う排気利用形空調システムAと、地上及び低高度飛行時に機内の空気調和を行うエアサイクル形空調システムBから構成されている。
【0009】
前記機内与圧室Rには、排気利用形空調システムAが稼働中に排気空気11Cを送る排気ライン16とエアサイクル形空調システムB稼働中に排気空気11Cを機外に排出するアウトフローバルブ7が設けられるとともに、外気又はエンジン・ファンからの抽気11A取入れ口には制御バルブ10a、APU又はエンジン・コンプレッサからの抽気1A取入れ口には制御バルブ10b、そして排気利用形空調システムA、エアサイクル形空調システムBからの供給空気の流路切替え用に切替バルブ8がそれぞれ設けられている。
【0010】
前記排気利用形空調システムAは、予め設定された高度(通常、巡航高度を設定する)以上の高高度での飛行時に空調を行うシステムで、通常、機内与圧室R内の気圧を海面高度2400mにおける気圧(570mmHg)に保つようにするもので、外気またはエンジン・ファンからの抽気11Aを圧縮するためのコンプレッサ12aと、機内与圧室Rと機外の圧力差(例えば、6,000〜13,700mの高度を航行する場合は、最大460mmHg)を利用して機外へ放出される排気空気11Cを入口空気として膨張させる排気タービン12bと、必要な場合にはさらに動力を付加させるための電動モータ12cとからなるエアサイクルマシン12を主要構成要素とし、さらに機内与圧室Rへ供給する供給空気11Eの供給圧力/流量を調整するための制御バルブ13、機内与圧室Rに供給できる圧力までに圧縮したコンプレッサ12aの出口空気の温度を調整するための熱交換器14、機内与圧室Rへ供給空気11Eを供給するための供給ライン15、排気空気11Cを排気タービン12bに導くための排気ライン16およびその流量を制御するための制御バルブ17等を具備している。
【0011】
上記のように構成された排気利用形空調システムAにおいて、機内与圧室Rから排気される排気空気11Cは、機内圧力および排気空気流量を制御する制御バルブ17を経て排気タービン12bに導かれ断熱膨張した後、機外へ排気される。これにより排気タービン12bに動力が発生し、得られた動力は排気タービン12bと短軸結合されたコンプレッサ12aの駆動に利用される。排気タービン12bだけでは十分な動力を供給することができない場合には、さらに電動モータ12cを連結してその動力でコンプレッサ12aの駆動をアシストする。コンプレッサ12aは、上記の動力を得て外気またはエンジン・ファンからの抽気11Aを機内に供給するに足る圧力まで圧縮する。この圧縮された供給空気11Eは、熱交換器14においてラムエア11Bとの熱交換により適温に温度調節された後、機内供給圧力及び流量を制御する制御バルブ13によって、コンプレッサ12aの出口での圧力及び流量を調節して機内与圧室Rに供給される。
【0012】
前記エアサイクル形空調システムBは、図4に示した従来の空調システムと同様で、図2に示したようなAPUまたはエンジン・コンプレッサからの抽気1Aをコンプレッサ31で圧縮し、この圧縮された抽気をリヒータ51、コンデンサ52及びウオータエキストラクタ53からなる除湿機構5により除湿した後、抽気タービン32に導入して、その発生動力で前記コンプレッサ31を作動させるエアサイクルマシン3を有する空調システムが用いられる。
【0013】
図3は、上記排気利用形空調システムA及びエアサイクル形空調システムBの動作を制御する制御装置20と航空機用空気調和装置内の制御バルブ10a、制御バルブ10b、切替バルブ8、高度計21及び気圧計22との接続を示したもので、制御装置20によって航空機が地上あるいは低高度内を飛行時は、高度計21と予め設定された高度が比較されて、制御バルブ10aを閉、制御バルブ10bを開、切替バルブ8を図2に示すようにエアサイクル形空調システムB側に切り替えられる。その結果、APU又はエンジン・コンプレッサからの抽気1Aはエアサイクル形空調システムBのコンプレッサ31に導入される。抽気タービン32から抽出された圧縮空気は、除湿された後、切替バルブ8を通ってミキシングチャンバ6で機内与圧室Rの空気と混合された状態で機内与圧室Rに供給される。そして、機内与圧室R内の気圧計22の信号と気圧設定値が比較され、所定の気圧になるようアウトフローバルブ7が制御される。
【0014】
次に、航空機の高高度(巡航高度以上)での飛行時は、制御バルブ10aを開、制御バルブ10bを閉、切替バルブ8を図1に示すように排気利用形空調システムAに切り替える。その結果、外気又はエンジン・ファンからの抽気11Aがコンプレッサ12aに導入される。コンプレッサ12aで圧縮された空気はラムエア11Bで冷却され低温空気はミキシングチャンバ6で機内与圧室Rの空気と混合されて機内与圧室Rに供給される。機内与圧室R内の気圧は制御バルブ17により制御される。
【0015】
前記排気利用形空調システムAは、高高度でのみ作動するものであるが、高高度では大気中の湿度は極めて低いことから、エアサイクル形空調システムBに用いられたような除湿機構5を不要とし、非常にシンプルな構成になる上、万一故障しても、もう一つのエアサイクル形空調システムBを作動させることにより、従来システムと同様に最低限の空調を賄うことができる。
【0016】
本発明の航空機用空気調和装置は、空調用エア源として外気又はエンジンファンからの抽気を利用する排気利用形空調システムAとAPUまたはエンジン・コンプレッサからの抽気を利用するエアサイクル形空調システムBを運行高度に応じて切り替え使用することを特徴とするものであり、実施例にのみ限定されるものではなく、例えば、エアサイクル形空調システムBとしてその抽気タービン出力軸に排気タービンを連結して効率を高めたものを用いることもできる。
【0017】
【発明の効果】
本発明の航空機用空気調和装置は、高高度巡航時における空調システムに排気タービンを設けるとともに、新鮮空気源として外気またはエンジン・ファンからの抽気を利用し、必要な場合には電力を使用してエアサイクルマシンを駆動することにより、燃料消費の最も多い高高度巡航時間中にエンジン・コンプレッサからの抽気を完全に不要にすることができ、航空機の燃費の大幅な低減が可能となる。
【図面の簡単な説明】
【図1】本発明の実施例の構成を示すシステム構成図である。
【図2】実施例に係わるエアサイクル形空調システムの構成を示すシステム構成図である。
【図3】実施例に係わる制御手段とその制御端を示すブロック図である。
【図4】従来の航空機用空気調和装置のシステム構成図である。
【符号の説明】
1A 抽気
1D 循環空気
6 ミキシングチャンバ
7 アウトフローバルブ
8 切替バルブ
10a 制御バルブ
10b 制御バルブ
11A 抽気
11B ラムエア
11C 排気空気
11E 供給空気
12 エアサイクルマシン
12a コンプレッサ
12b 排気タービン
12c 電動モータ
13 制御バルブ
14 熱交換器
15 供給ライン
16 排気ライン
17 制御バルブ
A 排気利用形空調システム
B エアサイクル形空調システム
R 機内与圧室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aircraft air conditioner that controls the in-flight temperature and pressure of an aircraft.
[0002]
[Prior art]
Conventionally, an air cycle system has been generally used for an air conditioner for aircraft. This is because, in addition to temperature control, the condition that pressurization is required in the aircraft at a high altitude, that high-pressure engine bleed air can be used, and that it is compact and lightweight is satisfied. In recent years, a system that is generally used is a system called a 3-wheel, HPWS (High Pressure Water Separation) system as shown in FIG. 4 (see, for example, Patent Document 1).
[0003]
In this HPWS air conditioning system, extraction air 1A, which is high-temperature and high-pressure air from an engine compressor or APU (auxiliary power unit), is cooled by ram air 1B in a primary heat exchanger 2, and a compressor 31, an extraction turbine 32, and a fan 33 are cooled. After being compressed by the compressor 31 of the air cycle machine (ACM) 3 consisting of the following, cooled by the ram air 1B again by the secondary heat exchanger 4, and then dehumidified by the dehumidifying mechanism 5 consisting of the reheater 51, the condenser 52 and the water extractor 53, A low temperature air 1C is obtained by adiabatic expansion by the extraction turbine 32 of the air cycle machine 3. The power of the extraction turbine 32 is used to drive the compressor 31 and the extraction air 1A or the fan 33 for drawing in the ram air 1B during low-speed flight. The low-temperature air 1 </ b> C is mixed with circulating air 1 </ b> D circulated from the in-machine pressurizing chamber 7 in the mixing chamber 6, pressurized at an appropriate temperature, and supplied to the in-machine pressurized chamber 7.
[0004]
These air-cycle air-conditioning systems generally use the same auxiliary air-conditioning system C as a spare per switching valve 8 so that constant air conditioning can be performed even if one of the air-conditioning systems breaks down during flight. Can be switched. Further, in order to keep the pressure in the in-machine pressurizing chamber 7 constant, an in-machine pressurization control system called CPCS (Cabin pressure Control System) is in operation, and the outflow valve 7 is controlled from the outflow valve 7 for pressurization control. Exhaust air 1E is discharged.
[0005]
[Patent Document 1]
JP 2002-96799 A [0006]
[Problems to be solved by the invention]
A conventional air conditioner for an aircraft using an air cycle system is configured as described above. However, an air conditioning system using an air cycle system uses the energy of high-temperature and high-pressure extraction air 1A from an engine / compressor during flight. Since it is driven, it is necessary to extract high-pressure air directly from the engine. This not only requires the engine side to create extra high-pressure air, but also reduces the efficiency of the engine itself, which is a heavy burden on the aircraft. For this reason, the air conditioner for aircraft must be capable of efficiently performing in-flight air conditioning at a low pressure and a low flow rate, and needs to contribute to reducing fuel consumption of the aircraft.
The present invention has been made in view of such a situation, and an object of the present invention is to provide an aircraft air conditioner that can achieve a reduction in the burden on the engine (that is, a reduction in fuel consumed by the air conditioner). To do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an air conditioner for an aircraft according to the present invention takes outside air or fan bleed air of a turbofan engine as fresh air, compresses the fresh air and supplies the fresh air to the inside of the air compressor, and the outside. An exhaust-type air conditioning system equipped with an air cycle machine consisting of an exhaust expansion turbine that uses exhaust air to be exhausted as a power source, and bleed air from the auxiliary power unit or the compressor of the engine is cooled and supplied as fresh air to the in-machine pressurized chamber Air cycle type air-conditioning air conditioning system is installed side by side, and an exhaust-type air conditioning system is operated during high-altitude cruising, and the air-cycle type air-conditioning system is operated during flight on the ground and at low altitudes. Was established.
In addition, when an electric motor is connected to the exhaust expansion turbine and the outside air is compressed, necessary power is obtained by the electric motor together with the power obtained by the exhaust expansion turbine.
The air conditioning apparatus for aircraft according to the present invention is configured as described above, and it is not necessary to extract air from the engine / compressor during flight, and the fuel consumption is greatly reduced by the operation of the exhaust air conditioning system. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. In the figure, the same parts as those in the conventional example of FIG. FIG. 1 is a system configuration diagram showing the configuration of an aircraft air conditioner according to the present embodiment. As shown in FIG. 1, the air conditioning apparatus for an aircraft basically controls, for example, the temperature and pressure of an in-machine pressurizing chamber R that requires pressurization such as a cabin or a cockpit. In order to keep the chamber R at a constant temperature and a constant atmospheric pressure, mixing air is supplied to the in-machine pressurizing chamber R by mixing low-temperature air obtained by air conditioning with the circulating air 1D from the in-machine pressurized chamber R. 6 and an air-conditioning air conditioning system A that uses the mixing chamber 6 for air conditioning during high altitude cruising and an air cycle air conditioning system B that performs air conditioning during ground and low altitude flight. ing.
[0009]
The in-machine pressurizing chamber R has an exhaust line 16 for sending exhaust air 11C while the exhaust air-conditioning air conditioning system A is in operation, and an outflow valve 7 for discharging the exhaust air 11C outside the equipment while the air cycle air-conditioning system B is in operation. The control valve 10a is provided for the intake air 11A from the outside air or the engine fan, the control valve 10b is provided for the air extraction 1A from the APU or the engine compressor, and the exhaust air-conditioning system A, air cycle type Switching valves 8 are provided for switching the flow path of the supply air from the air conditioning system B, respectively.
[0010]
The exhaust-use air conditioning system A is a system that performs air conditioning when flying at a high altitude that is higher than a preset altitude (usually setting the cruise altitude). The air pressure at 2400 m (570 mmHg) is maintained, and the compressor 12a for compressing the outside air or the bleed air 11A from the engine fan, the pressure difference between the in-machine pressurized chamber R and the outside of the machine (for example, 6,000 to When navigating at an altitude of 13,700 m, an exhaust turbine 12b that expands exhaust air 11C discharged to the outside as an inlet air using a maximum of 460 mmHg), and further adds power if necessary Supply pressure / flow rate of supply air 11E supplied to the in-machine pressurizing chamber R, with an air cycle machine 12 including an electric motor 12c as a main component. A control valve 13 for adjusting, a heat exchanger 14 for adjusting the temperature of the outlet air of the compressor 12a compressed to a pressure that can be supplied to the in-machine pressurizing chamber R, and supply air 11E is supplied to the in-machine pressurizing chamber R Supply line 15, an exhaust line 16 for guiding the exhaust air 11C to the exhaust turbine 12b, a control valve 17 for controlling the flow rate, and the like.
[0011]
In the exhaust-use air conditioning system A configured as described above, the exhaust air 11C exhausted from the in-machine pressurizing chamber R is guided to the exhaust turbine 12b via the control valve 17 that controls the in-machine pressure and the exhaust air flow rate, and is insulated. After expansion, it is exhausted out of the machine. As a result, power is generated in the exhaust turbine 12b, and the obtained power is used to drive the compressor 12a coupled to the exhaust turbine 12b with a short shaft. If the exhaust turbine 12b alone cannot supply sufficient power, the electric motor 12c is further connected to assist the drive of the compressor 12a with the power. The compressor 12a obtains the above power and compresses the outside air or the extracted air 11A from the engine fan to a pressure sufficient to supply the inside of the apparatus. The compressed supply air 11E is adjusted to an appropriate temperature by heat exchange with the ram air 11B in the heat exchanger 14, and then the pressure and pressure at the outlet of the compressor 12a are controlled by a control valve 13 that controls the supply pressure and flow rate in the apparatus. The flow rate is adjusted and supplied to the in-machine pressurizing chamber R.
[0012]
The air-cycle type air conditioning system B is the same as the conventional air conditioning system shown in FIG. 4, and compresses the extracted air 1A from the APU or the engine compressor as shown in FIG. After the air is dehumidified by the dehumidifying mechanism 5 including the reheater 51, the condenser 52, and the water extractor 53, an air conditioning system having an air cycle machine 3 that is introduced into the extraction turbine 32 and operates the compressor 31 with the generated power is used. .
[0013]
FIG. 3 shows a control device 20 for controlling the operation of the exhaust air conditioning system A and the air cycle air conditioning system B, and a control valve 10a, a control valve 10b, a switching valve 8, an altimeter 21 and an atmospheric pressure in the aircraft air conditioner. When the aircraft flies on the ground or in a low altitude by the control device 20, the altitude meter 21 and the preset altitude are compared, the control valve 10a is closed, and the control valve 10b is closed. The opening and switching valve 8 is switched to the air cycle type air conditioning system B side as shown in FIG. As a result, the bleed air 1A from the APU or the engine compressor is introduced into the compressor 31 of the air cycle air conditioning system B. The compressed air extracted from the extraction turbine 32 is dehumidified, and then supplied to the in-machine pressurizing chamber R through the switching valve 8 and mixed with the air in the in-machine pressurization chamber R through the mixing chamber 6. Then, the signal of the barometer 22 in the in-machine pressurizing chamber R and the atmospheric pressure set value are compared, and the outflow valve 7 is controlled so as to reach a predetermined atmospheric pressure.
[0014]
Next, when the aircraft is flying at a high altitude (cruising altitude or higher), the control valve 10a is opened, the control valve 10b is closed, and the switching valve 8 is switched to the exhaust-use air conditioning system A as shown in FIG. As a result, the air 11A extracted from the outside air or the engine fan is introduced into the compressor 12a. The air compressed by the compressor 12a is cooled by the ram air 11B, and the low temperature air is mixed with the air in the in-machine pressurizing chamber R in the mixing chamber 6 and supplied to the in-machine pressurized chamber R. The atmospheric pressure in the in-machine pressurizing chamber R is controlled by the control valve 17.
[0015]
The exhaust-use air conditioning system A operates only at high altitudes, but since the humidity in the atmosphere is extremely low at high altitudes, the dehumidifying mechanism 5 used in the air cycle air conditioning system B is unnecessary. In addition, even if it breaks down, it is possible to cover the minimum air conditioning like the conventional system by operating another air cycle type air conditioning system B.
[0016]
The air conditioner for aircraft of the present invention includes an exhaust-type air conditioning system A that uses outside air or extraction from an engine fan as an air-conditioning air source, and an air-cycle type air conditioning system B that uses extraction from an APU or engine compressor. It is characterized in that it is used by switching according to the operating altitude, and is not limited to the embodiment. For example, as an air cycle type air conditioning system B, an exhaust turbine is connected to the extraction turbine output shaft for efficiency. It is also possible to use a material with an increased height.
[0017]
【The invention's effect】
The air conditioner for aircraft according to the present invention is provided with an exhaust turbine in an air conditioning system during high-altitude cruising, uses fresh air or bleed air from an engine fan as a fresh air source, and uses electric power when necessary. By driving the air cycle machine, it is possible to completely eliminate the bleed from the engine / compressor during the high altitude cruising time with the highest fuel consumption, and the fuel consumption of the aircraft can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing the configuration of an embodiment of the present invention.
FIG. 2 is a system configuration diagram showing a configuration of an air cycle type air conditioning system according to the embodiment.
FIG. 3 is a block diagram illustrating a control unit and its control end according to the embodiment.
FIG. 4 is a system configuration diagram of a conventional aircraft air conditioner.
[Explanation of symbols]
1A Extraction 1D Circulating air 6 Mixing chamber 7 Outflow valve 8 Switching valve 10a Control valve 10b Control valve 11A Extraction 11B Ram air 11C Exhaust air 11E Supply air 12 Air cycle machine 12a Compressor 12b Exhaust turbine 12c Electric motor 13 Control valve 14 Heat exchanger 15 Supply line 16 Exhaust line 17 Control valve A Exhaust air-conditioning system B Air-cycle air conditioning system R In-machine pressurized chamber

Claims (2)

機外空気またはターボファンエンジンのファン抽気を新鮮空気として取り入れ、該新鮮空気を圧縮して機内へ供給するコンプレッサと機外へ排気する排気空気を動力源とする排気膨張タービンからなるエアサイクルマシンを備えた排気利用形空調システムと、補助動力装置またはエンジンのコンプレッサからの抽気を冷却して機内与圧室内に新鮮空気として供給するエアサイクル方式のエアサイクル形空調システムを並設するとともに、高高度巡航中は排気利用形空調システムを稼働させ、地上及び低高度飛行中はエアサイクル形空調システムを稼働させるように切り換える切換機構を設けたことを特徴とする航空機用空気調和装置。An air cycle machine comprising a compressor that takes outside air or fan bleed air of a turbofan engine as fresh air, compresses the fresh air into the machine, and exhaust exhaust turbine that uses exhaust air exhausted outside the machine as a power source Equipped with an exhaust-type air-conditioning system and an air-cycle air-cycle air-conditioning system that cools the bleed air from the auxiliary power unit or the compressor of the engine and supplies it as fresh air into the in-machine pressurized chamber. An air conditioning apparatus for an aircraft, comprising a switching mechanism for switching an air-conditioning system to operate so that an exhaust-type air conditioning system is operated during cruising, and to operate the air-cycle type air conditioning system during ground and low-altitude flight. 排気膨張タービンに電動モータを連結し、機外空気を圧縮する際に、排気膨張タービンで得られる動力とともに電動モータにより必要な動力を得ることができるエアサイクルマシンを備えたことを特徴とする請求項1記載の航空機用空気調和装置。When the electric motor is connected to the exhaust expansion turbine and the outside air is compressed, an air cycle machine is provided that can obtain necessary power by the electric motor together with power obtained by the exhaust expansion turbine. Item 2. An air conditioner for aircraft according to Item 1.
JP2003181753A 2003-06-25 2003-06-25 Air conditioner for aircraft Expired - Fee Related JP4136809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181753A JP4136809B2 (en) 2003-06-25 2003-06-25 Air conditioner for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181753A JP4136809B2 (en) 2003-06-25 2003-06-25 Air conditioner for aircraft

Publications (2)

Publication Number Publication Date
JP2005014745A true JP2005014745A (en) 2005-01-20
JP4136809B2 JP4136809B2 (en) 2008-08-20

Family

ID=34182358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181753A Expired - Fee Related JP4136809B2 (en) 2003-06-25 2003-06-25 Air conditioner for aircraft

Country Status (1)

Country Link
JP (1) JP4136809B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103715A (en) * 2011-11-11 2013-05-30 Hamilton Sundstrand Corp Air-conditioning device for aircraft and method for operating the same
US8915777B2 (en) * 2007-01-22 2014-12-23 Airbus Operations Sas Aircraft air conditioning system
JP2015137096A (en) * 2014-01-24 2015-07-30 ザ・ボーイング・カンパニーTheBoeing Company Dehumidification system for transportation and its assembly method
JP2016026950A (en) * 2014-05-02 2016-02-18 ハミルトン・サンドストランド・コーポレイションHamilton Sundstrand Corporation Aircraft environment conditioning system and method for operating the same
CN107407618A (en) * 2015-01-21 2017-11-28 瓦伦西亚理工大学 Device, method and use of the device for regulating the atmosphere when testing reciprocating internal combustion engines
JP2018176846A (en) * 2017-04-05 2018-11-15 三菱重工業株式会社 Air conditioning system, aircraft, control method of air conditioning system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086946B1 (en) 2017-04-03 2018-10-02 Hamilton Sundstrand Corporation Hybrid third air condition pack
US12377989B2 (en) 2023-02-24 2025-08-05 Honeywell International Inc. Environmental control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8915777B2 (en) * 2007-01-22 2014-12-23 Airbus Operations Sas Aircraft air conditioning system
JP2013103715A (en) * 2011-11-11 2013-05-30 Hamilton Sundstrand Corp Air-conditioning device for aircraft and method for operating the same
JP2015137096A (en) * 2014-01-24 2015-07-30 ザ・ボーイング・カンパニーTheBoeing Company Dehumidification system for transportation and its assembly method
US9988151B2 (en) 2014-01-24 2018-06-05 The Boeing Company Dehumidification system for use in a vehicle and method of assembling thereof
JP2016026950A (en) * 2014-05-02 2016-02-18 ハミルトン・サンドストランド・コーポレイションHamilton Sundstrand Corporation Aircraft environment conditioning system and method for operating the same
CN107407618A (en) * 2015-01-21 2017-11-28 瓦伦西亚理工大学 Device, method and use of the device for regulating the atmosphere when testing reciprocating internal combustion engines
CN107407618B (en) * 2015-01-21 2019-11-29 瓦伦西亚理工大学 Purposes for the device of adjusting atmosphere, method and described device when testing reciprocating internal combustion engine
JP2018176846A (en) * 2017-04-05 2018-11-15 三菱重工業株式会社 Air conditioning system, aircraft, control method of air conditioning system

Also Published As

Publication number Publication date
JP4136809B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US11981440B2 (en) Energy flow of an advanced environmental control system
US10773807B2 (en) Energy flow of an advanced environmental control system
US11466904B2 (en) Environmental control system utilizing cabin air to drive a power turbine of an air cycle machine and utilizing multiple mix points for recirculation air in accordance with pressure mode
CN107444655B (en) Mixing bleed air and ram air using an air cycle machine having two turbines
US10232948B2 (en) Mixing bleed and ram air at a turbine inlet of a compressing device
EP3248877B1 (en) Mixing bleed and ram air at a turbine inlet
US11999491B2 (en) Aircraft environmental control system
EP3248881B1 (en) Multiple nozzle configurations for a turbine of an environmental control system
EP3085621B1 (en) Environmental control system mixing cabin discharge air with bleed air during a cycle
CN106240827B (en) Recirculation system for parallel ram heat exchanger
CN109665106B (en) Supplementary assembly driven by bleed air and cabin air
CA2928049C (en) Environmental control system mixing cabin discharge air with bleed air during a cycle
EP3235729B1 (en) Environmental control system utilizing multiple mix points for recirculation air in accordance with pressure mode and motor assist
JP4136809B2 (en) Air conditioner for aircraft
EP3235730B1 (en) Environmental control system utilizing cabin air to drive a power turbine of an air cycle machine and utilizing multiple mix points for recirculation air in accordance with pressure mode
JP4232033B2 (en) Air conditioner for aircraft
JP2002096799A (en) Air conditioner for aircraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees