JP2005014078A - Manufacturing method for cold-coining strengthened connecting-rod - Google Patents
Manufacturing method for cold-coining strengthened connecting-rod Download PDFInfo
- Publication number
- JP2005014078A JP2005014078A JP2003186308A JP2003186308A JP2005014078A JP 2005014078 A JP2005014078 A JP 2005014078A JP 2003186308 A JP2003186308 A JP 2003186308A JP 2003186308 A JP2003186308 A JP 2003186308A JP 2005014078 A JP2005014078 A JP 2005014078A
- Authority
- JP
- Japan
- Prior art keywords
- coining
- cold
- hot
- warm
- column part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Forging (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は自動車のエンジン等に用いられるコンロッドを対象とし,特に冷間コイニングによる加工硬化を利用して高強度なコンロッドを製造する上での冷間加工方法に関するものであり,冷間コイニング後の強度ばらつきを抑え,安定して高い強度を確保することのできる高強度なコンロッドの製造方法に関するものである。
【0002】
【従来の技術】
自動車や建設機械等に用いられる機械構造部品は,従来,炭素鋼や合金鋼を素材とし,熱間鍛造後,焼入焼もどし処理により必要な強度を確保してきた。しかし,エネルギー消費の効率化から,最近では,焼入焼もどし処理することなく必要な強度が確保できる非調質鋼が多量に使用されるようになってきている。この非調質鋼については,多数の特許が出願されており,フェライトパーライト型,ベイナイト型等様々な組織からなる鋼が提案されているが,その主となる考え方は,VやNb等の炭窒化物を熱間加工後の冷却途中に析出させることによって,析出強化により強度を確保しようとするものである。
【0003】
しかし,自動車等に対する軽量化への要求は,ますます強くなってきており,コンロッドも例外ではない。軽量化を可能とするためには,材料面での改良によるものと,加工方法の改良によるものの2通りの方策が考えられるが,材料面での改良は,従来から盛んに行われてきたため,最近では,加工方法の面からの改良方法が注目されるようになってきている。
【0004】
加工方法の改良によるコンロッドの高強度方策としては,従来からコンロッドはコラム部が最も高強度が要求されることがわかっており,この部分に冷間加工を加えて(コイニング)加工強化により高強度化しようとする試みが行われるようになってきている。
【0005】
例えば特許文献1では,ウエブ面のみに冷間コイニングを施すことによって,冷間コイニング後にリブ面に引張の残留応力を発生させないことにより,疲労強度が向上させることのできる冷間コイニング方法について開示されている。
【0006】
また,特許文献2〜4には,鋼材として低炭素鋼,低炭素ボロン鋼,マルテンサイト変態開始温度が600℃以上の鋼等を使用してコンロッド形状の熱間鍛造品を作製した後に,焼入後,焼もどしすることなくコイニング,ショットピーニングすることによって,疲労強度の優れたコンロッドを得ることを特徴とする製造方法が記載されている。
【0007】
さらに,特許文献5には,700℃以上の温度で熱間コイニングし,冷間コイニングを省略することによって,座屈強度を低下させることのないコンロッドの製造方法が記載されている。
また,特許文献6,7には,冷間コイニングと熱処理(時効処理)を組合せることによって高強度化を図るという製造方法が記載されている。
【0008】
【特許文献1】
特開平3−221232号公報
【特許文献2】
特開平5−70828号公報
【特許文献3】
特開平7−62444号公報
【特許文献4】
特開平9−196044号公報
【特許文献5】
特開平10−258335号公報
【特許文献6】
特開平10−168540号公報
【特許文献7】
特開平11−131134号公報
【0009】
【発明が解決しようとする課題】
しかしながら,前記した熱間鍛造後に行うコイニング方法には,次の問題がある。
即ち,前記した特許文献1〜7に記載の方法はいずれも強度を改善することを目的としているものの,強度のばらつきを小さくすることを目的とした改善方策については全く記載されていない。すなわち,ばらつきの生じる原因は,コイニング前の粗形状の熱間鍛造品の寸法,特にコラム部の高さがばらつくことが最大の原因であるが,寸法がばらついた場合に対する対策について全く検討されていないためである。
【0010】
コンロッドのコイニングを含め,プレスでの加工はストローク制御で行うのが普通である。ストローク制御で加工が行われるプレスを使って寸法がばらついた鍛造粗形材を冷間コイニングすれば,コイニング時の加工率がばらつくため,結果としてコイニングによる加工硬化の程度に差が生じ,得られた製品に生じる強度ばらつきを小さく抑えることはできない
【0011】
前記した特許文献は,特許文献5を除くと全て冷間でコイニングすることを前提としており,粗形材の寸法がばらついた場合には,当然の結果として強度がばらつくことになる。また,特許文献5に記載の発明は,冷間コイニングをしないことが特徴なため,強度ばらつきが小さくなると予想されるが,コイニング温度が高いため,コイニングによる強度向上効果が得られないという問題がある。
【0012】
また,従来から冷間コイニングを行った場合には,見切り線部において窪み割れが発生するという問題があり,強度ばらつきが小さく見切り線部における窪み割れ発生を防止できるコンロッドの製造方法の開発が強く望まれていた。
【0013】
本発明は,以上記載した問題点を解決するために成されたものであり,熱間鍛造粗形材の寸法がばらついた場合でも安定した強度を有するコンロッドを製造することができ,かつ冷間コイニングにより高強度を確保することのできる強度ばらつきの小さい冷間コイニング強化コンロッドの製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は,大端部と小端部とこれらをつなぐコラム部とを有し,冷間コイニングを施すことによって上記コラム部を強化してなる冷間コイニング強化コンロッドを製造する方法であって,
素材に熱間鍛造を施して上記大端部,上記小端部,及び上記コラム部を形成する熱間鍛造工程と,
上記熱間鍛造工程後の冷却途中の500〜1000℃の温度領域において,上記コラム部に熱間コイニング又は温間コイニングを施す熱間/温間コイニング工程と,
該熱間/温間コイニング工程の後に100℃以下の温度領域において上記コラム部にさらに冷間コイニングを施す冷間コイニング工程とを含み,
該冷間コイニング工程では,冷間コイニング前の上記コラム部のリブ高さをh1,冷間コイニング後の上記コラム部のリブ高さをh2とした場合,加工率(h1−h2)/h1が0.15〜0.25となる条件で冷間コイニングを施すことを特徴とする冷間コイニング強化コンロッドの製造方法にある(請求項1)。
【0015】
本発明における特徴は,熱間鍛造によって得た粗形材を従来のようにそのまま冷却して冷間コイニングするのではなく,500〜1000℃の温度域で上記熱間/温間コイニング工程を施すことによって,粗形材の寸法ばらつきを小さくしておき,その後の冷間コイニングを一定の加工率の範囲内で実施することによって,強度ばらつきを小さく抑えるとともに,見切り線部における窪み割れを防止可能にした点にある。
【0016】
本発明では,まず熱間に加熱し通常の熱鍛コンロッドと同様に熱間鍛造工程を施して,上記大端部,上記小端部,及び上記コラム部を有する粗形材を製造する。そして,鍛造後の冷却途中の500〜1000℃の温度領域において熱間コイニング又は温間コイニングを実施する。この温度では,加工しても加工硬化の影響がほとんど残らないため,強度ばらつきへの影響をほとんど気にすることなく,コイニング(熱間又は温間コイニング)が可能である。また,この温度領域でコイニングすることにより,熱間鍛造工程のままの場合に比べて遥かに寸法ばらつきの小さい状態の鍛造品とすることができる。
【0017】
そして,その後に100℃以下の温度領域において上記冷間コイニング工程を実施する。通常行われる冷間コイニングの場合には,本発明のように500〜1000℃の温度でのコイニングは実施されないため,寸法ばらつきの大きな粗形材を冷間コイニングすることになる。しかしながら,本発明では既に前記したように熱間又は温間コイニングによって,寸法ばらつきの小さい状態の粗形材とすることができるので,冷間コイニング時の加工率のばらつきが小さい。従って,強度ばらつきを極めて小さく抑えることができる。
【0018】
さらに,本発明では,冷間コイニング時の加工率(h1−h2)/h1を上記のごとく0.15〜0.25の範囲に限定している。この範囲に限定することによって,冷間コイニングによる強度向上効果を確実に得ることが可能になるとともに,見切り線部の窪み割れ発生を防止することが可能になる。
なお,上記加工率の範囲は,実生産の際に1個ずつ実質の加工率の測定を行うのは不可能であるため,狙い値での加工率の範囲を意味する。
【0019】
次に,本発明の製造方法における各条件の限定理由について説明する。
熱間鍛造後の上記熱間/温間コイニング工程の温度範囲を500〜1000℃としたのは,500℃未満の温度で実施すると,加工硬化の影響と残留応力が加工後に残存するようになり,強度ばらつきを小さく抑えられなくなるためである。また,1000℃を超えると,加工温度のばらつきによる変形抵抗のばらつきが無視できなくなる等の理由から,コイニングを実施しても寸法ばらつきを小さくすることが難しくなるためである。
【0020】
また,上記冷間コイニング工程における加工率(h1−h2)/h1を0.15〜0.25としたのは,0.15未満になると,加工率の変化による鍛造品の強度変化が大きくなって,結果的に強度ばらつきが大きくなってしまうためであり,0.25を超えるコイニングを実施した場合には,見切り線部における窪み割れ発生防止が困難となるためである。
【0021】
次に,上記熱間/温間コイニング工程と上記冷間コイニング工程との間には,上記熱間/温間コイニング工程を施した上記コラム部が100℃以下に冷却された後にショットブラスト処理を施すショットブラスト工程を行うことが好ましい(請求項2)。このショットブラスト工程を実施することによって,熱間鍛造時に表面に生成した酸化スケールを容易に除去することができる。
また,冷間コイニングを実施すると,コイニングする部分としない部分の境界領域において,引張残留応力が発生する場合がある。その場合には,冷間コイニング後にショットブラスを実施すると,残留応力を小さく抑えることができるのでより好ましい。
【0022】
【発明の実施の形態】
実施例1
本発明の実施例に係る冷間コイニング強化コンロッドの製造方法につき,図1〜図4を用いて説明する。
本例では,素材として,S55C(0.55%C−0.25%Si−0.85%Mn−0.15%Cr)鋼を用い,後述するごとく,熱間/温間コイニング工程の条件,冷間コイニング工程の条件等を変化させた11種類の製造方法により,それぞれ50個ずつのコンロッドを作製する試験1〜11を行った。そして,各試験ごとに,リブ高さのばらつきと,座屈強度のばらつき等への影響を調査した。
【0023】
まず,本例で作製したコンロッド1は,図1に示すごとく,大端部11と小端部12とこれらをつなぐコラム部13とを有するものである。コラム部13は,帯状の幹部130とその両面において幅方向両端近傍から立ち上がったリブ131とを有している。本例におけるリブ高さとは,同図に示すhの寸法をいう。
そして,試験1においては,図2に示すごとく,まず,上記素材を1250℃に加熱し,1200℃にて熱間鍛造を施して上記大端部11,上記小端部12,及び上記コラム部13の粗形状を形成する熱間鍛造工程S1を行った。
その後,熱間鍛造工程S1後の冷却途中の900℃の温度において,上記コラム部13に熱間コイニング又は温間コイニングを施す熱間/温間コイニング工程S2を行った。
【0024】
次に,本例では,冷却工程25によって,上記熱間/温間コイニング工程を施した上記コラム部が100℃以下に冷却された後に,ショットブラスト処理を施すショットブラスト工程S3を実施した。
最後に,上記コラム部13にさらに冷間コイニングを施す冷間コイニング工程を室温で行った。このときの加工率(h1−h2)/h1×100(%)は,20%を狙いとして行った。
なお,上記全ての加工工程は,機械プレスを用いてストローク制御により行った。
【0025】
試験2,3,4は,上記試験1と基本的に同じであり,上記熱間/温間コイニング工程の実施温度を,それぞれ800℃,700℃,600℃に変更した点だけが異なる。
試験5,6は,上記試験3と基本的に同じであり,上記冷間コイニング工程における加工率の狙い値をそれぞれ16%,24%に変更した点だけが異なる。
【0026】
試験7は,上記試験1における熱間/温間コイニング工程を省略した例である。
試験8は,上記試験1と基本的に同じであり,上記熱間/温間コイニング工程の実施温度を300℃に変更した点だけが異なる。
試験9,10は,上記試験3と基本的に同じであり,上記冷間コイニング工程における加工率の狙い値をそれぞれ10%,28%に変更した点だけが異なる。
試験11は,上記試験1と基本的に同じであり,上記熱間/温間コイニング工程の実施温度を1050℃に変更した点だけが異なる。
【0027】
すべての試験1〜11において,熱間鍛造工程においては同じコンロッド型を用いて同じ狙い値で行った(ただし,寸法ばらつきは当然発生する)。また,熱間/温間コイニング工程では,すべて加工率15%の狙い値で行った。
冷間コイニング加工率は,冷間コイニング前後のそれぞれのリブ高さの実測値から求めた。なお,狙い値は,コイニング前後のリブ高さの狙い値から計算されるものである。
【0028】
また,冷間コイニング前のリブ高さ,あるいは冷間コイニング後のリブ高さのばらつきとしては,実測した冷間コイニング前後のリブ高さとそれぞれの狙いのリブ高さとの差異を求め,その範囲をばらつきとした。
また,座屈強度は,0.2%の塑性変形が確認できた時点で測定し,その最大値と最小値との差異をばらつきとして示した。。
これらの結果を表1に示す。なお,冷間コイニング加工率は,上段に狙い値を,下段に実測値の範囲を示した。
【0029】
【表1】
【0030】
表1より知られるごとく,本発明の製造方法の例である試験1〜6においては,いずれも冷間コイニング加工率のばらつき,冷間コイニング後のリブ高さのばらつき,座屈強度のばらつきが小さく,かつ,見切り線部の窪み割れも発生しておらず,非常に優れたコンロッドが得られることが分かった。
【0031】
これに対し,比較例としての試験7の場合には,熱間/温間コイニング工程を行っていないので,冷間コイニング前のリブ高さが突出して大きく,これに起因して,冷間コイニング加工率のばらつき,冷間コイニング後のリブ高さのばらつき,座屈強度のばらつきも非常に大きい結果となった。
このことから熱間/温間コイニング工程の追加が非常に有効であることが分かる。
【0032】
また,試験8は,熱間/温間コイニング工程を追加した効果として寸法精度向上効果はある程度得られるものの,その処理温度が300℃と低いため,熱間/温間コイニング工程時における加工硬化の影響が残存し,最終的な座屈強度のばらつきを大きくしてしまう。
【0033】
また,試験11は,熱間/温間コイニング工程を追加しているものの,処理温度が1050℃と高すぎるため,この工程追加効果が殆ど得られず,特に冷間コイニング前のリブ高さのばらつきが大きくなった。そして,これに起因して,最終的な座屈強度のばらつきが大きくなった。
これら試験8,11の結果から,熱間/温間コイニング工程の処理温度には最適範囲があり,少なくとも上述したように500〜1000℃の範囲にすることが有効であることが分かる。
【0034】
また,試験9は,冷間コイニング工程における加工率が小さすぎ,これによって座屈強度のばらつきが非常に大きくなった。
一方,試験10は,冷間コイニング工程における加工率が大きすぎ,これによって見切り線部における窪み割れ発生率が非常に高くなった。
これら試験9,10の結果から,冷間コイニング工程における加工率は,少なくとも,上述したように0.15〜0.25の範囲内にすることが有効であることが分かる。
【0035】
次に,本例では,最適な熱間/温間コイニング工程及び冷間コイニング工程を施した場合の優れた効果を図3,図4を用いて説明する。
図3は,左右2列(A列,B列)に2種類の加工履歴を示してある。
A列のものは,熱間鍛造工程S1において得られたコンロッドにおけるコラム部13(S1)のリブ高さをh0aが,B列の場合のリブ高さh0bよりも小さくなったものである。この差異は同じ金型を用いても,素材の寸法ばらつきや金型の温度状態等によって生じてしまう。
この2種類の熱間鍛造品に対して,熱間/温間コイニング工程S2を施すと,コラム部13(S2)のリブ高さは,それぞれh1a,h1bに縮小される。さらに冷間コイニング工程S4を施すと,それぞれh2a,h2bに縮小される。
この内容をさらにわかりやするため,リブ高さの推移の一例を示したものが図4である。同図は,横軸に時間(工程)を,縦軸にリブ高さをとった説明図である。
【0036】
ここで,本例では,上記熱間/温間コイニング工程S2を最適な条件で加えてあるので,加工硬化を殆ど残留させることなく,上記h1a,h1bの差異を十分に小さくすることができ,熱間鍛造工程S1直後における寸法の差異の影響を大幅に除去することができる。そして,その後の冷間コイニング工程S4においても,適切な加工率を採用することによって,上記h2a,h2bの差異も小さくなり,さらに座屈強度の差異も十分に小さくなる。
【0037】
このように,上記熱間/温間コイニング工程と冷間コイニング工程とを適切な条件で加えることにより,寸法ばらつきや強度ばらつきを押さえた上で,冷間コイニングにより強化したコンロッドを製造することができるのである。
【0038】
実施例2
本例では,実施例1における試験3の条件を基礎として,その冷間コイニング工程の加工率を0〜30%の範囲で変化させ,その最適値をさらに確認する実験を行った。そして,得られたコンロッドのコラム部の0.03%耐力(MPa)を測定した。
【0039】
測定結果を図5に示す。同図は,横軸に冷間コイニングの加工率(%)を,縦軸に0.03%耐力(MPa)をとったものである。
同図から知られるように,冷間コイニング加工率が15.0%〜25.0%の間においては,0.03%耐力値が非常に安定している。
この結果からも,冷間コイニング工程における加工率h1−h2)/h1は0.15〜0.25の範囲が最適であることが分かった。
【図面の簡単な説明】
【図1】実施例1における,コンロッドの(a)平面図,(b)側面図,(c)A−A線矢視断面拡大図。
【図2】実施例1における,製造工程を示す説明図。
【図3】実施例1における,(A)熱間鍛造直後のリブ高さが低い場合の加工履歴,(B)熱間鍛造直後のリブ高さが高い場合の加工履歴をそれぞれ示す説明図。
【図4】実施例1における,加工に伴うリブ高さの推移を示す説明図。
【図5】実施例2における,冷間コイニング加工率と耐力との関係を示す説明図。
【符号の説明】
1...コンロッド,
11...大端部,
12...小端部,
13...コラム部,
130...幹部,
131...リブ,[0001]
BACKGROUND OF THE INVENTION
The present invention is directed to a connecting rod used in an automobile engine or the like, and more particularly to a cold working method for producing a high-strength connecting rod using work hardening by cold coining. The present invention relates to a method for manufacturing a high-strength connecting rod capable of suppressing strength variation and ensuring high strength stably.
[0002]
[Prior art]
Conventionally, mechanical structural parts used in automobiles and construction machinery are made of carbon steel or alloy steel, and after hot forging, the necessary strength has been secured by quenching and tempering treatment. However, due to the efficiency of energy consumption, recently, a large amount of non-tempered steel that can ensure the required strength without quenching and tempering has been used. A number of patents have been filed for this non-tempered steel, and steels of various structures such as ferrite pearlite type and bainite type have been proposed. The main idea is that carbon such as V and Nb is used. By precipitating nitride in the course of cooling after hot working, the strength is secured by precipitation strengthening.
[0003]
However, demands for weight reduction of automobiles and the like are becoming stronger and connecting rods are no exception. In order to make it possible to reduce the weight, there are two possible measures, one by improving the material and the other by improving the processing method. However, since improvement in the material has been actively performed, Recently, improvement methods from the aspect of processing methods have been attracting attention.
[0004]
As a high-strength measure for connecting rods by improving the processing method, it has been known that the connecting rods are required to have the highest strength in the column. Conventionally, cold working is added to this part (coining) to enhance the strength. Attempts have been made to make it possible.
[0005]
For example,
[0006]
Further, Patent Documents 2 to 4 describe that a hot forged product having a connecting rod shape is manufactured using a low carbon steel, a low carbon boron steel, a steel having a martensite transformation start temperature of 600 ° C. or more, and the like as a steel material. A manufacturing method characterized by obtaining a connecting rod having excellent fatigue strength by coining and shot peening without tempering after entering is described.
[0007]
Furthermore, Patent Document 5 describes a method of manufacturing a connecting rod that does not reduce buckling strength by performing hot coining at a temperature of 700 ° C. or higher and omitting cold coining.
Patent Documents 6 and 7 describe a manufacturing method in which high strength is achieved by combining cold coining and heat treatment (aging treatment).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-221232 [Patent Document 2]
JP-A-5-70828 [Patent Document 3]
JP-A-7-62444 [Patent Document 4]
JP-A-9-196044 [Patent Document 5]
Japanese Patent Laid-Open No. 10-258335 [Patent Document 6]
Japanese Patent Laid-Open No. 10-168540 [Patent Document 7]
JP-A-11-131134 [0009]
[Problems to be solved by the invention]
However, the coining method performed after the hot forging described above has the following problems.
That is, although the methods described in
[0010]
Processing with a press, including coining of the connecting rod, is usually performed by stroke control. If a cold forging is performed on a forged rough profile with varying dimensions using a press that performs processing with stroke control, the processing rate at the time of coining will vary, resulting in a difference in the degree of work hardening due to coining. It is not possible to reduce the strength variation that occurs in the product.
All of the above-mentioned patent documents are based on the premise that the coining is performed cold except for Patent Document 5, and when the dimensions of the coarse shape material vary, the strength varies as a matter of course. In addition, the invention described in Patent Document 5 is characterized by the fact that cold coining is not performed, so that the intensity variation is expected to be small. However, since the coining temperature is high, there is a problem that the effect of improving the strength by coining cannot be obtained. is there.
[0012]
In addition, when cold coining is conventionally performed, there is a problem that dent cracks occur at the parting line part, and there is a strong development of a connecting rod manufacturing method that can prevent the pit cracking at the parting line part with little variation in strength. It was desired.
[0013]
The present invention has been made to solve the above-described problems. A connecting rod having a stable strength can be produced even when the hot forged rough profile varies, and It is an object of the present invention to provide a method for manufacturing a cold coining reinforced connecting rod with a small strength variation that can ensure high strength by coining.
[0014]
[Means for Solving the Problems]
The present invention is a method of manufacturing a cold coining strengthened connecting rod having a large end portion, a small end portion, and a column portion connecting them, and strengthening the column portion by performing cold coining,
A hot forging process in which the material is hot forged to form the large end, the small end, and the column;
A hot / warm coining step in which the column part is subjected to hot coining or warm coining in a temperature range of 500 to 1000 ° C. during cooling after the hot forging step;
A cold coining step in which after the hot / warm coining step, the column part is further subjected to cold coining in a temperature region of 100 ° C. or less,
In the cold coining step, when the rib height of the column part before cold coining is h 1 and the rib height of the column part after cold coining is h 2 , the processing rate (h 1 −h 2 ) / H 1 is a method of manufacturing a cold coining reinforced connecting rod, characterized in that cold coining is performed under the condition of 0.15 to 0.25.
[0015]
The feature of the present invention is that the above-mentioned hot / warm coining process is performed in the temperature range of 500 to 1000 ° C. instead of cold-coining the raw material obtained by hot forging as it is. As a result, the dimensional variation of the rough shape material can be reduced, and the subsequent cold coining can be performed within a certain range of processing rate, thereby suppressing the strength variation and preventing dent cracks at the parting line. It is in the point made.
[0016]
In the present invention, first, the steel is heated and subjected to a hot forging process in the same manner as a normal hot forging connecting rod, thereby producing a rough shape having the large end portion, the small end portion, and the column portion. And hot coining or warm coining is implemented in the temperature range of 500-1000 degreeC in the middle of the cooling after forging. At this temperature, there is almost no effect of work hardening even after processing, so coining (hot or warm coining) is possible with little concern about the effect on strength variations. Further, by coining in this temperature region, it is possible to obtain a forged product in which the dimensional variation is much smaller than in the case of the hot forging process.
[0017]
Thereafter, the cold coining process is performed in a temperature range of 100 ° C. or lower. In the case of cold coining that is normally performed, since coining is not performed at a temperature of 500 to 1000 ° C. as in the present invention, a coarse shape material having a large dimensional variation is cold coined. However, in the present invention, as described above, it is possible to obtain a rough shape having a small dimensional variation by hot or warm coining, so that the variation in the processing rate during the cold coining is small. Therefore, the intensity variation can be suppressed to an extremely small level.
[0018]
Furthermore, in the present invention, the processing rate (h 1 -h 2 ) / h 1 at the time of cold coining is limited to the range of 0.15 to 0.25 as described above. By limiting to this range, it is possible to surely obtain the effect of improving the strength by cold coining, and to prevent the occurrence of dent cracks in the parting line portion.
Note that the range of the processing rate means the range of the processing rate at the target value because it is impossible to measure the actual processing rate one by one in actual production.
[0019]
Next, the reasons for limiting each condition in the production method of the present invention will be described.
The reason why the temperature range of the hot / warm coining process after hot forging is set to 500 to 1000 ° C is that when it is carried out at a temperature below 500 ° C, the effects of work hardening and residual stress will remain after processing. This is because the intensity variation cannot be kept small. Further, when the temperature exceeds 1000 ° C., it is difficult to reduce the dimensional variation even if coining is performed because the variation in deformation resistance due to the variation in processing temperature cannot be ignored.
[0020]
In addition, the processing rate (h 1 -h 2 ) / h 1 in the cold coining process is set to 0.15 to 0.25. When the processing rate is less than 0.15, the strength change of the forged product due to the change in the processing rate. This is because, as a result, the intensity variation increases, and when coining exceeding 0.25 is performed, it is difficult to prevent the occurrence of dent cracks in the parting line portion.
[0021]
Next, between the hot / warm coining step and the cold coining step, the column part subjected to the hot / warm coining step is cooled to 100 ° C. or lower and shot blasting is performed. It is preferable to perform the shot blasting process to be performed. By performing this shot blasting process, the oxide scale generated on the surface during hot forging can be easily removed.
In addition, when cold coining is performed, tensile residual stress may be generated in the boundary region between the portion to be coined and the portion not to be coined. In that case, it is more preferable to carry out shot blasting after cold coining because the residual stress can be kept small.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
The manufacturing method of the cold coining reinforcement | strengthening connecting rod which concerns on the Example of this invention is demonstrated using FIGS. 1-4.
In this example, S55C (0.55% C-0.25% Si-0.85% Mn-0.15% Cr) steel is used as the material, and the conditions of the hot / warm coining process as described later.
[0023]
First, the connecting
In
Thereafter, a hot / warm coining step S2 for performing hot coining or warm coining on the
[0024]
Next, in this example, a shot blast process S3 for performing a shot blasting process was performed after the column part that had been subjected to the hot / warm coining process was cooled to 100 ° C. or less by the cooling process 25.
Finally, a cold coining process for further cold coining the
All the above-mentioned processing steps were performed by stroke control using a mechanical press.
[0025]
Tests 5 and 6 are basically the same as test 3 described above, except that the target values of the processing rate in the cold coining process are changed to 16% and 24%, respectively.
[0026]
Test 7 is an example in which the hot / warm coining step in
Tests 9 and 10 are basically the same as the test 3 except that the target values of the processing rate in the cold coining process are changed to 10% and 28%, respectively.
[0027]
In all the
The cold coining rate was determined from the measured rib height before and after cold coining. The target value is calculated from the target value of the rib height before and after coining.
[0028]
In addition, as the variation in the rib height before cold coining, or the rib height after cold coining, the difference between the measured rib height before and after cold coining and the target rib height is Variation was assumed.
The buckling strength was measured when 0.2% plastic deformation was confirmed, and the difference between the maximum and minimum values was shown as variation. .
These results are shown in Table 1. For the cold coining rate, the target value is shown in the upper row and the range of measured values is shown in the lower row.
[0029]
[Table 1]
[0030]
As can be seen from Table 1, in
[0031]
On the other hand, in the case of Test 7 as a comparative example, since the hot / warm coining process was not performed, the rib height before the cold coining was prominently large, resulting in cold coining. Variations in the processing rate, rib height after cold coining, and buckling strength were also very large.
This shows that the addition of a hot / warm coining process is very effective.
[0032]
In
[0033]
In
From the results of these
[0034]
In Test 9, the processing rate in the cold coining process was too small, which caused a very large variation in buckling strength.
On the other hand, in Test 10, the processing rate in the cold coining process was too large, and as a result, the occurrence rate of dent cracks in the parting line portion became very high.
From the results of these tests 9 and 10, it can be seen that it is effective that the processing rate in the cold coining process is at least within the range of 0.15 to 0.25 as described above.
[0035]
Next, in this example, an excellent effect when the optimum hot / warm coining process and cold coining process are performed will be described with reference to FIGS.
FIG. 3 shows two types of machining histories in the left and right columns (A column and B column).
Those of column A, in which the
When the hot / warm coining step S2 is performed on the two types of hot forged products, the rib height of the column portion 13 (S 2 ) is reduced to h 1a and h 1b , respectively. Further, when the cold coining step S4 is performed, they are reduced to h 2a and h 2b , respectively.
In order to further understand this content, FIG. 4 shows an example of the transition of the rib height. In the figure, the horizontal axis represents time (process), and the vertical axis represents rib height.
[0036]
Here, in this example, since the hot / warm coining step S2 is added under optimum conditions, the difference between the h 1a and h 1b can be made sufficiently small with almost no work hardening remaining. And the influence of the difference in dimensions immediately after the hot forging step S1 can be largely eliminated. In the subsequent cold coining step S4, by adopting an appropriate processing rate, the difference between h 2a and h 2b is reduced, and the difference in buckling strength is also sufficiently reduced.
[0037]
Thus, by adding the above hot / warm coining process and cold coining process under appropriate conditions, it is possible to manufacture a connecting rod reinforced by cold coining while suppressing dimensional variations and strength variations. It can be done.
[0038]
Example 2
In this example, based on the conditions of Test 3 in Example 1, an experiment was performed in which the processing rate of the cold coining process was changed in the range of 0 to 30% and the optimum value was further confirmed. And 0.03% yield strength (MPa) of the column part of the obtained connecting rod was measured.
[0039]
The measurement results are shown in FIG. In the figure, the horizontal axis represents the cold coining processing rate (%), and the vertical axis represents 0.03% yield strength (MPa).
As can be seen from the figure, the 0.03% yield strength value is very stable when the cold coining rate is between 15.0% and 25.0%.
Also from this result, it was found that the processing rate h 1 -h 2 ) / h 1 in the cold coining process is optimally in the range of 0.15 to 0.25.
[Brief description of the drawings]
1A is a plan view of a connecting rod, FIG. 1B is a side view of the connecting rod, and FIG.
2 is an explanatory view showing a manufacturing process in Example 1. FIG.
FIGS. 3A and 3B are explanatory views showing (A) a processing history when the rib height just after hot forging is low and (B) a processing history when the rib height just after hot forging is high in Example 1. FIG.
FIG. 4 is an explanatory diagram showing a transition of rib height accompanying processing in Example 1.
FIG. 5 is an explanatory diagram showing the relationship between the cold coining rate and the proof stress in Example 2.
[Explanation of symbols]
1. . . Connecting rod,
11. . . Big end,
12 . . Small end,
13. . . Column section,
130. . . Executives,
131. . . rib,
Claims (2)
素材に熱間鍛造を施して上記大端部,上記小端部,及び上記コラム部を形成する熱間鍛造工程と,
上記熱間鍛造工程後の冷却途中の500〜1000℃の温度領域において,上記コラム部に熱間コイニング又は温間コイニングを施す熱間/温間コイニング工程と,
該熱間/温間コイニング工程の後に100℃以下の温度領域において上記コラム部にさらに冷間コイニングを施す冷間コイニング工程とを含み,
該冷間コイニング工程では,冷間コイニング前の上記コラム部のリブ高さをh1,冷間コイニング後の上記コラム部のリブ高さをh2とした場合,加工率(h1−h2)/h1が0.15〜0.25となる条件で冷間コイニングを施すことを特徴とする冷間コイニング強化コンロッドの製造方法。A method of manufacturing a cold coining reinforced connecting rod having a large end portion, a small end portion and a column portion connecting them, and strengthening the column portion by performing cold coining,
A hot forging process in which the material is hot forged to form the large end, the small end, and the column;
A hot / warm coining step in which the column part is subjected to hot coining or warm coining in a temperature range of 500 to 1000 ° C. during cooling after the hot forging step;
A cold coining step in which after the hot / warm coining step, the column part is further subjected to cold coining in a temperature region of 100 ° C. or less,
In the cold coining step, when the rib height of the column part before cold coining is h 1 and the rib height of the column part after cold coining is h 2 , the processing rate (h 1 −h 2 ) / H 1 is subjected to cold coining under the condition of 0.15 to 0.25. A method for producing a cold coining reinforced connecting rod.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003186308A JP2005014078A (en) | 2003-06-30 | 2003-06-30 | Manufacturing method for cold-coining strengthened connecting-rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003186308A JP2005014078A (en) | 2003-06-30 | 2003-06-30 | Manufacturing method for cold-coining strengthened connecting-rod |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005014078A true JP2005014078A (en) | 2005-01-20 |
Family
ID=34185476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003186308A Pending JP2005014078A (en) | 2003-06-30 | 2003-06-30 | Manufacturing method for cold-coining strengthened connecting-rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005014078A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016141864A (en) * | 2015-02-04 | 2016-08-08 | 愛知製鋼株式会社 | Method of manufacturing connecting rod |
JP7567412B2 (en) | 2020-12-03 | 2024-10-16 | トヨタ自動車株式会社 | Workpiece manufacturing method and manufacturing device |
-
2003
- 2003-06-30 JP JP2003186308A patent/JP2005014078A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016141864A (en) * | 2015-02-04 | 2016-08-08 | 愛知製鋼株式会社 | Method of manufacturing connecting rod |
JP7567412B2 (en) | 2020-12-03 | 2024-10-16 | トヨタ自動車株式会社 | Workpiece manufacturing method and manufacturing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100939462B1 (en) | Hot forged products excellent in fatigue strength, process for production thereof, and machine structural parts | |
JP4435953B2 (en) | Bar wire for cold forging and its manufacturing method | |
US5500058A (en) | Method for producing a vehicular endless track link | |
KR19980064836A (en) | Method for manufacturing steel parts formed by steel and cold plastic deformation | |
JP5492393B2 (en) | Hot rolled steel bar wire and its manufacturing method | |
JP5647344B2 (en) | Manufacturing method of high strength cold forging steel wire with improved die life | |
US5453139A (en) | Method of making cold formed high-strength steel parts | |
CA2147979C (en) | Cold formed high-strength steel parts | |
KR100191696B1 (en) | High strength steel parts and method of making | |
JP5064240B2 (en) | Surface fine-grained steel parts and manufacturing method thereof | |
US20180245172A1 (en) | Age-hardenable steel, and method for manufacturing components using age-hardenable steel | |
JP2003113422A (en) | Thermally tempered steel wire superior in cold heading characteristic | |
JP2005014078A (en) | Manufacturing method for cold-coining strengthened connecting-rod | |
JP2007146233A (en) | Method for manufacturing structural parts for automobile made from steel | |
JP2005014079A (en) | Manufacturing method for partial-cold-working strengthened connecting-rod | |
JP4166121B2 (en) | Manufacturing method of reinforced connecting rod with small dimensional variation | |
JPH07305139A (en) | Non-heat treated machine parts and production thereof | |
KR100713292B1 (en) | Cold forming flat-rolled high-strength steel blanks into structural members | |
JP4254345B2 (en) | High strength connecting rod and manufacturing method thereof | |
US20140373351A1 (en) | Process for producing forged product | |
US9752203B2 (en) | Process to improve fatigue strength of micro alloy steels, forged parts made from the process and an apparatus to execute the process | |
JP3888288B2 (en) | Steel material to be used after deformed drawing and induction hardening, and method of manufacturing steel member using the same | |
Skubisz et al. | Drop forging of HSLA steel with application of thermomechanical treatment | |
JP4112464B2 (en) | Method for manufacturing hot forged non-tempered parts with excellent machinability | |
JPH0734134A (en) | Surface treatment of crank shaft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060111 |
|
A977 | Report on retrieval |
Effective date: 20070726 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070807 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080318 |
|
A02 | Decision of refusal |
Effective date: 20081209 Free format text: JAPANESE INTERMEDIATE CODE: A02 |